[go: up one dir, main page]

JP2014003773A - Wireless power transmission apparatus and wireless power transmission method - Google Patents

Wireless power transmission apparatus and wireless power transmission method Download PDF

Info

Publication number
JP2014003773A
JP2014003773A JP2012136420A JP2012136420A JP2014003773A JP 2014003773 A JP2014003773 A JP 2014003773A JP 2012136420 A JP2012136420 A JP 2012136420A JP 2012136420 A JP2012136420 A JP 2012136420A JP 2014003773 A JP2014003773 A JP 2014003773A
Authority
JP
Japan
Prior art keywords
power transmission
side resonator
resonator
power
wireless power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012136420A
Other languages
Japanese (ja)
Other versions
JP5971703B2 (en
Inventor
Toshio Ishizaki
俊雄 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryukoku University
Original Assignee
Ryukoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryukoku University filed Critical Ryukoku University
Priority to JP2012136420A priority Critical patent/JP5971703B2/en
Publication of JP2014003773A publication Critical patent/JP2014003773A/en
Application granted granted Critical
Publication of JP5971703B2 publication Critical patent/JP5971703B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】無負荷Q値を向上させて電力伝送効率を向上させることができ、また、電力伝送の可能な距離を大きくすることができる無線電力伝送装置を提供する。
【解決手段】この無線電力伝送装置1は、結合端子22、32に結合している送電側共振器2と受電側共振器3を備え、送電側共振器2から受電側共振器3に電磁界を用いて電力伝送するものにおいて、送電側共振器2と受電側共振器3は、誘電体共振器で構成され、一部に電磁界が通過する開口部21a、31aを有する遮蔽ケース21、31によって覆われ、結合される結合端子22、32は遮蔽ケース21、31の外部に電気的に通じている。
【選択図】図1
A wireless power transmission device capable of improving power transmission efficiency by improving a no-load Q value and increasing a possible power transmission distance.
A wireless power transmission device includes a power transmission side resonator and a power reception side resonator that are coupled to coupling terminals, and an electromagnetic field is transmitted from the power transmission side resonator to the power reception side resonator. The power transmission side resonator 2 and the power reception side resonator 3 are constituted by dielectric resonators, and shielding cases 21 and 31 having openings 21a and 31a through which electromagnetic fields partially pass. The coupling terminals 22 and 32 that are covered and coupled to each other are electrically connected to the outside of the shielding cases 21 and 31.
[Selection] Figure 1

Description

本発明は、無線で電力伝送する無線電力伝送装置及び無線電力伝送方式に関する。   The present invention relates to a wireless power transmission apparatus and a wireless power transmission system that wirelessly transmit power.

無線電力伝送には、磁気誘導方式、共振型結合方式、放射電磁波方式などがある。これらの中で、非放射電磁界結合を用いる共振型結合方式は、近・中距離の電力伝送となるが、受電側が存在すればそれとの結合に応じて送電側の電力が伝送されるので、高い電力伝送効率を得ることができる。そのため、共振型結合方式は、近年、非常に注目を集めている。   Wireless power transmission includes a magnetic induction system, a resonant coupling system, and a radiated electromagnetic wave system. Among these, the resonance type coupling method using non-radiated electromagnetic field coupling is near-medium distance power transmission, but if there is a power receiving side, the power on the power transmission side is transmitted according to the coupling with it, High power transmission efficiency can be obtained. Therefore, the resonance type coupling method has attracted much attention in recent years.

図6は従来の共振型結合方式の無線電力伝送装置の基本構成を示す図である。無線電力伝送装置101では、外部から供給される電力(高周波交流電力)は、結合ループなどのインピーダンス整合手段122aを含む結合端子122を介して、金属導線をコイル状に巻いて構成される送電側共振器102に供給される。そして、その電力は、送電側共振器102と受電側共振器103の間の伝送距離sに応じた結合係数kで電磁界結合していて、金属導線をコイル状に巻いて構成される受電側共振器103に伝送される。その後、同じく結合ループなどのインピーダンス整合手段132aを含む結合端子132を介して外部の負荷に電力が供給される。この際の最大電力伝送効率は、共振器間の結合係数kと共振器の良さを示す無負荷Q値の積によって決まることが知られている。   FIG. 6 is a diagram showing a basic configuration of a conventional resonance coupling type wireless power transmission apparatus. In the wireless power transmission apparatus 101, the power supplied from the outside (high-frequency AC power) is configured by winding a metal conductor in a coil shape via a coupling terminal 122 including impedance matching means 122a such as a coupling loop. It is supplied to the resonator 102. The power is electromagnetically coupled with a coupling coefficient k corresponding to the transmission distance s between the power transmitting resonator 102 and the power receiving resonator 103, and the power receiving side configured by winding a metal conductor in a coil shape. It is transmitted to the resonator 103. Thereafter, power is supplied to an external load through a coupling terminal 132 that also includes impedance matching means 132a such as a coupling loop. It is known that the maximum power transmission efficiency at this time is determined by the product of the coupling coefficient k between the resonators and the no-load Q value indicating the goodness of the resonators.

電力伝送効率の更なる向上のため、従来より、さまざまな構造の提案がなされている。例えば、特許文献1には、インピーダンス整合手段と送電側共振器との間又は受電側共振器とインピーダンス整合手段との間に、別のインダクタ或いはコンデンサを配置して、無負荷Q値を高くしようとするものが記載されている。また、特許文献2には、送電側共振器及び受電側共振器のそれぞれのコイル状の金属導線を、互いに誘電率の異なる2個の誘電体で挟んで支持し、誘電率の低い方の誘電体を相手の共振器に対向させることにより、電力伝送効率を向上させようとするものが記載されている。   In order to further improve the power transmission efficiency, various structures have been proposed conventionally. For example, in Patent Literature 1, another inductor or capacitor is disposed between the impedance matching unit and the power transmission side resonator or between the power reception side resonator and the impedance matching unit to increase the unloaded Q value. Is described. In Patent Document 2, the coiled metal conductors of the power transmission side resonator and the power reception side resonator are sandwiched and supported by two dielectrics having different dielectric constants, and the dielectric having the lower dielectric constant is supported. It is described that the power transmission efficiency is improved by making the body face the other resonator.

