[go: up one dir, main page]

JP2014054122A - Dynamo-electric machine - Google Patents

Dynamo-electric machine Download PDF

Info

Publication number
JP2014054122A
JP2014054122A JP2012198072A JP2012198072A JP2014054122A JP 2014054122 A JP2014054122 A JP 2014054122A JP 2012198072 A JP2012198072 A JP 2012198072A JP 2012198072 A JP2012198072 A JP 2012198072A JP 2014054122 A JP2014054122 A JP 2014054122A
Authority
JP
Japan
Prior art keywords
permanent magnet
coil
rotor shaft
magnetic flux
coil wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012198072A
Other languages
Japanese (ja)
Other versions
JP5670974B2 (en
Inventor
Ikumi Aoki
育美 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012198072A priority Critical patent/JP5670974B2/en
Publication of JP2014054122A publication Critical patent/JP2014054122A/en
Application granted granted Critical
Publication of JP5670974B2 publication Critical patent/JP5670974B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc Machiner (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact dynamo-electric machine in which the efficiency is enhanced by utilizing the magnetic flux of a permanent magnet for a field system effectively.SOLUTION: A dynamo-electric machine includes a commutator 2 attached to a rotor shaft 1, an armature coil 4 rotatable integrally with the rotor shaft 1, and wound around the rectangular axial cross-section of the rotor shaft 1 with no gap in the circumferential direction with both ends being connected to the commutator 2, and a magnetic flux action part where a first permanent magnet 11 having a magnetic flux action surface located on the inner circumferential side of the armature coil 4, and a second permanent magnet 12 having a magnetic flux action surface located on the outer circumferential side of the coil while holding the coil wire therebetween, are disposed to face each other.

Description

本発明は、例えば電動機、発電機等に用いられる回転電機に関する。   The present invention relates to a rotating electrical machine used for, for example, an electric motor, a generator, and the like.

小型で効率の良い電動機として様々なものが開発され、提案されている。中でもコアレスモータであって、回転子として回転子軸に設けられた円板に扇型で偏平に巻かれた電機子コイルが配置されて樹脂モールドされている回転子と、回転子を収納する固定子側ケースに電機子コイルと対向して永久磁石が対向して配置された3相直流電動機が提案されている。(特許文献1参照)。   Various types of small and efficient electric motors have been developed and proposed. Among them, a coreless motor, which is a resin-molded rotor in which a fan-shaped armature coil is arranged flatly on a disk provided on the rotor shaft as a rotor, and a fixed housing for housing the rotor There has been proposed a three-phase DC motor in which a permanent magnet is arranged opposite to an armature coil in a child case. (See Patent Document 1).

特開平5−168210号公報JP-A-5-168210

上述した回転子においては、回転板に扇型状に形成された電機子コイルが配置さえてモールドされるため、偏平に形成される分コイルの巻き数が稼げないうえに、固定子側ケースに対向配置された界磁用の永久磁石から発生した磁束をコイル線が横切らない、即ち回転トルクが作用しない(磁力線と導体が鎖交しない)無効な配線部分が発生してしまうため、効率が悪くなり、無駄な電力を消費してしまうおそれがある。   In the rotor described above, since the armature coil formed in a fan shape is molded on the rotating plate and molded, the number of turns of the coil formed flat cannot be gained, and the stator side case Since the coil wire does not cross the magnetic flux generated from the field permanent magnets arranged opposite to each other, that is, there is an invalid wiring portion in which the rotational torque does not act (the magnetic force line and the conductor do not interlink), the efficiency is poor. Therefore, there is a risk that wasteful power is consumed.

本発明はこれらの課題を解決すべくなされたものであり、その目的とするところは、界磁用の永久磁石の磁束を有効に活用し、小型で、効率を向上させた回転電機を提供することにある。   The present invention has been made to solve these problems, and an object of the present invention is to provide a rotating electrical machine that effectively utilizes the magnetic flux of a permanent magnet for a field, is small, and has improved efficiency. There is.

