[go: up one dir, main page]

JP2014032740A - Composite substrate - Google Patents

Composite substrate Download PDF

Info

Publication number
JP2014032740A
JP2014032740A JP2012157163A JP2012157163A JP2014032740A JP 2014032740 A JP2014032740 A JP 2014032740A JP 2012157163 A JP2012157163 A JP 2012157163A JP 2012157163 A JP2012157163 A JP 2012157163A JP 2014032740 A JP2014032740 A JP 2014032740A
Authority
JP
Japan
Prior art keywords
less
composite substrate
glass
glass plate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012157163A
Other languages
Japanese (ja)
Inventor
Tomomoto Yanase
智基 柳瀬
Atsushi MUSHIAKE
篤 虫明
Takashi Murata
隆 村田
Nobuyoshi Miwa
晋吉 三和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2012157163A priority Critical patent/JP2014032740A/en
Publication of JP2014032740A publication Critical patent/JP2014032740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Planar Illumination Modules (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a substrate having a high light extraction efficiency.SOLUTION: In a composite substrate produced by sticking a glass plate and a resin plate, refractive index nd of the glass plate is 1.55-2.3, and refractive index nd of the resin plate is 1.55-2.3.

Description

本発明は、高屈折率のガラス板と高屈折率の樹脂板を貼り合わせた複合基板に関し、例えば有機ELデバイス、特に有機EL照明に好適な複合基板に関する。   The present invention relates to a composite substrate in which a glass plate with a high refractive index and a resin plate with a high refractive index are bonded together, for example, an organic EL device, and more particularly to a composite substrate suitable for organic EL lighting.

近年、有機EL発光素子を用いたディスプレイ、照明が益々注目されている。これらの有機ELデバイスは、ITO等の透明導電膜が形成された基板により、有機発光素子が挟み込まれた構造を有する。この構造において、有機発光素子に電流が流れると、有機発光素子中の正孔と電子が会合して発光する。発光した光は、ITO等の透明導電膜を介して基板中に進入し、基板内で反射を繰り返しながら外部に放出される。   In recent years, displays and illuminations using organic EL light emitting elements have been attracting increasing attention. These organic EL devices have a structure in which an organic light emitting element is sandwiched between substrates on which a transparent conductive film such as ITO is formed. In this structure, when a current flows through the organic light emitting device, holes and electrons in the organic light emitting device associate to emit light. The emitted light enters the substrate through a transparent conductive film such as ITO, and is emitted to the outside while being repeatedly reflected in the substrate.

ところで、有機発光素子の屈折率ndは1.9〜2.1であり、ITOの屈折率ndは1.9〜2.0である。これに対して、基板の屈折率ndは、通常、1.5程度である。このため、従来の有機ELデバイスは、基板−ITO界面の屈折率差に起因して反射率が高く、有機発光素子から発生した光を効率良く取り出せないという問題があった。   By the way, the refractive index nd of the organic light emitting device is 1.9 to 2.1, and the refractive index nd of ITO is 1.9 to 2.0. On the other hand, the refractive index nd of the substrate is usually about 1.5. For this reason, the conventional organic EL device has a problem that the reflectance is high due to the difference in refractive index at the substrate-ITO interface, and light generated from the organic light emitting element cannot be extracted efficiently.

一方、有機発光素子からの光を取り出すために、高屈折率のガラス基板を用いると、基板−空気界面での反射率が高くなり、光を効率良く取り出せないという問題が発生する。   On the other hand, when a glass substrate having a high refractive index is used to extract light from the organic light emitting device, the reflectance at the substrate-air interface increases, and there is a problem that light cannot be extracted efficiently.

そこで、本発明は、光取り出し効率が高い基板を提供することを技術的課題とする。   Accordingly, it is a technical object of the present invention to provide a substrate with high light extraction efficiency.

本発明者等は、鋭意検討を行った結果、ガラス板と樹脂板の屈折率を所定範囲に規制し、更にこれらを貼り合わせることにより、上記技術的課題を解決し得ることを見出し、本発明として、提案するものである。すなわち、本発明の複合基板は、ガラス板と樹脂板を貼り合わせた複合基板であって、ガラス板の屈折率ndが1.55以上2.3以下であり、且つ樹脂板の屈折率ndが1.55以上2.3以下であることを特徴とする。ここで、ガラス板に樹脂板を貼り合せる目的は、有機層とガラス板と樹脂板の屈折率差による反射により有機層で発光した光が層間で反射するのを抑制し、光取り出し効率を向上させると共に、ガラス板が破損した際の飛散を防止するためである。   As a result of intensive studies, the present inventors have found that the above technical problem can be solved by regulating the refractive indexes of the glass plate and the resin plate within a predetermined range and further bonding them together. As suggested. That is, the composite substrate of the present invention is a composite substrate in which a glass plate and a resin plate are bonded together, the refractive index nd of the glass plate is 1.55 or more and 2.3 or less, and the refractive index nd of the resin plate is It is 1.55 or more and 2.3 or less. Here, the purpose of bonding the resin plate to the glass plate is to suppress the light emitted from the organic layer due to reflection due to the refractive index difference between the organic layer, the glass plate and the resin plate, and improve the light extraction efficiency This is to prevent scattering when the glass plate is broken.

このようにすれば、基板−ITO界面での反射率を低下させつつ、基板−空気界面での反射率も低下させることが可能になる。また樹脂板の場合、表面に無反射構造を形成し易く、その表面を有機EL照明等の空気と接する側にすれば、有機発光層で発生した光が有機発光層内に戻り難くなり、結果として、光の取り出し効率を高めることができる。   If it does in this way, it will become possible to also reduce the reflectance in a board | substrate-air interface, reducing the reflectance in a board | substrate-ITO interface. In the case of a resin plate, it is easy to form a non-reflective structure on the surface, and if the surface is in contact with the air such as organic EL lighting, the light generated in the organic light emitting layer is difficult to return into the organic light emitting layer. As a result, the light extraction efficiency can be increased.

ここで、「ガラス板の屈折率nd」は、屈折率測定器で測定可能であり、例えば25mm×25mm×約3mmの直方体試料を作製した後、(Ta+30℃)から(歪点−50℃)までの温度域を0.1℃/minになるような冷却速度でアニール処理し、続いて屈折率が整合する浸液をガラス−プリズム間に浸透させながら、島津製作所製の屈折率測定器KPR−2000を用いることにより測定可能である。また、「樹脂板の屈折率nd」は、屈折率測定器で測定可能であり、例えばエプリソメーターにより測定可能である。   Here, the “refractive index nd of the glass plate” can be measured with a refractive index measuring device. For example, after preparing a rectangular parallelepiped sample of 25 mm × 25 mm × about 3 mm, (Ta + 30 ° C.) to (strain point−50 ° C.) Refractive index measuring instrument KPR manufactured by Shimadzu Corporation while annealing between the glass and the prism with an immersion liquid whose refractive index is matched, followed by annealing at a cooling rate of 0.1 ° C./min. It can be measured by using -2000. Further, the “refractive index nd of the resin plate” can be measured with a refractive index measuring instrument, for example, with an eprisometer.

第二に、本発明の複合基板は、ガラス板が、ガラス組成として、mol%で、SiO 10〜70%、B 0〜10%、SrO+BaO+La+Nb 0.1〜60%、La 0〜35%、LiO+NaO+KO 0〜15%を含有し、モル比(MgO+CaO+SrO+BaO)/(La+Nb+BaO+TiO+ZrO)が0.1〜4であり、歪点が600℃以上、屈折率ndが1.55〜2.3であることが好ましい。ここで「SrO+BaO+La+Nb」は、SrO、BaO、La、及びNbの合量を指す。「LiO+NaO+KO」は、LiO、NaO、及びKOの合量を指す。「MgO+CaO+SrO+BaO」は、MgO、CaO、SrO、及びBaOの合量を指す。「La+Nb+BaO+TiO+ZrO」は、La、Nb、BaO、TiO、及びZrOの合量を指す。「歪点」は、ASTM C336−71に記載の方法に基づいて測定した値を指す。 Secondly, in the composite substrate of the present invention, the glass plate has a glass composition of mol%, SiO 2 10 to 70%, B 2 O 3 0 to 10%, SrO + BaO + La 2 O 3 + Nb 2 O 5 0.1. -60%, La 2 O 3 0-35%, Li 2 O + Na 2 O + K 2 O 0-15%, molar ratio (MgO + CaO + SrO + BaO) / (La 2 O 3 + Nb 2 O 5 + BaO + TiO 2 + ZrO 2 ) is 0 It is preferable that the strain point is 600 ° C. or higher and the refractive index nd is 1.55 to 2.3. Here, “SrO + BaO + La 2 O 3 + Nb 2 O 5 ” refers to the total amount of SrO, BaO, La 2 O 3 , and Nb 2 O 5 . “Li 2 O + Na 2 O + K 2 O” refers to the total amount of Li 2 O, Na 2 O, and K 2 O. “MgO + CaO + SrO + BaO” refers to the total amount of MgO, CaO, SrO, and BaO. “La 2 O 3 + Nb 2 O 5 + BaO + TiO 2 + ZrO 2 ” refers to the total amount of La 2 O 3 , Nb 2 O 5 , BaO, TiO 2 , and ZrO 2 . “Strain point” refers to a value measured based on the method described in ASTM C336-71.

第三に、本発明の複合基板は、ガラス板が、液相温度1250℃以下のガラスからなることが好ましい。ここで、「液相温度」は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶の析出する温度を測定した値を指す。   Third, in the composite substrate of the present invention, the glass plate is preferably made of glass having a liquidus temperature of 1250 ° C. or lower. Here, the “liquid phase temperature” is obtained by passing the standard sieve 30 mesh (500 μm) and putting the glass powder remaining in 50 mesh (300 μm) into a platinum boat and holding it in a temperature gradient furnace for 24 hours to precipitate crystals. Refers to the value of the measured temperature.

第四に、本発明の複合基板は、ガラス板が、液相粘度103.5dPa・s以上のガラスからなることが好ましい。ここで、「液相粘度」は、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値を指す。 Fourthly, in the composite substrate of the present invention, the glass plate is preferably made of glass having a liquidus viscosity of 10 3.5 dPa · s or more. Here, “liquid phase viscosity” refers to a value obtained by measuring the viscosity of glass at the liquid phase temperature by a platinum ball pulling method.

