[go: up one dir, main page]

JP2014081089A - Safety split antenna - Google Patents

Safety split antenna Download PDF

Info

Publication number
JP2014081089A
JP2014081089A JP2012227363A JP2012227363A JP2014081089A JP 2014081089 A JP2014081089 A JP 2014081089A JP 2012227363 A JP2012227363 A JP 2012227363A JP 2012227363 A JP2012227363 A JP 2012227363A JP 2014081089 A JP2014081089 A JP 2014081089A
Authority
JP
Japan
Prior art keywords
reflector
interfere
wind pressure
sunlight
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012227363A
Other languages
Japanese (ja)
Inventor
Fukujiro Ukawa
宇川福治郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012227363A priority Critical patent/JP2014081089A/en
Publication of JP2014081089A publication Critical patent/JP2014081089A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar reflector which sets ground utilization efficiency with respect to the sun at 100%, which wards off wind pressure by a lightweight slit structure, and which can be constructed as a lightweight type.SOLUTION: In a circular and beam-like stand-alone solar reflector 2, a reflecting parabolic antenna is circumferentially split or split in a fan shape; two layers and an effective part overlap each other; a slit structure with a rib 6 is resistant to wind pressure; the risk of a wobble accident of a condensing point is eliminated by virtue of light weight; the condensing point is fixed on a ground side by a known trestle; and a rate of solar utilization on the ground reaches 100%.

Description

本発明は、太陽エネルギーの安全集光、集熱、に関するものである。   The present invention relates to safe concentration of solar energy and heat collection.

従来、太陽集光、集熱、はパラボラアンテナ、フレネルレンズで集光、集熱するもの等がある。   Conventionally, there are solar condensing and heat collecting which collect and collect heat with a parabolic antenna or a Fresnel lens.

しかし、パラボラアンテナは、大面積は無理があり、集光点ふらつき事故は危険であり、フレネルレンズはプリズム分光し大型化は無理がある。   However, parabolic antennas cannot be used in large areas, and condensing point wandering accidents are dangerous. Fresnel lenses are prism-spectral and cannot be enlarged.

円周分割パラボラアンテナは、風圧、大型化は可能だが、中央付近の集光が不利である。   Circumferentially-divided parabolic antennas can be increased in wind pressure and size, but focusing near the center is disadvantageous.

これらの改善策として、ヘリオスタットタワーにし二重反射で地上に焦点するものもあるが、太陽運行は3次元で、地上装置は平面配置であり経度方向利用率1/2緯度方向1/2、太陽地上照射に対し合計利用率1/4程度となり、小型の物を多数使用した二重反射ヘリオスタットは風圧、資材の温度膨張、荷重変異に対抗するために大型化し、構造も天体望遠鏡なみの複雑なになる。 Some of these improvement measures are heliostat towers that focus on the ground with double reflection, but the solar operation is three-dimensional, the ground equipment is in a plane arrangement, the longitude utilization rate is 1/2, the latitude direction is 1/2, The total utilization rate is about 1/4 for solar ground irradiation, and the double-reflecting heliostat using many small objects is enlarged to counteract wind pressure, material temperature expansion, and load variation, and the structure is similar to an astronomical telescope. Become complicated.

特許公開2010−203624Patent Publication 2010-203624 特距出願2011−040666Special distance application 2011-040666

ひまわり集光機Sunflower collector

解決しようとする問題点は、
1、パラボラアンテナは、大面積の場合は集光点が長距離になる。
2、既存集光、長距離集光は、集光点事故の危険性があり太陽の利用効率が1/4程度になる。
3、円周分割パラボラアンテナは、中央付近の集光が不利である。
The problem we are trying to solve is
1. When the parabolic antenna has a large area, the focal point becomes a long distance.
2. Existing light collection and long-distance light collection have a danger of a light-condensing point accident, and the solar utilization efficiency is about 1/4.
3. Concentration in the vicinity of the center is disadvantageous for the circumferentially divided parabolic antenna.

本発明は、パラボラアンテナを、放射状か、円周方向に分割、又は両方の利点を重合して利用する。   The present invention takes advantage of parabolic antennas either radially, circumferentially divided, or a combination of the advantages of both.