本発明は上記課題を解決するため、以下の構成を備えたことを特徴とする。
回転子軸に一体に組み付けられた整流子と、前記回転子軸と一体となって回転可能であり、前記整流子に両端を接続されて前記回転子軸の軸方向断面矩形状に周回して巻き回され周方向に隙間なく配置された電機子コイルと、前記電機子コイルのコイル内側に磁束作用面が配置された第1永久磁石と、コイル線を挟んでコイル外側に磁束作用面が配置された第2永久磁石とが対向配置された磁束作用部と、を具備し、前記第1永久磁石は前記回転子軸に対して回転自在に軸支されており、前記第2永久磁石はケース内壁に対向して固定されていることを特徴とする。
In order to solve the above problems, the present invention is characterized by having the following configuration.
A commutator integrally assembled with the rotor shaft, and can rotate integrally with the rotor shaft, and both ends of the commutator are connected to each other so as to circulate in a rectangular shape in the axial direction of the rotor shaft. An armature coil that is wound and disposed without any gap in the circumferential direction, a first permanent magnet that has a magnetic flux acting surface disposed inside the coil of the armature coil, and a magnetic flux acting surface that is disposed outside the coil across the coil wire A magnetic flux acting portion disposed opposite to the second permanent magnet, wherein the first permanent magnet is rotatably supported with respect to the rotor shaft, and the second permanent magnet is a case. It is characterized by being fixed facing the inner wall.

上記構成によれば、回転子軸の軸方向断面矩形状に周回して巻き回された電機子コイルは、コイル内側に配置された第1永久磁石と、コイル外側に配置された第2永久磁石との間をコイル線が通過しているため、第1,第2永久磁石と対向するコイル線の長さを長くして鎖交する磁束を増やし、磁束と鎖交しないコイル線を可及的に短くすることで、無効となるコイル線長が短く界磁用の永久磁石から生じた磁束を有効に活用して、電動機においては高い回転トルクが得られ、発電機においては高い誘導起電力が得られ、効率を上げることが期待される。   According to the above configuration, the armature coil that is wound around the axial cross-section of the rotor shaft in the rectangular shape includes the first permanent magnet disposed inside the coil and the second permanent magnet disposed outside the coil. Since the coil wire passes between the first and second permanent magnets, the length of the coil wire facing the first and second permanent magnets is increased to increase the interlinkage magnetic flux, and the coil wire not interlinked with the magnetic flux is made as much as possible. By making the coil length short, the magnetic flux generated from the field permanent magnet is effectively utilized, and a high rotational torque is obtained in the motor, and a high induced electromotive force is generated in the generator. And is expected to increase efficiency.

前記電機子コイルは、前記回転子軸に対して軸方向に設けられた一対の絶縁板の外面をガイドとしてコアレスで径方向に周回して巻き回されていることが好ましい。
電機子コイルはコアレスで周回して巻き回されているため、一対の絶縁板の外面をガイドとして巻きやすく、回転子としての保形性を高めることができる。
The armature coil is preferably wound around the corelessly in the radial direction using the outer surfaces of a pair of insulating plates provided in the axial direction with respect to the rotor shaft as a guide.
Since the armature coil is wound around in a coreless manner, the outer surfaces of the pair of insulating plates can be easily wound as guides, and the shape retention as a rotor can be improved.

前記第1永久磁石は、前記回転子軸に対して回転可能に支持された磁性板に同極どうしが向き合うよう吸着固定されており、前記第2永久磁石とは軸方向で異極面どうしがコイル線を介して対向配置されるように設けられていること、或いは前記第1永久磁石は、前記回転子軸に対して回転可能に支持されており、前記第2永久磁石とは径方向で異極面どうしがコイル線を介して対向配置されていることが望ましい。
これにより、第1永久磁石は、コイル線に囲まれた中空部分に配置され、コイル線を介して対向する第2永久磁石を可能な限り近づけて配置することにより、小型で偏平若しくは小径な回転電機を提供することができる。
The first permanent magnet is attracted and fixed to a magnetic plate supported so as to be rotatable with respect to the rotor shaft such that the same poles face each other, and the second permanent magnets have different polar surfaces in the axial direction. The first permanent magnet is provided so as to be opposed to each other via a coil wire, or is supported so as to be rotatable with respect to the rotor shaft, and is radially with respect to the second permanent magnet. It is desirable that the different polar surfaces are arranged to face each other via a coil wire.
As a result, the first permanent magnet is arranged in a hollow portion surrounded by the coil wire, and the second permanent magnet facing through the coil wire is arranged as close as possible, so that the rotation is small, flat or small in diameter. An electric machine can be provided.

上述した回転電機を用いれば、界磁用の永久磁石の磁束を有効に活用し、小型で、高回転トルクが得られ、効率を向上させることができる回転電機を提供することができる。   If the above-described rotating electrical machine is used, it is possible to provide a rotating electrical machine that can effectively use the magnetic flux of the field permanent magnet, is small in size, can obtain high rotational torque, and can improve efficiency.

