[go: up one dir, main page]

JP2017194223A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2017194223A
JP2017194223A JP2016084788A JP2016084788A JP2017194223A JP 2017194223 A JP2017194223 A JP 2017194223A JP 2016084788 A JP2016084788 A JP 2016084788A JP 2016084788 A JP2016084788 A JP 2016084788A JP 2017194223 A JP2017194223 A JP 2017194223A
Authority
JP
Japan
Prior art keywords
width
heat transfer
flow direction
width direction
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016084788A
Other languages
Japanese (ja)
Inventor
貴寛 沖本
Takahiro Okimoto
貴寛 沖本
直樹 菅沼
Naoki Suganuma
直樹 菅沼
林 健太郎
Kentaro Hayashi
健太郎 林
山田 哲也
Tetsuya Yamada
哲也 山田
工藤 敏文
Toshifumi Kudo
敏文 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2016084788A priority Critical patent/JP2017194223A/en
Publication of JP2017194223A publication Critical patent/JP2017194223A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger capable of suppressing increase of a manufacturing cost of a heat exchanger and preventing occurrence of can noise.SOLUTION: A heat exchanger 1 includes a gas duct 2 that an internal space 3 in which heat source gas G circulates, and a heat transfer pipe group 4 arranged in the internal space 3 and having a plurality of heat transfer pipes 40 arrayed in a flow direction Y of the heat source gas G and in a width direction X orthogonal to the flow direction Y. The gas duct 2 includes a width dimension change part 20 whose dimension in the width direction X changes to the flow direction Y. At least a part of the width dimension change part 20 is arranged in the width direction X outside the heat transfer pipe group 4.SELECTED DRAWING: Figure 1

Description

本発明は、内部空間を熱源ガスが流通するガスダクトと、前記内部空間に配置され熱源ガスの流れ方向及びダクト幅方向にそれぞれ複数配列された伝熱管を有する伝熱管群とを備えた熱交換装置に関する。   The present invention provides a heat exchange device comprising a gas duct through which heat source gas flows in an internal space, and a heat transfer tube group having a plurality of heat transfer tubes arranged in the internal space and arranged in the flow direction and the duct width direction of the heat source gas, respectively. About.

火力発電用のボイラや、プラント排熱,ガスタービン排熱を回収するボイラ(排熱回収ボイラ)などでは、高温ガスが流れるダクト内に伝熱管群を配置した熱交換装置が使用される。伝熱管群は、ガス流れ方向及びダクト幅方向(ガス流れ方向と直交する方向、以下「幅方向」とも表記する)に配列された複数の伝熱管を備えて構成される。   In a boiler for thermal power generation, a boiler that collects plant exhaust heat and gas turbine exhaust heat (exhaust heat recovery boiler), a heat exchange device in which a heat transfer tube group is arranged in a duct through which high-temperature gas flows is used. The heat transfer tube group includes a plurality of heat transfer tubes arranged in a gas flow direction and a duct width direction (a direction orthogonal to the gas flow direction, hereinafter also referred to as “width direction”).

このような熱交換装置では、ダクト幅方向に定在波が発生すると共に、高温ガスが伝熱管を通過する際に伝熱管の下流側でカルマン渦が発生する。定在波の周波数とカルマン渦の発生周波数とが一致してしまうと、共鳴現象が生じて自励音が発生する。この現象は缶鳴りと呼ばれる。
缶鳴りの発生を防止する主な技術として、(1)ダクト幅方向の定在波の周波数とカルマン渦の発生周波数とを離調する技術(以下「公知技術1」と呼ぶ)、(2)ダクト幅方向に定在波を発生させないようにする技術(以下「公知技術2」と呼ぶ)がある。
簡便さから一般的に公知技術1が採用される。公知技術1は、具体的には、ダクト内に、ガス流れ方向に延在する防振バッフルを設けて、定在波の周波数を高めに変調して、定在波の周波数とカルマン渦の発生周波数とを離調するものである。
In such a heat exchange device, standing waves are generated in the duct width direction, and Karman vortices are generated on the downstream side of the heat transfer tube when the high-temperature gas passes through the heat transfer tube. When the frequency of the standing wave coincides with the generation frequency of the Karman vortex, a resonance phenomenon occurs and self-excited sound is generated. This phenomenon is called canning.
The main technologies for preventing the occurrence of canning are: (1) Technology for detuning the frequency of standing waves in the duct width direction and the frequency of Karman vortex generation (hereinafter referred to as “known technology 1”), (2) There is a technique for preventing a standing wave from being generated in the duct width direction (hereinafter referred to as “known technique 2”).
Generally known technique 1 is generally employed because of its simplicity. Specifically, in the known technique 1, an anti-vibration baffle extending in the gas flow direction is provided in the duct, and the standing wave frequency and the Karman vortex are generated by modulating the standing wave frequency to a higher level. The frequency is detuned.

公知技術2として、例えば特許文献1及び特許文献2に開示された技術がある。以下、特許文献1及び特許文献2にそれぞれ開示された技術について説明するが、参考に、特許文献1及び特許文献2で使用されている符号を括弧付きで表記する。
特許文献1に開示された技術では、熱交換器本体(1)の内壁部分に吸音材(9)を取り付けて定在波(8)が形成されにくくしている(第3頁第14−19行、第1図など参照)。
特許文献2に開示された技術では、ダクトの壁面に孔(3)を設けて共鳴空洞部(4)とし、この共鳴空洞部(4)を多数設けることで、熱交換器の振動・騒音を防止するようにしている(実用新案登録請求の範囲、第1図a,第1図bなど参照)。
As the known technique 2, for example, there are techniques disclosed in Patent Document 1 and Patent Document 2. Hereinafter, the techniques disclosed in Patent Document 1 and Patent Document 2 will be described. For reference, the symbols used in Patent Document 1 and Patent Document 2 are shown in parentheses.
In the technique disclosed in Patent Document 1, the sound absorbing material (9) is attached to the inner wall portion of the heat exchanger body (1) to make it difficult for the standing wave (8) to be formed (page 3, item 14-19). Row, see Fig. 1).
In the technique disclosed in Patent Document 2, holes (3) are provided on the wall surface of the duct to form a resonance cavity (4). By providing a large number of resonance cavities (4), vibration and noise of the heat exchanger can be reduced. (Refer to the claims of utility model registration, Fig. 1a, Fig. 1b, etc.).