第五に、本発明の複合基板は、ガラス板が、オーバーフローダウンドロー法で成形されてなることが好ましい。ここで、「オーバーフローダウンドロー法」は、溶融ガラスを耐熱性の樋状構造物の両側から溢れさせて、溢れた溶融ガラスを樋状構造物の下端で合流させながら、下方に延伸成形してガラス板を成形する方法である。   Fifth, the composite substrate of the present invention is preferably formed by a glass plate formed by an overflow down draw method. Here, the “overflow down-draw method” is a method in which molten glass is overflowed from both sides of a heat-resistant bowl-shaped structure, and the molten glass overflowed is joined at the lower end of the bowl-like structure and stretched downward. This is a method of forming a glass plate.

第六に、本発明の複合基板は、ガラス板の少なくとも一方の表面(特に有効面)の表面粗さRaが10nm以下であることが好ましい。有機EL照明デバイスの場合、通常、ガラス板の一方の表面にITOが形成される。ITOが形成された表面の平滑性が低いと、有機EL照明デバイスに輝度ムラが発生し易くなる。そこで、ガラス板の少なくとも一方の表面(特に有効面)の表面粗さRaを10nm以下とし、その表面にITOを形成すれば、このような不具合を防止し易くなる。ここで、「表面粗さRa」は、JIS B0601:2001に準拠した方法で測定した値を指す。   Sixth, in the composite substrate of the present invention, the surface roughness Ra of at least one surface (particularly the effective surface) of the glass plate is preferably 10 nm or less. In the case of an organic EL lighting device, ITO is usually formed on one surface of a glass plate. When the smoothness of the surface on which ITO is formed is low, uneven brightness tends to occur in the organic EL lighting device. Therefore, if the surface roughness Ra of at least one surface (particularly the effective surface) of the glass plate is set to 10 nm or less and ITO is formed on the surface, it becomes easy to prevent such a problem. Here, “surface roughness Ra” refers to a value measured by a method based on JIS B0601: 2001.

第七に、本発明の複合基板は、ガラス板の板厚が2.0mm以下であることが好ましい。   Seventh, the composite substrate of the present invention preferably has a glass plate thickness of 2.0 mm or less.

第八に、本発明の複合基板は、ガラス板が、密度4.0g/cm以下のガラスからなることが好ましい。 Eighth, in the composite substrate of the present invention, the glass plate is preferably made of glass having a density of 4.0 g / cm 3 or less.

第九に、本発明の複合基板は、ガラス板の寸法が幅100mm以上、長さ100mm以上であることが好ましい。   Ninthly, in the composite substrate of the present invention, the glass plate preferably has a width of 100 mm or more and a length of 100 mm or more.

第十に、本発明の複合基板は、樹脂板が、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、スチレンアクリロニトリル共重合体、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、エポキシ樹脂、ポリカーボネート、アクリルの何れか一種からなることが好ましい。   Tenth, in the composite substrate of the present invention, the resin plate is made of any one of polyvinyl chloride, polyvinylidene chloride, polystyrene, styrene acrylonitrile copolymer, polyester, polyamide, polyimide, polyurethane, epoxy resin, polycarbonate, and acrylic. It is preferable to become.

第十一に、本発明の複合基板は、樹脂板の少なくとも一方の表面に凹凸構造が形成されていることが好ましい。このようにすれば、樹脂板の表面の凹凸構造により、基板表面での反射が抑えられることから、光の取り出し効率を高めることができる。ここで、ガラス板の表面に、サンドブラストなどで凹凸構造を形成することも考えられるが、この場合には、ガラス板の強度が低下すると共に、理想的な凹凸構成を形成するのが困難であるという欠点がある。したがって、上記のように樹脂板の表面に凹凸構造を形成することが好ましい。   Eleventh, in the composite substrate of the present invention, it is preferable that an uneven structure is formed on at least one surface of the resin plate. By doing so, the uneven structure on the surface of the resin plate suppresses the reflection on the substrate surface, so that the light extraction efficiency can be increased. Here, it may be possible to form a concavo-convex structure on the surface of the glass plate by sandblasting or the like, but in this case, the strength of the glass plate is lowered and it is difficult to form an ideal concavo-convex configuration. There is a drawback. Therefore, it is preferable to form an uneven structure on the surface of the resin plate as described above.

第十二に、本発明の複合基板は、樹脂板の少なくとも一方の表面(特に有効面)の表面粗さRaが0.5nm以上であることが好ましい。   Twelfth, in the composite substrate of the present invention, the surface roughness Ra of at least one surface (particularly the effective surface) of the resin plate is preferably 0.5 nm or more.

第十三に、本発明の複合基板は、樹脂板の板厚が0.01〜3mmであることが好ましい。   Thirteenthly, in the composite substrate of the present invention, the resin plate preferably has a plate thickness of 0.01 to 3 mm.

第十四に、本発明の複合基板は、ガラス板と樹脂板の間に接着材層を有し、該接着材層の厚みが100μm以下であることが好ましい。   Fourteenth, the composite substrate of the present invention preferably has an adhesive layer between the glass plate and the resin plate, and the thickness of the adhesive layer is preferably 100 μm or less.

第十五に、本発明の複合基板は、(樹脂板の屈折率nd)−(ガラス板の屈折率nd)の値が0.001〜0.1であることが好ましい。   Fifteenth, the composite substrate of the present invention preferably has a value of (refractive index nd of resin plate) − (refractive index nd of glass plate) of 0.001 to 0.1.

第十六に、本発明の複合基板は、ヘーズ値が5%以上であることが好ましい。ここで、「ヘーズ値」は、JIS K7361−1(1997)に基づき、測定した値であり、例えば市販のヘーズメーターで測定可能である。   Sixteenth, the composite substrate of the present invention preferably has a haze value of 5% or more. Here, the “haze value” is a value measured based on JIS K7361-1 (1997), and can be measured by, for example, a commercially available haze meter.

第十七に、本発明の複合基板は、照明デバイスに用いることが好ましい。   Seventeenth, the composite substrate of the present invention is preferably used for a lighting device.

第十八に、本発明の複合基板は、有機EL照明に用いることが好ましい。   Eighteenth, the composite substrate of the present invention is preferably used for organic EL lighting.

第十九に、本発明の複合基板は、有機ELディスプレイに用いることが好ましい。   Nineteenth, the composite substrate of the present invention is preferably used for an organic EL display.

本発明によれば、複合基板に含まれるガラス板と樹脂板のそれぞれの屈折率が、適正に規制されることから、光の取り出しに悪影響を与える反射を抑え、光の取り出し効率を向上させることが可能となる。   According to the present invention, since the refractive indexes of the glass plate and the resin plate included in the composite substrate are appropriately regulated, reflection that adversely affects light extraction is suppressed, and light extraction efficiency is improved. Is possible.

本発明の一実施形態に係る複合基板は、ガラス板の片面に、樹脂板を貼り合せたもので、例えば、有機ELディスプレイや有機EL照明等に用いられる。以下、本実施形態に係る複合基板に含まれるガラス板と樹脂板について詳述する。なお、以下の実施形態では、ガラス板の片面に樹脂板を貼り合せた複合樹脂板を説明するが、本発明の複合樹脂板は、ガラス板の両面にそれぞれ樹脂板を貼り合せた複合樹脂板であってもよい。   The composite substrate according to an embodiment of the present invention is obtained by bonding a resin plate to one side of a glass plate, and is used for, for example, an organic EL display or organic EL illumination. Hereinafter, the glass plate and the resin plate included in the composite substrate according to the present embodiment will be described in detail. In the following embodiments, a composite resin plate in which a resin plate is bonded to one side of a glass plate will be described. However, the composite resin plate of the present invention is a composite resin plate in which a resin plate is bonded to both sides of a glass plate. It may be.

本実施形態に係る複合基板に含まれるガラス板の屈折率ndは1.55以上であり、好ましくは1.58以上、1.60以上、1.63以上、特に1.64以上である。ガラス板の屈折率ndが1.55未満になると、ITO−ガラス界面の反射によって光を効率良く外部に取り出せなくなる。一方、ガラス板の屈折率ndが高過ぎると、ガラス板と樹脂板の界面での反射率が高くなり、光取り出し効率が低下し易くなる。よって、ガラス板の屈折率ndは2.30以下、2.00以下、1.90以下、1.85以下、1.80以下、1.75以下、特に1.70以下が好ましい。   The refractive index nd of the glass plate included in the composite substrate according to the present embodiment is 1.55 or more, preferably 1.58 or more, 1.60 or more, 1.63 or more, particularly 1.64 or more. When the refractive index nd of the glass plate is less than 1.55, light cannot be efficiently extracted outside due to reflection at the ITO-glass interface. On the other hand, if the refractive index nd of the glass plate is too high, the reflectance at the interface between the glass plate and the resin plate increases, and the light extraction efficiency tends to decrease. Therefore, the refractive index nd of the glass plate is preferably 2.30 or less, 2.00 or less, 1.90 or less, 1.85 or less, 1.80 or less, 1.75 or less, particularly 1.70 or less.

上記のガラス板は、以下に示すガラス組成、ガラス特性等を有することが望ましい。なお、各成分の含有範囲の説明において、%表示は、特に断りがある場合を除き、mol%を表す。   The glass plate preferably has the following glass composition, glass characteristics, and the like. In addition, in description of the containing range of each component,% display represents mol% unless there is particular notice.

SiOの含有量は10〜70%が好ましい。SiOの含有量が少なくなると、ガラス網目構造を形成し難くなり、ガラス化が困難になる。またガラスの粘性が低下し過ぎて、高い液相粘度を確保し難くなる。よって、SiOの含有量は15%以上、20%以上、30%以上、40%以上、45%以上、50%以上、特に55%以上が好ましい。一方、SiOの含有量が多くなると、溶融性、成形性が低下し易くなり、また屈折率ndが低下し易くなる。よって、SiOの含有量は68%以下、65%以下、特に63%以下が好ましい。 The content of SiO 2 is preferably 10 to 70%. When the content of SiO 2 decreases, it becomes difficult to form a glass network structure, and vitrification becomes difficult. Further, the viscosity of the glass is excessively lowered, and it becomes difficult to ensure a high liquid phase viscosity. Therefore, the content of SiO 2 is preferably 15% or more, 20% or more, 30% or more, 40% or more, 45% or more, 50% or more, particularly 55% or more. On the other hand, when the content of SiO 2 increases, the meltability and moldability tend to decrease, and the refractive index nd tends to decrease. Therefore, the content of SiO 2 is preferably 68% or less, 65% or less, particularly 63% or less.