第一実施例に係る回転電機の断面図である。It is sectional drawing of the rotary electric machine which concerns on a 1st Example. 回転電機の動作原理を示す説明図である。It is explanatory drawing which shows the operating principle of a rotary electric machine. 回転子軸に組み付けられた第1永久磁石の説明図である。It is explanatory drawing of the 1st permanent magnet assembled | attached to the rotor axis | shaft. 巻線と整流子の位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of a coil | winding and a commutator. 一対の絶縁板に巻き付けられた電機子コイルの平面図及び正面図である。It is the top view and front view of an armature coil wound around a pair of insulating plates. 第二実施例に係る回転電機の断面図及び平面図である。It is sectional drawing and the top view of the rotary electric machine which concern on a 2nd Example.

以下、本発明に係る回転電機の一例について、添付図面を参照しながら説明する。尚、回転電機は、電動機としても発電機としてもいずれでも使用可能な構成をいうものとする。   Hereinafter, an example of a rotating electrical machine according to the present invention will be described with reference to the accompanying drawings. Note that the rotating electric machine refers to a configuration that can be used both as an electric motor and a generator.

[第一実施例]
図1に回転電機の断面説明図を示す。
回転子軸1の一端には後述する電機子コイル4が接続する整流子2が組み付けられている。この整流子2の外周面には、ブラシ3が摺動可能に当接している。
電機子コイル4は、回転子軸1と一体となって回転可能であり、整流子2に両端を接続されて回転子軸1の軸方向断面矩形状に周回して巻き回され周方向に隙間なく配置されている。回転子軸1には一対の絶縁板5が、ストッパー1aとスペーサ1bとの間に各々挟み込まれて軸方向に固定されている。絶縁板5は、例えば円板形状のベークライト板若しくはプラスチック板が好適に用いられる。一対の絶縁板5は回転子軸1と一体となって回転する。
[First Example]
FIG. 1 is an explanatory cross-sectional view of a rotating electrical machine.
A commutator 2 to which an armature coil 4 described later is connected is assembled to one end of the rotor shaft 1. The brush 3 is slidably in contact with the outer peripheral surface of the commutator 2.
The armature coil 4 is rotatable integrally with the rotor shaft 1, and both ends of the armature coil 4 are connected to the commutator 2, and are wound around the axial cross section of the rotor shaft 1. It is arranged without. A pair of insulating plates 5 are sandwiched between the stopper 1a and the spacer 1b and fixed to the rotor shaft 1 in the axial direction. As the insulating plate 5, for example, a disc-shaped bakelite plate or a plastic plate is preferably used. The pair of insulating plates 5 rotate integrally with the rotor shaft 1.

電機子コイル4は、絶縁板5の外側面をガイドとしてコアレスで径方向に周回して巻き回されている。図5(a)は、回転子6を軸方向から見た平面図である。電機子コイル4は三相分巻かれており、径方向にA→a,B→b,C→c,D→d,E→e,F→fの順に巻かれている。図5(b)に示すように、電機子コイル4は、回転子6の周方向に高密度で巻かれている。電機子コイル4はコアレスで周回して巻き回されているため、絶縁板5の外面をガイドとして巻きやすく、回転子6としての保形性を高めることができる。   The armature coil 4 is wound around the corelessly in the radial direction using the outer surface of the insulating plate 5 as a guide. Fig.5 (a) is the top view which looked at the rotor 6 from the axial direction. The armature coil 4 is wound in three phases, and is wound in the order of A → a, B → b, C → c, D → d, E → e, and F → f in the radial direction. As shown in FIG. 5B, the armature coil 4 is wound at a high density in the circumferential direction of the rotor 6. Since the armature coil 4 is wound around in a coreless manner, the outer surface of the insulating plate 5 can be easily wound as a guide, and the shape retention as the rotor 6 can be improved.

回転子軸1はケース7内に設けられた一対のベアリング8により回転可能に軸支されている。ケース7は磁性体よりなり、バックヨークを兼用している。   The rotor shaft 1 is rotatably supported by a pair of bearings 8 provided in the case 7. The case 7 is made of a magnetic material and also serves as a back yoke.