特開2011−142724号公報JP 2011-142724 A 特開2011−211792号公報JP 2011-211792 A

しかしながら、特許文献1及び特許文献2を含め従来の無線電力伝送装置では、送電側共振器及び受電側共振器は金属導線(通常は、銅線)をコイル状に巻いて構成されており、金属の導電率で決まる抵抗損のため、無負荷Q値の向上には限界がある。例えば、この場合の無負荷Q値は、大きくても数百〜一千のオーダーである。   However, in the conventional wireless power transmission apparatus including Patent Document 1 and Patent Document 2, the power transmission side resonator and the power reception side resonator are configured by winding a metal conductor (usually a copper wire) in a coil shape, Because of the resistance loss determined by the electrical conductivity, there is a limit to the improvement of the no-load Q value. For example, the unloaded Q value in this case is on the order of several hundred to one thousand at most.

また、共振型結合方式の無線電力伝送装置での結合係数kは、受電側共振器の近傍の非放射電磁界との相互作用によって決まるものであるため、送電側共振器と受電側共振器の間の距離が大きくなると、指数関数的に小さくなることは避けられないことであり、電力伝送の可能な距離には限界がある。   In addition, since the coupling coefficient k in the resonance-type wireless power transmission device is determined by the interaction with the non-radiated electromagnetic field in the vicinity of the power receiving side resonator, the power transmission side resonator and the power receiving side resonator When the distance between them increases, it is inevitable that the distance decreases exponentially, and there is a limit to the distance at which power can be transmitted.

本発明は、係る事由に鑑みてなされたものであり、その目的は、無負荷Q値を向上させて電力伝送効率を向上させることができ、また、電力伝送の可能な距離を大きくすることができる無線電力伝送装置を提供することにある。   The present invention has been made in view of the above-mentioned reasons, and an object of the present invention is to improve the power transmission efficiency by improving the no-load Q value and to increase the power transmission possible distance. An object of the present invention is to provide a wireless power transmission device that can be used.

上記目的を達成するために、請求項1に記載の無線電力伝送装置は、結合端子に結合している送電側共振器と受電側共振器を備え、該送電側共振器から該受電側共振器に電磁界を用いて電力伝送する無線電力伝送装置において、前記送電側共振器と前記受電側共振器のうち少なくとも一方は、誘電体共振器で構成され、一部に電磁界が通過する開口部を有する遮蔽ケースによって覆われ、結合される結合端子は該遮蔽ケースの外部に電気的に通じていることを特徴とする。   To achieve the above object, a wireless power transmission device according to claim 1 includes a power transmission side resonator and a power reception side resonator coupled to a coupling terminal, and the power reception side resonator is connected to the power reception side resonator. In the wireless power transmission apparatus for transmitting power using an electromagnetic field, at least one of the power transmission side resonator and the power reception side resonator is configured by a dielectric resonator, and an opening through which the electromagnetic field passes partially The coupling terminal which is covered and coupled by the shielding case having an electrical connection is electrically connected to the outside of the shielding case.

請求項2に記載の無線電力伝送装置は、請求項1に記載の無線電力伝送装置において、前記送電側共振器と前記受電側共振器のうちの少なくとも一方は、TE01δ型の誘電体共振器であることを特徴とする。 The wireless power transmission device according to claim 2 is the wireless power transmission device according to claim 1, wherein at least one of the power transmission side resonator and the power reception side resonator is a TE 01δ type dielectric resonator. It is characterized by being.

請求項3に記載の無線電力伝送装置は、請求項1又は2に記載の無線電力伝送装置において、前記送電側共振器と前記受電側共振器のうちの少なくとも一方は、セラミック製の誘電体共振器であることを特徴とする。   The wireless power transmission device according to claim 3 is the wireless power transmission device according to claim 1 or 2, wherein at least one of the power transmission side resonator and the power reception side resonator is a ceramic dielectric resonance. It is a vessel.

請求項4に記載の無線電力伝送装置は、請求項1〜3のいずれか1項に記載の無線電力伝送装置において、前記送電側共振器と前記受電側共振器のうちの少なくとも一方を覆う前記遮蔽ケースは、金属製の6面体であり、該遮蔽ケースの前記開口部は該6面体の1面の一部を開口したものであることを特徴とする。   The wireless power transmission device according to claim 4 is the wireless power transmission device according to any one of claims 1 to 3, wherein the wireless power transmission device covers at least one of the power transmission side resonator and the power reception side resonator. The shielding case is a metal hexahedron, and the opening of the shielding case is formed by opening a part of one surface of the hexahedron.

請求項5に記載の無線電力伝送方式は、結合端子に結合している送電側共振器と受電側共振器を備え、該送電側共振器から該受電側共振器に電磁界を用いて電力伝送する無線電力伝送方式において、前記送電側共振器と前記受電側共振器のうち少なくとも一方は、一部に電磁界が通過する開口部を有する遮蔽ケースによって覆われ、結合される結合端子は該遮蔽ケースの外部に電気的に通じているとともに、近・中距離においては主に非放射電磁界の結合による電力伝送を行い、遠距離においては主に放射電磁界の結合による電力伝送を行うことを特徴とする。   The wireless power transmission system according to claim 5 includes a power transmission side resonator and a power reception side resonator coupled to a coupling terminal, and uses the electromagnetic field to transmit power from the power transmission side resonator to the power reception side resonator. In the wireless power transmission system, at least one of the power transmission side resonator and the power reception side resonator is covered with a shielding case having an opening through which an electromagnetic field passes, and a coupling terminal to be coupled is shielded. In addition to being electrically connected to the outside of the case, power transmission is mainly performed by coupling of non-radiated electromagnetic fields at short and medium distances, and power transmission is performed mainly by coupling of radiated electromagnetic fields at long distances. Features.