本発明の、安全分割アンテナを使用する事により、独立型で小型から大型まで、太陽に対する地上利用効率100%にし、軽量なスリット構造で風圧を受け流し、軽量に構築できる。   By using the safety division antenna of the present invention, it is possible to construct a lightweight structure that is 100% ground use efficiency with respect to the sun, from a small size to a large size, receives wind pressure with a lightweight slit structure.

(実施例1)
図1は、反射鏡分割二層配置の光線軌跡断面図である。 図2は、反射鏡分割二層配置構造中央切断、斜図である。(実施例2) 図3は、反射鏡分割二層パラボラアンテナを帯状配置した、斜図である。 図4は、反射鏡分割二層パラボラアンテナを帯状配置した、構造斜図である。(実施例3) 図5は、扇状分割パラボラアンテナ二層配置中央切断、斜図である。 図6は、扇丈分割パラボラアンテナ二層配置構造中央切断、斜図である。(公知例) 図7は、円周分割逆パラボラアンテナ光線軌跡断面図である。 図8は、円周分割逆パラボラアンテナ、配置斜図である。(実施例4) 図9は、分割逆パラボラアンテナを逆トラフ配置とした、配置斜図である。(実施例5) 図10は、分割逆パラボラアンテナ、とパラボラアンテナを重合した、光線軌跡断面図である。 図11は、分割逆パラボラアンテナ、とパラボラアンテナを重合した、中央切断、斜図である。 図12は、円周分割逆パラボラアンテナ、とパラボラアンテナの重合中央切断、斜図である。(実施例6) 図13は、分割逆トラフパラボラアンテナとパラボラ、を帯状配置とした、斜図である。 図13は、分割逆トラフパラボラアンテナとパラボラ、を帯状配置とした斜図構造図である。
Example 1
FIG. 1 is a cross-sectional view of a ray trajectory of a two-layer arrangement of reflecting mirrors. FIG. 2 is a central cut and oblique view of a two-layer arrangement structure of reflectors. (Example 2) FIG. 3 is a perspective view in which reflector-divided two-layer parabolic antennas are arranged in a band shape. FIG. 4 is a structural oblique view in which reflector-divided two-layer parabolic antennas are arranged in a band shape. (Example 3) FIG. 5 is a center cut and oblique view of a fan-shaped divided parabolic antenna two-layer arrangement. FIG. 6 is a central cut and oblique view of the two-layer arrangement structure of the sector-divided parabolic antenna. (Known example) FIG. 7 is a cross-sectional view of the trajectory of the circumferentially divided inverted parabolic antenna. FIG. 8 is a circumferentially divided inverted parabolic antenna and an arrangement oblique view. (Example 4) FIG. 9 is a layout oblique view in which the divided inverted parabolic antennas are arranged in an inverted trough arrangement. (Example 5) FIG. 10 is a ray trajectory cross-sectional view in which a split inverted parabolic antenna and a parabolic antenna are superposed. FIG. 11 is a center cut and oblique view in which a split inverted parabolic antenna and a parabolic antenna are superposed. FIG. 12 is a cross-sectional, oblique view of the circumferentially divided inverted parabolic antenna and the parabolic antenna. (Example 6) FIG. 13 is a perspective view in which the divided inverted trough parabolic antennas and parabolics are arranged in a strip shape. FIG. 13 is an oblique view structural diagram in which the divided inverted trough parabolic antennas and parabolics are arranged in a strip shape.

本発明は、独立一体で、反射パラボラアンテナを円周分割、又は扇状分割した二層、及び有効な部分を重合し、風圧を受け流すスリット構造とし、公知の架台で太陽に正対させ、地上側に短距離で集光点を固定する構造とする。   The present invention is an independent and integrated two-layer structure in which a reflective parabolic antenna is divided into a circle or a fan, and an effective portion is superposed to form a slit structure that receives wind pressure. The focusing point is fixed at a short distance.

風圧を軽減するために、図1、図2、太陽光線1、と二層にした反射鏡2、を反射光線3、がともに干渉しない位置に配置し、集光、集熱器4、をリブ6、で構造を構成する。   In order to reduce the wind pressure, FIG. 1 and FIG. 2, the sunbeam 1 and the reflecting mirror 2 in two layers are arranged at positions where the reflected light beam 3 does not interfere with each other, and the light collecting and heat collecting device 4 is ribbed. 6 constitutes the structure.