Alの含有量は0〜20%が好ましい。Alの含有量が多くなると、ガラスに失透結晶が析出し易くなって、液相粘度が低下し易くなる。また屈折率ndが低下し易くなる。よって、Alの含有量は15%以下、10%以下、8%以下、特に6%以下が好ましい。なお、Alの含有量が少なくなると、ガラス組成の成分バランスを欠いて、逆にガラスが失透し易くなる。よって、Alの含有量は0.1%以上、0.5%以上、特に1%以上が好ましい。 The content of Al 2 O 3 is preferably 0 to 20%. When the content of Al 2 O 3 is increased, devitrified crystals are likely to be precipitated on the glass, and the liquid phase viscosity is likely to be lowered. Further, the refractive index nd tends to decrease. Therefore, the content of Al 2 O 3 is preferably 15% or less, 10% or less, 8% or less, and particularly preferably 6% or less. Incidentally, the content of Al 2 O 3 is reduced, lacks component balance of the glass composition, the glass is liable to devitrify reversed. Therefore, the content of Al 2 O 3 is preferably 0.1% or more, 0.5% or more, and particularly preferably 1% or more.

の含有量が多くなると、屈折率nd、ヤング率が低下し易くなり、また歪点が低下し易くなる。よって、Bの含有量は10%以下、8%以下、特に6%以下が好ましい。一方、Bの含有量が少なくなると、耐失透性が低下し易くなる。よって、Bの含有量は、0.1%以上、特に1%以上が好ましい。 When the content of B 2 O 3 increases, the refractive index nd and Young's modulus tend to decrease, and the strain point tends to decrease. Therefore, the content of B 2 O 3 is preferably 10% or less, 8% or less, and particularly preferably 6% or less. On the other hand, when the content of B 2 O 3 is reduced, the devitrification resistance is likely to be lowered. Therefore, the content of B 2 O 3 is preferably 0.1% or more, particularly preferably 1% or more.

SrO+BaO+La+Nbは、耐失透性を損なうことなく屈折率ndを高める成分である。しかし、多量に添加すると、ガラス組成の成分バランスを欠いて、逆に耐失透性が低下し易くなると共に、密度や熱膨張係数が高くなり過ぎる虞がある。SrO+BaO+La+Nbの好適な下限範囲は0.1%以上、5%以上、10%以上、15%以上、特に18%以上である。またSrO+BaO+La+Nbの好適な上限範囲は60%以下、50%以下、40%以下、35%以下、25%以下、特に22%以下である。 SrO + BaO + La 2 O 3 + Nb 2 O 5 is a component that increases the refractive index nd without impairing devitrification resistance. However, if added in a large amount, the component balance of the glass composition is lost, and conversely, the devitrification resistance tends to be lowered, and the density and the thermal expansion coefficient may be too high. A preferable lower limit range of SrO + BaO + La 2 O 3 + Nb 2 O 5 is 0.1% or more, 5% or more, 10% or more, 15% or more, particularly 18% or more. Moreover, the suitable upper limit of SrO + BaO + La 2 O 3 + Nb 2 O 5 is 60% or less, 50% or less, 40% or less, 35% or less, 25% or less, particularly 22% or less.

SrOの含有量は0〜20%が好ましい。SrOの含有量が多くなると、屈折率nd、密度、熱膨張係数が高くなり易く、その含有量が多過ぎると、ガラス組成の成分バランスを欠いて、耐失透性が低下し易くなる。よって、SrOの含有量は18%以下、14%以下、12%以下、11%以下、8%以下、7%以下、特に6%以下が好ましい。なお、SrOの含有量が少なくなると、溶融性が低下し易くなり、また屈折率ndが低下し易くなる。よって、SrOの含有量は0.1%以上、0.8%以上、1.4%以上、3%以上、特に4%以上が好ましい。   The content of SrO is preferably 0 to 20%. When the SrO content increases, the refractive index nd, density, and thermal expansion coefficient tend to be high. When the SrO content is too high, the component balance of the glass composition is lacking and the devitrification resistance tends to decrease. Therefore, the content of SrO is preferably 18% or less, 14% or less, 12% or less, 11% or less, 8% or less, 7% or less, particularly 6% or less. Note that when the content of SrO decreases, the meltability tends to decrease, and the refractive index nd tends to decrease. Therefore, the content of SrO is preferably 0.1% or more, 0.8% or more, 1.4% or more, 3% or more, particularly 4% or more.

BaOの含有量は0〜60%が好ましい。BaOは、アルカリ土類金属酸化物の中では粘性を極端に低下させずに、屈折率ndを高める成分である。BaOの含有量が多くなると、屈折率nd、密度、熱膨張係数が高くなり易い。しかし、BaOの含有量が多過ぎると、ガラス組成の成分バランスを欠いて、耐失透性が低下し易くなる。よって、BaOの含有量は50%以下、45%以下、40%以下、35%以下、34%以下、32%以下、特に30%以下が好ましい。なお、BaOの含有量が少なくなると、所望の屈折率ndを得難くなることに加えて、高い液相粘度を確保し難くなる。よって、BaOの含有量は0.1%以上、1%以上、2%以上、5%以上、10%以上、特に13%以上が好ましい。   The content of BaO is preferably 0 to 60%. BaO is a component that increases the refractive index nd without drastically reducing the viscosity among alkaline earth metal oxides. When the content of BaO increases, the refractive index nd, density, and thermal expansion coefficient tend to increase. However, when there is too much content of BaO, the component balance of a glass composition will be missing and devitrification resistance will fall easily. Therefore, the BaO content is preferably 50% or less, 45% or less, 40% or less, 35% or less, 34% or less, 32% or less, and particularly preferably 30% or less. In addition, when content of BaO decreases, in addition to becoming difficult to obtain desired refractive index nd, it becomes difficult to ensure a high liquid phase viscosity. Therefore, the content of BaO is preferably 0.1% or more, 1% or more, 2% or more, 5% or more, 10% or more, particularly 13% or more.

Laは、屈折率ndを高める成分である。Laの含有量が多くなると、密度、熱膨張係数が高くなり過ぎ、また耐失透性が低下し易くなる。よって、Laの好適な上限範囲は35%以下、25%以下、15%以下、10%以下、8%以下、5%以下、特に3%以下である。なお、Laを添加する場合、その添加量は0.1%以上、0.3%以上、0.5%以上、0.8%以上、特に1%以上が好ましい。 La 2 O 3 is a component that increases the refractive index nd. When the content of La 2 O 3 increases, the density and thermal expansion coefficient become too high, and devitrification resistance tends to decrease. Therefore, a suitable upper limit range of La 2 O 3 is 35% or less, 25% or less, 15% or less, 10% or less, 8% or less, 5% or less, particularly 3% or less. In the case of adding La 2 O 3, the amount added is less than 0.1%, 0.3% or more, 0.5% or more, 0.8% or more, particularly 1% or more is preferable.

Nbは、屈折率ndを高める成分である。Nbの含有量が多くなると、密度、熱膨張係数が高くなり過ぎ、また耐失透性が低下し易くなる。よって、Nbの含有量は0〜10%、0〜7%、0〜5%、0〜3%、0〜1%、0〜0.5%、特に0〜0.1%が好ましい。 Nb 2 O 5 is a component that increases the refractive index nd. When the content of Nb 2 O 5 increases, the density and the thermal expansion coefficient become too high, and the devitrification resistance tends to decrease. Therefore, the content of Nb 2 O 5 is 0 to 10%, 0 to 7%, 0 to 5%, 0 to 3%, 0 to 1%, 0 to 0.5%, particularly 0 to 0.1%. preferable.

モル比(MgO+CaO)/(SrO+BaO)は0〜1が好ましい。モル比(MgO+CaO)/(SrO+BaO)が大き過ぎると、ガラス組成のバランスを欠いて、逆に耐失透性が低下し易くなるため、高い液相粘度を確保し難くなり、また歪点が低下し易くなる。一方、モル比(MgO+CaO)/(SrO+BaO)が小さ過ぎると、密度が高くなり過ぎる虞がある。よって、モル比(MgO+CaO)/(SrO+BaO)の好適な下限範囲は0.1以上、0.2以上、0.3以上、特に0.35以上である。またモル比(MgO+CaO)/(SrO+BaO)の好適な上限範囲は0.8以下、0.7以下、0.6以下、特に0.5以下である。ここで、「MgO+CaO」は、MgOとCaOの合量である。「SrO+BaO」は、SrOとBaOの合量である。   The molar ratio (MgO + CaO) / (SrO + BaO) is preferably 0 to 1. If the molar ratio (MgO + CaO) / (SrO + BaO) is too large, the glass composition is lacking in balance, and conversely, the devitrification resistance is liable to be lowered, so that it is difficult to ensure a high liquidus viscosity and the strain point is lowered. It becomes easy to do. On the other hand, if the molar ratio (MgO + CaO) / (SrO + BaO) is too small, the density may be too high. Therefore, a preferable lower limit range of the molar ratio (MgO + CaO) / (SrO + BaO) is 0.1 or more, 0.2 or more, 0.3 or more, particularly 0.35 or more. Moreover, the suitable upper limit of molar ratio (MgO + CaO) / (SrO + BaO) is 0.8 or less, 0.7 or less, 0.6 or less, and especially 0.5 or less. Here, “MgO + CaO” is the total amount of MgO and CaO. “SrO + BaO” is the total amount of SrO and BaO.

MgOは、屈折率nd、ヤング率、歪点を高める成分であると共に、高温粘度を低下させる成分であるが、MgOを多量に添加すると、液相温度が上昇して、耐失透性が低下したり、また密度や熱膨張係数が高くなり過ぎる虞がある。よって、MgOの含有量は20%以下、15%以下、10%以下、5%以下、3%以下、特に1%以下が好ましい。   MgO is a component that increases the refractive index nd, Young's modulus, and strain point, and also decreases the high-temperature viscosity. However, when a large amount of MgO is added, the liquidus temperature increases and the devitrification resistance decreases. Or the density and thermal expansion coefficient may become too high. Therefore, the content of MgO is preferably 20% or less, 15% or less, 10% or less, 5% or less, 3% or less, and particularly preferably 1% or less.

