[go: up one dir, main page]

JP2014240732A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2014240732A
JP2014240732A JP2013123803A JP2013123803A JP2014240732A JP 2014240732 A JP2014240732 A JP 2014240732A JP 2013123803 A JP2013123803 A JP 2013123803A JP 2013123803 A JP2013123803 A JP 2013123803A JP 2014240732 A JP2014240732 A JP 2014240732A
Authority
JP
Japan
Prior art keywords
heat
heat radiating
radiating pipe
inner fin
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013123803A
Other languages
Japanese (ja)
Other versions
JP6204710B2 (en
Inventor
好伸 堀
Yoshinobu Hori
好伸 堀
祥 桑原
Sho Kuwabara
祥 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2013123803A priority Critical patent/JP6204710B2/en
Publication of JP2014240732A publication Critical patent/JP2014240732A/en
Application granted granted Critical
Publication of JP6204710B2 publication Critical patent/JP6204710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger that prevents generation of drain within radiator tubes, has high installation performance and also prevents noise during operation while requiring enhancement of thermal efficiency.SOLUTION: A heat exchanger 12 for releasing heat of combustion gas sent from a combustion part 11 and heating air introduced into a ventilation passage 100 includes: a plurality of radiator tubes 120 extending within the ventilation passage 100 in a direction intersecting with the flowing direction of the air and juxtaposed in the flowing direction; and spiral plate-shaped inner fins 121 each arranged over the approximately whole length within each of the radiator tubes 120 and converting a flow of the combustion gas sent into each of the radiator tubes 120 into turbulence. Shapes of the inner fins 121 are made to differ between the radiator tubes 120 located on the upstream side and the radiator tubes 120 located on the downstream side out of the radiator tubes 120 juxtaposed in the flowing direction, so that a degree of heat radiation of the radiator tubes 120 located on the upstream side is made smaller than that of the radiator tubes 120 located on the downstream side.

Description

本発明は、熱交換器、特に、放熱管内に送り込まれた燃焼ガスの流れを乱流にするためのインナーフィンを備えた熱交換器に関する。   The present invention relates to a heat exchanger, and more particularly to a heat exchanger provided with an inner fin for making the flow of combustion gas sent into a heat radiating pipe turbulent.

ガスの燃焼用空気を室外から給排気管を通じて燃焼部へ取り込む一方、燃焼部で生成された燃焼ガスを複数の放熱管で構成された熱交換器内へ送り込み、本体内に導入される室内空気を熱交換加熱した後、給排気管を通じて室外へ排出する所謂ガスFF式の暖房機が知られているが、この種の暖房機に組み込まれる熱交換器において、高熱効率化を図るべく、放熱管内に燃焼ガスの流れを乱流にするためのインナーフィンが挿設されているものがある。   Air for combustion of gas is taken into the combustion section from the outside through the air supply / exhaust pipe, while the combustion gas generated in the combustion section is sent into a heat exchanger composed of a plurality of heat radiating pipes, and indoor air introduced into the main body There is known a so-called gas FF type heater that heats and heats the air through an air supply / exhaust pipe. However, in a heat exchanger incorporated in this type of heater, in order to increase heat efficiency, heat dissipation is performed. Some pipes are provided with inner fins for turbulent combustion gas flow.

ところが、このような熱交換器の場合、通気路の上流側に位置する放熱管は、下流側の放熱管より冷たい室内空気を熱交換加熱する。そのため、放熱管の全てに対して同一のインナーフィンを設け、それら各放熱管内における乱流を一様に強くしてしまうと、上流側に位置する放熱管の放熱度合が大きくなって、バーナの燃焼量によっては上流側の放熱管内を流れる燃焼ガスが露点以下となる。その結果、放熱管内部にドレンが発生し、熱交換器の劣化が助長されてしまう虞がある。   However, in the case of such a heat exchanger, the heat radiating pipe located on the upstream side of the ventilation path heats and heats indoor air that is colder than the heat radiating pipe on the downstream side. Therefore, if the same inner fin is provided for all of the heat radiating pipes and the turbulent flow in each of the heat radiating pipes is strengthened uniformly, the degree of heat radiation of the heat radiating pipe located upstream becomes larger, Depending on the amount of combustion, the combustion gas flowing in the upstream side heat radiating pipe becomes below the dew point. As a result, there is a possibility that drain is generated inside the heat radiating tube and the deterioration of the heat exchanger is promoted.

そこで、この種の従来の熱交換器では、上流側の放熱管に他の放熱管より短いインナーフィンを挿設して、その放熱管内の一部の領域で乱流を弱くすることによって放熱度合を小さくし、放熱管内部でのドレンの発生の抑制を図ったものが提案されている(例えば、特許文献1参照)。   Therefore, in this type of conventional heat exchanger, an inner fin shorter than other heat radiating pipes is inserted in the heat radiating pipe on the upstream side to reduce the turbulence in a part of the area of the heat radiating pipe, thereby reducing the degree of heat dissipation. Has been proposed in which the generation of drain inside the heat radiating tube is suppressed (see, for example, Patent Document 1).