次に磁束作用部の構成について説明する。
図1において、回転子軸1に固定された一対の絶縁板5間には磁石固定板9(磁性板)がベアリング10を介して回転可能に支持されている。即ち磁石固定板9は電機子コイル4の内周側に設けられている。この磁石固定板9には平板状の第1永久磁石11が磁束作用面(磁極面)を軸方向に向けて吸着固定されている。第1永久磁石11は板厚方向(軸方向と平行方向)にN極・S極となるように着磁されている。第1永久磁石11は、磁石固定板9の両面に同極どうしが向き合うように吸着固定されている。例えば図1では、上側はN極どうしが向き合い下側はS極どうしが向き合うように貼り付けられている。尚、N極とS極は入れ替わっていてもよい。また、第1永久磁石11とコイル線4a,4f、コイル線4c,4dを挟んでコイル外周側に平板状の第2永久磁石12が各々対向配置されている。第2永久磁石12は、バックヨークであるケース7の内壁に磁気的に吸着固定され、磁束作用面(磁極面)を軸方向と平行方向に向けて対向配置されている。第2永久磁石12の磁極と異なる磁極の第1永久磁石11が磁気的に吸引されて対向配置される。
このように、第1永久磁石11は、コイル線に囲まれた中空部分に配置された磁石固定板9に同極どうしが向き合うように吸着固定され、対向する第2永久磁石12を軸方向に近づけて配置することにより、小型で偏平な回転電機を提供することができる。
Next, the structure of a magnetic flux action part is demonstrated.
In FIG. 1, a magnet fixing plate 9 (magnetic plate) is rotatably supported via a bearing 10 between a pair of insulating plates 5 fixed to the rotor shaft 1. That is, the magnet fixing plate 9 is provided on the inner peripheral side of the armature coil 4. A flat plate-shaped first permanent magnet 11 is attracted and fixed to the magnet fixing plate 9 with the magnetic flux acting surface (magnetic pole surface) directed in the axial direction. The first permanent magnet 11 is magnetized so as to have N and S poles in the plate thickness direction (parallel to the axial direction). The first permanent magnet 11 is attracted and fixed on both surfaces of the magnet fixing plate 9 so that the same poles face each other. For example, in FIG. 1, the upper side is pasted so that the N poles face each other and the lower side faces the S poles. The N pole and the S pole may be interchanged. In addition, flat second permanent magnets 12 are arranged opposite to each other on the outer peripheral side of the coil across the first permanent magnet 11 and the coil wires 4a and 4f and the coil wires 4c and 4d. The second permanent magnet 12 is magnetically attracted and fixed to the inner wall of the case 7 serving as a back yoke, and is disposed so as to face the magnetic flux acting surface (magnetic pole surface) in a direction parallel to the axial direction. The first permanent magnets 11 having magnetic poles different from the magnetic poles of the second permanent magnets 12 are magnetically attracted and arranged to face each other.
In this way, the first permanent magnet 11 is attracted and fixed so that the same poles face each other on the magnet fixing plate 9 disposed in the hollow portion surrounded by the coil wire, and the opposing second permanent magnet 12 is moved in the axial direction. By arranging them close to each other, a small and flat rotating electrical machine can be provided.

図3(a)(b)に第1永久磁石11(第2永久磁石12)の形状を例示する。第1永久磁石11(第2永久磁石12)は一対の扇型の磁石固定板9の両面に各々吸着固定されている。第1永久磁石11の一方の磁極をS極とすると他方はN極となる。図3(b)において、第1永久磁石11は磁石固定板9が回転子軸1に対してベアリング10を介して回転自在であるため、第2永久磁石12の磁極に吸引する位置で停止するようになっている。   3A and 3B illustrate the shape of the first permanent magnet 11 (second permanent magnet 12). The first permanent magnet 11 (second permanent magnet 12) is attracted and fixed to both surfaces of a pair of fan-shaped magnet fixing plates 9, respectively. When one magnetic pole of the first permanent magnet 11 is an S pole, the other is an N pole. In FIG. 3B, the first permanent magnet 11 stops at a position where it is attracted to the magnetic pole of the second permanent magnet 12 because the magnet fixing plate 9 is rotatable with respect to the rotor shaft 1 via the bearing 10. It is like that.