本発明の無線電力伝送装置によれば、送電側共振器と受電側共振器のうち少なくとも一方は、誘電体共振器で構成されているので、共振器における損失を格段に少なくして無負荷Q値を向上させ、電力伝送効率を向上させることができる。また、上記の一方が送電側共振器である場合は、一部に開口部を有する遮蔽ケースで覆われ、適切な量に放射電磁界を抑制して非放射電磁界に加えることにより、また、上記の一方が受電側共振器である場合は、一部に開口部を有する遮蔽ケースで覆われ、電磁界が放射電磁界のときでも受電し易くなることにより、電力伝送の可能な距離を大きくすることができる。また、本発明の無線電力伝送方式によれば、近・中距離においては主に非放射電磁界の結合による最適な電力伝送を行い、遠距離においては主に放射電磁界の結合によるある程度の(少なくとも最低限の)電力伝送を行うので、近・中距離の電力伝送効率を維持しながら電力伝送の可能な距離を大きくすることができる   According to the wireless power transmission device of the present invention, since at least one of the power transmission side resonator and the power reception side resonator is composed of the dielectric resonator, the loss in the resonator is greatly reduced, and the no-load Q The value can be improved and the power transmission efficiency can be improved. In addition, when one of the above is a power transmission side resonator, it is covered with a shielding case having an opening in part, and by suppressing the radiated electromagnetic field to an appropriate amount and adding it to the non-radiated electromagnetic field, If one of the above is a power-receiving-side resonator, it is covered with a shielding case that has an opening in part, and it is easy to receive power even when the electromagnetic field is a radiated electromagnetic field, thereby increasing the distance at which power can be transmitted. can do. In addition, according to the wireless power transmission system of the present invention, optimum power transmission is mainly performed by combining non-radiated electromagnetic fields at short and middle distances, and to some extent by coupling of radiated electromagnetic fields mainly at long distances ( Since (at least the minimum) power transmission is performed, it is possible to increase the power transmission possible distance while maintaining the power transmission efficiency in the near and middle distances.

本発明の実施形態に係る無線電力伝送装置の構成を示す斜視図である。It is a perspective view which shows the structure of the wireless power transmission apparatus which concerns on embodiment of this invention. 同上の無線電力伝送装置の送電側共振器(及び受電側共振器)を示す斜視図である。It is a perspective view which shows the power transmission side resonator (and power receiving side resonator) of the wireless power transmission apparatus same as the above. 同上の無線電力伝送装置の送電側共振器(及び受電側共振器)の無負荷Q値についての特性図である。It is a characteristic view about the no-load Q value of the power transmission side resonator (and power receiving side resonator) of a wireless power transmission apparatus same as the above. 同上の無線電力伝送装置の構成の変形例を示す斜視図である。It is a perspective view which shows the modification of a structure of the wireless power transmission apparatus same as the above. 同上の無線電力伝送装置の無負荷Q値と結合係数kとの積についての特性図である。It is a characteristic view about the product of the no-load Q value and the coupling coefficient k of a wireless power transmission apparatus same as the above. 従来の無線電力伝送装置の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the conventional wireless power transmission apparatus.

以下、本発明を実施するための形態を図面を参照しながら説明する。本発明の実施形態に係る無線電力伝送装置1は、図1に示すように、送電側共振器2と受電側共振器3を備え、送電側共振器2から受電側共振器3に電磁界を用いて電力伝送するものである。送電側共振器2と受電側共振器3はそれぞれ、後述する結合端子22、32に結合している。この無線電力伝送装置1では、送電側共振器2の構造及びその近傍の構造と受電側共振器3の構造及びその近傍の構造とが実質的に同様なものとなっている。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. As shown in FIG. 1, the wireless power transmission device 1 according to the embodiment of the present invention includes a power transmission side resonator 2 and a power reception side resonator 3, and generates an electromagnetic field from the power transmission side resonator 2 to the power reception side resonator 3. Used to transmit power. The power transmission side resonator 2 and the power reception side resonator 3 are respectively coupled to coupling terminals 22 and 32 described later. In the wireless power transmission device 1, the structure of the power transmission side resonator 2 and the structure in the vicinity thereof, and the structure of the power reception side resonator 3 and the structure in the vicinity thereof are substantially the same.

送電側共振器2は、誘電体共振器で構成されている。この誘電体共振器は、誘電正接(tanδ)が低ければ、その材料が限定されるものではないが、セラミック製であるのが好ましい。誘電正接が低い程、高い無負荷Q値が得られる。セラミック製のものは、誘電正接が極めて低いものがすでに公知である。   The power transmission side resonator 2 is composed of a dielectric resonator. The dielectric resonator is not limited in material as long as the dielectric loss tangent (tan δ) is low, but is preferably made of ceramic. The lower the dielectric loss tangent, the higher the unloaded Q value. Ceramics having a very low dielectric loss tangent are already known.

送電側共振器2の形状及び大きさは、使用する共振周波数及び共振モードに応じたものである。図1に示すこの実施形態では、TE01δモードを共振モードとして使用しているTE01δ型の誘電体共振器なので、中心軸近傍をくり抜いた円柱形状となっている。共振周波数は、例えば、約2.4GHzとすることができる。この場合の電磁界分布は、図2に示すように、電界ベクトルが円柱形状の円周方向に発生して分布し、磁界ベクトルは電界ベクトルに直交して送電側共振器2の内部と外部に発生して分布する。なお、使用する共振周波数及び共振モード、及びそれに応じた送電側共振器2の形状及び大きさは、限定されるものではなく、所望の特性に合わせて種々のものを適用することが可能である。 The shape and size of the power transmission side resonator 2 correspond to the resonance frequency and resonance mode to be used. In this embodiment shown in FIG. 1, since it is a TE 01δ type dielectric resonator that uses the TE 01δ mode as a resonance mode, it has a cylindrical shape with a hollow in the vicinity of the central axis. The resonant frequency can be, for example, about 2.4 GHz. As shown in FIG. 2, the electric field distribution in this case is generated and distributed in the circumferential direction of the cylindrical electric field vector, and the magnetic field vector is orthogonal to the electric field vector inside and outside the power transmission resonator 2. Occur and distribute. In addition, the resonance frequency and resonance mode to be used, and the shape and size of the power transmission side resonator 2 according to the resonance frequency are not limited, and various ones can be applied according to desired characteristics. .