実願昭63−123492号(実開平02−045363号)のマイクロフィルムMicrofilm of Japanese Utility Model No. 63-123492 (Japanese Utility Model Application No. 02-045363) 実公平02−029434号公報No. 02-029434

しかしながら、カルマン渦の発生周波数は高温ガスの流速に比例して変化するため、防振バッフルを使用した公知技術1では、高次の共鳴現象まで防止するには、定在波の周波数をカルマン渦の最大の発生周波数よりも高くしなければならない。このため、防振バッフルをダクト幅方向に複数設ける必要があり、防振バッフルの設置に伴うコストアップが大きいという課題がある。   However, since the generation frequency of the Karman vortex changes in proportion to the flow velocity of the hot gas, in the known technique 1 using the anti-vibration baffle, in order to prevent even higher-order resonance phenomenon, the frequency of the standing wave is changed to the Karman vortex. Must be higher than the maximum generation frequency. For this reason, it is necessary to provide a plurality of anti-vibration baffles in the duct width direction, and there is a problem that the cost increase associated with the installation of the anti-vibration baffles is large.

また、公知技術2を例示する特許文献1,2に開示された技術は、現実的には使用するのが困難である。つまり、特許文献1に開示された技術では、熱交換器本体(1)の内部が、高温の作動流体(4)が高速で流れる厳しい雰囲気下にあるため、吸音材(9)が早期に劣化してしまい、特許文献2に開示された技術では、ダクトの内外での温度差が大きいため、ダクトの壁面に形成される共鳴空洞部(4)に、熱伸び差による変形や割れが生じてしまい、現実的には使用するのが困難である。   In addition, the techniques disclosed in Patent Documents 1 and 2 illustrating the known technique 2 are actually difficult to use. That is, in the technique disclosed in Patent Document 1, since the inside of the heat exchanger body (1) is in a harsh atmosphere in which the high-temperature working fluid (4) flows at a high speed, the sound absorbing material (9) deteriorates early. Therefore, in the technique disclosed in Patent Document 2, since the temperature difference between the inside and outside of the duct is large, deformation or cracking due to the difference in thermal elongation occurs in the resonant cavity (4) formed on the wall surface of the duct. In reality, it is difficult to use.

本発明は、熱交換装置の製作コストの増大を抑制しつつ缶鳴りの発生を防止できるようにした、熱交換装置を提供することを目的とする。   An object of the present invention is to provide a heat exchange device that can prevent the occurrence of canning while suppressing an increase in manufacturing cost of the heat exchange device.

(1)上記の目的を達成するために、本発明の熱交換装置は、内部空間を熱源ガスが流通するガスダクトと、前記内部空間内に配置され、前記熱源ガスの流れ方向及び前記流れ方向と直交する幅方向にそれぞれ複数配列された伝熱管を有する伝熱管群とを備えた熱交換装置において、前記ガスダクトは、前記幅方向の寸法を、前記流れ方向に対して変化させた幅寸法変化部を備え、前記幅寸法変化部は、少なくとも一部が、前記伝熱管群の前記幅方向外側に配置されたことを特徴としている。   (1) In order to achieve the above object, a heat exchange device according to the present invention includes a gas duct through which heat source gas flows in an internal space, a flow direction of the heat source gas, and a flow direction, which are disposed in the internal space. In the heat exchange device comprising a heat transfer tube group having a plurality of heat transfer tubes arranged in the orthogonal width direction, the gas duct has a width dimension changing portion in which the dimension in the width direction is changed with respect to the flow direction. The width dimension changing portion is characterized in that at least a part thereof is disposed on the outer side in the width direction of the heat transfer tube group.

(2)前記幅寸法変化部は、前記流れ方向上流側から3段目に配置された前記伝熱管の上流端以降に位置することが好ましい。   (2) It is preferable that the said width dimension change part is located after the upstream end of the said heat exchanger tube arrange | positioned in the 3rd step | paragraph from the said flow direction upstream.

(3)前記幅寸法変化部は、前記流れ方向下流側になるにしたがって前記幅方向の寸法が拡大する拡大部を備えることが好ましい。   (3) It is preferable that the said width dimension change part is provided with the expansion part which the dimension of the said width direction expands as it becomes the said flow direction downstream.

(4)前記幅寸法変化部は、前記拡大部の前記流れ方向下流側に、前記流れ方向下流側になるにしたがって前記幅方向の寸法が縮小する縮小部を備えることが好ましい。   (4) It is preferable that the said width dimension change part is equipped with the reduction | decrease part to which the dimension of the said width direction shrink | contracts in the said flow direction downstream of the said expansion part as it becomes the said flow direction downstream.

(5)前記伝熱管群の前記幅方向で外側には、前記流れ方向に沿って延在する多孔プレートが備えられることが好ましい。   (5) It is preferable that a perforated plate extending along the flow direction is provided outside the heat transfer tube group in the width direction.