風圧を軽減するために、図3、図4、反射鏡2、を反射光線が干渉しない位置に、分割二層パラボラ反射鏡を集光、集熱器4、リブ6、を帯状配置した構造とする。   In order to reduce the wind pressure, a structure in which the split two-layer parabolic reflector is condensed at a position where the reflected light beam does not interfere with the reflecting mirror 2 in FIGS. 3 and 4 and the heat collector 4 and the rib 6 are arranged in a belt shape. To do.

風圧を軽減する為に、図5、図6、扇状、二層反射鏡2、集光、集熱器4、を太陽光線、反射光線が干渉しない位置に配置し、リブ6、で構築する。   In order to reduce the wind pressure, FIG. 5, FIG. 6, the fan shape, the two-layer reflecting mirror 2, the condenser, and the heat collector 4 are arranged at positions where sunlight rays and reflected rays do not interfere with each other, and are constructed with ribs 6.

円周分割逆パラボラの中心付近の集光効率を高めるために、図10、図11、図12、太陽光線1、反射光線3、が干渉しない位置に、扇状、二層反射鏡2、反射鏡5、を配置し、集光、集熱器4、リブ6、で構成し構築する。     In order to increase the light collection efficiency in the vicinity of the center of the circumferentially divided inverted parabola, the fan-shaped, double-layer reflecting mirror 2 and reflecting mirror are arranged at positions where the sun rays 1 and the reflected light rays 3 do not interfere with each other. 5 is arranged, and is constructed and constructed by a light collecting unit, a heat collector 4 and a rib 6.

風圧を軽減するために、図13、図14、分割逆トラフ反射鏡2、反射鏡5、集光、集熱器4、を帯状配置し、リブ6、で構築する。
一般の例を示す。(公知例)
In order to reduce the wind pressure, FIG. 13 and FIG.
A general example is shown. (Known example)

中心付近の反射鏡効率、図7、図8、が悪い。   Reflector efficiency near the center, FIGS. 7 and 8, are poor.

太陽エネルギー直接利用、集光型太陽光発電素子用、熱発電素子のため集熱、太陽光レーザーのエネルギー源、スターリングエンジンの集熱、蒸気発生の熱源、金属溶解の熱源、アスベスト溶融用熱源、温熱蓄積の熱源、溶融塩蓄熱の熱源、庭先バーベキユーの熱源、等用途に究極の太陽エネルギー源用パラボラアンテナ、クリーンな化学実験用熱源、電波用として簡単に利用できる。 Direct use of solar energy, concentrating solar power generation element, heat collection for thermoelectric generation element, solar laser energy source, Stirling engine heat collection, steam generation heat source, metal melting heat source, asbestos melting heat source, It can be easily used as a parabolic antenna for the ultimate solar energy source, a heat source for clean chemical experiments, and for radio waves, such as a heat storage heat source, a molten salt storage heat source, and a garden barbeque heat source.

1 太陽光線。
2 反射鏡。
3 太陽光線の反射光線。
4 集光、集熱器。
5 複合させる反射鏡。
6 リブ。











1 Sun rays.
2 Reflector.
3 Reflected rays of sunlight.
4 Condenser, collector.
5 Reflector to be combined.
6 Ribs.











Claims (5)