送電側共振器2は、遮蔽ケース21によって覆われている。遮蔽ケース21には、一部に電磁界が通過する開口部21aを有している。この遮蔽ケース21は、開口部21aの部分を除いて送電側共振器2のほぼ全体を覆う。詳細には、遮蔽ケース21は、金属製の6面体(直方体或いは立方体)であり、開口部21aはこの6面体の1面の一部を開口したものである。また、開口部21aは、送電側共振器2と受電側共振器3の間の位置に設けられている。なお、図1においては、遮蔽ケース21(及び後述する遮蔽ケース31)を透視して内部を描いている。   The power transmission side resonator 2 is covered with a shielding case 21. The shielding case 21 has an opening 21a through which an electromagnetic field passes. The shielding case 21 covers almost the entire power transmission resonator 2 except for the opening 21a. Specifically, the shielding case 21 is a metal hexahedron (a rectangular parallelepiped or a cube), and the opening 21a is a part of one surface of the hexahedron that is opened. Further, the opening 21 a is provided at a position between the power transmission side resonator 2 and the power reception side resonator 3. In addition, in FIG. 1, the inside is drawn through the shielding case 21 (and a shielding case 31 described later).

遮蔽ケース21は、開口部21a以外の部分において、放射電磁界(電磁波)を閉じ込めるものである。誘電体共振器で構成される送電側共振器2は、非放射電磁界とともに放射電磁界を多く発生するので、放射電磁界を閉じ込めないと、電力(エネルギー)が周囲に放射されて無負荷Q値が急激に下がるからである。   The shielding case 21 confines a radiated electromagnetic field (electromagnetic wave) in a portion other than the opening 21a. The power transmission side resonator 2 formed of a dielectric resonator generates a large amount of a radiated electromagnetic field together with a non-radiated electromagnetic field. Therefore, if the radiated electromagnetic field is not confined, electric power (energy) is radiated to the surroundings and no load Q This is because the value drops sharply.

遮蔽ケース21の開口部21aは、非放射電磁界と放射電磁界が通過する。遮蔽ケース21の開口部21aは、適切な量に放射電磁界を抑制するように、形状及びサイズを決めることになる。開口部21aを通過する非放射電磁界と放射電磁界を含む電磁界の量は、後述する実験結果に示すように、開口部21aのサイズ(面積)だけではなく、その形状にも依存する。   A non-radiated electromagnetic field and a radiated electromagnetic field pass through the opening 21 a of the shielding case 21. The shape and size of the opening 21a of the shielding case 21 are determined so as to suppress the radiation electromagnetic field to an appropriate amount. The amount of the electromagnetic field including the non-radiated electromagnetic field and the radiated electromagnetic field passing through the opening 21a depends on not only the size (area) of the opening 21a but also the shape thereof, as shown in the experimental results described later.

送電側共振器2は、上述したように結合端子22に結合しており、結合端子22は、遮蔽ケース21の外部に電気的に通じている。詳細には、結合端子22は、遮蔽ケース21の内側に設けられ、磁界などによって送電側共振器2と結合する結合ループ22aと、その結合ループ22aに電気的に接続され、外部から電力(高周波交流電力)が供給され得る外部端子部22bと、を有している。   The power transmission side resonator 2 is coupled to the coupling terminal 22 as described above, and the coupling terminal 22 is electrically connected to the outside of the shielding case 21. Specifically, the coupling terminal 22 is provided inside the shielding case 21 and is electrically connected to the coupling loop 22a coupled to the power transmission side resonator 2 by a magnetic field or the like, and the coupling loop 22a. External terminal portion 22b to which AC power) can be supplied.

送電側共振器2は、それよりも低い誘電率の支持台23により、遮蔽ケース21に接しないように保持されている。支持台23は、セラミック製とすることができる。   The power transmission side resonator 2 is held so as not to contact the shielding case 21 by a support base 23 having a lower dielectric constant. The support base 23 can be made of ceramic.

このような送電側共振器2は、結合端子22を介して外部からの電力に励振され、非放射電磁界と放射電磁界を発生する。送電側共振器2は、セラミック製のような誘電正接が極めて低い材料を用いることにより、損失が格段に少なくすることができ、無負荷Q値を向上(例えば、数万のオーダーに)することが可能である。その結果、電力伝送効率を向上させることができる。   Such a power transmission side resonator 2 is excited by external power via the coupling terminal 22 and generates a non-radiated electromagnetic field and a radiated electromagnetic field. The power transmission side resonator 2 can use a material having a very low dielectric loss tangent, such as ceramics, so that the loss can be remarkably reduced and the unloaded Q value can be improved (for example, on the order of several tens of thousands). Is possible. As a result, power transmission efficiency can be improved.

また、送電側共振器2は、適切な量の放射電磁界が非放射電磁界に加えられることにより、電力伝送の可能な距離を大きくすることができる。受電側共振器3は、非放射電磁界が強い近・中距離に位置していると、非放射電磁界に主に結合して最適な(電力伝送効率の高い)電力伝送が可能である。受電側共振器3は、非放射電磁界が微弱になる遠距離に位置していると、そこに伝播する放射電磁界に主に結合してある程度の(少なくとも最低限の)電力伝送が可能になる。その結果、電力伝送の可能な距離を大きくすることができる。   Further, the power transmission side resonator 2 can increase the distance in which power can be transmitted by adding an appropriate amount of the radiated electromagnetic field to the non-radiated electromagnetic field. When the power-receiving-side resonator 3 is located at a near / medium distance where the non-radiated electromagnetic field is strong, the power-receiving resonator 3 can be coupled to the non-radiated electromagnetic field mainly to perform optimal (high power transmission efficiency) power transmission. When the power-receiving-side resonator 3 is located at a long distance where the non-radiated electromagnetic field is weak, it is mainly coupled to the radiated electromagnetic field propagating there, so that a certain amount (at least minimum) of power transmission is possible. Become. As a result, the possible distance for power transmission can be increased.