(6)前記幅寸法変化部は、前記流れ方向下流側になるにしたがって前記幅方向の寸法が縮小する縮小部を備えることが好ましい。   (6) It is preferable that the said width dimension change part is equipped with the reduction part to which the dimension of the said width direction reduces as it becomes the said flow direction downstream.

(7)前記幅寸法変化部は、前記縮小部の前記流れ方向下流側に、前記流れ方向下流側になるにしたがって前記幅方向の寸法が拡大する拡大部を備えることが好ましい。   (7) It is preferable that the said width dimension change part is equipped with the expansion part which the dimension of the said width direction expands toward the said flow direction downstream in the said flow direction downstream of the said reduction | decrease part.

(8)前記幅寸法変化部は、前記伝熱管群の前記幅方向で両側において前記幅方向の寸法が変化することが好ましい。   (8) It is preferable that the said width dimension change part changes the dimension of the said width direction in the both sides in the said width direction of the said heat exchanger tube group.

(9)前記幅寸法変化部が、前記伝熱管群の前記幅方向で一方側でだけ前記幅方向の寸法が変化することが好ましい。   (9) It is preferable that the width dimension change part changes the dimension of the width direction only on one side in the width direction of the heat transfer tube group.

ダクト幅が一定であると定在波の周波数も一定となるため下流側になるにしたがって定在波が強められていくのに対して、ダクト幅変化部を設けて、流れ方向に対してダクト幅を変化させることで、定在波の周波数も流れ方向に対して変化し、定在波の周波数成分の強度を分散させて小さくすることができ、ダクト幅方向の定在波の発生を実質的に抑制することができる。
本発明によれば、このようにダクト幅変化部を設けるだけの簡素な構成により釜鳴りの発生を防止できるので、熱交換装置の製作コストの増大を抑制しつつ缶鳴りの発生を防止できる。
When the duct width is constant, the frequency of the standing wave is also constant, so the standing wave is strengthened as it goes downstream. By changing the width, the frequency of the standing wave also changes with respect to the flow direction, and the strength of the frequency component of the standing wave can be dispersed and reduced, thereby substantially reducing the occurrence of the standing wave in the duct width direction. Can be suppressed.
According to the present invention, it is possible to prevent the occurrence of the squealing by a simple configuration in which the duct width changing portion is provided as described above. Therefore, it is possible to prevent the occurrence of the squealing while suppressing an increase in the manufacturing cost of the heat exchange device.

本発明の第1実施形態の熱交換装置の構成を示す模式的な平面視による断面図である。It is sectional drawing by typical plane view which shows the structure of the heat exchange apparatus of 1st Embodiment of this invention. 本発明の第1実施形態の変形例の熱交換装置の構成を示す模式的な平面視による断面図である。It is sectional drawing by typical planar view which shows the structure of the heat exchange apparatus of the modification of 1st Embodiment of this invention. 横軸を周波数[Hz]とし、縦軸を音圧レベル[dB]としたグラフに、ダクト幅を一定としたケースにおいて、音圧レベルの計測結果をプロットしたグラフであり、一点鎖線は1段目の伝熱管における音圧レベル、破線は3段目の伝熱管における音圧レベル、実線は4段目の伝熱管における音圧レベルを示す。A graph in which the horizontal axis is the frequency [Hz] and the vertical axis is the sound pressure level [dB], and the measurement result of the sound pressure level is plotted in the case where the duct width is constant. The sound pressure level in the second heat transfer tube, the broken line indicates the sound pressure level in the third heat transfer tube, and the solid line indicates the sound pressure level in the fourth heat transfer tube. 本発明の第2実施形態の熱交換装置の構成を示す模式的な平面視による断面図である。It is sectional drawing by typical plane view which shows the structure of the heat exchange apparatus of 2nd Embodiment of this invention. 本発明の変形例の熱交換装置の構成を示す模式的な平面視による断面図である。It is sectional drawing by typical planar view which shows the structure of the heat exchange apparatus of the modification of this invention.

以下、図面を参照して、本発明の実施の形態について説明する。
以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。以下の実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができると共に、必要に応じて取捨選択することができ、あるいは適宜組み合わせることが可能である。
Embodiments of the present invention will be described below with reference to the drawings.
The embodiment described below is merely an example, and there is no intention of excluding various modifications and technical applications that are not explicitly described in the following embodiment. Each configuration of the following embodiments can be implemented with various modifications without departing from the gist thereof, and can be selected or combined as appropriate.

本実施形態では、本発明を、排熱回収ボイラ(以下「HRSG」と表記する)に備えられた熱交換装置に適用した例を説明する。
以下の説明では、特段の説明なく「上流」,「前」と記載した場合は、燃焼排ガス(熱源ガス)Gの流れにおける上流を指すものとし、特段の説明なく「下流」,「後」と記載した場合は、燃焼排ガスGの流れにおける下流を指すものとする。
燃焼排ガスGの流れ方向に沿った方向を前後方向Yとし、前後方向Yと直交する水平方向をダクト幅方向(以下「横方向」又は「幅方向」ともいう)Xとし、幅方向Xにおけるダクト2の中心線L0から離れる方向を外方又は外側として説明する。
また、排ガスGの流れ方向を基準に左右を定める。
In the present embodiment, an example in which the present invention is applied to a heat exchange device provided in an exhaust heat recovery boiler (hereinafter referred to as “HRSG”) will be described.
In the following description, when “upstream” and “front” are described without any special description, they indicate the upstream in the flow of the combustion exhaust gas (heat source gas) G, and “downstream” and “rear” without any special description. When it describes, it shall point to the downstream in the flow of the combustion exhaust gas G.
The direction along the flow direction of the combustion exhaust gas G is the front-rear direction Y, the horizontal direction orthogonal to the front-rear direction Y is the duct width direction (hereinafter also referred to as “lateral direction” or “width direction”) X, and the duct in the width direction X The direction away from the second center line L0 will be described as the outside or the outside.
Further, the left and right are determined based on the flow direction of the exhaust gas G.