実公昭58−42833号公報Japanese Utility Model Publication No. 58-42833

しかしながら、上記従来の熱交換器では、短いインナーフィンが挿設された放熱管において、その短いインナーフィンが放熱管内の一端側で片持ち状に支持された構成であるため、運転時に放熱管内へ送り込まれる燃焼ガスの急な流圧の変化によってその短いインナーフィンが振動しないよう固定するのが難いし、組み付けも容易でない。また、このものでは、短いインナーフィンが挿設された上流側の放熱管において、インナーフィンの配設されている箇所と配設されていない箇所では放熱度合が顕著に異なる。そのため、本体の通気路内に導入された冷たい室内空気がインナーフィンの配設されていない箇所で十分に熱交換されずに下流側まで達してしまい、下流側の放熱管内部で燃焼ガスが露点温度以下となって、ドレンの発生を招く虞があった。また、上述した放熱度合の違いよりインナーフィンの配設されている箇所と配設されていない箇所とで熱膨張の差が大きくなるため、運転中、放熱管が熱膨張する際にきしみ音などの騒音が生じる可能性もある。   However, in the above-described conventional heat exchanger, since the short inner fin is supported in a cantilevered manner at one end side in the heat radiating pipe in the heat radiating pipe in which the short inner fin is inserted, the heat radiating pipe enters the heat radiating pipe during operation. It is difficult to fix the short inner fin so as not to vibrate due to a sudden change in the flow pressure of the combustion gas to be sent, and the assembly is not easy. Moreover, in this thing, in the upstream heat radiation pipe | tube in which the short inner fin was inserted, the heat radiation degree differs notably in the location in which the inner fin is arrange | positioned, and the location in which it is not arrange | positioned. For this reason, the cold indoor air introduced into the ventilation passage of the main body reaches the downstream side without sufficient heat exchange at the location where the inner fins are not disposed, and the combustion gas is dew point inside the downstream radiating pipe. There was a possibility that drainage would be caused at a temperature lower than that. In addition, since the difference in thermal expansion between the location where the inner fin is disposed and the location where the inner fin is not disposed is larger than the above-described difference in the degree of heat dissipation, a squeak noise is generated when the heat radiation tube is thermally expanded during operation. Noise may occur.

本発明は、上述の事情に鑑みてなされたものであり、その目的は、高熱効率化が求められる熱交換器において、放熱管内部でドレンが発生し難く、且つ、組み付け性が高く、運転中の騒音も生じ難い熱交換器を提供することにある。   The present invention has been made in view of the above circumstances, and the purpose thereof is a heat exchanger that is required to have high thermal efficiency. An object of the present invention is to provide a heat exchanger that hardly generates noise.

本発明は、燃焼部から送り込まれる燃焼ガスの熱を放出し、通気路内へ導入される空気を加熱する熱交換器であって、通気路内において前記空気の流れ方向と交差する方向へ延設され且つ前記流れ方向に複数並設される放熱管と、各放熱管内の略全長に亘って設けられ、放熱管内へ送り込まれる燃焼ガスの流れを乱流にする螺旋板状のインナーフィンとを備え、前記流れ方向に複数並ぶ放熱管のうち、上流側に位置する放熱管の放熱度合が下流側に位置する放熱管の放熱度合より小さくなるよう、上流側に位置する放熱管と下流側に位置する放熱管とでインナーフィンの形状を異ならせたことを特徴とするものである。   The present invention is a heat exchanger that releases heat of combustion gas fed from a combustion section and heats air introduced into the air passage, and extends in a direction intersecting the air flow direction in the air passage. And a plurality of heat radiating pipes arranged in parallel in the flow direction, and a spiral plate-like inner fin that is provided over substantially the entire length of each radiating pipe and turbulently flows the combustion gas fed into the radiating pipe. A plurality of heat radiating pipes arranged in the flow direction, and the heat radiating pipe located on the upstream side and the heat radiating pipe located on the upstream side so that the heat radiating degree of the heat radiating pipe located on the upstream side is smaller than that of the heat radiating pipe located on the downstream side The shape of the inner fin is different from that of the located heat radiating pipe.