図4に、電機子コイル4への通電と整流子との配置を示す。一例として電機子コイル4はU相(例えばコイルA→a,コイルB→b),V相(例えばコイルC→c,コイルD→d),W相(例えばコイルE→e,コイルF→f)に応じて120°の角度範囲で巻き付けられている。ブラシ3は、整流子2に対して、180°位相が異なる位置で対向して当接している。   In FIG. 4, the arrangement | positioning with the electricity supply to the armature coil 4 and a commutator is shown. As an example, the armature coil 4 has a U phase (for example, a coil A → a, a coil B → b), a V phase (for example, a coil C → c, a coil D → d), and a W phase (for example, a coil E → e, a coil F → f). ) According to the angle range of 120 °. The brush 3 faces and abuts against the commutator 2 at a position where the phase is different by 180 °.

ここで、図2を参照して、回転電機の動作原理について説明する。一例として図1の回転電機が電動機として動作する場合について説明する。
図2は、ブラシ3及び整流子2を通じて電機子コイル4に通電する場合を例示している。このとき、コイル線4a,コイル線4b,コイル線4c,コイル線4d,コイル線4e,コイル線4fを周回して図の矢印に示す向き電流Iが流れるものとする。また、コイル線を挟んで対向する第1永久磁石11と第2永久磁石12の磁極間には図のような磁界Hが発生しているものとする。
Here, the operation principle of the rotating electrical machine will be described with reference to FIG. As an example, the case where the rotating electrical machine of FIG. 1 operates as an electric motor will be described.
FIG. 2 illustrates the case where the armature coil 4 is energized through the brush 3 and the commutator 2. At this time, it is assumed that a direction current I shown by an arrow in the drawing flows around the coil wire 4a, the coil wire 4b, the coil wire 4c, the coil wire 4d, the coil wire 4e, and the coil wire 4f. Further, it is assumed that a magnetic field H as shown in the figure is generated between the magnetic poles of the first permanent magnet 11 and the second permanent magnet 12 facing each other across the coil wire.

このとき、フレミングの左手の法則より、コイル線4a,コイル線4c,コイル線4d,コイル線4fには図の矢印Fに示す電磁力が作用し、電機子コイル4を含む回転子が図の矢印方向(時計回り方向)に回転する。
尚、コイル線4b及びコイル線4eは鎖交磁束が必ずしも得られないが、上記コイル線に比べて長さが十分短いため、効率が大きく低下することはない。
このようにして、三相分の電機子コイル4に所定の位相差で通電することにより、電機子コイル4を含む回転子6が、回転方向に付勢されて回転する。
また、発電機の場合には、回転子6を回転させるとフレミングの右手の法則より、コイル線4a,コイル線4c,コイル線4d,コイル線4fにおいて誘導起電力が生じ、整流子2、ブラシ3を通じて取り出すことができる。
At this time, according to Fleming's left-hand rule, the electromagnetic force indicated by the arrow F in the figure acts on the coil wire 4a, the coil wire 4c, the coil wire 4d, and the coil wire 4f, and the rotor including the armature coil 4 is illustrated. Rotate in the direction of the arrow (clockwise).
The coil wire 4b and the coil wire 4e do not necessarily obtain an interlinkage magnetic flux. However, since the length is sufficiently shorter than that of the coil wire, the efficiency is not greatly reduced.
In this way, by energizing the armature coils 4 for three phases with a predetermined phase difference, the rotor 6 including the armature coils 4 is urged in the rotation direction to rotate.
In the case of a generator, when the rotor 6 is rotated, induced electromotive force is generated in the coil wire 4a, the coil wire 4c, the coil wire 4d, and the coil wire 4f according to Fleming's right-hand rule, and the commutator 2, brush 3 can be taken out.

このように、電動機の回転子6にコアが存在しないので鉄損を低減することができ、電動機の効率を向上させることができる。
実験によれば、φ0.2mmの銅線を用いて電機子コイル4を201T(ターン)巻き付けた場合、DC100Vで0.6Aの電流を流した場合、出力60W程度の負荷を回転させることができることが判明している。
Thus, since there is no core in the rotor 6 of an electric motor, an iron loss can be reduced and the efficiency of an electric motor can be improved.
According to the experiment, when the armature coil 4 is wound by 201T (turns) using a copper wire of φ0.2 mm, a load of about 60 W can be rotated when a current of 0.6 A is passed at 100 VDC. Is known.