[1.第1実施形態]
[1−1.構成]
本実施形態の熱交換装置1について図1を参照して説明する。
図1は、本実施形態の熱交換装置1の構成を示す模式的な平面視による断面図である。
熱交換装置1は、図1に示すように、ガスダクト2と、ガスダクト2の内部空間(以下「ダクト内部空間」ともいう)3に配置された伝熱管群4とを備えて構成される。
ガスダクト2には、その上流側(入口側)に排ガス供給ダクト100が接続され、その下流側(出口側)に排ガス排出ダクト101が接続されており、排ガスGが、ガスダクト2の内部空間3を、白抜きの矢印で示す方向に流通する。
伝熱管群4は、本実施形態では、それぞれ鉛直方向(図1の紙面に対して直交する方向)に延在する複数の伝熱管40を前後左右に並べて構成されており、各伝熱管40には同一仕様(同一内径、同一外径、同一材質)のものが使用されている。各伝熱管40にはそれぞれ水(被加熱流体)が供給され、この水は伝熱管40を流通する過程で排ガスGに加熱され蒸気(又は水と蒸気とが混在した二相流)となる。
[1. First Embodiment]
[1-1. Constitution]
The heat exchange apparatus 1 of this embodiment is demonstrated with reference to FIG.
FIG. 1 is a schematic cross-sectional view showing the configuration of the heat exchange device 1 of the present embodiment.
As shown in FIG. 1, the heat exchange device 1 includes a gas duct 2 and a heat transfer tube group 4 arranged in an internal space (hereinafter also referred to as “duct internal space”) 3 of the gas duct 2.
An exhaust gas supply duct 100 is connected to the upstream side (inlet side) of the gas duct 2, and an exhaust gas exhaust duct 101 is connected to the downstream side (outlet side) of the gas duct 2, and the exhaust gas G passes through the internal space 3 of the gas duct 2. Circulates in the direction indicated by the white arrow.
In the present embodiment, the heat transfer tube group 4 is configured by arranging a plurality of heat transfer tubes 40 extending in the vertical direction (a direction orthogonal to the paper surface of FIG. 1) in the front-rear and left-right directions. Are of the same specification (same inner diameter, same outer diameter, same material). Water (heated fluid) is supplied to each heat transfer tube 40, and this water is heated by the exhaust gas G in the process of flowing through the heat transfer tube 40 and becomes steam (or a two-phase flow in which water and steam are mixed).

以下、前後方向Yから視たときに軸心線CLが一致する伝熱管40の並びを「列」と呼び、横方向Xから視たときに軸心線CLが一致する並びを「段」と呼ぶ。本実施形態では、伝熱管40を、前後左右に半ピッチずらした千鳥配列により、19列×5段で配列している。以下の説明では、右から1列目,2列目…19列目とし、前から(上流から)1段目,2段目…5段目とする。   Hereinafter, the arrangement of the heat transfer tubes 40 having the same axial center line CL when viewed from the front-rear direction Y is referred to as “row”, and the arrangement of the axial center lines CL when viewed from the lateral direction X is referred to as “stage”. Call. In the present embodiment, the heat transfer tubes 40 are arranged in 19 rows × 5 rows by a staggered arrangement shifted by half a pitch in the front, rear, left, and right directions. In the following description, the first column from the right, the second column,..., The 19th column, and the first row (from the upstream), the second row,.

ガスダクト2は、流れ方向Yに対して幅方向Xの寸法(以下「ダクト幅」という)が変化するダクト幅変化部20を備えて構成される。ダクト幅変化部20は、少なくともその一部が、伝熱管群4が配置された流れ方向Yの位置において、伝熱管群4の幅方向Xで外側に配置される。
本実施形態では、ダクト幅変化部20は、ダクト幅が下流側になるにしたがって漸増する拡大部20Aと、この拡大部20Aの下流側に連設されダクト幅が下流側になるにしたがって漸減する縮小部20Bとを、伝熱管群4よりも外側において、幅方向Xで両側にそれぞれ備える。つまり、本実施形態では、ダクト幅変化部20は、伝熱管群4の幅方向Xで両側においてダクト幅が増減(変化)する。
The gas duct 2 includes a duct width changing portion 20 in which the dimension in the width direction X (hereinafter referred to as “duct width”) changes with respect to the flow direction Y. At least a part of the duct width changing portion 20 is disposed outside in the width direction X of the heat transfer tube group 4 at the position in the flow direction Y where the heat transfer tube group 4 is disposed.
In the present embodiment, the duct width changing portion 20 is provided with an enlarged portion 20A that gradually increases as the duct width becomes downstream, and is continuously provided downstream of the enlarged portion 20A and gradually decreases as the duct width becomes downstream. The reduced portions 20 </ b> B are provided on both sides in the width direction X outside the heat transfer tube group 4. That is, in the present embodiment, the duct width changing unit 20 increases or decreases (changes) in the duct width on both sides in the width direction X of the heat transfer tube group 4.