CaOの含有量は0〜15%が好ましい。CaOの含有量が多くなると、密度、熱膨張係数が高くなり易く、その含有量が多過ぎると、ガラス組成のバランスを欠いて、耐失透性が低下し易くなる。よって、CaOの含有量は15%以下、13%以下、11%以下、特に9.5%以下が好ましい。なお、CaOの含有量が少なくなると、溶融性が低下したり、ヤング率が低下したり、屈折率ndが低下し易くなる。よって、CaOの含有量は0.5%以上、1%以上、2%以上、4%以上、6%以上、特に7%以上が好ましい。   The content of CaO is preferably 0 to 15%. When the content of CaO increases, the density and the thermal expansion coefficient tend to increase. When the content is too large, the balance of the glass composition is lost and the devitrification resistance tends to decrease. Therefore, the CaO content is preferably 15% or less, 13% or less, 11% or less, and particularly preferably 9.5% or less. Note that when the content of CaO decreases, the meltability decreases, the Young's modulus decreases, and the refractive index nd tends to decrease. Therefore, the CaO content is preferably 0.5% or more, 1% or more, 2% or more, 4% or more, 6% or more, particularly 7% or more.

モル比(MgO+CaO+SrO+BaO)/(La+Nb+BaO+TiO+ZrO)は0.1〜4が好ましい。モル比(MgO+CaO+SrO+BaO)/(La+Nb+BaO+TiO+ZrO)が大き過ぎると、屈折率ndが低下し易くなる。しかし、モル比(MgO+CaO+SrO+BaO)/(La+Nb+BaO+TiO+ZrO)が小さ過ぎると、高い液相粘度が得られ難くなったり、密度や熱膨張係数が高くなり過ぎる虞がある。よって、モル比(MgO+CaO+SrO+BaO)/(La+Nb+BaO+TiO+ZrO)の好適な下限範囲は0.1以上、0.3以上、0.5以上、0.8以上、1以上、1.3以上、特に1.5以上である。またモル比(MgO+CaO+SrO+BaO)/(La+Nb+BaO+TiO+ZrO)の好適な上限範囲は4以下、3.5以下、3以下、2.8以下、2.5以下、特に2.0以下である。 The molar ratio (MgO + CaO + SrO + BaO) / (La 2 O 3 + Nb 2 O 5 + BaO + TiO 2 + ZrO 2 ) is preferably from 0.1 to 4. If the molar ratio (MgO + CaO + SrO + BaO) / (La 2 O 3 + Nb 2 O 5 + BaO + TiO 2 + ZrO 2 ) is too large, the refractive index nd tends to decrease. However, if the molar ratio (MgO + CaO + SrO + BaO) / (La 2 O 3 + Nb 2 O 5 + BaO + TiO 2 + ZrO 2 ) is too small, it is difficult to obtain a high liquid phase viscosity, and the density and thermal expansion coefficient may be too high. . Therefore, a preferable lower limit range of the molar ratio (MgO + CaO + SrO + BaO) / (La 2 O 3 + Nb 2 O 5 + BaO + TiO 2 + ZrO 2 ) is 0.1 or more, 0.3 or more, 0.5 or more, 0.8 or more, 1 or more. 1.3 or more, particularly 1.5 or more. The preferred upper limit range of the molar ratio (MgO + CaO + SrO + BaO) / (La 2 O 3 + Nb 2 O 5 + BaO + TiO 2 + ZrO 2 ) is 4 or less, 3.5 or less, 3 or less, 2.8 or less, 2.5 or less, particularly 2 0.0 or less.

TiOは、屈折率ndを高める成分である。TiOの含有量が多くなると、耐失透性が低下し易くなる。よって、TiOの含有量は0〜20%、0〜15%、0〜10%、0〜8%、0〜6%、特に0〜5%が好ましい。 TiO 2 is a component that increases the refractive index nd. When the content of TiO 2 increases, the devitrification resistance tends to decrease. Therefore, the content of TiO 2 is preferably 0 to 20%, 0 to 15%, 0 to 10%, 0 to 8%, 0 to 6%, particularly preferably 0 to 5%.

ZrOは、屈折率ndを高める成分である。ZrOの含有量が多くなると、耐失透性が低下し易くなる。よって、ZrOの含有量は0〜20%、0〜15%、0〜10%、0〜8%、0〜6%、特に0〜5%が好ましい。 ZrO 2 is a component that increases the refractive index nd. When the content of ZrO 2 increases, the devitrification resistance tends to decrease. Therefore, the content of ZrO 2 is preferably 0 to 20%, 0 to 15%, 0 to 10%, 0 to 8%, 0 to 6%, particularly preferably 0 to 5%.

LiO+NaO+KOは、粘性を低下させる成分であり、また熱膨張係数を調整する成分であるが、多量に添加すると、粘性が低下し過ぎて、高い液相粘度を確保し難くなる。よって、LiO+NaO+KOの含有量は10%以下、5%以下、3%以下、2%以下、1%以下、0.5%以下、特に0.1%以下が好ましい。また、LiO、NaO、KOの含有量は、各々8%以下、5%以下、2%以下、1%以下、0.5%以下、特に0.1%以下が好ましい。 Li 2 O + Na 2 O + K 2 O is a component that lowers the viscosity and adjusts the coefficient of thermal expansion. However, when added in a large amount, the viscosity decreases too much and it is difficult to ensure a high liquid phase viscosity. . Therefore, the content of Li 2 O + Na 2 O + K 2 O is preferably 10% or less, 5% or less, 3% or less, 2% or less, 1% or less, 0.5% or less, and particularly preferably 0.1% or less. The contents of Li 2 O, Na 2 O and K 2 O are each preferably 8% or less, 5% or less, 2% or less, 1% or less, 0.5% or less, particularly preferably 0.1% or less.

清澄剤として、As、Sb、CeO、SnO、F、Cl、SOの群から選択された一種又は二種以上を0〜3%、特に0.1〜2%添加してもよい。但し、As、Sb、及びF、特にAs、及びSbは、環境的観点から、その使用を極力控えることが好ましく、各々の含有量は0.1%未満が好ましい。環境的観点から言えば、清澄剤として、SnO、SO、及びClが好ましい。特に、SnOの含有量は0〜3%、0〜1%、0.01〜0.5%、特に0.05〜0.4%が好ましい。また、SnO+SO+Clの含有量は0〜3%、0〜1%、0.001〜1%、0.01〜0.5%、特に0.01〜0.3%が好ましい。ここで、「SnO+SO+Cl」は、SnO、SO、及びClの合量を指す。 As a fining agent, one or two or more selected from the group of As 2 O 3 , Sb 2 O 3 , CeO 2 , SnO 2 , F, Cl, SO 3 is 0 to 3%, particularly 0.1 to 2%. It may be added. However, As 2 O 3 , Sb 2 O 3 , and F, particularly As 2 O 3 and Sb 2 O 3 , it is preferable to refrain from using them as much as possible from an environmental point of view. % Is preferred. From an environmental point of view, SnO 2 , SO 3 , and Cl are preferable as the fining agent. In particular, the SnO 2 content is preferably 0 to 3%, 0 to 1%, 0.01 to 0.5%, and particularly preferably 0.05 to 0.4%. The content of SnO 2 + SO 3 + Cl is preferably 0 to 3%, 0 to 1%, 0.001 to 1%, 0.01 to 0.5%, particularly preferably 0.01 to 0.3%. Here, “SnO 2 + SO 3 + Cl” refers to the total amount of SnO 2 , SO 3 , and Cl.

PbOは、高温粘性を低下させると共に、屈折率を高める成分であるが、環境的観点から、その使用を極力控えることが好ましく、その含有量は0.5%以下が好ましく、実質的に含有しないことが望ましい。ここで、「実質的にPbOを含有しない」とは、ガラス組成中のPbOの含有量が1000ppm(質量)未満の場合を指す。   PbO is a component that lowers the viscosity at high temperature and increases the refractive index, but from an environmental point of view, it is preferable to refrain from using it as much as possible, and its content is preferably 0.5% or less, and is not substantially contained. It is desirable. Here, “substantially does not contain PbO” refers to a case where the content of PbO in the glass composition is less than 1000 ppm (mass).

上記成分以外にも、他の成分を例えば15%まで添加してもよい。   In addition to the above components, other components may be added up to 15%, for example.

各成分の好適な含有範囲、ガラス特性を組み合わせることにより、好適なガラス板を作製することが可能である。その中でも、特に好適なガラス組成範囲、ガラス特性の組み合わせは以下の通りである。   A suitable glass plate can be produced by combining a suitable content range and glass characteristics of each component. Among them, particularly suitable glass composition ranges and combinations of glass characteristics are as follows.

(1)ガラス組成として、mol%で、SiO 20〜70%、B 0〜8%、SrO+BaO+La+Nb 5〜50%、La 0.1〜30%、LiO+NaO+KO 0〜5%を含有し、モル比で(MgO+CaO+SrO+BaO)/(La+Nb+BaO+TiO+ZrO)が0.5〜3.5であり、屈折率ndが1.55〜2.00。 (1) as a glass composition, in mol%, SiO 2 20~70%, B 2 O 3 0~8%, SrO + BaO + La 2 O 3 + Nb 2 O 5 5~50%, La 2 O 3 0.1~30% , Li 2 O + Na 2 O + K 2 O 0-5%, (MgO + CaO + SrO + BaO) / (La 2 O 3 + Nb 2 O 5 + BaO + TiO 2 + ZrO 2 ) in a molar ratio of 0.5 to 3.5, refractive index nd is 1.55 to 2.00.

(2)ガラス組成として、mol%で、SiO 40〜70%、B 0〜5%、SrO+BaO+La+Nb 10〜40%、La 0.3〜15%、LiO+NaO+KO 0〜3%を含有し、モル比で(MgO+CaO+SrO+BaO)/(La+Nb+BaO+TiO+ZrO)が1〜3.5であり、屈折率ndが1.55〜1.85。 (2) as a glass composition, in mol%, SiO 2 40~70%, B 2 O 3 0~5%, SrO + BaO + La 2 O 3 + Nb 2 O 5 10~40%, La 2 O 3 0.3~15% , Li 2 O + Na 2 O + K 2 O 0 to 3%, (MgO + CaO + SrO + BaO) / (La 2 O 3 + Nb 2 O 5 + BaO + TiO 2 + ZrO 2 ) in a molar ratio is 1 to 3.5, and refractive index nd is 1.55-1.85.