[実施例2]
次に図6に回転電機の他例について説明する。
図1の回転電機と同一部材には同一番号を付して説明を援用するものとし、異なる構成を中心に説明する。
図6(a)において、回転子6を構成する電機子コイル4のコイル形状が、回転子軸1の軸方向に長く径方向に短く巻かれている。電機子コイル4は、回転子軸1に固定された一対の絶縁板5に沿って巻かれているのは図1と同様である。尚、図6(b)において、電機子コイル4は二相分巻かれている。
[Example 2]
Next, another example of the rotating electrical machine will be described with reference to FIG.
The same members as those in the rotating electric machine of FIG. 1 are denoted by the same reference numerals, and the description will be referred to.
In FIG. 6A, the coil shape of the armature coil 4 constituting the rotor 6 is long in the axial direction of the rotor shaft 1 and short in the radial direction. The armature coil 4 is wound along a pair of insulating plates 5 fixed to the rotor shaft 1 as in FIG. In FIG. 6B, the armature coil 4 is wound for two phases.

また、コイル線の内外に対向配置される第1永久磁石11と第2永久磁石12は平板状ではなく円弧状に形成されている。第1永久磁石11は、回転子軸1に嵌め込まれた一対のベアリング13を介して軸方向両側が回転自在に支持されている。第1永久磁石11の着磁方向は径方向であり、コイル線を介して対向配置された第2永久磁石12の着磁方向も径方向である。第2永久磁石12はケース7に内壁に吸着保持されている点は同様である。   Moreover, the 1st permanent magnet 11 and the 2nd permanent magnet 12 which are opposingly arranged inside and outside a coil wire are formed in circular arc shape instead of flat form. The first permanent magnet 11 is rotatably supported on both sides in the axial direction via a pair of bearings 13 fitted to the rotor shaft 1. The magnetization direction of the first permanent magnet 11 is the radial direction, and the magnetization direction of the second permanent magnet 12 disposed so as to oppose the coil wire is also the radial direction. The second permanent magnet 12 is the same in that the case 7 is attracted and held on the inner wall.

第1永久磁石11の一方の対向面の磁極をS極とすると他方の対向面はN極となる。また、第1永久磁石11は回転子軸1に対してベアリング13を介して回転自在であるため、対向する第2永久磁石12の磁極に吸引する位置で停止するようになっている点は同様である。   When the magnetic pole of one opposing surface of the first permanent magnet 11 is an S pole, the other opposing surface is an N pole. Further, since the first permanent magnet 11 is rotatable with respect to the rotor shaft 1 via the bearing 13, the first permanent magnet 11 is stopped at a position where it is attracted to the magnetic pole of the opposing second permanent magnet 12. It is.

図6(b)は、回転電機が電動機として用いる場合の動作を示している。ブラシ3及び整流子2を通じて電機子コイル4に通電する場合を例示している。このとき、図6(a)においてコイル線4f,コイル線4e,コイル線4d,コイル線4c,コイル線4b,コイル線4aを周回して電流Iが流れるものとする。また、コイル線を挟んで対向する第1永久磁石11と第2永久磁石12の磁極間には図のような磁界Hが発生しているものとする。このとき、フレミングの左手の法則より、コイル線4b及びコイル線4eには図の矢印Fに示す電磁力が発生し、電機子コイル4を含む回転子が図の矢印方向(反時計回り方向)に回転する。   FIG. 6B shows an operation when the rotating electrical machine is used as an electric motor. The case where it supplies with electricity to the armature coil 4 through the brush 3 and the commutator 2 is illustrated. At this time, it is assumed that the current I flows around the coil wire 4f, the coil wire 4e, the coil wire 4d, the coil wire 4c, the coil wire 4b, and the coil wire 4a in FIG. Further, it is assumed that a magnetic field H as shown in the figure is generated between the magnetic poles of the first permanent magnet 11 and the second permanent magnet 12 facing each other across the coil wire. At this time, according to Fleming's left-hand rule, the electromagnetic force indicated by the arrow F in the figure is generated in the coil wire 4b and the coil wire 4e, and the rotor including the armature coil 4 moves in the arrow direction (counterclockwise direction) in the figure. Rotate to.

上記構成によれば、第1永久磁石11は、コイル線に囲まれた中空部分に配置され、コイル線を介して対向する第2永久磁石12を可能な限り近づけて配置することにより、小型で小径な回転電機を提供することができる。   According to the said structure, the 1st permanent magnet 11 is arrange | positioned in the hollow part enclosed by the coil wire, and it is small by arrange | positioning the 2nd permanent magnet 12 which opposes via a coil wire as close as possible. A small-diameter rotating electrical machine can be provided.