このものでは、通気路内にて流れ方向に並ぶ放熱管のうち、上流側に位置する放熱管の放熱度合が下流側に位置する放熱管の放熱度合より小さくなるよう、その上流側の放熱管と下流側の放熱管とでインナーフィンの形状を異ならせているから、通気路の上流側に位置する放熱管内の燃焼ガスが露点以下になり難い。従って、放熱管内部でのドレンの発生を十分に抑制できる。特に、このものでは、インナーフィンが放熱管内の略全長に亘って延設されているから、各放熱管における放熱度合が全体で均一になる。そのため、運転中、通気路内に冷たい室内空気が導入されても、上流側の放熱管により十分に熱交換されて下流側へ導かれる。従って、下流側の放熱管内部で燃焼ガスが露点温度以下になり難く、放熱管内部でのドレンの発生をより確実に防止できる。さらに、インナーフィンを各放熱管内の略全長に亘って延設させたことで、運転時に放熱管内へ送り込まれる燃焼ガスの流圧変化により振動しないようインナーフィンを放熱管内の両端側で確実に支持固定させることができるし、組み付けも容易である。また、放熱管全体における熱膨張のばらつきが小さくなり、その熱膨張のばらつきを起因とするきしみ音などの騒音も生じ難い。   In this case, among the radiating pipes arranged in the flow direction in the air passage, the radiating pipe on the upstream side is arranged so that the radiating degree of the radiating pipe located on the upstream side is smaller than the radiating degree of the radiating pipe located on the downstream side. Since the shape of the inner fin is made different between the heat radiating pipe and the downstream side heat radiating pipe, the combustion gas in the heat radiating pipe located on the upstream side of the air passage is unlikely to be below the dew point. Therefore, the generation of drain inside the heat radiating tube can be sufficiently suppressed. In particular, in this case, since the inner fin extends over substantially the entire length in the heat radiating tube, the heat radiation degree in each heat radiating tube becomes uniform as a whole. Therefore, even if cold indoor air is introduced into the air passage during operation, the heat is sufficiently exchanged by the upstream side heat radiating pipe and led to the downstream side. Therefore, it is difficult for the combustion gas to fall below the dew point temperature inside the downstream heat radiating pipe, and the generation of drain inside the heat radiating pipe can be more reliably prevented. In addition, by extending the inner fins over almost the entire length of each radiating tube, the inner fins are securely supported at both ends of the radiating tube so that they do not vibrate due to changes in the flow pressure of the combustion gas sent into the radiating tube during operation. It can be fixed and assembled easily. In addition, the variation in the thermal expansion of the entire heat radiating tube is reduced, and noise such as a squeak noise caused by the variation in the thermal expansion is hardly generated.

上記熱交換器において、上流側に位置する放熱管のインナーフィンのねじりピッチを、下流側に位置する放熱管のインナーフィンのねじりピッチより大きくしたことを特徴とするものであるのが望ましい。   In the heat exchanger, it is desirable that the twist pitch of the inner fins of the heat radiating pipe located on the upstream side is larger than the twist pitch of the inner fins of the heat radiating pipe located on the downstream side.

このものでは、上流側の放熱管と下流側の放熱管とのインナーフィンのねじりピッチを変えることで、それら放熱管毎の放熱度合を異ならせているから、比較的簡易な構造でドレンの発生やインナーフィンの振動を抑制することができる。   In this product, the heat release degree of each heat radiation pipe is changed by changing the torsion pitch of the inner fin between the heat radiation pipe on the upstream side and the heat radiation pipe on the downstream side. And vibration of the inner fin can be suppressed.

以上のように、本発明によれば、高熱効率化が求められる熱交換器において、放熱管内部でドレンが発生し難く、且つ、組み付け性が高く、運転中の騒音も生じ難い熱交換器を提供できる。   As described above, according to the present invention, in a heat exchanger that requires high thermal efficiency, a heat exchanger that is less likely to generate drainage inside the heat radiating pipe, has high ease of assembly, and does not easily generate noise during operation. Can be provided.

図1は、本発明の実施の形態に係る熱交換器を備えた暖房機の概略構成図である。Drawing 1 is a schematic structure figure of a heater provided with a heat exchanger concerning an embodiment of the invention. 図2は、本発明の実施の形態に係る熱交換器の概略縦断面図である。FIG. 2 is a schematic longitudinal sectional view of the heat exchanger according to the embodiment of the present invention. 図3は、本発明の他の実施形態(1)に係る熱交換器の概略縦断面図である。FIG. 3 is a schematic longitudinal sectional view of a heat exchanger according to another embodiment (1) of the present invention. 図4は、本発明の他の実施形態(2)に係る熱交換器の概略縦断面図である。FIG. 4 is a schematic longitudinal sectional view of a heat exchanger according to another embodiment (2) of the present invention. 図5は、本発明の他の実施形態(3)に係る熱交換器の概略縦断面図である。FIG. 5 is a schematic longitudinal sectional view of a heat exchanger according to another embodiment (3) of the present invention.