(3)ガラス組成として、mol%で、SiO 50〜70%、B 0〜3%、SrO+BaO+La+Nb 15〜35%、La 0.5〜10%、LiO+NaO+KO 0〜1%を含有し、モル比(MgO+CaO+SrO+BaO)/(La+Nb+BaO+TiO+ZrO)が1.3〜3であり、屈折率ndが1.55〜1.80。 (3) as a glass composition, in mol%, SiO 2 50~70%, B 2 O 3 0~3%, SrO + BaO + La 2 O 3 + Nb 2 O 5 15~35%, La 2 O 3 0.5~10% , Li 2 O + Na 2 O + K 2 O 0 to 1%, the molar ratio (MgO + CaO + SrO + BaO) / (La 2 O 3 + Nb 2 O 5 + BaO + TiO 2 + ZrO 2 ) is 1.3 to 3, and the refractive index nd is 1 .55 to 1.80.

(4)ガラス組成として、mol%で、SiO 50〜70%、B 0〜1%、SrO+BaO+La+Nb 15〜25%、La 0.8〜5%、LiO+NaO+KO 0〜0.5%を含有し、モル比(MgO+CaO+SrO+BaO)/(La+Nb+BaO+TiO+ZrO)が1.5〜2.5であり、屈折率ndが1.55〜1.80。 (4) as a glass composition, in mol%, SiO 2 50~70%, B 2 O 3 0~1%, SrO + BaO + La 2 O 3 + Nb 2 O 5 15~25%, La 2 O 3 0.8~5% , Li 2 O + Na 2 O + K 2 O 0-0.5%, molar ratio (MgO + CaO + SrO + BaO) / (La 2 O 3 + Nb 2 O 5 + BaO + TiO 2 + ZrO 2 ) is 1.5 to 2.5, and refraction The rate nd is 1.55 to 1.80.

(5)ガラス組成として、mol%で、SiO 50〜70%、B 0〜0.1%、SrO+BaO+La+Nb 18〜22%、La 1〜3%、LiO+NaO+KO 0〜0.1%を含有し、モル比(MgO+CaO+SrO+BaO)/(La+Nb+BaO+TiO+ZrO)が1.5〜2.5であり、屈折率ndが1.60〜1.70。 (5) as a glass composition, in mol%, SiO 2 50~70%, B 2 O 3 0~0.1%, SrO + BaO + La 2 O 3 + Nb 2 O 5 18~22%, La 2 O 3 1~3% , Li 2 O + Na 2 O + K 2 O 0-0.1%, molar ratio (MgO + CaO + SrO + BaO) / (La 2 O 3 + Nb 2 O 5 + BaO + TiO 2 + ZrO 2 ) is 1.5 to 2.5, refraction The rate nd is 1.60 to 1.70.

(6)ガラス組成として、mol%で、SiO 50〜70%、B 0〜8%、MgO 5〜15%、SrO+BaO+La+Nb 18〜22%、La 0〜3%、LiO+NaO+KO 0〜0.1%を含有し、モル比(MgO+CaO+SrO+BaO)/(La+Nb+BaO+TiO+ZrO)が1.5〜2.0であり、屈折率ndが1.62〜1.68。 As (6) the glass composition, in mol%, SiO 2 50~70%, B 2 O 3 0~8%, 5~15% MgO, SrO + BaO + La 2 O 3 + Nb 2 O 5 18~22%, La 2 O 3 0 to 3%, Li 2 O + Na 2 O + K 2 O 0 to 0.1%, molar ratio (MgO + CaO + SrO + BaO) / (La 2 O 3 + Nb 2 O 5 + BaO + TiO 2 + ZrO 2 ) is 1.5 to 2.0 And the refractive index nd is 1.62-1.68.

上記のガラス板の密度は、4.0g/cm以下、3.7g/cm以下、3.5g/cm以下、特に3.4g/cm以下が好ましい。このようにすれば、デバイスを軽量化することができる。 The density of the glass plate is preferably 4.0 g / cm 3 or less, 3.7 g / cm 3 or less, 3.5 g / cm 3 or less, particularly 3.4 g / cm 3 or less. In this way, the device can be reduced in weight.

上記のガラス板において、30〜380℃における熱膨張係数は、45×10−7〜110×10−7/℃、50×10−7〜100×10−7/℃、60×10−7〜95×10−7/℃、65×10−7〜90×10−7/℃、65×10−7〜85×10−7/℃、特に70×10−7〜80×10−7/℃が好ましい。熱膨張係数が低過ぎると、有機EL薄膜や透明導電膜との熱膨張係数が整合せず、ガラス板に反りが発生する虞がある。一方、熱膨張係数が高過ぎると、ガラスフリットを用いて、有機ELデバイスをレーザーシールする場合、ガラス板が熱衝撃によって割れ易くなる。そこで、上記範囲に熱膨張係数を規制すれば、このような事態を防止し易くなる。 In the above glass plate, the thermal expansion coefficient at 30 to 380 ° C. is 45 × 10 −7 to 110 × 10 −7 / ° C., 50 × 10 −7 to 100 × 10 −7 / ° C., 60 × 10 −7 to 95 × 10 −7 / ° C., 65 × 10 −7 to 90 × 10 −7 / ° C., 65 × 10 −7 to 85 × 10 −7 / ° C., particularly 70 × 10 −7 to 80 × 10 −7 / ° C. Is preferred. If the thermal expansion coefficient is too low, the thermal expansion coefficients of the organic EL thin film and the transparent conductive film are not matched, and the glass plate may be warped. On the other hand, when the thermal expansion coefficient is too high, when a glass frit is used to laser-seal an organic EL device, the glass plate is easily broken by thermal shock. Therefore, if the thermal expansion coefficient is regulated within the above range, such a situation can be easily prevented.

上記のガラス板の歪点は、630℃以上、650℃以上、670℃以上、690℃以上、特に700℃以上が好ましい。ガラスフリットを用いて、有機EL照明デバイス等をレーザーシールする場合、ガラス板の耐熱性が低いと、ガラス板に割れが発生し易くなる。   The strain point of the glass plate is preferably 630 ° C. or higher, 650 ° C. or higher, 670 ° C. or higher, 690 ° C. or higher, particularly 700 ° C. or higher. When laser sealing an organic EL lighting device or the like using a glass frit, if the heat resistance of the glass plate is low, the glass plate is likely to crack.

上記のガラス板において、102.5dPa・sにおける温度は、1450℃以下、1400℃以下、1370℃以下、1330℃以下、特に1290℃以下が好ましい。このようにすれば、溶融性が向上するため、ガラス板の製造効率が向上する。 In the above glass plate, the temperature at 10 2.5 dPa · s is preferably 1450 ° C. or lower, 1400 ° C. or lower, 1370 ° C. or lower, 1330 ° C. or lower, particularly 1290 ° C. or lower. If it does in this way, since a meltability will improve, the manufacturing efficiency of a glass plate will improve.

上記のガラス板の液相温度は、1250℃以下、1150℃以下、1130℃以下、1110℃以下、1090℃以下、1070℃以下、1050℃以下、1030℃以下、特に1000℃以下が好ましい。また、液相粘度は103.5dPa・s以上、103.8dPa・s以上、104.2dPa・s以上、104.4dPa・s以上、104.6dPa・s以上、105.0dPa・s以上、特に105.2dPa・s以上が好ましい。このようにすれば、成形時にガラスが失透し難くなり、オーバーフローダウンドロー法でガラス板を成形し易くなる。 The liquidus temperature of the glass plate is preferably 1250 ° C. or lower, 1150 ° C. or lower, 1130 ° C. or lower, 1110 ° C. or lower, 1090 ° C. or lower, 1050 ° C. or lower, 1030 ° C. or lower, particularly 1000 ° C. or lower. The liquid phase viscosity is 10 3.5 dPa · s or more, 10 3.8 dPa · s or more, 10 4.2 dPa · s or more, 10 4.4 dPa · s or more, 10 4.6 dPa · s or more. It is preferably 10 5.0 dPa · s or more, particularly preferably 10 5.2 dPa · s or more. If it does in this way, it will become difficult to devitrify glass at the time of shaping | molding, and it will become easy to shape | mold a glass plate by the overflow down draw method.

上記のガラス板の板厚は、2.0mm以下、1.5mm以下、1.3mm以下、1.1mm以下、0.8mm以下、0.6mm以下、0.5mm以下、0.3mm以下、0.2mm以下、特に0.1mm以下が好ましい。ガラス板の板厚が小さい程、ガラス板の可撓性が高まり、デザイン性が高い照明デバイスを作製し易くなる。しかし、ガラス板の板厚が極端に小さくなると、ガラス板が破損し易くなる。よって、ガラス板の板厚は10μm以上、特に30μm以上が好ましい。   The thickness of the glass plate is 2.0 mm or less, 1.5 mm or less, 1.3 mm or less, 1.1 mm or less, 0.8 mm or less, 0.6 mm or less, 0.5 mm or less, 0.3 mm or less, 0 .2 mm or less, particularly 0.1 mm or less is preferable. As the plate thickness of the glass plate is smaller, the flexibility of the glass plate is increased, and it becomes easier to produce a lighting device with high design. However, when the plate thickness of the glass plate is extremely small, the glass plate is easily damaged. Therefore, the thickness of the glass plate is preferably 10 μm or more, particularly preferably 30 μm or more.

上記のガラス板の幅は、5mm以上、10mm以上、50mm以上、100mm以上、300mm以上、特に500mm以上が好ましい。ガラス板の長さは5mm以上、10mm以上、50mm以上、100mm以上、300mm以上、特に500mm以上が好ましい。このようにすれば、有機EL照明等の大型化を図り易くなる。   The width of the glass plate is preferably 5 mm or more, 10 mm or more, 50 mm or more, 100 mm or more, 300 mm or more, particularly 500 mm or more. The length of the glass plate is preferably 5 mm or more, 10 mm or more, 50 mm or more, 100 mm or more, 300 mm or more, particularly 500 mm or more. In this way, it becomes easy to increase the size of the organic EL lighting or the like.