尚、発電機の場合には、回転子6を回転させるとフレミングの右手の法則より、コイル線4b及びコイル線4eにおいて誘導起電力が生じ、整流子2、ブラシ3を通じて取り出すことができる。
また、上述した第1永久磁石11及び第2永久磁石12は、フェライト磁石を用いても良いし、ネオジボンド磁石やネオジウム焼結磁石等を用いてもよい。
In the case of a generator, when the rotor 6 is rotated, an induced electromotive force is generated in the coil wire 4b and the coil wire 4e according to Fleming's right-hand rule and can be taken out through the commutator 2 and the brush 3.
Moreover, the 1st permanent magnet 11 and the 2nd permanent magnet 12 mentioned above may use a ferrite magnet, and may use a neodymium bond magnet, a neodymium sintered magnet, etc.

本発明は上述したように、回転子軸1の軸方向断面矩形状に周回して巻き回された電機子コイル4は、コイル内側に配置された第1永久磁石11と、コイル外側に配置された第2永久磁石12との間をコイル線が通過しているため、第1,第2永久磁石11,12と対向するコイル線の長さを長くして鎖交する磁束を増やし、磁束と鎖交しないコイル線を可及的に短くすることで、無効となるコイル線長が短く界磁用の永久磁石から生じた磁束を有効に活用して、電動機においては高い回転トルクが得られ、発電機においては高い誘導起電力が得られ、効率を上げることが期待される。   As described above, in the present invention, the armature coil 4 wound around the axial cross section of the rotor shaft 1 is wound around the first permanent magnet 11 disposed inside the coil, and disposed outside the coil. Since the coil wire passes between the second permanent magnet 12 and the first permanent magnet 11, 12, the length of the coil wire facing the first permanent magnet 11 is increased to increase the interlinkage magnetic flux. By shortening the coil wires that are not interlinked as much as possible, the coil wire length that becomes ineffective is short, and the magnetic flux generated from the permanent magnet for the field is effectively utilized, and a high rotational torque can be obtained in the motor. In the generator, a high induced electromotive force is obtained, and it is expected to increase the efficiency.

1 回転子軸 1a ストッパー 1b スペーサ 2 整流子 3 ブラシ 4 電機子コイル 4a,4b,4c,4d,4e,4f コイル線 5 絶縁板 6 回転子 7 ケース 8,10,13 ベアリング 9 磁石固定板 11 第1永久磁石 12 第2永久磁石 H 磁界の大きさ I 電流 F 電磁力   DESCRIPTION OF SYMBOLS 1 Rotor shaft 1a Stopper 1b Spacer 2 Commutator 3 Brush 4 Armature coil 4a, 4b, 4c, 4d, 4e, 4f Coil wire 5 Insulating plate 6 Rotor 7 Case 8, 10, 13 Bearing 9 Magnet fixed plate 11 1st 1 permanent magnet 12 2nd permanent magnet H magnitude of magnetic field I current F electromagnetic force

Claims (4)

