JP2013232308A - X線管 - Google Patents
X線管 Download PDFInfo
- Publication number
- JP2013232308A JP2013232308A JP2012102986A JP2012102986A JP2013232308A JP 2013232308 A JP2013232308 A JP 2013232308A JP 2012102986 A JP2012102986 A JP 2012102986A JP 2012102986 A JP2012102986 A JP 2012102986A JP 2013232308 A JP2013232308 A JP 2013232308A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- electron
- ray tube
- extraction electrode
- electrons
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000605 extraction Methods 0.000 claims abstract description 40
- 230000002093 peripheral effect Effects 0.000 claims abstract description 31
- 238000010894 electron beam technology Methods 0.000 claims abstract description 22
- 229910052751 metal Inorganic materials 0.000 claims description 24
- 239000002184 metal Substances 0.000 claims description 24
- 239000012212 insulator Substances 0.000 claims description 5
- 239000000284 extract Substances 0.000 abstract description 2
- 230000001133 acceleration Effects 0.000 description 16
- 230000001629 suppression Effects 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 6
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
Images
Landscapes
- X-Ray Techniques (AREA)
Abstract
【課題】起動してから動作可能なまでの時間を短縮する。
【解決手段】X線を透過発生するターゲットを備えた真空容器とこの真空容器に収納されターゲットに電子ビームを衝突させる電子銃を具備するX線管において、電子銃は、電子を発生する陰極とこの陰極から電子を引き出しこの電子を通過させる電子通過孔22aを形成した引出電極22とこの引出電極により引き出された電子を電子ビームに収束させる静電レンズを形成する電極とを有しており、引出電極22は電子通過孔22aを有する中央領域100とこの中央領域の周囲に形成され支持体により支持される周辺領域101とからなり、前記周辺領域に複数の開口102が設けられている。
【選択図】図3
【解決手段】X線を透過発生するターゲットを備えた真空容器とこの真空容器に収納されターゲットに電子ビームを衝突させる電子銃を具備するX線管において、電子銃は、電子を発生する陰極とこの陰極から電子を引き出しこの電子を通過させる電子通過孔22aを形成した引出電極22とこの引出電極により引き出された電子を電子ビームに収束させる静電レンズを形成する電極とを有しており、引出電極22は電子通過孔22aを有する中央領域100とこの中央領域の周囲に形成され支持体により支持される周辺領域101とからなり、前記周辺領域に複数の開口102が設けられている。
【選択図】図3
Description
本発明の実施形態は、微小焦点を有するX線管に関する。
微小焦点を有するX線管は、対象物の微小領域や微小対象物を高分解能で検査する非破壊検査装置などに広く利用されている。このX線管は、X線透過型のターゲットを用いターゲット表面からμmオーダ径以下のX線源を生成する。
このターゲットに電子銃ユニットが組み合わされて、このユニットから発生される電子ビームをターゲット表面に集束させて0.1μmの微小焦点のX線源が得られるまでになっている。
電子銃ユニットは電子を発生する陰極から電子ビームが通過する管軸すなわち基準軸に沿ってそれぞれ電子通過孔を有する抑制電極、引出電極、加速電極、収束電極、NAアパチャー電極からなり、X線ターゲットに向けて配置される。上記加速電極、収束電極およびNAアパチャー電極が静電レンズを形成し電子ビームをターゲットに集束する。
陰極は電子顕微鏡などにも汎用的に利用されている熱電界放出型(TFE)電子源を用いるのが一般的である。