各拡大部20Aは、下流側に向かって外方に傾斜したダクト側壁部21によりそれぞれ規定される。このダクト側壁部21は、1段目の伝熱管40の軸心線CLから最後段である5段目の伝熱管40の軸心線CLに亘って設けられており、各拡大部20Aは、伝熱管群4の略全長に亘って設けられている。   Each enlarged portion 20A is defined by a duct side wall portion 21 that is inclined outward toward the downstream side. The duct side wall portion 21 is provided from the axial center line CL of the first stage heat transfer tube 40 to the axial center line CL of the fifth stage heat transfer tube 40 which is the last stage. The heat transfer tube group 4 is provided over substantially the entire length.

各縮小部20Bは、最後段である5段目の伝熱管40の軸心線CLから下流側に向かって内方に傾斜したダクト側壁部22によりそれぞれ規定される。   Each reduction part 20B is each prescribed | regulated by the duct side wall part 22 inclined inward toward the downstream from the axial center line CL of the heat exchanger tube 40 of the 5th stage | stage which is the last stage.

排ガス供給ダクト100と、排ガス排出ダクト101との幅寸法は同一又は略同一とされており、拡大部20Aにより拡大された排ガスGの流路幅が、縮小部20Bにより元の(拡大部20Aよりも上流側の)流路幅に戻されている。   The width dimensions of the exhaust gas supply duct 100 and the exhaust gas discharge duct 101 are the same or substantially the same, and the flow path width of the exhaust gas G expanded by the enlarged portion 20A is reduced by the reduced portion 20B (from the enlarged portion 20A). (The upstream side) is also returned to the channel width.

[1−2.作用・効果]
本発明の第1実施形態によれば、伝熱管群4を収容するダクト2が、ダクト幅変化部20を備えて構成されているので、ダクト幅方向Xの定在波の発生を実質的に抑制することができる。
つまり、ダクト幅が一定で定在波の周波数が一定であると下流側になるにしたがって定在波が強められていくのに対して、ダクト幅変化部20では、流れ方向Yに対して、ダクト幅が変化するので、定在波の周波数も流れ方向に対して変化し、定在波の周波数成分の強度を分散させて小さくすることができ、ダクト幅方向の定在波の発生を実質的に抑制することができる。
[1-2. Action / Effect]
According to 1st Embodiment of this invention, since the duct 2 which accommodates the heat exchanger tube group 4 is provided with the duct width change part 20, generation | occurrence | production of the standing wave of the duct width direction X is substantially carried out. Can be suppressed.
That is, when the duct width is constant and the frequency of the standing wave is constant, the standing wave is strengthened toward the downstream side, whereas in the duct width changing portion 20 with respect to the flow direction Y, Since the duct width changes, the frequency of the standing wave also changes with respect to the flow direction, and the intensity of the frequency component of the standing wave can be dispersed and reduced, thereby substantially reducing the occurrence of the standing wave in the duct width direction. Can be suppressed.

これにより、防振バッフルを使用せずに、ダクト2にダクト幅変化部20を設けるだけの簡素な構成により自励音(釜鳴り)の発生を防止できる。また、特許文献1や特許文献2に開示された技術のように、吸音材や共鳴空洞部の設備をダクト内部空間3に設けていないので、これらの設備の劣化の懸念がなく、容易に実用化できる。
したがって、熱交換装置の製作コストの増大を抑制しつつ缶鳴りの発生を防止できる。
Thereby, it is possible to prevent the occurrence of self-excited sound (cattle noise) with a simple configuration in which the duct width changing portion 20 is provided in the duct 2 without using the vibration isolating baffle. In addition, unlike the techniques disclosed in Patent Document 1 and Patent Document 2, since the equipment for the sound absorbing material and the resonance cavity is not provided in the duct internal space 3, there is no concern about the deterioration of these equipment, and it is easily put into practical use. Can be
Therefore, the occurrence of canning can be prevented while suppressing an increase in the manufacturing cost of the heat exchange device.

また、拡大部20Aにより拡大された排ガスGの流路幅が、縮小部20Bにより元の流路幅に戻されるので、設備の大型化及びそれに伴う製作コストの増大を抑制できる。   Moreover, since the flow path width of the exhaust gas G expanded by the expansion part 20A is returned to the original flow path width by the reduction part 20B, it is possible to suppress an increase in the size of the equipment and an accompanying increase in manufacturing cost.

[1−3.変形例]
変形例の構成について図2を参照して説明する。
図2は本変形例の熱交換装置1Aの構成を示す模式的な平面視による断面図である。なお、上記第1実施形態と同一の構成要素については同一の符号を付し、その説明を省略する。
上記実施形態では、ダクト幅変化部20を1段目の伝熱管40の軸心線CLから形成したが、ダクト幅変化部20は、3段目の伝熱管40の上流端40uの下流側(上流端40uの位置も含む)に配置すればよく、例えば、図2に示す本変形例の熱交換装置1Aのように、3段目の伝熱管40の上流端40uの位置を始端(上流端)としてダクト幅変化部20を配置してもよい。
[1-3. Modified example]
The configuration of the modification will be described with reference to FIG.
FIG. 2 is a schematic cross-sectional view showing the configuration of the heat exchange device 1A according to this modification. In addition, the same code | symbol is attached | subjected about the component same as the said 1st Embodiment, and the description is abbreviate | omitted.
In the above embodiment, the duct width changing portion 20 is formed from the axial center line CL of the first stage heat transfer tube 40, but the duct width changing portion 20 is downstream of the upstream end 40 u of the third stage heat transfer tube 40 ( The position of the upstream end 40u of the third stage heat transfer tube 40 is set to the start end (upstream end) as in the heat exchange device 1A of the present modification shown in FIG. ), The duct width changing portion 20 may be arranged.