次に、本発明の実施の形態に係る熱交換器について、添付図面を参照しながら具体的に説明する。   Next, the heat exchanger according to the embodiment of the present invention will be specifically described with reference to the accompanying drawings.

図1は、ガスの燃焼用空気を室外S1から給気管21を通じて燃焼部11へ取り込む一方、燃焼部11で生成された燃焼ガスを複数の放熱管120で構成された熱交換器12内へ送り込み、ケーシング10内に導入される室内空気を熱交換加熱した後、排気管22を通じて室外S1へ排出するように構成されたガスFF式の暖房機1である。尚、図示しないが、燃焼部11には、ガス配管23から送り込まれるガスを燃焼させるバーナが組み込まれており、このバーナで生成された燃焼ガスが熱交換器12へ導入される。   In FIG. 1, gas combustion air is taken into the combustion section 11 from the outdoor S <b> 1 through the air supply pipe 21, while the combustion gas generated in the combustion section 11 is sent into the heat exchanger 12 including a plurality of heat radiation pipes 120. The gas FF type heater 1 is configured to heat the indoor air introduced into the casing 10 through heat exchange and then discharge it to the outdoor S1 through the exhaust pipe 22. Although not shown, a burner for burning the gas sent from the gas pipe 23 is incorporated in the combustion unit 11, and the combustion gas generated by this burner is introduced into the heat exchanger 12.

暖房機1のケーシング10内には、室内S2の空気の通路となる通気路100が形成されており、この通気路100内に組み込まれた循環ファン13を作動させることで、室内S2の空気がケーシング10背面上部の給気口101から通気路100へ導入され、熱交換器12の配設部を通ってケーシング10正面下部の吹出口102から室内S2へ導出される。   An air passage 100 serving as an air passage for the room S2 is formed in the casing 10 of the heater 1. By operating the circulation fan 13 incorporated in the air passage 100, the air in the room S2 is supplied. The air is introduced into the air passage 100 from the air supply port 101 at the upper back of the casing 10, and is led to the room S <b> 2 from the air outlet 102 at the lower front of the casing 10 through the arrangement part of the heat exchanger 12.

本発明の実施の形態に係る熱交換器12は、横断面視において千鳥状に配列された複数の放熱管120で構成されており、燃焼部11から放出された燃焼ガスは、これら各放熱管120の一端に接続された流入ヘッダ14を通じ、各放熱管120内へ一括して導入される。そして、この燃焼ガス中の熱が、各放熱管120の表面を伝って通気路100内の空気中へ放出される。   The heat exchanger 12 according to the embodiment of the present invention is composed of a plurality of heat radiating tubes 120 arranged in a staggered manner in a cross-sectional view, and the combustion gas discharged from the combustion unit 11 is the heat radiating tubes. Through the inflow header 14 connected to one end of 120, the heat is introduced into each heat radiating pipe 120 at once. Then, the heat in the combustion gas is released into the air in the ventilation path 100 through the surface of each heat radiating pipe 120.

図2に示すように、放熱管120は、ステンレス等の耐腐食性を有する一本の金属直管で形成されており、通気路100内に導入される室内空気の流れ方向と交差する方向へ延設され且つ上記流れ方向に複数並設されている。尚、放熱管120の数や配列、長さは、放熱管120内に導入される燃焼ガスの熱量や暖房機1の暖房能力を考慮して適宜設定される。   As shown in FIG. 2, the heat radiating pipe 120 is formed of a single straight metal pipe having corrosion resistance, such as stainless steel, in a direction intersecting with the flow direction of room air introduced into the air passage 100. A plurality of lines are arranged in the flow direction. Note that the number, arrangement, and length of the heat radiating pipes 120 are appropriately set in consideration of the amount of combustion gas introduced into the heat radiating pipe 120 and the heating capacity of the heater 1.

放熱管120の一端は、通気路100の側壁に固設された流入ヘッダ14にロウ付け接合されている。一方、放熱管120の他端は、通気路100の側壁に固設された流出ヘッダ15にロウ付け接合されている。   One end of the heat radiating pipe 120 is brazed and joined to the inflow header 14 fixed to the side wall of the ventilation path 100. On the other hand, the other end of the heat radiating pipe 120 is brazed and joined to the outflow header 15 fixed to the side wall of the ventilation path 100.

放熱管120の内部空間には、燃焼部11から流入ヘッダ14を通じて放熱管120内へ送り込まれた燃焼ガスの流れを、乱流にして流出ヘッダ15側へ導出させるインナーフィン121が挿設されている。   Inner fins 121 are inserted in the internal space of the heat radiating pipe 120 to make the flow of the combustion gas sent from the combustion section 11 into the heat radiating pipe 120 through the inflow header 14 into the turbulent flow and lead out to the outflow header 15 side. Yes.