上記のガラス板は、少なくとも一方の表面(好ましくは両面)が未研磨であることが好ましい。ガラスの理論強度は、非常に高いにもかかわらず、理論強度よりも遥かに低い応力で破壊に至ることが多い。これは、ガラス表面にグリフィスフローと呼ばれる小さな欠陥が成形後の工程、例えば研磨工程等で生じるからである。よって、ガラス表面を未研磨とすれば、ガラス本来の機械的強度を損ない難くなるため、ガラス板が破壊し難くなる。また、ガラス板の表面を未研磨とすれば、研磨工程を省略できるため、ガラス板の製造コストを低廉化することができる。   It is preferable that at least one surface (preferably both surfaces) of the glass plate is unpolished. Although the theoretical strength of glass is very high, it often breaks at a stress much lower than the theoretical strength. This is because a small defect called Griffith flow occurs on the glass surface in a post-molding process such as a polishing process. Therefore, if the glass surface is unpolished, the original mechanical strength of the glass is hardly lost, and the glass plate is difficult to break. Further, if the surface of the glass plate is unpolished, the polishing step can be omitted, and the manufacturing cost of the glass plate can be reduced.

上記のガラス板は、少なくとも一方の表面(好ましくは両面)の表面粗さRaは10nm以下、5nm以下、1nm以下、0.5nm以下、0.3nm以下、特に0.2nm以下が好ましい。表面粗さRaが10nmより大きいと、その表面にITOを形成した場合、ITOの品位が低下して、均一な発光を得難くなる。   In the glass plate, the surface roughness Ra of at least one surface (preferably both surfaces) is preferably 10 nm or less, 5 nm or less, 1 nm or less, 0.5 nm or less, 0.3 nm or less, particularly preferably 0.2 nm or less. When the surface roughness Ra is larger than 10 nm, when ITO is formed on the surface, the quality of the ITO is lowered and it becomes difficult to obtain uniform light emission.

上記のガラス板は、オーバーフローダウンドロー法で成形されてなることが好ましい。このようにすれば、未研磨で表面品位が良好なガラス板を製造することができる。その理由は、オーバーフローダウンドロー法の場合、表面になるべき面は樋状耐火物に接触せず、自由表面の状態で成形されるからである。樋状構造物の構造や材質は、所望の寸法や表面精度を実現できる限り、特に限定されない。また、下方への延伸成形を行うために、溶融ガラスに対して、力を印加する方法も特に限定されない。例えば、充分に大きい幅を有する耐熱性ロールを溶融ガラスに接触させた状態で回転させて延伸する方法を採用してもよく、複数の対になった耐熱性ロールを溶融ガラスの端面近傍のみに接触させて延伸する方法を採用してもよい。   The glass plate is preferably formed by an overflow down draw method. In this way, it is possible to produce a glass plate that is unpolished and has good surface quality. The reason is that, in the case of the overflow down draw method, the surface to be the surface is not in contact with the bowl-shaped refractory and is molded in a free surface state. The structure and material of the bowl-shaped structure are not particularly limited as long as desired dimensions and surface accuracy can be realized. Further, there is no particular limitation on the method for applying force to the molten glass in order to perform downward stretching. For example, a method may be adopted in which a heat-resistant roll having a sufficiently large width is rotated and stretched in contact with the molten glass, and a plurality of pairs of heat-resistant rolls are provided only in the vicinity of the end surface of the molten glass. You may employ | adopt the method of making it contact and extending | stretching.

オーバーフローダウンドロー法以外にも、例えば、ダウンドロー法(スロットダウン法、リドロー法等)、フロート法、ロールアウト法等を採用することができる。   In addition to the overflow downdraw method, for example, a downdraw method (slot down method, redraw method, etc.), a float method, a rollout method, or the like can be employed.

なお、上記のガラス板は、例えば次のように製造される。すなわち、まず所望のガラス組成になるように、ガラス原料を調合して、ガラスバッチを作製する。次いでこのガラスバッチを溶融、清澄した後、所望の形状に成形する。その後、所望の形状に加工する。   In addition, said glass plate is manufactured as follows, for example. That is, first, glass raw materials are prepared so that a desired glass composition is obtained, and a glass batch is produced. Next, the glass batch is melted and refined, and then formed into a desired shape. Thereafter, it is processed into a desired shape.

本実施形態に係る複合基板に含まれる樹脂板の屈折率ndは1.55以上であり、好ましくは1.58以上、1.60以上、1.63以上、特に1.64以上である。樹脂板の屈折率ndが1.55未満になると、有機EL照明の光取り出し効率を高め難くなる。一方、樹脂板の屈折率ndが高過ぎると、樹脂板の透過率が低下したり、板状に成形し難くなる。よって、樹脂板の屈折率ndは2.3以下、2.0以下、1.9以下、1.8以下、1.75以下、特に1.7以下が好ましい。   The refractive index nd of the resin plate included in the composite substrate according to the present embodiment is 1.55 or more, preferably 1.58 or more, 1.60 or more, 1.63 or more, particularly 1.64 or more. When the refractive index nd of the resin plate is less than 1.55, it is difficult to increase the light extraction efficiency of the organic EL illumination. On the other hand, if the refractive index nd of the resin plate is too high, the transmittance of the resin plate is reduced or it is difficult to mold into a plate shape. Therefore, the refractive index nd of the resin plate is preferably 2.3 or less, 2.0 or less, 1.9 or less, 1.8 or less, 1.75 or less, particularly 1.7 or less.

上記の樹脂板の材質は、製造コストの観点から、ポリエチレンテレフタレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、スチレンアクリロニトリル共重合体、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、エポキシ樹脂、ポリカーボネート、アクリルの何れかが好ましい。   From the viewpoint of production cost, the material of the above resin plate is one of polyethylene terephthalate, polyvinyl chloride, polyvinylidene chloride, polystyrene, styrene acrylonitrile copolymer, polyester, polyamide, polyimide, polyurethane, epoxy resin, polycarbonate, and acrylic. Is preferred.

上記の樹脂板の板厚は2.0mm以下、1.5mm以下、1.3mm以下、1.1mm以下、0.8mm以下、0.6mm以下、0.5mm以下、0.3mm以下、0.2mm以下、特に0.1mm以下が好ましい。樹脂板の板厚が小さい程、樹脂板の可撓性が高まり、デザイン性が高い照明デバイスを作製し易くなる。しかし、樹脂板の板厚が極端に小さくなると、樹脂板が破損し易くなる。よって、樹脂板の板厚は10μm以上、特に30μm以上が好ましい。   The thickness of the resin plate is 2.0 mm or less, 1.5 mm or less, 1.3 mm or less, 1.1 mm or less, 0.8 mm or less, 0.6 mm or less, 0.5 mm or less, 0.3 mm or less, 0. 2 mm or less, especially 0.1 mm or less are preferable. The smaller the thickness of the resin plate, the higher the flexibility of the resin plate and the easier it is to produce a lighting device with high design. However, when the thickness of the resin plate becomes extremely small, the resin plate is easily damaged. Therefore, the thickness of the resin plate is preferably 10 μm or more, particularly preferably 30 μm or more.

上記の樹脂板は、少なくとも一方の表面の表面粗さRaは10nm以下、5nm以下、1nm以下、0.5nm以下、0.3nm以下、特に0.2nm以下が好ましい。表面粗さRaが10nmより大きいと、ガラス基板上に成膜される透明導電膜や有機層の膜厚制御が困難になる。またガラス板との接着時に、その界面に気泡が取り込まれて、外観品位が低下する虞がある。   The resin plate preferably has a surface roughness Ra of at least one surface of 10 nm or less, 5 nm or less, 1 nm or less, 0.5 nm or less, 0.3 nm or less, particularly 0.2 nm or less. When the surface roughness Ra is larger than 10 nm, it becomes difficult to control the film thickness of the transparent conductive film or the organic layer formed on the glass substrate. In addition, when bonding to the glass plate, bubbles may be taken into the interface and the appearance quality may be reduced.

上記の樹脂板は、光取り出し効率を高めるために、少なくとも一方の表面に凹凸構造、特に四角錘が形成されていることが好ましい。凹凸構造は、ガラス板の屈折率nd、有機材料の厚み、樹脂板の屈折率nd等を考慮しながら、凹凸構造の周期、深さ、形状等を決定すればよい。   In order to improve the light extraction efficiency, the above resin plate preferably has a concavo-convex structure, particularly a square pyramid, formed on at least one surface. For the concavo-convex structure, the period, depth, shape, etc. of the concavo-convex structure may be determined in consideration of the refractive index nd of the glass plate, the thickness of the organic material, the refractive index nd of the resin plate, and the like.

本実施形態に係る複合基板において、(樹脂板の屈折率nd)−(ガラス板の屈折率nd)の値は0.001〜0.1、0.001〜0.05、0.001〜0.03、0.001〜0.01、0.001〜0.0008、特に0.001〜0.0005が好ましい。(樹脂板の屈折率nd)−(ガラス板の屈折率nd)の値が0.001未満になると、ガラス板−樹脂板の界面での反射率が大きくなり、光取り出し効率が低下し易くなる。一方、(樹脂板の屈折率nd)−(ガラス板の屈折率nd)の値が大き過ぎると、樹脂板―空気の界面での反射ロスが大きくなり、光取り出し効率が低下し易くなる。   In the composite substrate according to this embodiment, the values of (refractive index nd of resin plate) − (refractive index nd of glass plate) are 0.001 to 0.1, 0.001 to 0.05, 0.001 to 0. 0.03, 0.001 to 0.01, 0.001 to 0.0008, particularly 0.001 to 0.0005 are preferred. When the value of (refractive index nd of resin plate) − (refractive index nd of glass plate) is less than 0.001, the reflectance at the glass plate-resin plate interface increases, and the light extraction efficiency tends to decrease. . On the other hand, if the value of (refractive index nd of the resin plate) − (refractive index nd of the glass plate) is too large, the reflection loss at the resin plate-air interface increases, and the light extraction efficiency tends to decrease.