この理由について、図3を参照して説明する。
図3は横軸を周波数[Hz]とし、縦軸を音圧レベル[dB]としたグラフに、ダクト幅を一定としたケースにおける音圧レベルの計測結果をプロットしたグラフであり、一点鎖線は1段目の伝熱管40における音圧レベル、破線は3段目の伝熱管40における音圧レベル、実線は4段目の伝熱管40における音圧レベルを示す。この図3からも明らかなように、4段目の伝熱管40において高い音圧レベルの異音(すなわち釜鳴り)が発生している。したがって、少なくとも3段目の伝熱管40よりも上流側では異音が発生していないことから、3段目の伝熱管40の上流端40uからダクト幅が変化するようにダクト幅変化部20を配置すれば、ダクト幅変化部20の釜鳴りの抑制効果が有効になると考えられる。
その他の構成は、第1実施形態と同様であるので説明を省略する。
The reason for this will be described with reference to FIG.
FIG. 3 is a graph in which the measurement result of the sound pressure level in a case where the duct width is constant is plotted on a graph in which the horizontal axis is frequency [Hz] and the vertical axis is sound pressure level [dB]. The sound pressure level in the first heat transfer tube 40, the broken line indicates the sound pressure level in the third heat transfer tube 40, and the solid line indicates the sound pressure level in the fourth heat transfer tube 40. As is apparent from FIG. 3, an abnormal noise (that is, a kettle noise) with a high sound pressure level is generated in the heat transfer tube 40 in the fourth stage. Therefore, since no noise is generated on the upstream side of at least the third-stage heat transfer tube 40, the duct width changing portion 20 is set so that the duct width changes from the upstream end 40u of the third-stage heat transfer tube 40. If it arrange | positions, it is thought that the suppression effect of the hook noise of the duct width change part 20 becomes effective.
Since other configurations are the same as those of the first embodiment, the description thereof is omitted.

[2.第2実施形態]
[2−1.構成]
本実施形態の熱交換装置1Bについて図4を参照して説明する。
図4は、本実施形態の熱交換装置1Bの構成を示す模式的な平面視による断面図である。なお、上記第1実施形態と同一の構成要素については同一の符号を付し、その説明を省略する。
本実施形態の熱交換装置1Bは、伝熱管群4の両外側、すなわち拡大部20A及び縮小部20Bと伝熱管群4との各相互間に、小口径の貫通孔5aが偏りなく配置された多孔プレート5が備えられている。多孔プレート5は、各拡大部20Aの上流端、換言すれば各ダクト側壁部21の付け根(上流端)21aから下流側に延設されて各ダクト側壁部22の付け根(下流端)22aに亘って設けられている。
その他の構成は、適用可能な変形例の構成も含め第1実施形態と同様であるので説明を省略する。
[2. Second Embodiment]
[2-1. Constitution]
A heat exchange device 1B of the present embodiment will be described with reference to FIG.
FIG. 4 is a schematic cross-sectional view showing the configuration of the heat exchange device 1B of the present embodiment. In addition, the same code | symbol is attached | subjected about the component same as the said 1st Embodiment, and the description is abbreviate | omitted.
In the heat exchanging device 1B of the present embodiment, through holes 5a having small diameters are arranged evenly on both outer sides of the heat transfer tube group 4, that is, between the enlarged portion 20A and the reduced portion 20B and the heat transfer tube group 4. A perforated plate 5 is provided. The perforated plate 5 extends from the upstream end of each enlarged portion 20A, in other words, from the root (upstream end) 21a of each duct side wall portion 21 to the downstream side and extends to the root (downstream end) 22a of each duct side wall portion 22. Is provided.
Other configurations are the same as those of the first embodiment, including the configuration of applicable modifications, and thus the description thereof is omitted.

[2−2.作用・効果]
本発明の第2実施形態の熱交換装置1Bによれば、多孔プレート5を設けることにより、排ガスGが、図4に矢印G1で示すように、伝熱管群4から反れて流れることを抑制できる(熱交換に寄与しない排ガスGの流れを抑制できる)。加えて、多孔プレート5は、多孔体であるため定在波は多孔プレート5を通過するので、多孔プレート5自体が定在波を発生させることがなく、ダクト幅変化部20の機能を損ねることがない。
したがって、第1実施形態の熱交換装置1と同様の効果が得られる他、第1実施形態の熱交換装置1に較べて熱交換性能を向上できる利点がある。
[2-2. Action / Effect]
According to the heat exchange device 1B of the second embodiment of the present invention, by providing the perforated plate 5, it is possible to suppress the exhaust gas G from flowing out of the heat transfer tube group 4 as shown by an arrow G1 in FIG. (The flow of exhaust gas G that does not contribute to heat exchange can be suppressed). In addition, since the perforated plate 5 is a porous body, the standing wave passes through the perforated plate 5, so that the perforated plate 5 itself does not generate a standing wave, and the function of the duct width changing portion 20 is impaired. There is no.
Therefore, in addition to obtaining the same effect as the heat exchange device 1 of the first embodiment, there is an advantage that the heat exchange performance can be improved as compared with the heat exchange device 1 of the first embodiment.

なお、多孔プレート5の開口率が高すぎると、多孔プレート5により排ガスGの流れを規制する効果が損なわれ、多孔プレート5の開口率が低すぎると、多孔プレート5自体が定在波を発生させてダクト幅変化部20を設ける意義が損なわれてしまう。好適な多孔プレート5の開口率としては例えば30%であるが、30%以外の開口率の使用を排除するものではない。   If the aperture ratio of the porous plate 5 is too high, the effect of regulating the flow of the exhaust gas G by the porous plate 5 is impaired. If the aperture ratio of the porous plate 5 is too low, the porous plate 5 itself generates a standing wave. Thus, the significance of providing the duct width changing portion 20 is impaired. A suitable aperture ratio of the perforated plate 5 is, for example, 30%, but use of an aperture ratio other than 30% is not excluded.