インナーフィン121は、ステンレス等の耐腐食性を有する一枚の長尺金属板を、複数回ねじり加工を施すことによって螺旋板状に形成したものであり、各放熱管120内の全長に亘って設けられている。尚、インナーフィン121は、耐熱性および耐腐食性を有するものであれば、金属以外の材質を用いて形成されたものであってもよい。   The inner fin 121 is a spiral metal plate formed by twisting a plurality of long metal plates having corrosion resistance, such as stainless steel, a plurality of times. Is provided. The inner fin 121 may be formed using a material other than metal as long as it has heat resistance and corrosion resistance.

インナーフィン121の両端部は、放熱管120の両端部にロウ付け固定されている。また、インナーフィン121の周端面(放熱管120の内周面に沿って螺旋状に曲成された端面)は、その略全長に亘って放熱管120の内周面に当接している。従って、放熱管120内に導入された燃焼ガスは、このインナーフィン121の曲面に沿って螺旋状に流れて乱流となる。その結果、放熱管内120にインナーフィン121が配設されていない構成のものよりも放熱度合が大きくなる。尚、本実施の形態では、インナーフィン121を放熱管120に対してロウ付けにより固定させているが、両端部に固定部材を取り付けて固定させてもよいし、インナーフィン121の周端面と放熱管120の内周面との接触摩擦力によって固定させてもよい。   Both end portions of the inner fin 121 are fixed by brazing to both end portions of the heat radiating tube 120. Further, the peripheral end surface of the inner fin 121 (the end surface spirally formed along the inner peripheral surface of the heat radiating tube 120) is in contact with the inner peripheral surface of the heat radiating tube 120 over substantially the entire length thereof. Therefore, the combustion gas introduced into the heat radiating pipe 120 flows spirally along the curved surface of the inner fin 121 and becomes a turbulent flow. As a result, the degree of heat dissipation is greater than that of the configuration in which the inner fin 121 is not disposed in the heat radiating pipe 120. In this embodiment, the inner fin 121 is fixed to the heat radiating pipe 120 by brazing, but a fixing member may be attached to both ends, and the inner fin 121 may be fixed to the peripheral end surface of the inner fin 121 and the heat dissipation. You may fix by the contact frictional force with the internal peripheral surface of the pipe | tube 120. FIG.

インナーフィン121のねじりピッチPは、通気路100内の室内空気の流れ方向(図2の上下方向)に並ぶ放熱管120のうち、上流側(図2の上方側)に位置する放熱管120の方が、下流側(図2の下方側)に位置する放熱管120より大きくなるように設定されている。即ち、上流側に位置する放熱管120の放熱度合が、下流側に位置する放熱管120の放熱度合より小さくなるよう、その上流側の放熱管120と下流側の放熱管120とでインナーフィン121の形状を異ならせている。これにより、上流側の放熱管120内を流れる燃焼ガスが露点以下になり難い。よって、放熱管120内部にドレンが発生し難い。また、下流側の放熱管120の放熱度合が上流側の放熱管120より大きく設定されているため、熱交換器12の高熱効率化を図ることも可能である。   The twist pitch P of the inner fins 121 is that of the heat radiating pipe 120 located on the upstream side (the upper side in FIG. 2) of the heat radiating pipes 120 arranged in the flow direction of the room air in the air passage 100 (the vertical direction in FIG. 2). Is set to be larger than the heat radiating pipe 120 located on the downstream side (lower side in FIG. 2). That is, the inner fin 121 is formed by the upstream side heat radiating pipe 120 and the downstream side heat radiating pipe 120 so that the heat radiating degree of the heat radiating pipe 120 located on the upstream side is smaller than the heat radiating degree of the heat radiating pipe 120 located on the downstream side. Different shapes. Thereby, the combustion gas which flows through the inside of the heat radiating pipe 120 on the upstream side is unlikely to be below the dew point. Therefore, it is difficult for drainage to be generated inside the heat radiating tube 120. Further, since the degree of heat radiation of the downstream side heat radiating pipe 120 is set larger than that of the upstream side heat radiating pipe 120, it is possible to increase the heat efficiency of the heat exchanger 12.