次に、受電側共振器3を説明する。受電側共振器3は、上述したように、送電側共振器2と実質的に同様の構造であり、受電側共振器3の近傍の構造も送電側共振器2の近傍と実質的に同様の構造である。すなわち、受電側共振器3は、送電側共振器2と同様の誘電体共振器で構成されており、遮蔽ケース21と同様の遮蔽ケース31によって覆われている。遮蔽ケース31は、開口部21aと同様の開口部31aを有している。開口部31aは、送電側共振器2と受電側共振器3の間の位置に設けられている。受電側共振器3は、結合端子22と同様の結合端子32に結合している。結合端子32は、結合ループ22aと同様の結合ループ32aと、外部端子部22bと同様であって外部に電力(高周波交流電力)を出力し得る外部端子部32bと、を有している。受電側共振器3は、支持台23と同様の支持台33により保持されている。   Next, the power receiving side resonator 3 will be described. As described above, the power receiving side resonator 3 has substantially the same structure as that of the power transmitting side resonator 2, and the structure in the vicinity of the power receiving side resonator 3 is substantially the same as that in the vicinity of the power transmitting side resonator 2. Structure. That is, the power receiving side resonator 3 is configured by a dielectric resonator similar to the power transmitting side resonator 2, and is covered with a shielding case 31 similar to the shielding case 21. The shielding case 31 has an opening 31a similar to the opening 21a. The opening 31 a is provided at a position between the power transmission side resonator 2 and the power reception side resonator 3. The power receiving side resonator 3 is coupled to a coupling terminal 32 similar to the coupling terminal 22. The coupling terminal 32 includes a coupling loop 32a similar to the coupling loop 22a, and an external terminal portion 32b that is similar to the external terminal portion 22b and can output electric power (high-frequency AC power) to the outside. The power receiving side resonator 3 is held by a support base 33 similar to the support base 23.

受電側共振器3には、送電側共振器2からの距離に応じて非放射電磁界又は放射電磁界を用いて電力伝送される。受電側共振器3に伝送された電力は、結合端子32を介して外部の負荷に供給される。負荷は、通信端末機などの機器の所要の機能を発揮するための回路である。受電側共振器3は、送電側共振器2と同様に、セラミック製のような誘電正接が極めて低い材料を用いることにより、損失を格段に少なくすることができ、無負荷Q値を向上(例えば、数万のオーダーに)することが可能である。その結果、電力伝送効率を向上させることができる。   Power is transmitted to the power receiving side resonator 3 using a non-radiated electromagnetic field or a radiated electromagnetic field according to the distance from the power transmitting side resonator 2. The power transmitted to the power receiving resonator 3 is supplied to an external load via the coupling terminal 32. The load is a circuit for performing a required function of a device such as a communication terminal. Similarly to the power transmission side resonator 2, the power reception side resonator 3 can use a material having a very low dielectric loss tangent, such as ceramic, to significantly reduce the loss and improve the no-load Q value (for example, , In the order of tens of thousands). As a result, power transmission efficiency can be improved.

また、受電側共振器3は、一部に開口部31aを有する遮蔽ケース31で誘電体共振器を覆うことで、電力伝送の電磁界が放射電磁界のときでも適切な量を受電し易くすることにより、電力伝送の可能な距離を大きくすることができる。   Further, the power receiving side resonator 3 covers the dielectric resonator with a shielding case 31 having a part of the opening 31a, thereby making it easy to receive an appropriate amount even when the electromagnetic field for power transmission is a radiated electromagnetic field. As a result, the possible distance for power transmission can be increased.

次に、本願発明者によるシミュレーションとサンプルの実験について述べる。送電側共振器2と受電側共振器3はともに、中心軸近傍をくり抜いた円柱形状とし、大きさは、外径A、A’を25mm、長手方向の長さB、B’を10mmとしている。また、共振周波数が約2.4GHzのTE01δモードを共振モードとして使用している。遮蔽ケース21と遮蔽ケース31はともに、金属製の6面体とし、開口部21a、31aが形成される一面は互いに対面させている。遮蔽ケース21、31の開口部21a、31aが形成される一面は、送電側共振器2及び受電側共振器3の円柱形状の長手方向と同じ方向の辺の長さC、C’が50mm、それと垂直な方向の辺の長さD、D’が80mmとしている。また、この一面に対して垂直な方向の辺の長さE、E’は80mmとしている。 Next, simulations and sample experiments by the inventors will be described. Both the power transmission side resonator 2 and the power reception side resonator 3 have a cylindrical shape hollowed out in the vicinity of the central axis. . Further, the TE 01δ mode having a resonance frequency of about 2.4 GHz is used as the resonance mode. Both the shielding case 21 and the shielding case 31 are metal hexahedrons, and the surfaces on which the openings 21a and 31a are formed face each other. One side where the openings 21a and 31a of the shielding cases 21 and 31 are formed has side lengths C and C ′ of 50 mm in the same direction as the cylindrical longitudinal direction of the power transmission side resonator 2 and the power reception side resonator 3. The side lengths D and D ′ in the direction perpendicular thereto are set to 80 mm. The lengths E and E ′ in the direction perpendicular to the one surface are 80 mm.