太陽光線と反射光線がともに干渉しない位置に風圧を軽減することと円周分割二層にした反射鏡を配置し、集光、集熱器、を構築した椀状太陽光反射鏡。   A saddle-shaped solar reflector that constructs a condenser and a heat collector by reducing the wind pressure at a position where the sunlight and reflected light do not interfere with each other, and arranging a reflector divided into two layers. 反射鏡を反射光線が干渉しない位置に、二層配置し、集光、集熱器をリブで構築した帯状太陽光反射鏡。 A strip-shaped solar reflector with two layers of reflectors, where the reflected rays do not interfere with each other, and a condenser and heat collector constructed with ribs. 扇状二層反射鏡と集光、集熱器を太陽光線、反射光線が干渉しない位置に配置し、リブで構築した椀状太陽光反射鏡。 A fan-shaped solar reflector constructed with ribs, with the fan-shaped double-layer reflector, condensing, and heat collector placed in a position where sunlight and reflected light do not interfere. 太陽光線、反射光線の干渉しない位置に、下向き反射鏡と上向き反射鏡の反射効率の良いところを重合配置、したシェル格子状太陽光反射鏡。   A shell-lattice-type solar reflector in which the reflective mirrors of the downward reflector and the upward reflector are arranged in a position where sunlight and reflected light do not interfere with each other. 太陽光線、反射光線の干渉しない位置に、下向き反射鏡と上向き反射鏡の反射効率の良いところを重合配置、したスリットの入った二枚貝状太陽光反射鏡。
















A bivalve-shaped solar reflector with slits in which the reflective efficiency of the downward reflector and the upward reflector is superposed at a position where sunlight and reflected light do not interfere.
















JP2012227363A 2012-10-12 2012-10-12 Safety split antenna Pending JP2014081089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012227363A JP2014081089A (en) 2012-10-12 2012-10-12 Safety split antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012227363A JP2014081089A (en) 2012-10-12 2012-10-12 Safety split antenna

Publications (1)

Publication Number Publication Date
JP2014081089A true JP2014081089A (en) 2014-05-08

Family

ID=50785438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012227363A Pending JP2014081089A (en) 2012-10-12 2012-10-12 Safety split antenna

Country Status (1)

Country Link
JP (1) JP2014081089A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125776A (en) * 2015-01-06 2016-07-11 株式会社神戸製鋼所 Heat exchange device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125776A (en) * 2015-01-06 2016-07-11 株式会社神戸製鋼所 Heat exchange device
WO2016111131A1 (en) * 2015-01-06 2016-07-14 株式会社神戸製鋼所 Heat exchange device

Similar Documents

Publication Publication Date Title
ES2552645T3 (en) Solar concentrator configuration with improved manufacturability and efficiency
JP5797737B2 (en) Solar heat collection system
ES2375389B1 (en) FRESNEL TYPE SOLAR CONCENTRATION PLANT WITH OPTIMIZED SECONDARY RECONCENTRATOR.
EP2962149B1 (en) Light-concentrating lens assembly for a solar energy recovery system
ES2734191T3 (en) Double stage parabolic concentrator
US8471142B1 (en) Solar energy systems using external reflectors
MX2012012260A (en) A SOLAR ENERGY COLLECTION SYSTEM.
KR20140011849A (en) Thermoelectric cell compound solar heat generation system direct concentrating of bottle lens
CN211209653U (en) Multi-focus free-form surface solar light condensing system
US20170074547A1 (en) Solar Thermal Energy Antenna
JP2014081089A (en) Safety split antenna
KR20190073757A (en) Parabolic Trough Concentrator with improved concentration efficiency
ES2368238A1 (en) PARAMETRIC SOLAR DISK WITH MODULAR STRUCTURE AND ASSEMBLY METHOD.
CN114096790B (en) Asymmetric solar receiver
KR101155691B1 (en) Vacuum tube type solar energy collecting pipe
RU2282113C1 (en) Solar photoelectric module with concentrator
JP3172797U (en) Sunlight collector
US20150207004A1 (en) Trough Shaped Fresnel Reflector Solar Concentrators
GB2489219A (en) Solar concentrator with orthogonal elements
MX2013000116A (en) A DEVICE FOR COLLECTING SOLAR ENERGY.
JP2011033242A (en) Solar concentrating system
KR101118478B1 (en) Secondary concentrator for solar high concentration and easy changeable focal direction
CN107062636B (en) Composite condenser suitable for solar heat utilization
Bootello et al. 4. CHAPTER 4: OPTICAL ANALYSIS OF A TWO STAGE XX CONCENTRATOR FOR PARAMETRIC TROUGH PRIMARY AND TUBULAR ABSORBER WITH APPLICATION IN SOLAR THERMAL ENERGY (STE) TROUGH POWER PLANTS
GB2483093A (en) Solar concentrator with orthogonal linear reflectors