このように、上記実施の形態によれば、通気路100内にて流れ方向に並ぶ放熱管120のうち、上流側に位置する放熱管120の放熱度合が下流側に位置する放熱管120の放熱度合より小さくなるよう、上流側の放熱管120と下流側の放熱管120とでインナーフィン121の形状を異ならせているから、通気路100の上流側に位置する放熱管120内の燃焼ガスが露点温度以下になり難い。従って、放熱管120内部でのドレンの発生を十分に抑制できる。特に、このものでは、インナーフィン121が放熱管120内の略全長に亘って延設されているから、各放熱管120における放熱度合が全体で均一になる。そのため、運転中、通気路100内に冷たい室内空気が導入されても、上流側の放熱管120により十分に熱交換されて下流側へ導かれる。従って、下流側の放熱管120内部で燃焼ガスが露点温度以下になり難く、放熱管120内部でのドレンの発生をより確実に防止できる。さらに、インナーフィン121を各放熱管120内の略全長に亘って延設させたことで、運転時に放熱管120内へ導入される燃焼ガスの流圧変化により振動しないようインナーフィン121を放熱管120の両端側で確実に固定することができるし、組み付けも容易である。また、放熱管120全体における熱膨張のばらつきが小さくなり、その熱膨張のばらつきを起因とするきしみ音などの騒音も生じ難い。よって、高熱効率化が求められる熱交換器において、放熱管120内部でドレンが発生し難く、且つ、組み付け性が高く、また、運転中の騒音も生じ難い熱交換器を提供できる。   Thus, according to the above-described embodiment, among the heat radiating pipes 120 arranged in the flow direction in the air passage 100, the heat radiating degree of the heat radiating pipe 120 located on the downstream side is the heat radiation of the heat radiating pipe 120 located on the downstream side. Since the shape of the inner fin 121 is different between the upstream side heat radiating pipe 120 and the downstream side heat radiating pipe 120 so as to be smaller than the degree, the combustion gas in the heat radiating pipe 120 located on the upstream side of the air passage 100 is Less likely to be below dew point temperature. Therefore, the generation of drain in the heat radiating tube 120 can be sufficiently suppressed. In particular, in this case, since the inner fin 121 extends over substantially the entire length in the heat radiating tube 120, the heat radiation degree in each heat radiating tube 120 becomes uniform as a whole. Therefore, even if cold indoor air is introduced into the air passage 100 during operation, the heat is sufficiently exchanged by the upstream side heat radiating pipe 120 and led to the downstream side. Therefore, the combustion gas is unlikely to become the dew point temperature or lower in the downstream side heat radiating pipe 120, and the generation of drain in the heat radiating pipe 120 can be prevented more reliably. Further, by extending the inner fin 121 over substantially the entire length of each heat radiating pipe 120, the inner fin 121 is radiated so as not to vibrate due to a change in the flow pressure of the combustion gas introduced into the heat radiating pipe 120 during operation. It can be securely fixed at both ends of 120 and can be easily assembled. In addition, the variation in the thermal expansion of the entire heat radiating tube 120 is reduced, and noise such as a squeak noise caused by the variation in the thermal expansion hardly occurs. Therefore, in a heat exchanger that requires high thermal efficiency, it is possible to provide a heat exchanger that is unlikely to generate drain in the heat radiating pipe 120, has high ease of assembly, and is unlikely to generate noise during operation.

また、このものでは、上流側の放熱管120と下流側の放熱管120とのインナーフィン121のねじりピッチPを変えることで、それら放熱管120毎の放熱度合を異ならせているから、比較的簡易な構造でドレンの発生やインナーフィン121の振動を抑制することができる。   Further, in this case, by changing the twist pitch P of the inner fin 121 between the upstream side heat radiating pipe 120 and the downstream side heat radiating pipe 120, the heat radiating degree for each of the heat radiating pipes 120 is made different. The generation of drain and the vibration of the inner fin 121 can be suppressed with a simple structure.

尚、上記実施の形態では、通気路100の上流側に位置する放熱管120と下流側に位置する放熱管120とで、インナーフィン121のねじりピッチPを変えることで、それら放熱管120毎の放熱度合を異ならせたものを説明したが、インナーフィン121のねじりピッチPを変えるのではなく、図3に示すように、燃焼ガスを通過させるための複数の通孔122をインナーフィン121に穿設し、この通孔122の数や大きさを上流側と下流側とで変えることによって、放熱管120毎の放熱度合を異ならせたものとしてもよい。具体的には、上流側(図3の上方側)の放熱管120に挿設されたインナーフィン121は、下流側(図3の下方側)の放熱管120に挿設されたインナーフィン121より広範囲に通孔122が設けられており、燃焼ガスの流れが下流側の放熱管120に比べて良いため、放熱度合が小さい。これにより、上記実施の形態と同様の作用効果が発揮される。   In the above embodiment, by changing the twist pitch P of the inner fin 121 between the heat radiating pipe 120 located on the upstream side of the air passage 100 and the heat radiating pipe 120 located on the downstream side, As described above, the heat release degree is different. Instead of changing the twist pitch P of the inner fin 121, a plurality of through holes 122 for allowing combustion gas to pass therethrough are formed in the inner fin 121 as shown in FIG. It is also possible to change the degree of heat radiation for each heat radiating pipe 120 by changing the number and size of the through holes 122 between the upstream side and the downstream side. Specifically, the inner fin 121 inserted into the heat radiating pipe 120 on the upstream side (upper side in FIG. 3) is more than the inner fin 121 inserted into the radiating pipe 120 on the downstream side (lower side in FIG. 3). Since the through-hole 122 is provided in a wide range and the flow of combustion gas is better than that of the heat radiating pipe 120 on the downstream side, the degree of heat radiation is small. Thereby, the effect similar to the said embodiment is exhibited.