図3は、送電側共振器2(又は受電側共振器3)の無負荷Q値(Qu)について、遮蔽ケース21(又は31)の一面に対する開口部21a(又は31a)の開口率(面積比)との関係を示すシミュレーション実験の結果である。図3の曲線a(実線)は、遮蔽ケース21(又は31)の100%開放された一面を、水平方向に長い2個の金属板でもって上端部及び下端部を塞いで、図1に示すように開口部21a(又は31a)を形成した場合のものである。曲線b(破線)は、遮蔽ケース21(又は31)の100%開放された一面を、垂直方向に長い2個の金属板でもって左端部及び右端部を塞いで、図4に示すように開口部21a(又は31a)を形成した場合のものである。曲線aは、開口率を減少させるに従って、負荷Q値が増加し、2万程度までに増加している。これより、磁界ベクトルの方向の開口の長さを短くすることによって放射が抑えられ、高い無負荷Q値が得られていることがわかる。一方、曲線bは、顕著な変化は見られない。   FIG. 3 shows the aperture ratio (area ratio) of the opening 21a (or 31a) with respect to one surface of the shielding case 21 (or 31) with respect to the unloaded Q value (Qu) of the power transmitting resonator 2 (or the power receiving resonator 3). It is the result of the simulation experiment which shows the relationship with). A curve a (solid line) in FIG. 3 is shown in FIG. 1 in which one side of the shielding case 21 (or 31) that is 100% open is covered with two metal plates that are long in the horizontal direction and the upper end and lower end are closed. In this way, the opening 21a (or 31a) is formed. Curve b (dashed line) is a 100% open surface of the shielding case 21 (or 31), with two metal plates that are long in the vertical direction closed at the left and right ends, as shown in FIG. This is a case where the portion 21a (or 31a) is formed. In curve a, as the aperture ratio is decreased, the load Q value is increased and increased to about 20,000. From this, it can be seen that radiation is suppressed by shortening the length of the opening in the direction of the magnetic field vector, and a high unloaded Q value is obtained. On the other hand, the curve b shows no significant change.

図5は、無負荷Q値(Qu)と結合係数kとの積(k・Qu)について、遮蔽ケース21と遮蔽ケース31の距離s’に対する変化を示すシミュレーションとサンプルの実験の結果である。図5(a)の曲線c(破線)と曲線d(実線)はそれぞれ、遮蔽ケース21の一面に対する開口部21aの開口率(及び遮蔽ケース31の一面に対する開口部31aの開口率)が100%の場合のシミュレーションとサンプルの実験のものである。図5(b)の曲線e(破線)と曲線f(実線)はそれぞれ、水平方向に長い2個の金属板でもって上端部及び下端部を塞いで、遮蔽ケース21の一面に対する開口部21aの開口率(及び遮蔽ケース31の一面に対する開口部31aの開口率)を64%にした場合のシミュレーションとサンプルの実験のものである。   FIG. 5 is a result of simulation and sample experiment showing a change with respect to the distance s ′ between the shielding case 21 and the shielding case 31 with respect to the product (k · Qu) of the unloaded Q value (Qu) and the coupling coefficient k. The curve c (dashed line) and the curve d (solid line) in FIG. 5A each have an opening ratio of the opening 21a with respect to one surface of the shielding case 21 (and an opening ratio of the opening 31a with respect to one surface of the shielding case 31). This is a simulation and sample experiment. A curve e (dashed line) and a curve f (solid line) in FIG. 5B each close the upper end and the lower end with two metal plates that are long in the horizontal direction, and the opening 21 a with respect to one surface of the shielding case 21. This is a simulation and sample experiment when the aperture ratio (and the aperture ratio of the opening 31a with respect to one surface of the shielding case 31) is 64%.

この実験結果によると、遮蔽ケース21と遮蔽ケース31の距離s’が大きくなるに従って、無負荷Q値Quと結合係数kとの積の値は急激に減少するが、距離s’が大体2〜3cmのところから、減少の傾きが緩やかになる。これは、距離s’が大体2〜3cmまでは非放射電磁界の結合による伝送が主であるのに対して、それ以上では放射電磁界の結合による伝送が主となることを示している。これにより、電力伝送の可能な距離を大きくできることが分かる。   According to this experimental result, as the distance s ′ between the shielding case 21 and the shielding case 31 increases, the value of the product of the no-load Q value Qu and the coupling coefficient k decreases rapidly, but the distance s ′ is approximately 2 to 2. From 3cm, the slope of the decrease becomes gentle. This indicates that transmission by coupling of non-radiated electromagnetic fields is mainly performed when the distance s ′ is approximately 2 to 3 cm, whereas transmission by coupling of radiated electromagnetic fields is mainly performed at distances s ′ or more. As a result, it can be seen that the possible distance for power transmission can be increased.

なお、このような無線電力伝送装置1は、送電側共振器2と受電側共振器3のうち一方の共振器及びその近傍の構造だけを残し、他方の共振器及びその近傍の構造を他の構造のものに置き換えることも場合によっては可能である。送電側共振器2の方だけを残した場合は、上述したように、送電側共振器2の無負荷Q値を向上させて、電力伝送効率を向上させることができ、また、非放射電磁界と放射電磁界を用いて電力伝送の可能な距離を大きくすることができる。また、受電側共振器3の方だけを残した場合は、上述したように、受電側共振器3の無負荷Q値を向上させて、電力伝送効率を向上させることができ、また、電力伝送の電磁界が放射電磁界のときでも適切な量を受電し易くすることにより、電力伝送の可能な距離を大きくすることができる。   Note that such a wireless power transmission device 1 leaves only one of the power transmission side resonator 2 and the power reception side resonator 3 and the structure in the vicinity thereof, and the other resonator and the structure in the vicinity thereof in the other. It may be possible to replace it with a structure. When only the power transmission side resonator 2 is left, as described above, the no-load Q value of the power transmission side resonator 2 can be improved, and the power transmission efficiency can be improved. And the radiated electromagnetic field can be used to increase the distance in which power can be transmitted. Further, when only the power receiving resonator 3 is left, as described above, the no-load Q value of the power receiving resonator 3 can be improved, and the power transmission efficiency can be improved. Even when the electromagnetic field is a radiated electromagnetic field, it is possible to increase the distance in which power can be transmitted by making it easy to receive an appropriate amount.