[3.変形例]
(1)変形例の構成について図5を参照して説明する。
図5は本変形例の熱交換装置1Cの構成を示す模式的な平面視による断面図である。なお、上記各実施形態と同一の構成要素については同一の符号を付し、その説明を省略する。
上記各実施形態では、ダクト幅変化部20を、伝熱管群4の両外側でダクト幅が変化するように構成したが、図5に示す熱交換装置1Cのように、片側(ここでは左側)のダクト側壁部23を流れ方向に沿った平坦な形状としてもよい。すなわち、ダクト幅変化部20′を、ダクト幅方向Xにおいて伝熱管群4の一方の外側(ここでは右側)でだけダクト幅が変化する構成としてもよい。
[3. Modified example]
(1) The configuration of the modification will be described with reference to FIG.
FIG. 5 is a schematic cross-sectional view showing the configuration of the heat exchanging device 1C according to this modification. In addition, the same code | symbol is attached | subjected about the component same as said each embodiment, and the description is abbreviate | omitted.
In each said embodiment, although the duct width change part 20 was comprised so that a duct width might change on the both outer sides of the heat exchanger tube group 4, like the heat exchange apparatus 1C shown in FIG. 5, one side (here left side) It is good also considering the duct side wall part 23 of this as a flat shape along a flow direction. That is, the duct width changing portion 20 ′ may be configured such that the duct width changes only on one outer side (here, the right side) of the heat transfer tube group 4 in the duct width direction X.

また、上記各実施形態では、ダクト幅変化部として上流側に拡大部20Aが形成され下流側に縮小部20Bが形成されたダクト幅変化部20を採用したが、図5に二点鎖線で示すように、上流側に縮小部20Bを、下流側に拡大部20Aを設けてダクト幅変化部を構成してもよい。この場合も、ダクト幅変化部を、伝熱管群4の片側(一方の外側)でだけダクト幅が変化するように構成してもよいし、伝熱管群4の両外側でダクト幅が変化するように構成してもよい。
その他の構成は、第1実施形態と同様であるので説明を省略する。
Further, in each of the above embodiments, the duct width changing portion 20 in which the enlarged portion 20A is formed on the upstream side and the reduced portion 20B is formed on the downstream side is adopted as the duct width changing portion. As described above, the duct width changing portion may be configured by providing the reduced portion 20B on the upstream side and the enlarged portion 20A on the downstream side. Also in this case, the duct width changing portion may be configured such that the duct width changes only on one side (one outer side) of the heat transfer tube group 4, or the duct width changes on both outer sides of the heat transfer tube group 4. You may comprise as follows.
Since other configurations are the same as those of the first embodiment, the description thereof is omitted.

(2)上記実施形態では、熱交換装置を、伝熱管40を19列×5段で千鳥配列して構成したが、熱交換装置の構成はこれに限定されない。例えば、伝熱管40の列数及び段数は、前記の数に限定されずそれぞれ適宜設定されるものであり、また、伝熱管40の配列を格子配列にして熱交換装置を構成してもよい。   (2) In the above embodiment, the heat exchange device is configured by arranging the heat transfer tubes 40 in a staggered arrangement of 19 rows × 5 stages, but the configuration of the heat exchange device is not limited to this. For example, the number of rows and the number of stages of the heat transfer tubes 40 are not limited to the above numbers, and can be set as appropriate, and the heat exchange apparatus may be configured by arranging the heat transfer tubes 40 in a lattice arrangement.

(3)上記実施形態では、本発明をHRSGの熱交換装置に適用したが、バーナを備えた一般的な蒸気ボイラ、温水器など各種の用途に使用される熱交換装置に適用できる。   (3) In the said embodiment, although this invention was applied to the heat exchange apparatus of HRSG, it is applicable to the heat exchange apparatus used for various uses, such as a general steam boiler provided with a burner, and a water heater.

1,1A,1B,1C 熱交換装置
2 ガスダクト
20,20′ ダクト幅変化部
20A 拡大部
20B 縮小部
21,22,23 ダクト側壁部
3 ガスダクト2の内部空間
4 伝熱管群
40 伝熱管
5 多孔プレート
5a 貫通孔
G 排ガス(熱源ガス)
X ダクト前後方向
Y ダクト幅方向
1, 1A, 1B, 1C Heat exchange device 2 Gas duct 20, 20 'Duct width changing portion 20A Enlarged portion 20B Reduced portion 21, 22, 23 Duct side wall portion 3 Internal space of gas duct 2 4 Heat transfer tube group 40 Heat transfer tube 5 Porous plate 5a Through hole G Exhaust gas (heat source gas)
X Duct longitudinal direction Y Duct width direction

Claims (9)