また、図4に示すように、通気路100の上流側に位置する放熱管120と下流側に位置する放熱管120とで、インナーフィン121の板幅を変えることで、放熱管120毎の放熱度合を異ならせたものとしてもよい。具体的には、上流側(図4の上方側)の放熱管120は、下流側(図4の下方側)の放熱管120より板幅の小さいインナーフィン121が挿設されており、燃焼ガスの流れが下流側の放熱管120に比べて良いため、放熱度合が小さい。これにより、上記実施の形態と同様の作用効果が発揮される。   In addition, as shown in FIG. 4, the heat radiation for each heat radiating pipe 120 is changed by changing the plate width of the inner fin 121 between the heat radiating pipe 120 located on the upstream side of the air passage 100 and the heat radiating pipe 120 located on the downstream side. The degree may be different. Specifically, the upstream side (upper side in FIG. 4) radiating pipe 120 is provided with an inner fin 121 having a plate width smaller than that of the downstream side (lower side in FIG. 4) radiating pipe 120. Therefore, the degree of heat radiation is small. Thereby, the effect similar to the said embodiment is exhibited.

また、図5に示すように、通気路100の上流側に位置する放熱管120と下流側に位置する放熱管120とで、異なる径の管体を用い、その管径に合わせてインナーフィン121の板幅を変えることで、放熱管120毎の放熱度合を異ならせたものとしてもよい。具体的には、上流側(図4の上方側)の放熱管120は、下流側(図4の下方側)の放熱管120より小径の管体が用いられており、その管径に合わせて、上流側の放熱管120内に、下流側の放熱管120より板幅の小さいインナーフィン121が挿設されている。従って、下流側の放熱管120に比べて放熱度合が小さい。これにより、上記実施の形態と同様の作用効果が発揮される。   Further, as shown in FIG. 5, the heat dissipating pipe 120 located on the upstream side of the air passage 100 and the heat dissipating pipe 120 located on the downstream side use pipes having different diameters, and the inner fins 121 according to the pipe diameter. It is good also as what changed the heat dissipation degree for every heat radiating pipe 120 by changing the board width of this. Specifically, the upstream side (upper side in FIG. 4) radiating pipe 120 has a smaller diameter than the downstream side (lower side in FIG. 4) radiating pipe 120. An inner fin 121 having a plate width smaller than that of the downstream side heat radiating pipe 120 is inserted into the upstream side heat radiating pipe 120. Therefore, the degree of heat dissipation is smaller than that of the downstream side heat radiating pipe 120. Thereby, the effect similar to the said embodiment is exhibited.

1 温風暖房機
100 通気路
11 燃焼部
12 熱交換器
120 放熱管
121 インナーフィン
DESCRIPTION OF SYMBOLS 1 Hot air heater 100 Air passage 11 Combustion part 12 Heat exchanger 120 Radiation pipe 121 Inner fin

Claims (2)

燃焼部から送り込まれる燃焼ガスの熱を放出し、通気路内へ導入される空気を加熱する熱交換器であって、
通気路内において前記空気の流れ方向と交差する方向へ延設され且つ前記流れ方向に複数並設される放熱管と、
各放熱管内の略全長に亘って設けられ、放熱管内へ送り込まれる燃焼ガスの流れを乱流にする螺旋板状のインナーフィンとを備え、
前記流れ方向に複数並ぶ放熱管のうち、上流側に位置する放熱管の放熱度合が下流側に位置する放熱管の放熱度合より小さくなるよう、上流側に位置する放熱管と下流側に位置する放熱管とでインナーフィンの形状を異ならせたことを特徴とする、熱交換器。
A heat exchanger that releases the heat of the combustion gas sent from the combustion section and heats the air introduced into the air passage,
A heat dissipating pipe extending in a direction intersecting the air flow direction in the air passage and arranged in parallel in the flow direction;
Provided with a spiral plate-like inner fin that is provided over substantially the entire length of each radiating pipe and turbulently flows the combustion gas fed into the radiating pipe,
Among the plurality of heat radiating pipes arranged in the flow direction, the heat radiating pipes located on the upstream side are located on the downstream side so that the heat radiating degree of the heat radiating pipes located on the upstream side is smaller than the heat radiation degree of the heat radiating pipes located on the downstream side. A heat exchanger characterized in that the shape of the inner fin is different from that of the heat radiating tube.
請求項1に記載の熱交換器において、
上流側に位置する放熱管のインナーフィンのねじりピッチを、下流側に位置する放熱管のインナーフィンのねじりピッチより大きくしたことを特徴とする、熱交換器。
The heat exchanger according to claim 1,
A heat exchanger characterized in that the twist pitch of the inner fin of the heat radiating pipe located on the upstream side is made larger than the twist pitch of the inner fin of the heat radiating pipe located on the downstream side.
JP2013123803A 2013-06-12 2013-06-12 Heat exchanger Active JP6204710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013123803A JP6204710B2 (en) 2013-06-12 2013-06-12 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013123803A JP6204710B2 (en) 2013-06-12 2013-06-12 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2014240732A true JP2014240732A (en) 2014-12-25
JP6204710B2 JP6204710B2 (en) 2017-09-27