本実施形態に係る複合基板において、ガラス板と樹脂板を貼り合わせるために、接着材を用いてもよい。接着材を用いる場合、EVA(エチレン−酢酸ビニル共重合樹脂)、紫外線効果樹脂、熱硬化性樹脂、OCA(Optical Clear Adhesive 高透明性接着剤転写テープ)等を用いることが好ましい。   In the composite substrate according to the present embodiment, an adhesive may be used to bond the glass plate and the resin plate together. When using an adhesive, it is preferable to use EVA (ethylene-vinyl acetate copolymer resin), ultraviolet effect resin, thermosetting resin, OCA (Optical Clear Adhesive highly transparent adhesive transfer tape), and the like.

接着材層の厚みは100μm以下、80μm以下、50μm以下、30μm以下、10μm以下、8μm以下、5μm以下、特に3μm以下が好ましい。このようにすれば、複合基板の厚みが小さくなるため、デバイスの軽量化、薄型化を達成し易くなる。   The thickness of the adhesive layer is preferably 100 μm or less, 80 μm or less, 50 μm or less, 30 μm or less, 10 μm or less, 8 μm or less, 5 μm or less, particularly 3 μm or less. In this way, since the thickness of the composite substrate is reduced, the device can be easily reduced in weight and thickness.

本実施形態に係る複合基板において、ヘーズ値は5%以上、10%以上、30%以上、50%以上、70%以上、80%以上、90%以上、93%以上、特に98%以上が好ましい。このようにすれば、樹脂板−空気の界面での反射率が低下するため、光取り出し効率を高めることができる。   In the composite substrate according to this embodiment, the haze value is preferably 5% or more, 10% or more, 30% or more, 50% or more, 70% or more, 80% or more, 90% or more, 93% or more, particularly 98% or more. . In this way, the reflectance at the resin plate-air interface decreases, so that the light extraction efficiency can be increased.

実施例に基づいて、本発明を説明する。なお、実施例は、単なる例示であって、本発明は、以下の実施例に何ら限定されない。   The present invention will be described based on examples. In addition, an Example is a mere illustration and this invention is not limited to the following Examples at all.

表1〜3は、本発明の実施例(試料No.1〜14)を示している。なお、表中において、PETはポリエチレンテレフタレートを指し、PENはポリエチレンナフタレートを指している。   Tables 1 to 3 show examples of the present invention (sample Nos. 1 to 14). In the table, PET refers to polyethylene terephthalate, and PEN refers to polyethylene naphthalate.

まず表1〜3に記載のガラス組成になるように、ガラス原料を調合した後、得られたガラスバッチをガラス溶融炉に供給して1500〜1600℃で4時間溶融した。次に、得られた溶融ガラスをカーボン板の上に流し出して板状に成形した後、所定のアニール処理を行った。続いて、表中に記載の板厚になるまで研磨処理を行った。最後に、得られたガラス板について、種々の特性を評価した。   First, after preparing a glass raw material so that it might become a glass composition of Tables 1-3, the obtained glass batch was supplied to the glass melting furnace, and it fuse | melted at 1500-1600 degreeC for 4 hours. Next, after the obtained molten glass was poured out on a carbon plate and formed into a plate shape, a predetermined annealing treatment was performed. Subsequently, polishing treatment was performed until the plate thickness described in the table was reached. Finally, various characteristics of the obtained glass plate were evaluated.

密度ρは、周知のアルキメデス法によって測定した値である。   The density ρ is a value measured by the well-known Archimedes method.

熱膨張係数αは、ディラトメーターを用いて、30〜380℃における平均値を測定した値である。測定試料として、φ5mm×20mmの円柱状試料(端面はR加工されている)を用いた。   Thermal expansion coefficient (alpha) is the value which measured the average value in 30-380 degreeC using the dilatometer. As a measurement sample, a cylindrical sample having a diameter of 5 mm × 20 mm (the end surface is R-processed) was used.

歪点Psは、ASTM C336−71に記載の方法に基づいて測定した値である。なお、歪点Psが高い程、耐熱性が高くなる。   The strain point Ps is a value measured based on the method described in ASTM C336-71. In addition, heat resistance becomes high, so that the strain point Ps is high.

軟化点Ta、軟化点Tsは、ASTM C338−93に記載の方法に基づいて測定した値である。   The softening point Ta and the softening point Ts are values measured based on the method described in ASTM C338-93.

高温粘度104.0dPa・s、103.0dPa・s、102.5dPa・s、及び102.0dPa・sにおける温度は、白金球引き上げ法で測定した値である。なお、これらの温度が低い程、溶融性に優れる。 The temperatures at high temperature viscosities of 10 4.0 dPa · s, 10 3.0 dPa · s, 10 2.5 dPa · s, and 10 2.0 dPa · s are values measured by the platinum ball pulling method. In addition, it is excellent in meltability, so that these temperatures are low.

液相温度TLは、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶の析出する温度を測定した値である。また、液相粘度log10ηTLは、液相温度TLにおけるガラスの粘度を白金球引き上げ法で測定した値を指す。なお、液相粘度log10ηTLが高く、液相温度TLが低い程、耐失透性、成形性に優れる。 The liquid phase temperature TL passes through a standard sieve 30 mesh (500 μm), and the glass powder remaining in 50 mesh (300 μm) is placed in a platinum boat and held in a temperature gradient furnace for 24 hours to measure the temperature at which crystals precipitate. It is the value. Further, the liquidus viscosity log 10 ηTL indicates a value obtained by measuring the viscosity of the glass at the liquidus temperature TL by a platinum ball pulling method. Note that the higher the liquidus viscosity log 10 ηTL and the lower the liquidus temperature TL, the better the devitrification resistance and the moldability.

ガラス板の屈折率nd、nCは、まず25mm×25mm×約3mmの直方体試料を作製した後、(Ta+30℃)から(歪点−50℃)までの温度域を0.1℃/minになるような冷却速度でアニール処理し、続いて屈折率が整合する浸液をガラス間に浸透させながら、島津製作所製の屈折率測定器KPR−2000を用いて測定した値である。また、樹脂板の屈折率nd、nCは、エプリソメーターで測定した値である。   The refractive index nd and nC of the glass plate is a rectangular parallelepiped sample of 25 mm × 25 mm × about 3 mm, and then the temperature range from (Ta + 30 ° C.) to (strain point−50 ° C.) is 0.1 ° C./min. It is a value measured by using a refractive index measuring device KPR-2000 manufactured by Shimadzu Corporation while annealing with such a cooling rate and subsequently infiltrating an immersion liquid having a matching refractive index between the glasses. Further, the refractive indexes nd and nC of the resin plate are values measured by an eprisometer.

OCA(厚み175μm)を用いて、上記ガラス板と表中に記載の樹脂板をラミネーターで貼り合わせて、複合基板を作製した。   Using OCA (thickness: 175 μm), the glass plate and the resin plate described in the table were bonded together with a laminator to prepare a composite substrate.

表3に記載の試料No.11〜14の複合基板について、ダブルビーム式ヘーズメーターによりヘーズ値を測定したところ、試料No.11が88%、試料No.12が95%、試料No.13が82%、試料No.14が74%であった。   Sample No. described in Table 3 When the haze values of the composite substrates 11 to 14 were measured using a double beam haze meter, 11 is 88%, sample no. 12 is 95%, sample no. 13 is 82%, sample no. 14 was 74%.

表1に記載の試料No.5、11に記載のガラス組成になるように、ガラス原料を調合した後、得られたガラスバッチを連続窯に投入し、1450〜1600℃の温度で溶融した。続いて、得られた溶融ガラスに対して、オーバーフローダウンドロー法による成形を行い、厚み0.5mmのガラス板を得た。得られたガラス板に対して、両面の表面粗さ(Ra)を測定したところ、その値は0.2nmであった。なお、表面粗さ(Ra)は、JIS B0601:2001に準拠した方法で測定した値である。   Sample No. described in Table 1 After preparing a glass raw material so that it might become a glass composition of 5 and 11, the obtained glass batch was thrown into the continuous kiln, and it fuse | melted at the temperature of 1450-1600 degreeC. Subsequently, the obtained molten glass was molded by an overflow down draw method to obtain a glass plate having a thickness of 0.5 mm. When the surface roughness (Ra) of both surfaces was measured with respect to the obtained glass plate, the value was 0.2 nm. The surface roughness (Ra) is a value measured by a method based on JIS B0601: 2001.

更に、EVA(厚み25μm)を用いて、上記ガラス板とPET製の樹脂板(厚み100μm、両面の表面粗さRa5nm)をラミネーターで貼り合わせて、複合基板を作製した。   Further, using EVA (thickness 25 μm), the glass plate and a PET resin plate (thickness 100 μm, surface roughness Ra 5 nm on both sides) were bonded together with a laminator to prepare a composite substrate.

表1に記載の試料No.5、11に記載のガラス組成になるように、ガラス原料を調合した後、得られたガラスバッチを連続窯に投入し、1450〜1600℃の温度で溶融した。続いて、得られた溶融ガラスに対して、オーバーフローダウンドロー法による成形を行い、厚み0.5mmのガラス板を得た。得られたガラス板に対して、両面の表面粗さ(Ra)を測定したところ、その値は0.2nmであった。なお、表面粗さ(Ra)は、JIS B0601:2001に準拠した方法で測定した値である。   Sample No. described in Table 1 After preparing a glass raw material so that it might become a glass composition of 5 and 11, the obtained glass batch was thrown into the continuous kiln, and it fuse | melted at the temperature of 1450-1600 degreeC. Subsequently, the obtained molten glass was molded by an overflow down draw method to obtain a glass plate having a thickness of 0.5 mm. When the surface roughness (Ra) of both surfaces was measured with respect to the obtained glass plate, the value was 0.2 nm. The surface roughness (Ra) is a value measured by a method based on JIS B0601: 2001.

更に、上記ガラス板にUV硬化樹脂を塗布した上で、PET製の樹脂板(厚み100μm、両面の表面粗さRa1.0μm)を重ねた後、UV照射を行い、複合基板を作製した。   Further, a UV curable resin was applied to the glass plate, and a PET resin plate (thickness 100 μm, surface roughness Ra 1.0 μm on both sides) was stacked, and then UV irradiation was performed to prepare a composite substrate.