内部空間を熱源ガスが流通するガスダクトと、前記内部空間内に配置され、前記熱源ガスの流れ方向及び前記流れ方向と直交する幅方向にそれぞれ複数配列された伝熱管を有する伝熱管群とを備えた熱交換装置において、
前記ガスダクトは、前記幅方向の寸法を、前記流れ方向に対して変化させた幅寸法変化部を備え、
前記幅寸法変化部は、少なくとも一部が、前記伝熱管群の前記幅方向外側に配置された
ことを特徴とする、熱交換装置。
A gas duct through which a heat source gas flows in an internal space; and a heat transfer tube group that is arranged in the internal space and includes a plurality of heat transfer tubes arranged in the flow direction of the heat source gas and in the width direction orthogonal to the flow direction. In the heat exchange device
The gas duct includes a width dimension changing portion in which the dimension in the width direction is changed with respect to the flow direction,
At least a part of the width dimension changing portion is arranged on the outer side in the width direction of the heat transfer tube group.
前記幅寸法変化部は、前記流れ方向上流側から3段目に配置された前記伝熱管の上流端以降に位置する
ことを特徴とする、請求項1に記載の熱交換装置。
2. The heat exchange device according to claim 1, wherein the width dimension changing portion is located after the upstream end of the heat transfer tube arranged in the third stage from the upstream side in the flow direction.
前記幅寸法変化部は、前記流れ方向下流側になるにしたがって前記幅方向の寸法が拡大する拡大部を備える
ことを特徴とする、請求項1又は2に記載の熱交換装置。
3. The heat exchange device according to claim 1, wherein the width dimension changing portion includes an enlarged portion whose dimension in the width direction is increased toward the downstream side in the flow direction.
前記幅寸法変化部は、前記拡大部の前記流れ方向下流側に、前記流れ方向下流側になるにしたがって前記幅方向の寸法が縮小する縮小部を備える
ことを特徴とする、請求項3に記載の熱交換装置。
4. The width dimension changing portion includes a reduction portion on the downstream side in the flow direction of the enlargement portion, the reduction portion having a size in the width direction that decreases toward the downstream side in the flow direction. Heat exchange equipment.
前記伝熱管群の前記幅方向で外側には、前記流れ方向に沿って延在する多孔プレートが備えられた
ことを特徴とする、請求項3又は4に記載の熱交換装置。
5. The heat exchange device according to claim 3, wherein a perforated plate extending along the flow direction is provided outside the heat transfer tube group in the width direction. 6.
前記幅寸法変化部は、前記流れ方向下流側になるにしたがって前記幅方向の寸法が縮小する縮小部を備える
ことを特徴とする、請求項1又は2に記載の熱交換装置。
3. The heat exchange device according to claim 1, wherein the width dimension changing unit includes a reduction unit that reduces a dimension in the width direction toward the downstream side in the flow direction.
前記幅寸法変化部は、前記縮小部の前記流れ方向下流側に、前記流れ方向下流側になるにしたがって前記幅方向の寸法が拡大する拡大部を備える
ことを特徴とする、請求項6に記載の熱交換装置。
The width dimension changing part includes an enlarged part on the downstream side in the flow direction of the reduction part, and an enlarged part whose dimension in the width direction is increased toward the downstream side in the flow direction. Heat exchange equipment.
前記幅寸法変化部は、前記伝熱管群の前記幅方向で両側において前記幅方向の寸法が変化する
ことを特徴とする、請求項1〜7の何れか一項に記載の熱交換装置。
The heat exchange apparatus according to any one of claims 1 to 7, wherein the width dimension changing portion changes the dimension in the width direction on both sides in the width direction of the heat transfer tube group.
前記幅寸法変化部が、前記伝熱管群の前記幅方向で一方側でだけ前記幅方向の寸法が変化する
ことを特徴とする、請求項1〜7の何れか一項に記載の熱交換装置。
The heat exchange apparatus according to any one of claims 1 to 7, wherein the width dimension changing portion changes in the width direction only on one side in the width direction of the heat transfer tube group. .
JP2016084788A 2016-04-20 2016-04-20 Heat exchanger Pending JP2017194223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016084788A JP2017194223A (en) 2016-04-20 2016-04-20 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016084788A JP2017194223A (en) 2016-04-20 2016-04-20 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2017194223A true JP2017194223A (en) 2017-10-26

Family

ID=60154758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016084788A Pending JP2017194223A (en) 2016-04-20 2016-04-20 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2017194223A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111492670A (en) * 2017-12-28 2020-08-04 索尼公司 Display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111492670A (en) * 2017-12-28 2020-08-04 索尼公司 Display device
CN111492670B (en) * 2017-12-28 2022-06-03 索尼公司 Display device
US11516425B2 (en) 2017-12-28 2022-11-29 Sony Corporation Display apparatus

Similar Documents

Publication Publication Date Title
US4316435A (en) Boiler tube silencer
JP6066065B2 (en) Gas turbine combustor with heat transfer device
JP2635869B2 (en) Heat exchanger
CN109595591B (en) Corrugated plate heat shield with water-cooling curtain wall
TW201035494A (en) Heat exchanger
JP2011085134A (en) Exhaust gas diffuser
KR20150108382A (en) Heat exchanger and gas turbine plant provided therewith
JP2021535994A (en) Compact gas-gas heat exchange tube, and how to manufacture and use it
US8408003B2 (en) Combined cycle power plant
JP2011106782A (en) Heat exchanger structure for water heater
JP5964286B2 (en) Heat exchanger
JP2017194223A (en) Heat exchanger
US20150075166A1 (en) Sound damper for evaporation channels in steam power plants with air condensers
EP2530420A2 (en) Fin and tube heat exchanger
JP4728192B2 (en) Axial turbine and inlet structure
JP6204710B2 (en) Heat exchanger
RU2612668C1 (en) Air-to-air heat exchanger
JP5777420B2 (en) Gas turbine exhaust equipment
JP2012154615A (en) Boiler pipe configuration of heat recovery steam generator
JP6833345B2 (en) How to set the installation range of the baffle plate in the heat exchanger and the heat exchanger
CN219160318U (en) An anti-vibration energy-saving shell-and-tube heat-conducting oil steam generator
JP6113586B2 (en) Condenser
JP6847810B2 (en) How to manufacture heat exchangers and heat exchangers
JP2019143917A (en) Evaporator, waste heat recovery boiler with the same, and evaporator modification method
JP5939554B2 (en) Gas turbine exhaust equipment