また、このような無線電力伝送装置1による無線電力伝送方式、すなわち、近・中距離においては主に非放射電磁界の結合による最適な電力伝送を行い、遠距離においては主に放射電磁界の結合によるある程度の(少なくとも最低限の)電力伝送を行う方式は、近・中距離の電力伝送効率を維持しながら電力伝送の可能な距離を大きくすることができる非常に有用な方式である。この方式の実現には、送電側共振器2と受電側共振器3に誘電体共振器を用いるが、非放射電磁界の結合による電力伝送と放射電磁界の結合による電力伝送をともに行えるのならば、他の共振器を用いることも場合によっては可能である。いずれの場合でも、送電側共振器2と受電側共振器3のうち少なくとも一方は、上記の遮蔽ケース21(又は31)によって覆われ、上記の結合端子22(又は32)に結合されるのが好ましい。   In addition, the wireless power transmission method by the wireless power transmission device 1 as described above, that is, optimal power transmission is mainly performed by combining non-radiated electromagnetic fields at short and medium distances, and radiation electromagnetic fields mainly at long distances. A method of performing a certain amount (at least minimum) of power transmission by coupling is a very useful method capable of increasing a power transmission possible distance while maintaining near-medium distance power transmission efficiency. In order to realize this method, dielectric resonators are used for the power transmission side resonator 2 and the power reception side resonator 3, but both power transmission by coupling of non-radiated electromagnetic fields and power transmission by coupling of radiated electromagnetic fields can be performed. For example, other resonators can be used in some cases. In any case, at least one of the power transmission side resonator 2 and the power reception side resonator 3 is covered by the shielding case 21 (or 31) and coupled to the coupling terminal 22 (or 32). preferable.

以上、本発明の実施形態に係る無線電力伝送装置について説明したが、本発明は、上述の実施形態に記載したものに限られることなく、特許請求の範囲に記載した事項の範囲内でのさまざまな設計変更が可能である。   The wireless power transmission device according to the embodiment of the present invention has been described above. However, the present invention is not limited to that described in the above-described embodiment, and various modifications within the scope of the matters described in the claims. Design changes are possible.

1 無線電力伝送装置
2 送電側共振器
21 送電側の遮蔽ケース
21a 送電側の遮蔽ケースの開口部
22 送電側の結合端子
23 送電側の支持台
3 受電側共振器
31 受電側の遮蔽ケース
31a 受電側の遮蔽ケースの開口部
32 受電側の結合端子
33 受電側の支持台
DESCRIPTION OF SYMBOLS 1 Wireless power transmission apparatus 2 Power transmission side resonator 21 Power transmission side shielding case 21a Power transmission side shielding case opening 22 Power transmission side coupling terminal 23 Power transmission side support base 3 Power reception side resonator 31 Power reception side shielding case 31a Power reception Side shielding case opening 32 receiving side coupling terminal 33 receiving side support base

Claims (5)

結合端子に結合している送電側共振器と受電側共振器を備え、該送電側共振器から該受電側共振器に電磁界を用いて電力伝送する無線電力伝送装置において、
前記送電側共振器と前記受電側共振器のうち少なくとも一方は、誘電体共振器で構成され、一部に電磁界が通過する開口部を有する遮蔽ケースによって覆われ、結合される結合端子は該遮蔽ケースの外部に電気的に通じていることを特徴とする無線電力伝送装置。
In a wireless power transmission device including a power transmission side resonator and a power reception side resonator coupled to a coupling terminal, and transmitting power from the power transmission side resonator to the power reception side resonator using an electromagnetic field.
At least one of the power transmission side resonator and the power reception side resonator is formed of a dielectric resonator, and is covered with a shielding case having an opening part through which an electromagnetic field passes, and a coupling terminal to be coupled is A wireless power transmission device, wherein the wireless power transmission device is electrically connected to the outside of the shielding case.
前記送電側共振器と前記受電側共振器のうちの少なくとも一方は、TE01δ型の誘電体共振器であることを特徴とする請求項1に記載の無線電力伝送装置。 2. The wireless power transmission device according to claim 1, wherein at least one of the power transmission side resonator and the power reception side resonator is a TE 01δ type dielectric resonator. 前記送電側共振器と前記受電側共振器のうちの少なくとも一方は、セラミック製の誘電体共振器であることを特徴とする請求項1又は2に記載の無線電力伝送装置。   The wireless power transmission device according to claim 1, wherein at least one of the power transmission side resonator and the power reception side resonator is a ceramic dielectric resonator. 前記送電側共振器と前記受電側共振器のうちの少なくとも一方を覆う前記遮蔽ケースは、金属製の6面体であり、該遮蔽ケースの前記開口部は該6面体の1面の一部を開口したものであることを特徴とする請求項1〜3のいずれか1項に記載の無線電力伝送装置。   The shielding case covering at least one of the power transmission side resonator and the power reception side resonator is a metal hexahedron, and the opening of the shielding case opens a part of one surface of the hexahedron. The wireless power transmission device according to claim 1, wherein the wireless power transmission device is a wireless power transmission device. 結合端子に結合している送電側共振器と受電側共振器を備え、該送電側共振器から該受電側共振器に電磁界を用いて電力伝送する無線電力伝送方式において、
前記送電側共振器と前記受電側共振器のうち少なくとも一方は、一部に電磁界が通過する開口部を有する遮蔽ケースによって覆われ、結合される結合端子は該遮蔽ケースの外部に電気的に通じているとともに、近・中距離においては主に非放射電磁界の結合による電力伝送を行い、遠距離においては主に放射電磁界の結合による電力伝送を行うことを特徴とする無線電力伝送方式。
In a wireless power transmission system including a power transmission side resonator and a power reception side resonator coupled to a coupling terminal, and transmitting power from the power transmission side resonator to the power reception side resonator using an electromagnetic field,
At least one of the power transmission side resonator and the power reception side resonator is covered with a shielding case having an opening through which an electromagnetic field passes, and a coupling terminal to be coupled is electrically connected to the outside of the shielding case. Wireless power transmission system characterized in that power is transmitted mainly by coupling of non-radiated electromagnetic fields at short and medium distances, and power transmission is performed mainly by coupling of radiated electromagnetic fields at long distances. .
JP2012136420A 2012-06-15 2012-06-15 Wireless power transmission device Active JP5971703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012136420A JP5971703B2 (en) 2012-06-15 2012-06-15 Wireless power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012136420A JP5971703B2 (en) 2012-06-15 2012-06-15 Wireless power transmission device

Publications (2)

Publication Number Publication Date
JP2014003773A true JP2014003773A (en) 2014-01-09
JP5971703B2 JP5971703B2 (en) 2016-08-17