Claims (19)

ガラス板と樹脂板を貼り合わせた複合基板であって、
ガラス板の屈折率ndが1.55以上2.3以下であり、且つ樹脂板の屈折率ndが1.55以上2.3以下であることを特徴とする複合基板。
A composite substrate in which a glass plate and a resin plate are bonded together,
A composite substrate, wherein the refractive index nd of the glass plate is 1.55 or more and 2.3 or less, and the refractive index nd of the resin plate is 1.55 or more and 2.3 or less.
ガラス板が、ガラス組成として、mol%で、SiO 10〜70%、B 0〜10%、SrO+BaO+La+Nb 0.1〜60%、La 0〜35%、LiO+NaO+KO 0〜15%を含有し、モル比(MgO+CaO+SrO+BaO)/(La+Nb+BaO+TiO+ZrO)が0.1〜4であり、歪点が600℃以上、屈折率ndが1.55〜2.3であることを特徴とする請求項1に記載の複合基板。 Glass plate, as a glass composition, in mol%, SiO 2 10~70%, B 2 O 3 0~10%, SrO + BaO + La 2 O 3 + Nb 2 O 5 0.1~60%, La 2 O 3 0~35 %, Li 2 O + Na 2 O + K 2 O 0-15%, the molar ratio (MgO + CaO + SrO + BaO) / (La 2 O 3 + Nb 2 O 5 + BaO + TiO 2 + ZrO 2 ) is 0.1-4, and the strain point is 600 The composite substrate according to claim 1, wherein the composite substrate has a refractive index nd of 1.55 to 2.3. ガラス板が、液相温度1250℃以下のガラスからなることを特徴とする請求項1又は2に記載の複合基板。   The composite substrate according to claim 1, wherein the glass plate is made of glass having a liquidus temperature of 1250 ° C. or less. ガラス板が、液相粘度103.5dPa・s以上のガラスからなることを特徴とする請求項1〜3の何れか一項に記載の複合基板。 The composite substrate according to any one of claims 1 to 3, wherein the glass plate is made of glass having a liquidus viscosity of 10 3.5 dPa · s or more. ガラス板が、オーバーフローダウンドロー法で成形されてなることを特徴とする請求項1〜4の何れか一項に記載の複合基板。   The composite substrate according to any one of claims 1 to 4, wherein the glass plate is formed by an overflow downdraw method. ガラス板の少なくとも一方の表面の表面粗さRaが10nm以下であることを特徴とする請求項1〜5の何れか一項に記載の複合基板。   The composite substrate according to any one of claims 1 to 5, wherein the surface roughness Ra of at least one surface of the glass plate is 10 nm or less. ガラス板の板厚が2.0mm以下であることを特徴とする請求項1〜6の何れか一項に記載の複合基板。   The thickness of a glass plate is 2.0 mm or less, The composite substrate as described in any one of Claims 1-6 characterized by the above-mentioned. ガラス板が、密度4.0g/cm以下のガラスからなることを特徴とする請求項1〜7の何れか一項に記載の複合基板。 The composite plate according to any one of claims 1 to 7, wherein the glass plate is made of glass having a density of 4.0 g / cm 3 or less. ガラス板の寸法が幅100mm以上、長さ100mm以上であることを特徴とする請求項1〜8の何れか一項に記載の複合基板。   The composite substrate according to any one of claims 1 to 8, wherein the glass plate has a width of 100 mm or more and a length of 100 mm or more. 樹脂板が、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、スチレンアクリロニトリル共重合体、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、エポキシ樹脂、ポリカーボネート、アクリルの何れか一種からなることを特徴とする請求項1〜9の何れか一項に記載の複合基板。   The resin plate is made of any one of polyvinyl chloride, polyvinylidene chloride, polystyrene, styrene acrylonitrile copolymer, polyester, polyamide, polyimide, polyurethane, epoxy resin, polycarbonate, and acrylic. The composite substrate according to any one of the above. 樹脂板の少なくとも一方の表面に凹凸構造が形成されていることを特徴とする請求項1〜10の何れか一項に記載の複合基板。   11. The composite substrate according to claim 1, wherein an uneven structure is formed on at least one surface of the resin plate. 樹脂板の少なくとも一方の表面の表面粗さRaが0.5nm以上であることを特徴とする請求項1〜11の何れか一項に記載の複合基板。   The composite substrate according to any one of claims 1 to 11, wherein the surface roughness Ra of at least one surface of the resin plate is 0.5 nm or more. 樹脂板の板厚が0.01〜3mmであることを特徴とする請求項1〜12の何れか一項に記載の複合基板。   The composite substrate according to any one of claims 1 to 12, wherein a thickness of the resin plate is 0.01 to 3 mm. ガラス板と樹脂板の間に接着材層を有し、該接着材層の厚みが100μm以下であることを特徴とする請求項1〜13の何れか一項に記載の複合基板。   The composite substrate according to any one of claims 1 to 13, wherein an adhesive layer is provided between the glass plate and the resin plate, and the thickness of the adhesive layer is 100 µm or less. (樹脂板の屈折率nd)−(ガラス板の屈折率nd)の値が0.001〜0.1であることを特徴とする請求項1〜14の何れか一項に記載の複合基板。   The value of (refractive index nd of a resin plate)-(refractive index nd of a glass plate) is 0.001-0.1, The composite substrate as described in any one of Claims 1-14 characterized by the above-mentioned. 複合基板のヘーズ値が5%以上であることを特徴とする請求項1〜15の何れか一項に記載の複合基板。   The composite substrate according to any one of claims 1 to 15, wherein a haze value of the composite substrate is 5% or more. 照明デバイスに用いることを特徴とする請求項1〜16の何れか一項に記載の複合基板。   The composite substrate according to claim 1, wherein the composite substrate is used for an illumination device. 有機EL照明に用いることを特徴とする請求項1〜16の何れか一項に記載の複合基板。   The composite substrate according to claim 1, wherein the composite substrate is used for organic EL illumination. 有機ELディスプレイに用いることを特徴とする請求項1〜16の何れか一項に記載の複合基板。
The composite substrate according to claim 1, wherein the composite substrate is used for an organic EL display.
JP2012157163A 2011-07-13 2012-07-13 Composite substrate Pending JP2014032740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012157163A JP2014032740A (en) 2011-07-13 2012-07-13 Composite substrate

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011154399 2011-07-13
JP2011154399 2011-07-13
JP2012153349 2012-07-09
JP2012153349 2012-07-09
JP2012157163A JP2014032740A (en) 2011-07-13 2012-07-13 Composite substrate

Publications (1)

Publication Number Publication Date
JP2014032740A true JP2014032740A (en) 2014-02-20

Family

ID=50282433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012157163A Pending JP2014032740A (en) 2011-07-13 2012-07-13 Composite substrate

Country Status (1)

Country Link
JP (1) JP2014032740A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014092323A (en) * 2012-11-05 2014-05-19 Narumi China Corp Glass top plate for cooking device
WO2015166708A1 (en) * 2014-05-01 2015-11-05 東洋製罐グループホールディングス株式会社 Glass substrate, organic el illuminator, and process for producing glass substrate
JP2016160135A (en) * 2015-03-02 2016-09-05 日本電気硝子株式会社 Support glass substrate and laminate using the same
JP2017050276A (en) * 2015-08-19 2017-03-09 Jsr株式会社 Composition for light guide plate, light guide plate and method for producing the same, edge light type surface light emitting device
JP2019031100A (en) * 2018-11-01 2019-02-28 日東電工株式会社 Laminate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950048A (en) * 1982-09-16 1984-03-22 Ohara Inc Optical glass
JP2009158181A (en) * 2007-12-25 2009-07-16 Nippon Zeon Co Ltd Manufacturing method of surface light source device
WO2011004844A1 (en) * 2009-07-08 2011-01-13 日本電気硝子株式会社 Glass plate
JP2011088789A (en) * 2009-10-23 2011-05-06 Nitto Denko Corp Transparent substrate
JP2011102228A (en) * 2009-10-15 2011-05-26 Asahi Glass Co Ltd Optical glass, glass frit, and light-transmissive substrate with glass layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950048A (en) * 1982-09-16 1984-03-22 Ohara Inc Optical glass
JP2009158181A (en) * 2007-12-25 2009-07-16 Nippon Zeon Co Ltd Manufacturing method of surface light source device
WO2011004844A1 (en) * 2009-07-08 2011-01-13 日本電気硝子株式会社 Glass plate
JP2011102228A (en) * 2009-10-15 2011-05-26 Asahi Glass Co Ltd Optical glass, glass frit, and light-transmissive substrate with glass layer
JP2011088789A (en) * 2009-10-23 2011-05-06 Nitto Denko Corp Transparent substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014092323A (en) * 2012-11-05 2014-05-19 Narumi China Corp Glass top plate for cooking device
WO2015166708A1 (en) * 2014-05-01 2015-11-05 東洋製罐グループホールディングス株式会社 Glass substrate, organic el illuminator, and process for producing glass substrate
JP2015222707A (en) * 2014-05-01 2015-12-10 東洋製罐グループホールディングス株式会社 Glass substrate, organic EL lighting device, and method for manufacturing glass substrate
JP2016160135A (en) * 2015-03-02 2016-09-05 日本電気硝子株式会社 Support glass substrate and laminate using the same
JP2017050276A (en) * 2015-08-19 2017-03-09 Jsr株式会社 Composition for light guide plate, light guide plate and method for producing the same, edge light type surface light emitting device
JP2019031100A (en) * 2018-11-01 2019-02-28 日東電工株式会社 Laminate

Similar Documents

Publication Publication Date Title
JP5582461B2 (en) Glass plate
CN103534088B (en) Composite base plate
JP6175742B2 (en) High refractive index glass
WO2012077708A1 (en) High-refractive-index glass
WO2012157695A1 (en) High-refractive-index glass
WO2016013612A1 (en) Glass with high refractive index
JP2014032740A (en) Composite substrate
WO2014175418A1 (en) High refractive index glass
JP2015027927A (en) High refractive index glass
JP2016028996A (en) Glass with high refractive index
JP5812242B2 (en) High refractive index glass
JP6435610B2 (en) High refractive index glass
JP5812241B2 (en) High refractive index glass
JP2016056029A (en) Tempered glass and glass for tempering
JP2012121757A (en) High-refractive-index glass
JP2015127291A (en) Glass
JP2014224037A (en) High refractive index glass
JP2015027928A (en) High refractive index glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170302