Family

ID=52140073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013123803A Active JP6204710B2 (en) 2013-06-12 2013-06-12 Heat exchanger

Country Status (1)

Country Link
JP (1) JP6204710B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104729328A (en) * 2015-04-15 2015-06-24 柳州凯通机械有限公司 Air cooler
KR102048704B1 (en) * 2018-07-31 2019-11-27 한국공조엔지니어링 주식회사 Heat exchanger with spiral heat media guidance

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5467835U (en) * 1977-10-21 1979-05-14
JPS5467836U (en) * 1977-10-21 1979-05-14
JPS58224249A (en) * 1982-06-22 1983-12-26 Matsushita Electric Ind Co Ltd Hot air space heater
JPS59231397A (en) * 1983-06-10 1984-12-26 Matsushita Refrig Co Turbulator
JPS60235989A (en) * 1984-05-09 1985-11-22 Hitachi Ltd Heat exchanger for room air-conditioner
JPS6163580U (en) * 1984-09-28 1986-04-30
JP2011027285A (en) * 2009-07-22 2011-02-10 Panasonic Corp Heat exchanger and its manufacturing method, and article storage device equipped with the heat exchanger

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5467835U (en) * 1977-10-21 1979-05-14
JPS5467836U (en) * 1977-10-21 1979-05-14
JPS5842833Y2 (en) * 1977-10-21 1983-09-28 三菱電機株式会社 Forced air heater
JPS58224249A (en) * 1982-06-22 1983-12-26 Matsushita Electric Ind Co Ltd Hot air space heater
JPS59231397A (en) * 1983-06-10 1984-12-26 Matsushita Refrig Co Turbulator
JPS60235989A (en) * 1984-05-09 1985-11-22 Hitachi Ltd Heat exchanger for room air-conditioner
JPS6163580U (en) * 1984-09-28 1986-04-30
JP2011027285A (en) * 2009-07-22 2011-02-10 Panasonic Corp Heat exchanger and its manufacturing method, and article storage device equipped with the heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104729328A (en) * 2015-04-15 2015-06-24 柳州凯通机械有限公司 Air cooler
KR102048704B1 (en) * 2018-07-31 2019-11-27 한국공조엔지니어링 주식회사 Heat exchanger with spiral heat media guidance

Also Published As

Publication number Publication date
JP6204710B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
CN110274504B (en) Heat exchanger fin
JP6657932B2 (en) Heat exchangers and hot water equipment
US10222126B2 (en) Condensation heat exchanger having dummy pipe
KR101436079B1 (en) Combustion gas pipe for heat exchange
CN111442666A (en) Heat exchange tubes, heat exchangers and hot water equipment
JP2011106782A (en) Heat exchanger structure for water heater
JP6204710B2 (en) Heat exchanger
JP2015531603A (en) Hot air oven
RU2674850C2 (en) Tube for heat exchanger with at least partially variable cross-section and heat exchanger equipped therewith
JP2015224804A (en) Heat exchanger
KR20160015945A (en) High efficiency environmental-friendly sensible heat exchanger
JP2008039278A5 (en)
KR100854098B1 (en) heat transmitter
KR102700007B1 (en) Heat transfer fin
JP2005156033A (en) Fin for heat exchanger of water heater, and heat exchanger for water heater provided with the same
JP4174478B2 (en) Heat exchange pipe
CN202485526U (en) Tube bundle for direct air cooled condenser
JP2017116114A (en) Heat exchanger and hot water device
KR101927125B1 (en) Fin-tube Heat Exchanger
KR101490975B1 (en) Heat exchanger of convection oven
CN101553375A (en) A heat exchanger
RU2721496C2 (en) Water heater, gas combustion gases discharge pipe for water heater and method of fluid medium heating
JP2017194223A (en) Heat exchanger
TWI337700B (en) Heat dissipating device
JPH07190646A (en) Heat exchanger for air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170901

R150 Certificate of patent or registration of utility model

Ref document number: 6204710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250