Family

ID=50036408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012136420A Active JP5971703B2 (en) 2012-06-15 2012-06-15 Wireless power transmission device

Country Status (1)

Country Link
JP (1) JP5971703B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013146494A1 (en) * 2012-03-30 2015-12-10 宇部興産株式会社 Power transmission device and method, and resonance device used therefor
US10008756B2 (en) 2014-06-25 2018-06-26 Ube Industries, Ltd. Dielectric contactless transmission device and contactless transmission method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122915A (en) * 1993-10-21 1995-05-12 Fujitsu Ltd Dielectric resonator circuit
JPH07212101A (en) * 1994-01-24 1995-08-11 Murata Mfg Co Ltd Dielectric resonator device
JPH09238025A (en) * 1996-03-01 1997-09-09 Mitsubishi Electric Corp High frequency oscillator
JP2002016410A (en) * 2000-06-30 2002-01-18 Tdk Corp Dielectric resonator
JP2002217602A (en) * 2001-01-12 2002-08-02 Japan Radio Co Ltd Dielectric filter and method of manufacturing the same
WO2005062415A1 (en) * 2003-12-24 2005-07-07 Murata Manufacturing Co., Ltd. Dielectric resonator and communication apparatus using the same
JP2010070048A (en) * 2008-09-18 2010-04-02 Toyota Motor Corp Non-contact power receiving apparatus, non-contact power transmission apparatus, non-contact power supply system, and electric vehicle
WO2012046548A1 (en) * 2010-10-08 2012-04-12 日本電気株式会社 Surface communication device
WO2013146494A1 (en) * 2012-03-30 2013-10-03 宇部興産株式会社 Method and device for power transmission and resonance device used in same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122915A (en) * 1993-10-21 1995-05-12 Fujitsu Ltd Dielectric resonator circuit
JPH07212101A (en) * 1994-01-24 1995-08-11 Murata Mfg Co Ltd Dielectric resonator device
JPH09238025A (en) * 1996-03-01 1997-09-09 Mitsubishi Electric Corp High frequency oscillator
JP2002016410A (en) * 2000-06-30 2002-01-18 Tdk Corp Dielectric resonator
JP2002217602A (en) * 2001-01-12 2002-08-02 Japan Radio Co Ltd Dielectric filter and method of manufacturing the same
WO2005062415A1 (en) * 2003-12-24 2005-07-07 Murata Manufacturing Co., Ltd. Dielectric resonator and communication apparatus using the same
JP2010070048A (en) * 2008-09-18 2010-04-02 Toyota Motor Corp Non-contact power receiving apparatus, non-contact power transmission apparatus, non-contact power supply system, and electric vehicle
WO2012046548A1 (en) * 2010-10-08 2012-04-12 日本電気株式会社 Surface communication device
WO2013146494A1 (en) * 2012-03-30 2013-10-03 宇部興産株式会社 Method and device for power transmission and resonance device used in same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6016005303; 西川健太, 石崎俊雄: 'セラミック誘電体共振器を用いた無線電力伝送システムの伝搬モードの研究' 電子情報通信学会技術研究報告 Vol.113, No.70, 20130523, 41-45, 一般財団法人 電子情報通信学会 *
JPN6016005304; 藤山義祥: 'マイクロ波誘電体共振器を用いたワイヤレス電力伝送' 電子情報通信学会通信ソサイエティ大会講演論文集 Vol.1, 20120828, 55, 一般財団法人電子情報通信学会通信ソサイエティ *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013146494A1 (en) * 2012-03-30 2015-12-10 宇部興産株式会社 Power transmission device and method, and resonance device used therefor
US10008756B2 (en) 2014-06-25 2018-06-26 Ube Industries, Ltd. Dielectric contactless transmission device and contactless transmission method

Also Published As

Publication number Publication date
JP5971703B2 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP6124085B2 (en) Wireless power transmission device, wireless power transmission device and power reception device
KR101718826B1 (en) Wireless power transmission apparatus and method that transmit resonance power by multi-band
Van Thuan et al. Magnetic resonance wireless power transfer using three-coil system with single planar receiver for laptop applications
KR102121919B1 (en) Apparatus for transferring power
US8994225B2 (en) Wireless power transmission system and resonator for the system
JP2011142724A (en) Noncontact power transmission device and near field antenna for same
RU154886U1 (en) SMALL VIBRATOR ANTENNA OF SYSTEMS OF DATA TRANSMISSION NETWORK IN THE RANGE OF MEDIUM AND INTERMEDIATE WAVES
Li et al. Experimental investigation of 1D, 2D, and 3D metamaterials for efficiency enhancement in a 6.78 MHz wireless power transfer system
KR20160126743A (en) Method for controlling wireless power transmitter and wireless power transmitter
JP2013223303A (en) Power transmission system
Vital et al. Misalignment resilient anchor-shaped antennas in near-field wireless power transfer using electric and magnetic coupling modes
Pham et al. Enhanced efficiency of asymmetric wireless power transmission using defects in 2D magnetic metamaterials
Barreto et al. Conformal strongly coupled magnetic resonance systems with extended range
JP5971703B2 (en) Wireless power transmission device
Shaw et al. Efficiency enhancement of wireless power transfer system using MNZ metamaterials
JP5354874B2 (en) Inductive power supply system
JP6164720B2 (en) Coupled resonator type wireless power transmission system
KR101369415B1 (en) Transmitter used in wireless power transfer and wireless power transfer system having the same
Atallah Design of compact high efficient WPT system utilizing half ring resonators (HRRs) DGS for short range applications
JP2014138509A (en) Resonator, and radio power feeding system
JP2016004990A (en) Resonator
KR20140059722A (en) Wireless power transmitter and wireless power receiver
KR101094595B1 (en) Wireless Power Transmission System Using Ferrite Loading
JP2015220891A (en) Resonator and wireless power supply system
JPH05243834A (en) Miniature antenna for portable radio equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150609

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150609

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160706

R150 Certificate of patent or registration of utility model

Ref document number: 5971703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250