回転子軸に一体に組み付けられた整流子と、
前記回転子軸と一体となって回転可能であり、前記整流子に両端を接続されて前記回転子軸の軸方向断面矩形状に周回して巻き回され周方向に隙間なく配置された電機子コイルと、
前記電機子コイルのコイル内側に磁束作用面が配置された第1永久磁石と、コイル線を挟んでコイル外側に磁束作用面が配置された第2永久磁石とが対向配置された磁束作用部と、を具備し、
前記第1永久磁石は前記回転子軸に対して回転自在に軸支されており、前記第2永久磁石はケース内壁に対向して固定されていることを特徴とする回転電機。
A commutator integrally assembled with the rotor shaft;
An armature that is rotatable integrally with the rotor shaft, is connected to the commutator at both ends, is wound around the axial cross-section of the rotor shaft, and is disposed without gaps in the circumferential direction. Coils,
A magnetic flux acting part in which a first permanent magnet having a magnetic flux acting surface disposed on the inner side of the armature coil and a second permanent magnet having a magnetic flux acting surface disposed on the outer side of the coil across the coil wire; , And
The rotating electric machine is characterized in that the first permanent magnet is rotatably supported with respect to the rotor shaft, and the second permanent magnet is fixed to face the inner wall of the case.
前記電機子コイルは、前記回転子軸に対して軸方向に設けられた一対の絶縁板の外面をガイドとしてコアレスで矩形状に巻き回されている請求項1記載の回転電機。   2. The rotating electrical machine according to claim 1, wherein the armature coil is wound in a rectangular shape without a core using outer surfaces of a pair of insulating plates provided in an axial direction with respect to the rotor shaft as a guide. 前記第1永久磁石は、前記回転子軸に対して回転可能に支持された磁性板に同極どうしが向き合うよう吸着固定されており、前記第2永久磁石とは軸方向で異極面どうしがコイル線を介して対向配置されるように設けられている請求項1又は請求項2記載の回転電機。   The first permanent magnet is attracted and fixed to a magnetic plate supported so as to be rotatable with respect to the rotor shaft such that the same poles face each other, and the second permanent magnets have different polar surfaces in the axial direction. The rotating electrical machine according to claim 1 or 2, wherein the rotating electrical machine is disposed so as to face each other via a coil wire. 前記第1永久磁石は、前記回転子軸に対して回転可能に支持されており、前記第2永久磁石とは径方向で異極面どうしがコイル線を介して対向配置されている請求項1又は請求項2記載の回転電機。   The first permanent magnet is supported so as to be rotatable with respect to the rotor shaft, and different polar surfaces are arranged opposite to each other via a coil wire in the radial direction with respect to the second permanent magnet. Or the rotary electric machine of Claim 2.
JP2012198072A 2012-09-10 2012-09-10 Rotating electric machine Expired - Fee Related JP5670974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012198072A JP5670974B2 (en) 2012-09-10 2012-09-10 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012198072A JP5670974B2 (en) 2012-09-10 2012-09-10 Rotating electric machine

Publications (2)

Publication Number Publication Date
JP2014054122A true JP2014054122A (en) 2014-03-20
JP5670974B2 JP5670974B2 (en) 2015-02-18

Family

ID=50612068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012198072A Expired - Fee Related JP5670974B2 (en) 2012-09-10 2012-09-10 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP5670974B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115166A (en) * 1980-02-18 1981-09-10 Ouken Seikou Kk Coreless motor and manufacture of coil thereof
JPS5863069A (en) * 1981-10-06 1983-04-14 Pioneer Electronic Corp Coreless motor
JPH05122914A (en) * 1991-10-30 1993-05-18 Matsushita Electric Ind Co Ltd Coreless motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115166A (en) * 1980-02-18 1981-09-10 Ouken Seikou Kk Coreless motor and manufacture of coil thereof
JPS5863069A (en) * 1981-10-06 1983-04-14 Pioneer Electronic Corp Coreless motor
JPH05122914A (en) * 1991-10-30 1993-05-18 Matsushita Electric Ind Co Ltd Coreless motor

Also Published As

Publication number Publication date
JP5670974B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
JP5318758B2 (en) Ring coil motor
CN103580336B (en) electric motor
CN112953161B (en) Rotating electrical machine and non-contact generator
JP2009136046A (en) Toroidal winding rotary electric machine
WO2018193969A1 (en) Dynamo-electric machine
JP5290795B2 (en) Brush-fed hybrid excitation motor and driving method of brush-fed hybrid excitation motor
JP2005160197A (en) Wind and hydraulic power utilization generator
JP2004007917A (en) Motor
US12057740B2 (en) Rotary electric machine
RU2524144C2 (en) Single-phase electrical machine
JP2012182942A (en) Rotary electric machine
CN113872406A (en) Birotor axial hybrid excitation double salient pole motor
JP5582149B2 (en) Rotor, rotating electric machine and generator using the same
JP2013223370A (en) Synchronous rotary machine
KR20170058627A (en) Electric motor
JP5670974B2 (en) Rotating electric machine
KR102449461B1 (en) Power generation device with improved back electromotive force reduction efficiency
JP2018148675A (en) Stator for rotary electric machine
JP2018108007A (en) Generator decreasing magnetic force resistance
JP5740250B2 (en) Permanent magnet rotating electric machine
JP2008029173A (en) Eddy current reduction gear
RU2775062C1 (en) Synchronous generator
JP7689700B1 (en) Magnetic rotating device, electric motor, generator and motor-generator
JP6061826B2 (en) Rotor for IPM motor and IPM motor
JP2014057502A (en) Power generating device suppressing cogging force

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141127

R150 Certificate of patent or registration of utility model

Ref document number: 5670974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R150 Certificate of patent or registration of utility model

Ref document number: 5670974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees