[go: up one dir, main page]

JP2014057502A - Power generating device suppressing cogging force - Google Patents

Power generating device suppressing cogging force Download PDF

Info

Publication number
JP2014057502A
JP2014057502A JP2012218055A JP2012218055A JP2014057502A JP 2014057502 A JP2014057502 A JP 2014057502A JP 2012218055 A JP2012218055 A JP 2012218055A JP 2012218055 A JP2012218055 A JP 2012218055A JP 2014057502 A JP2014057502 A JP 2014057502A
Authority
JP
Japan
Prior art keywords
coil
ring
opening
shaped
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012218055A
Other languages
Japanese (ja)
Inventor
Takao Otsuka
孝夫 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012218055A priority Critical patent/JP2014057502A/en
Publication of JP2014057502A publication Critical patent/JP2014057502A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power generating device suppressing a cogging force.SOLUTION: A power generating device comprises: a rotor having one or more of coils arranged with a coil axis direction matching with a circumferential direction along the outer periphery of a disc-like non-magnetic substance; and a stator having a ring-shaped magnet-fitted member having one or more of openings arranged in the periphery of the rotor with a magnetization direction matching with the coil axis direction of the coils. The rotor is rotated against the stator, and the coil passes through the ring-shaped magnet-fitted member having the opening, thereby generating power in the coils.

Description

本発明は発電装置に係り、特に電磁誘導により発電を行う発電装置に関するものである。  The present invention relates to a power generation device, and more particularly to a power generation device that generates power by electromagnetic induction.

従来の発電機の例として小型携帯用の発電機がある。その一例として非常用懐中電灯は図2に示すように磁石をコイル内で振動させて電磁誘導により電流を発生させ、コンデンサーに充電する振動発電機である。これは、コイルの巻線方向に対しほぼ直角に磁石の磁力線が横切るため1動作当たりの発電量は高いが、磁石が往復直線運動をするためコイルを横切る速度には低い限界があり、高い電圧が望めない。(特許文献1を参照)  A small portable generator is an example of a conventional generator. As an example, an emergency flashlight is a vibration generator that charges a capacitor by generating a current by electromagnetic induction by vibrating a magnet in a coil as shown in FIG. This is because the magnetic field lines of the magnet cross almost perpendicular to the coil winding direction, so the power generation amount per operation is high, but the speed of crossing the coil is low because the magnet reciprocates linearly, and the high voltage I can't hope. (See Patent Document 1)

また、従来の発電機の別の例として、図3に示すように風力発電などに用いられている発電機で、コイルの開口面を磁石が横切るように回転し、コイルの中には磁力線の磁束密度を増加させるために透磁率の高い鉄などが鉄芯として用いられている。回転運動とコイルや磁石の配置を密にすることにより、磁石がコイルを通過する時間を短くし電圧を高くしている。しかし、同時に磁石と鉄芯の吸引によるコギング力が発生しエネルギー損失を生じる。(特許文献2を参照)  As another example of a conventional generator, a generator used for wind power generation as shown in FIG. 3 rotates so that the magnet crosses the opening surface of the coil, and there is no line of magnetic force in the coil. In order to increase the magnetic flux density, iron having a high magnetic permeability is used as the iron core. By densely arranging the rotary motion and the coil and magnet, the time for the magnet to pass through the coil is shortened and the voltage is increased. However, at the same time, cogging force is generated by attracting the magnet and the iron core, resulting in energy loss. (See Patent Document 2)

特許公開H11−262234号公報Patent Publication H11-262234 特許公開2004−173415号公報Japanese Patent Publication No. 2004-173415

従来の発電機では、前記振動発電機のように1動作当たりの発電量が高いものは、1動作当たりの時間が長く、前記回転式の発電機のように1動作当たりの時間が短いものは、電圧が高いがコギング力のエネルギー損失が生じている。1動作当たりの発電量が高くコギング力の少ない発電機が望まれる。  In a conventional generator, a generator with a high power generation amount per operation like the vibration generator has a long time per operation, and a generator with a short time per operation like the rotary generator. Although the voltage is high, energy loss of cogging force occurs. A generator with high power generation per operation and low cogging power is desired.

発電ではフレミングの右手の法則によると、導線が磁界の方向に対し直角に運動したとき導線内に電流が流れる。磁界の方向と運動の方向と電流の方向は互いに直角になっている。従って、磁石の移動方向と磁力線の方向、コイルの巻線方向が夫々直角になった時に発電効率が最も良い。本発明は、前記2つの従来の発電方式の長所に注目し、磁石の磁力線がコイルの巻線方向にほぼ直角に横切るようにし、かつコイルを通過する時間を短くすることで発電量を高くし、鉄芯の影響を少なくしコギング力の抑えた発電機である。  In power generation, according to Fleming's right-hand rule, current flows in the conductor when the conductor moves perpendicular to the direction of the magnetic field. The direction of the magnetic field, the direction of motion, and the direction of current are perpendicular to each other. Therefore, the power generation efficiency is best when the moving direction of the magnet, the direction of the lines of magnetic force, and the winding direction of the coil are perpendicular to each other. The present invention pays attention to the advantages of the two conventional power generation methods, increases the amount of power generation by making the magnetic field lines of the magnet cross substantially perpendicular to the winding direction of the coil and shortening the time for passing through the coil. This is a generator that reduces the influence of the iron core and suppresses the cogging force.

一般に、コイルに生じる誘導起電力Vは、下記の数式1によって求まることがすでにわかっている。  In general, it is already known that the induced electromotive force V generated in the coil is obtained by the following Equation 1.

数式1Formula 1

V=−n(dφ/dt)=−nS(dB/dt)
上記の数式において、nはコイルの巻数(回)、φは磁束(Wb)、Sはコイルの断面積(m)、Bは磁界の磁束密度(T)、tは時間(s)である。このn・Sは材料条件で決定してしまう値であり、手段により良い状態が得られる。これらは起電力に比例しているが、時間は反比例している。したがって、1動作当たりの発電量を好条件にし、変位時間を小さくすれば良い結果につながる。
V = −n (dφ / dt) = − nS (dB / dt)
In the above formula, n is the number of turns of the coil (turns), φ is the magnetic flux (Wb), S is the coil cross-sectional area (m 2 ), B is the magnetic flux density (T), and t is the time (s). . This n · S is a value determined by the material conditions, and a better state can be obtained by means. These are proportional to the electromotive force, but the time is inversely proportional. Therefore, a good result can be obtained by setting the amount of power generation per operation as a favorable condition and reducing the displacement time.

請求項1について説明すると、磁石の磁力線がコイルの巻線方向にほぼ直角に横切るようにし、鉄芯を必要としない構成としては、前述の振動発電機のように磁石がコイルの中を通過するものが良い。磁石をコイルの中ですばやく動かすには、磁石がある軸を中心に回転運動すれば良いが、図4に示すように磁石を保持するアームがコイルに当たってしまう。このアームが通過する間隙をコイルに設けるのは困難であるので、図5のようにコイルの外周をリング状磁石が通過するように逆の配置にし、コイル軸とリング状磁石の磁化方向が同一になるようにする。図6のようにコイルにコイル保持部を設け、リング状磁石にその通過する間隙分をスリット加工し開口部を設ける。これは、リング状磁石のN極から発してリングの内側を通ってS極へ入る磁力線を利用し、コイルの巻線にほぼ直角になるようにしている。  Describing claim 1, as a configuration in which the magnetic field lines of the magnet cross substantially perpendicular to the winding direction of the coil and no iron core is required, the magnet passes through the coil as in the aforementioned vibration generator. Things are good. In order to quickly move the magnet in the coil, the magnet may be rotated about a certain axis, but as shown in FIG. 4, the arm holding the magnet hits the coil. Since it is difficult to provide the coil with a gap through which the arm passes, the arrangement is reversed so that the ring magnet passes through the outer periphery of the coil as shown in FIG. To be. As shown in FIG. 6, the coil is provided with a coil holding portion, and an opening is formed by slitting the gap passing through the ring magnet. This utilizes magnetic lines of force emanating from the north pole of the ring-shaped magnet and entering the south pole through the inside of the ring so as to be substantially perpendicular to the winding of the coil.

また、リング状磁石の内側の磁力線を利用するため、内側に磁力線が十分存在しなくてはならない。図7(a)のように厚みが薄いと異極が近いため十分に磁力線が得られるが、図7(b)のように厚いと異極が遠く、同極の排斥により内側を通過する磁力線は少ない。よって、リング状磁石の厚みは、図13(b)指示のコイル回転直径の円周の1/10以下になっている。  In addition, in order to use the magnetic lines of force inside the ring-shaped magnet, there must be sufficient magnetic lines of force inside. When the thickness is thin as shown in FIG. 7A, the magnetic poles are sufficiently obtained because the different poles are close to each other. However, when the thickness is thick as shown in FIG. There are few. Therefore, the thickness of the ring-shaped magnet is 1/10 or less of the circumference of the coil rotation diameter indicated in FIG.

一方、発電におけるリング状磁石とコイルの位置関係は図8のようになっており、リング状磁石がコイルを通過する過程でリング状磁石の中心がコイルの端面にきた時に最大の電圧となり、リング状磁石の中心とコイルのものが重なった時に電圧はほぼ0となる。さらに移動しリング状磁石の中心がコイルのもう1つの端面にきた時に負に最大の電圧となる。また、コイルの長さがリング状磁石より厚いと逆極性の磁束領域にコイルの一部が入り逆の電圧を生じ全体の電圧を引き下げてしまう。そして、リング状磁石がコイルを通過する時間が大きくなってしまう。長いコイルを用いるより、短いコイルを多数分散することが良い。よって、本構成においてはコイルの長さはリング状磁石の厚みの1,5倍以下になっている。  On the other hand, the positional relationship between the ring-shaped magnet and the coil in power generation is as shown in FIG. 8, and the maximum voltage is obtained when the center of the ring-shaped magnet comes to the end face of the coil while the ring-shaped magnet passes through the coil. When the center of the magnet and the coil overlap, the voltage is almost zero. When the ring magnet moves further and the center of the ring magnet comes to the other end face of the coil, the maximum voltage is negatively reached. On the other hand, if the length of the coil is thicker than that of the ring-shaped magnet, a part of the coil enters the reverse polarity magnetic flux region to generate a reverse voltage and lower the overall voltage. And time for a ring-shaped magnet to pass a coil will become long. It is better to disperse many short coils than using long coils. Therefore, in this configuration, the length of the coil is not more than 1.5 times the thickness of the ring magnet.

請求項2について説明すると、リング状磁石単品にスリット加工を施すと、磁化力と材質の強度のバランスで自己破壊し磁力の損失をすることがある。この解決方法として図9(a)のように、リング状磁石31の厚み半分が収まる掘り込み加工した非磁性体のホルダー32をリング状磁石31の両側から挟みこんで接着後、コイル保持部が通過する間隙をスリット加工する。    When the slit processing is performed on the single ring-shaped magnet, self-destruction may occur due to the balance between the magnetizing force and the strength of the material, and the magnetic force may be lost. As a solution to this problem, as shown in FIG. 9A, a non-magnetic holder 32 that has been dug into which half the thickness of the ring-shaped magnet 31 fits is sandwiched from both sides of the ring-shaped magnet 31 and bonded, and then the coil holding portion is The gap that passes through is slit.

請求項3について説明すると、リング状磁石の同極同士を対向させることにより、効率よく磁力線の密度を増加することができる。互いに対向する極から発せられた磁力線は、交差することなく斥けあって自身の異極に向かう。対向する距離が小さいほど磁力線の密度が増加し、発電量増加に貢献する。また、従来の回転式発電機に比べ、磁石の配置を密にすることができる。図10に示すように、一つの例として直径15mm・厚み5mmの磁石を図10(a)のように横にして配置した場合と本発明と同じく図10(b)のように縦にして配置した場合を比較すると、縦にして配置した場合が多くなり配置の構成の利点がある。磁石の数を多く配置できることは、磁石がコイルを通過する時間を短くすることが可能になり、出力の増加になる。また、本構成においてはコイルの長さはリング状磁石の取り付けピッチ以下にしている。  The third aspect of the present invention can efficiently increase the density of the lines of magnetic force by making the same polarity of the ring-shaped magnets face each other. The lines of magnetic force emitted from the poles facing each other are generated without crossing and heading toward their own different poles. The smaller the facing distance, the higher the density of magnetic lines of force, contributing to an increase in power generation. Moreover, compared with the conventional rotary generator, the magnets can be arranged more densely. As shown in FIG. 10, as an example, a magnet having a diameter of 15 mm and a thickness of 5 mm is arranged horizontally as shown in FIG. 10A and arranged vertically as shown in FIG. 10B as in the present invention. In comparison with the case, the vertical arrangement increases and there is an advantage of the arrangement configuration. The fact that a large number of magnets can be arranged makes it possible to shorten the time for the magnets to pass through the coil, resulting in an increase in output. In this configuration, the length of the coil is set to be equal to or less than the mounting pitch of the ring-shaped magnet.

請求項4について説明すると、内側の磁力線を充実させる手段として、図11(a)のようにリング状磁石31の両側にコイル通過孔が開いた強磁性体33を接着させたものが好適である。磁石から発した磁力線は、鉄などの強磁性体の内部を通過し、表面の曲面形状に直角の向きで空気中に出ていき、周りの磁力線の応力を受けながら最寄りの異極に向かう。リング状磁石の磁力線は通常では外側と内側は、互いに応力を及ぼしながらバランスのとれた状態でN極からS極に向かうが、表面にリング状磁石の中心線上で外側に中心を配置した球曲面形状か回転楕円体形状で凹形状にした強磁性体を装着することで内側に回り込む磁力線増加させることが可能になる。製作方法としては、図9に示した例と同様であり、リング状磁石31の両側を強磁性体33ではさみこむ構成となる。強磁性体の鉄などをNC旋盤で前述曲面加工後、コイル保持板が通過する間隙を機械加工し、リング状磁石31を挟み込み接着後、リング状磁石31にスリット加工し開口部を設ける。前記非磁性体で補強したものに比べ小型化することが可能で、リング状磁石31の両側に強磁性体33が接着されているため同極の排斥力による自己破壊も防止できる。また、表面が平らなプレートを使用しても磁力線の集中効果は薄れるが、コンパクト化が可能になり同極の排斥力による自己破壊も防止できる。  As for the fourth aspect, as a means for enhancing the inner lines of magnetic force, a structure in which a ferromagnetic material 33 having coil passage holes is provided on both sides of the ring-shaped magnet 31 as shown in FIG. . The magnetic lines of force emitted from the magnet pass through the inside of a ferromagnetic material such as iron, exit into the air in a direction perpendicular to the curved surface shape of the surface, and go to the nearest different pole while receiving the stress of the surrounding magnetic field lines. The magnetic field lines of the ring-shaped magnet are normally directed from the north pole to the south pole in a balanced state while exerting stress on each other, but a spherical curved surface with the center located outside on the center line of the ring-shaped magnet on the surface It is possible to increase the lines of magnetic force that wrap around inwardly by attaching a ferromagnetic material that is concave in shape or spheroid shape. The manufacturing method is the same as in the example shown in FIG. 9, and the structure is such that both sides of the ring-shaped magnet 31 are sandwiched by the ferromagnetic material 33. After the above-described curved surface processing of ferromagnetic iron or the like with an NC lathe, the gap through which the coil holding plate passes is machined, the ring-shaped magnet 31 is sandwiched and bonded, and then the ring-shaped magnet 31 is slit to provide an opening. Compared with the non-magnetic material reinforced, the size can be reduced, and since the ferromagnetic material 33 is bonded to both sides of the ring-shaped magnet 31, self-destruction caused by the same-pole exclusion force can be prevented. Even if a plate with a flat surface is used, the effect of concentrating the lines of magnetic force is diminished, but it is possible to reduce the size and prevent self-destruction caused by the same-pole exclusion force.

請求項5について説明すると、リング状磁石とコイルは互いに回転運動をするため、周方向に直線形状であると、回転による干渉を避けるため双方の間隙を大きくする必要がある。この改善として、回転半径に相当する曲がりをリング状磁石の磁軸とコイルのコイル軸に設けることによって、間隙を小さくでき性能向上につながる。  In the fifth aspect, since the ring-shaped magnet and the coil rotate with respect to each other, if they are linear in the circumferential direction, it is necessary to increase the gap between them in order to avoid interference due to rotation. As an improvement, by providing a bend corresponding to the radius of rotation on the magnetic axis of the ring magnet and the coil axis of the coil, the gap can be reduced, leading to improved performance.

請求項6について説明すると、リング状磁石とコイルの外形が直線形状であると、内径と外径差によるスペースの無駄が生じてしまう。この改善として、回転軸方向の平面上で外形を扇形にすることによって、無駄な空間を小さくできコンパクト化につながる。  Describing the sixth aspect, if the outer shape of the ring-shaped magnet and the coil is linear, the space is wasted due to the difference between the inner diameter and the outer diameter. As an improvement, by making the outer shape into a fan shape on the plane in the direction of the rotation axis, a useless space can be reduced, leading to compactness.

請求項7について説明すると、リング状の磁気を帯びた部材の例には、フェライト磁石・ネオジム磁石・サマリウムコバルト磁石などがあるが、保磁力が夫々ほぼ一定のため出力の制御は回転子の回転数によるものになる。これに代わって電磁石を用いると磁力の増減ができ、発電機の出力を制御することが容易になる。図12(b)に示すように、鉄芯に巻線を施した電磁石34を複数並べカバー36で覆い、両側にプレート35で接着し図12(a)のように組み立てた電磁石ユニット37をリング状磁石の代わりに使用する。界磁電流は、外部電源から得て夫々の電磁石に供給される。界磁電流の強さを変えると電磁石の強さが変わり、電圧の制御をすることができる。  Describing claim 7, examples of the ring-shaped magnetic member include a ferrite magnet, a neodymium magnet, and a samarium cobalt magnet. However, since the coercive force is almost constant, the output is controlled by the rotation of the rotor. It depends on the number. If an electromagnet is used instead, the magnetic force can be increased or decreased, and the output of the generator can be easily controlled. As shown in FIG. 12 (b), a plurality of electromagnets 34 wound around an iron core are covered with a cover 36, and the electromagnet unit 37 assembled as shown in FIG. Used instead of a magnet. The field current is obtained from an external power source and supplied to each electromagnet. When the strength of the field current is changed, the strength of the electromagnet is changed, and the voltage can be controlled.

請求項8について説明すると、以上述べた単位を回転子の回転軸方向に複数連動することにより出力を上げることが可能である。  In the eighth aspect, the output can be increased by interlocking a plurality of the above-described units in the direction of the rotation axis of the rotor.

請求項9について説明すると、リング状磁石の磁力線を効果的にコイルに導く手段として、コイルの中心軸に強磁性体のコアを備えるのが良い。発電量とコギングトルクの発生状況のバランスでコアの仕様を決定する。  A ninth aspect of the present invention provides a ferromagnetic core on the central axis of the coil as means for effectively guiding the magnetic field lines of the ring magnet to the coil. The core specifications are determined by the balance between the amount of power generated and the cogging torque generation status.

発明の効果Effect of the invention

磁石の磁力線がコイルの巻線方向にほぼ直角に横切るような構造にすることにより鉄芯の影響を少なくし、コギング力を抑えることが可能となる。  By adopting a structure in which the magnetic field lines of the magnet cross almost perpendicularly to the coil winding direction, the influence of the iron core can be reduced and the cogging force can be suppressed.

(a)本発明の代表的な例の斜視図を示す。(b)図1(a)内のA−Aの断面図を示す。(A) The perspective view of the typical example of this invention is shown. (B) A sectional view taken along line A-A in FIG. 従来の振動発電機の断面を示す。The cross section of the conventional vibration generator is shown. 従来の永久磁石型電動機と断面の模式図を示す。The conventional permanent magnet type electric motor and the schematic diagram of a cross section are shown. 従来の構成での課題点を示す。Problems in the conventional configuration will be described. 本発明のイメージを示す。The image of this invention is shown. 本発明の基本構成を示す。1 shows a basic configuration of the present invention. (a)薄いリング状磁石の磁力線イメージ図を示す。(b)厚いリング状磁石の磁力線イメージ図を示す。(A) The magnetic force line image figure of a thin ring-shaped magnet is shown. (B) The magnetic force line image figure of a thick ring-shaped magnet is shown. コイルとリング状磁石の位置と電圧の関係を示す。The relationship between the position of a coil and a ring-shaped magnet and a voltage is shown. (a)リング状磁石の補強の組み合わせ図を示す。(b)リング状磁石の補強の組み合わせ加工後の底面図を示す。(A) The combination figure of reinforcement of a ring-shaped magnet is shown. (B) The bottom view after the combination process of reinforcement of a ring-shaped magnet is shown. (a)磁石を横にして配置した例を示す。(b)磁石を縦にして配置した例を示す。(A) An example in which magnets are arranged sideways is shown. (B) An example in which magnets are arranged vertically is shown. (a)リング状磁石と強磁性体の複合体の斜視図を示す。(b)図11(a)内のA−Aの断面図を示す。(A) The perspective view of the composite of a ring-shaped magnet and a ferromagnetic material is shown. (B) Sectional drawing of AA in Fig.11 (a) is shown. (a)電磁石ユニットの組み合わせ図を示す。(b)電磁石ユニットの詳細図を示す。(A) The combination figure of an electromagnet unit is shown. (B) A detailed view of the electromagnet unit is shown. (a)実施例1の斜視図を示す。(b)図13(a)内のA−Aの断面図を示す。(A) The perspective view of Example 1 is shown. (B) A sectional view taken along line AA in FIG. 実施例1の回転子の斜視図を示す。The perspective view of the rotor of Example 1 is shown. 実施例1の組立て仕様を示す。The assembly specification of Example 1 is shown. 実施例2の断面図を示す。Sectional drawing of Example 2 is shown. 実施例3のコイルとリング状磁石の位置関係を示す。The positional relationship of the coil of Example 3 and a ring-shaped magnet is shown. 実施例4のリング状磁石と強磁性体の複合体を示す。The composite of the ring-shaped magnet of Example 4 and a ferromagnetic material is shown. (a)実施例5のコイルの斜視図を示す。(b)実施例5のコイルとリング状磁石の断面図を示す。(A) The perspective view of the coil of Example 5 is shown. (B) Sectional drawing of the coil and ring-shaped magnet of Example 5 is shown. (a)実施例6の平面図の一部を示す。(b)実施例6の扇型リング状磁石の斜視図を示す。(c)実施例6の扇型リング状磁石の詳細図を示す。(A) A part of top view of Example 6 is shown. (B) The perspective view of the fan-shaped ring-shaped magnet of Example 6 is shown. (C) The detail figure of the fan-shaped ring-shaped magnet of Example 6 is shown. (a)実施例7の電磁石ユニットの組み合わせ図を示す。(b)実施例7の電磁石ユニットの詳細図を示す。(c)実施例7の断面図を示す。(A) The combination figure of the electromagnet unit of Example 7 is shown. (B) The detailed drawing of the electromagnet unit of Example 7 is shown. (C) A sectional view of Example 7 is shown. 実施例8の使用例を示す。The usage example of Example 8 is shown. 実施例9の断面図を示す。Sectional drawing of Example 9 is shown.

以下、本発明を図の具体例を用いて説明する。  Hereinafter, the present invention will be described with reference to specific examples of the drawings.

請求項1の実施例で図13(b)を参照しながら説明すると、1は回転軸に装着した回転子、2・3は夫々軸受けを有する一対の側板、4・5はリング状磁石31の支持材19を支持する位置決め、6は側板2・3を繋ぎリング状磁石31の支持材19を固定する枠板、7は接触板、8はブラシ、9は端子、11は導線である。
回転子1を図14に参照して説明すると、回転子1の周方向にコイル20の軸を合わせるように装着する。この例では、コイル20にコイル軸21を設け回転子1に溝を加工しこれに嵌合している。取り付ける間隔および配線は、生成したい電圧の相により決定される。回転軸の周囲に接触板7が取り付けられ、コイル20と導線11で電通している。
取り付けに関して図15を参照し説明する。位置決め4とブラシ8と端子9を予め取り付けた側板2を回転軸に取り付け後、回転子1を回転軸に挿入し、位置決め5とブラシ8と端子9を予め取り付けた側板3を回転軸に取り付ける。この時点で、回転子1は、側板2と側板3に対し回転軸を中心に回転できる状態になっている。位置決め4と位置決め5は、リング状磁石31を含む支持材19が挿入可能な溝22が加工されている。支持材19は、リング状磁石31単品では位置を決めにくいので補助するものである。支持材19は、溝22に沿って挿入され、枠板6で固定する。他も同様にリング状磁石31を含む支持材19を挿入し固定する。この取り付ける間隔は、異極を対向するように装着する場合は直近の異極と引き合わないような距離をとる必要がある。
よって、図13(b)で回転子1が回転軸を中心に回転し、コイル20がリング状磁石31を通過する時に磁力線が横切りコイル内に電圧を発生させ、導線11を通り接触板7に伝わり、ブラシ8を通り端子9から電流を取り出す。
The embodiment of claim 1 will be described with reference to FIG. 13B. Reference numeral 1 denotes a rotor mounted on a rotating shaft, 2 and 3 a pair of side plates each having a bearing, and 4 and 5 a ring-shaped magnet 31. Positioning for supporting the support material 19, 6 is a frame plate for connecting the side plates 2 and 3 and fixing the support material 19 for the ring-shaped magnet 31, 7 is a contact plate, 8 is a brush, 9 is a terminal, and 11 is a conductor.
The rotor 1 will be described with reference to FIG. 14 so that the axis of the coil 20 is aligned with the circumferential direction of the rotor 1. In this example, a coil shaft 21 is provided on the coil 20, a groove is formed in the rotor 1, and the groove is fitted thereto. The mounting interval and wiring are determined by the phase of the voltage to be generated. A contact plate 7 is attached around the rotating shaft and is electrically connected by the coil 20 and the conductive wire 11.
The attachment will be described with reference to FIG. After the side plate 2 with the positioning 4, the brush 8 and the terminal 9 attached in advance is attached to the rotating shaft, the rotor 1 is inserted into the rotating shaft, and the side plate 3 with the positioning 5, the brush 8 and the terminal 9 attached in advance is attached to the rotating shaft. . At this time, the rotor 1 is in a state of being able to rotate around the rotation axis with respect to the side plate 2 and the side plate 3. In the positioning 4 and the positioning 5, a groove 22 into which the support member 19 including the ring-shaped magnet 31 can be inserted is processed. The support member 19 assists because the position of the ring-shaped magnet 31 is difficult to determine. The support member 19 is inserted along the groove 22 and fixed by the frame plate 6. Similarly, the support member 19 including the ring-shaped magnet 31 is inserted and fixed. In the case where the different polarities are mounted so as to face each other, it is necessary to take a distance so as not to attract the latest different polarities.
Therefore, in FIG. 13B, the rotor 1 rotates around the rotation axis, and when the coil 20 passes the ring-shaped magnet 31, the magnetic line of force crosses to generate a voltage in the coil and passes through the conductor 11 to the contact plate 7. The current is taken out from the terminal 9 through the brush 8.

請求項2の実施例で図16を参照しながら説明すると、リング状磁石31に非磁性体のホルダー32で補強したものを使用している。  The embodiment of claim 2 will be described with reference to FIG. 16. A ring-shaped magnet 31 reinforced with a non-magnetic holder 32 is used.

請求項3の実施例で図17を参照しながら説明すると、図17は実施例1のリング状磁石とコイルについて特記している。リング状磁石31は同極を対向して装着し、回転子のコイル20は得られる電圧の相に従い配置・接続される。同極同士対向しているため、磁力線の密度を高められ高い出力になる。図示の例では、リング状磁石48個とコイル36個で3相の平準化した電圧を生成するものである。  The embodiment of claim 3 will be described with reference to FIG. 17. FIG. 17 specifically describes the ring-shaped magnet and coil of the first embodiment. The ring-shaped magnet 31 is mounted with the same poles facing each other, and the rotor coil 20 is arranged and connected according to the phase of the obtained voltage. Since the same poles are opposed to each other, the density of magnetic lines of force can be increased and the output can be increased. In the illustrated example, 48 ring magnets and 36 coils generate a three-phase leveled voltage.

請求項4の実施例で図18を参照しながら説明すると、図18は実施例1の固定子を簡略化し一部を示している。リング状磁石31が強磁性体33に挟み込まれている構造で、強磁性体には鉄などが用いられていて、その表面には中央の孔に磁力線を集めるために球曲面形状か回転楕円体形状が施されている。内側の磁束密度が増加するとともに固定子のコンパクト化につながる。  Referring to FIG. 18 in the embodiment of claim 4, FIG. 18 shows a simplified portion of the stator of the first embodiment. The ring-shaped magnet 31 is sandwiched between the ferromagnetic bodies 33. The ferromagnetic body is made of iron or the like, and the surface thereof has a spherical curved surface shape or a spheroid to collect magnetic lines of force in the central hole. The shape is given. As the inner magnetic flux density increases, the stator becomes compact.

請求項5の実施例で図19を参照しながら説明すると、図19(a)で図13(b)内のコイル回転直径と同一直径の環状に銅線を巻きコイルを作ることにより、コイル20の外形がコイル回転直径に準ずる曲率を持ち、図19(b)のようにリング状磁石31にも同じ処置を施すことにより、コイルとリング状磁石の間隙を小さくでき、性能が向上する。  The embodiment of claim 5 will be described with reference to FIG. 19. In FIG. 19 (a), a coil 20 is formed by winding a copper wire in an annular shape having the same diameter as the coil rotation diameter in FIG. 13 (b). The outer shape has a curvature similar to the coil rotation diameter, and the same treatment is applied to the ring-shaped magnet 31 as shown in FIG. 19B, whereby the gap between the coil and the ring-shaped magnet can be reduced, and the performance is improved.

請求項6の実施例で図20を参照しながら説明すると、図20(b)は実施例1の固定子を簡略化し一部を示している。図20(b)のように扇型リング状磁石41を両側から扇型用プレート42で挟み込んだ構造となっている。図20(c)でリング状磁石を図20(a)のように扇形に加工後、扇型用プレート42を両側から接着し、スリット加工し開口部を設ける。コイルも図20(a)のように扇形にする。円周方向は実施例5で述べたようなコイル回転直径に準ずる曲率を持っているが、条件によっては直線でも良い。周方向にスペースを無駄なく使用でき、コンパクト化につながる。  Referring to FIG. 20 in the embodiment of claim 6, FIG. 20 (b) shows a simplified portion of the stator of the first embodiment. As shown in FIG. 20B, the fan-shaped ring magnet 41 is sandwiched between the fan-shaped plates 42 from both sides. In FIG. 20 (c), the ring-shaped magnet is processed into a fan shape as shown in FIG. 20 (a), and then the fan-shaped plate 42 is bonded from both sides and slitted to provide an opening. The coil is also fan-shaped as shown in FIG. The circumferential direction has a curvature similar to the coil rotation diameter as described in the fifth embodiment, but may be a straight line depending on conditions. Space can be used in the circumferential direction without waste, leading to compactness.

請求項7の実施例で図21を参照しながら説明すると、図21(a)(b)は実施例1の固定子を簡略化し一部を示している。図21(b)に示すように、鉄芯に巻線を施した電磁石34を複数並べカバー36で覆い、両側にプレート35で接着し図21(a)のように組み立てた電磁石ユニット37をリング状磁石の代わりに使用する。図21(c)のように界磁電流は、外部電源から入力端子38で受け夫々の電磁石に供給される。界磁電流の強さを変えると電磁石の強さが変わり、電圧の制御をすることができる。  In the embodiment of claim 7, referring to FIG. 21, FIGS. 21 (a) and 21 (b) show a simplified portion of the stator of the first embodiment. As shown in FIG. 21 (b), a plurality of electromagnets 34 wound on an iron core are covered with a cover 36, and the electromagnet unit 37 assembled as shown in FIG. Used instead of a magnet. As shown in FIG. 21C, the field current is received from the external power supply at the input terminal 38 and is supplied to each electromagnet. When the strength of the field current is changed, the strength of the electromagnet is changed, and the voltage can be controlled.

請求項8の実施例で図22を参照しながら説明すると、図22は本発明のユニットを5台連続してつなげ発電量の増加を図っている。  Referring to FIG. 22 in the embodiment of claim 8, FIG. 22 connects five units of the present invention in succession to increase the power generation amount.

請求項9の実施例で図23を参照しながら説明すると、コイル20の中心軸にコア39が挿入されている。リング状磁石31の磁力線を効果的にコイル20に導く手段として、コイル20の中に強磁性体のコア39を備えるのが良い。コア39の仕様は、発電量とコギングトルクの発生状況のバランスで決定される。回転子1が回転し、リング状磁石31がコイル20を通過することで発電する。  Referring to FIG. 23 in the embodiment of claim 9, the core 39 is inserted in the central axis of the coil 20. As a means for effectively guiding the magnetic field lines of the ring-shaped magnet 31 to the coil 20, a ferromagnetic core 39 may be provided in the coil 20. The specification of the core 39 is determined by the balance between the power generation amount and the cogging torque generation status. The rotor 1 rotates and the ring magnet 31 passes through the coil 20 to generate power.

電気エネルギーは他のエネルギーに比べ効率が良い伝送が容易なため、社会では広く利用されており、本発明はその電気を効率よく発生するものであり、風力発電などの新エネルギーや既存の発電所の省化石燃料化またはハイブリッド自動車の発電機の高効率化など産業上の幅広い分野で利用される可能性を有する。  Electric energy is widely used in society because it is more efficient and easier to transmit than other energies, and the present invention efficiently generates that electricity, such as new energy such as wind power generation and existing power plants. It has the potential to be used in a wide range of industrial fields such as fossil fuel savings and high efficiency generators for hybrid vehicles.

1 回転子
2、3 側板
4、5 位置決め
6 枠板
7 接触板
8 ブラシ
9 端子
11 導線
20 コイル
21 コイル軸
22 溝
31 リング状磁石
32 ホルダー
33 形状付き強磁性体
34 電磁石
35 プレート
36 カバー
37 電磁石ユニット
38 入力端子
39 コア
40 扇型コイル
41 扇型リング状磁石
42 扇型用プレート
DESCRIPTION OF SYMBOLS 1 Rotor 2, 3 Side plate 4, 5 Positioning 6 Frame plate 7 Contact plate 8 Brush 9 Terminal 11 Conductor 20 Coil 21 Coil shaft 22 Groove 31 Ring-shaped magnet 32 Holder 33 Shaped ferromagnetic material 34 Electromagnet 35 Plate 36 Cover 37 Electromagnet Unit 38 Input terminal 39 Core 40 Fan coil 41 Fan ring magnet 42 Fan plate

Claims (9)

円板状非磁性体物の外周に沿って周方向にコイル軸方向を合わせて配置された少なくとも1個以上のコイルを持つ回転子と、該回転子の周囲に該コイルのコイル軸方向に磁化方向を合わせて配置された少なくとも1個以上の開口部の有するリング状の磁気を帯びた部材を持つ固定子からなり、該回転子が該固定子に対し回転し、該コイルが該開口部の有するリング状の磁気を帯びた部材を通過することによって該コイルに発電させる装置。  A rotor having at least one coil arranged in the circumferential direction along the outer circumference of the disk-shaped non-magnetic material, and magnetized in the coil axis direction of the coil around the rotor A stator having a ring-like magnetic member having at least one opening arranged in a direction, the rotor rotating with respect to the stator, and the coil of the opening An apparatus for causing the coil to generate electric power by passing through a ring-shaped magnetic member. 該開口部の有するリング状の磁気を帯びた部材のまわりを非磁性体の部材で補強した発電装置。  A power generation device in which a ring-like magnetized member of the opening is reinforced with a non-magnetic member. 該開口部の有するリング状の磁気を帯びた部材が同極対向に配置された請求項1から2の記載の装置においていずれか一つの発電装置。  The power generator according to any one of claims 1 to 2, wherein a ring-shaped magnetic member having the opening is disposed opposite to the same pole. 該開口部の有するリング状の磁気を帯びた部材の両側を、表面に該開口部の有するリング状の磁気を帯びた部材の中心線上で外側に中心を配置した球曲面形状か回転楕円体形状の凹形状を施した強磁性体で挟んだ請求項1から3の記載の装置においていずれか一つの発電装置。  A spherical curved surface shape or a spheroid shape in which both sides of the ring-shaped magnetic member having the opening are arranged on the outer surface on the center line of the ring-shaped magnetic member having the opening on the surface. The power generator according to any one of claims 1 to 3, wherein the power generator is sandwiched between ferromagnetic materials having a concave shape. 該コイルのコイル軸と該開口部の有するリング状の磁気を帯びた部材の磁軸とに周方向に回転半径と同じ曲がりがある請求項1から4の記載の装置においていずれか一つの発電装置。  5. The power generator according to claim 1, wherein the coil axis of the coil and the magnetic axis of the ring-shaped magnetized member of the opening have the same curvature as the rotation radius in the circumferential direction. . 該コイルのコイル軸と該開口部の有するリング状の磁気を帯びた部材の磁軸とに周方向に回転半径と同じ曲がりがあり回転軸方向からみて扇型である請求項1から5の記載の装置においていずれか一つの発電装置。  6. The coil axis of the coil and the magnetic axis of a ring-like magnetized member of the opening have the same curvature as the rotation radius in the circumferential direction and are fan-shaped when viewed from the direction of the rotation axis. Any one of the generators in the apparatus. 該開口部の有するリング状の磁気を帯びた部材が電磁石である請求項1から6の記載の装置においていずれか一つの発電装置。  The power generator according to any one of claims 1 to 6, wherein the ring-like magnetized member of the opening is an electromagnet. 前記構成が回転子の回転軸方向に複数連なる請求項1から7の記載の装置においていずれか一つの発電装置。  The power generator according to any one of claims 1 to 7, wherein a plurality of the configurations are arranged in the direction of the rotation axis of the rotor. 該コイルの中心軸に強磁性体のコアを有する請求項1から8の記載の装置においていずれか一つの発電装置。  9. The power generator according to claim 1, wherein the coil has a ferromagnetic core at a central axis thereof.
JP2012218055A 2012-09-11 2012-09-11 Power generating device suppressing cogging force Pending JP2014057502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012218055A JP2014057502A (en) 2012-09-11 2012-09-11 Power generating device suppressing cogging force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012218055A JP2014057502A (en) 2012-09-11 2012-09-11 Power generating device suppressing cogging force

Publications (1)

Publication Number Publication Date
JP2014057502A true JP2014057502A (en) 2014-03-27

Family

ID=50614340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012218055A Pending JP2014057502A (en) 2012-09-11 2012-09-11 Power generating device suppressing cogging force

Country Status (1)

Country Link
JP (1) JP2014057502A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018081892A1 (en) * 2016-11-07 2018-05-11 Jude Igwemezie Magnet motor with electromagnetic drive
JP7144590B1 (en) * 2021-11-22 2022-09-29 アツ子 森内 Multi-purpose multi-flat BC motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018081892A1 (en) * 2016-11-07 2018-05-11 Jude Igwemezie Magnet motor with electromagnetic drive
CN109923758A (en) * 2016-11-07 2019-06-21 裘德·伊戈威米基 Magnet motor with electromagnetic drive
RU2748888C2 (en) * 2016-11-07 2021-06-01 Джуд ИГВЕМЕЗИ Magnetic motor with electromagnetic actuation
CN109923758B (en) * 2016-11-07 2021-08-27 裘德·伊戈威米基 Magnet motor with electromagnetic drive
JP7144590B1 (en) * 2021-11-22 2022-09-29 アツ子 森内 Multi-purpose multi-flat BC motor

Similar Documents

Publication Publication Date Title
KR20160123997A (en) Axial gap type rotary machine
JP2010200518A (en) Turntable for permanent magnet rotary machine, and manufacturing method for permanent magnet rotary machine
JP2015039270A (en) Generator
CN204481659U (en) Motor
US20070075593A1 (en) Motor modules for linear and rotary motors
JP2014165927A (en) Permanent magnet type synchronous motor
US9515524B2 (en) Electric motor
JP2017212872A (en) Rotor assembly for power generation system
KR101324546B1 (en) Time difference generator using balance of both poles
EP3726711A1 (en) Brushless motor-generator
JP5372115B2 (en) Rotating electric machine
US11594946B2 (en) Axial gap motor
JP2013223417A (en) Fixed permanent magnet generator
JP2014515253A (en) Current generating turbine
JPWO2019008930A1 (en) Stator and motor
JP2014057502A (en) Power generating device suppressing cogging force
JP2017135811A (en) Power generator
CN118748488A (en) Brushless Motor Generator
JP2015130796A (en) Rotary electric apparatus
JP5055858B2 (en) Rotating generator
JP5874246B2 (en) Linear drive mover
JP2014057503A (en) Electric device suppressing cogging force and power generating device
JP2013255408A (en) Highly efficient power generation apparatus and power generation method with less cogging force
JP2019216530A (en) Permanent magnet generator
JP2019216531A (en) Cylindrical permanent magnet generator