このTFE電子源では、通電加熱されるフィラメントの先端に、電子放出点すなわちエミッタチップが接合されており、エミッタチップの先端が最適温度(約1500℃)になったときに所定の電子ビーム電流が安定に得られるという特徴がある。そのため、このような微少な電子源では最適温度に達するまでに電子源近傍の電極等の構造物も加熱されて熱平衡状態となることが必要である。フィラメントに定格よりも過大電流を流してエミッタチップを過熱することで、所定温度まで輻射で周囲の電極を加熱し熱平衡を促進することが可能であるが、この過加熱はエミッタの寿命低下が起こすほか、エミッタチップの状態の悪化を招き動作が不安定になる。このため定格フィラメント電流のみでエミッタチップやその周辺の電極を加熱するがエミッタの先端が最適温度に至って安定するまでに要する時間は通常2時間以上かかる。それまでは焦点位置、サイズが安定しないため、実際にX線を用いて検査測定するまでにはこのような待機時間が必要になる。この待機時間の短縮化をはかるのが課題である。
本実施形態のX線管は、X線を透過発生するターゲットを備えた真空容器とこの真空容器に収納された電子銃を具備するX線管において、前記電子銃は、電子を発生する陰極とこの陰極から電子を引き出しこの電子を通過させる電子通過孔を形成した引出電極とこの引出電極により引き出された電子を前記電子ビームに収束させる静電レンズを形成する電極とを有しており、前記引出電極は前記電子通過孔を有する中央領域とこの中央領域の周囲に形成され支持体により支持される周辺領域とからなり、前記周辺領域に複数の開口が設けられている。
(第1の実施形態)
本実施形態を図1A、図1B、図2、図3および図6を参照して説明する。本実施形態のX線管10は円筒状の真空容器11に備えたX線透過型のターゲット12と真空容器11内に電子銃13を収容して構成されている。
本実施形態を図1A、図1B、図2、図3および図6を参照して説明する。本実施形態のX線管10は円筒状の真空容器11に備えたX線透過型のターゲット12と真空容器11内に電子銃13を収容して構成されている。
ターゲット12は電子銃13側の面に電子ビームが衝突することによりX線を発生し他の面からすなわち真空容器11外側にX線を放射するもので、原子数の大きな金属例えばタングステン板で形成される。ターゲット12は真空容器11の一端面を形成するターゲット支持板14の中央で支持され、ターゲット自体が真空容器の一部を兼ねている。なお軟X線例えば特性X線を利用する場合、ターゲットにタングステン以外の金属を用いることもできる。
電子銃13は真空容器11の内部に収容され内壁で固定され、真空容器11の他端面に設置されるステム15から各電極に電圧が印加されて、電子を収束して電子ビームとしターゲットに衝突させる。電子銃13は管軸mに沿って、陰極20、抑制電極21、引出電極22、加速電極23、収束電極24、NAアパチャー電極25を配列して構成され、加速電極23、収束電極24およびNAアパチャー電極25で単電位型静電レンズを形成している。各電極21〜25は陰極20からを放出された電子が通過する電子通過孔21a,22a,23a,24a,25aを備えている。
陰極20は通電により加熱されるフィラメント20aとその折り曲げた先端に溶接したエミッタチップ20bで構成されており、エミッタチップ20bはタングステンなどの高融点金属やまたその表面を電子放出物質で処理した構造で、TFE(Thermal Field Emission:熱電界放出型)電子源である。
抑制電極21は陰極20を基準にして負電位に印加されてエミッタチップ先端が配置される電子通過孔21aを有してその他の部分を覆い、エミッタチップ20bから放出される電子を制御する。さらにチップ先端から放出される電子を管軸mすなわち基準軸m上に絞り、チップ周辺から放出される電子を抑制する。
引出電極22は陰極20に対して正電圧が印加され、エミッタチップの先端から放出される電子を引き出すように構成されている。引出電極22の中心には、電子ビームが通過する円形の電子通過孔22aが形成されており、エミッタチップ先端に対して電子通過孔22a中心が高い精度でアライメントされる。引出電極22の外縁は金属支持筒32によりセラミック絶縁体31に固定される。金属支持筒32は筒壁に排気を円滑にするための開口部が形成されている。
このようにして陰極20は絶縁体を介して抑制電極21および引出電極22に絶縁して取り付けられ、電子銃13に組み込まれている。
図3を参照して説明すると、引出電極22はオーステナイト系ステンレス鋼の金属円板で、中心に電子が通過する電子通過孔22aを形成した中央領域100とフランジとなる周辺領域101とを有している。周辺領域101は中央領域100を囲んで複数の開口102(図示では8個)が設けられ、質量は約1/2に低下可能となる。
図1Bに示すように、中央領域100の半径はエミッタチップ先端部の電界に影響を与えない範囲を含めばよく、一例として、エミッタ先端から放射角θが約170度の領域で引出電極22の機能を要しているため、その外側域は引出電極中央領域を支持する構造であればよく、中央領域100を最小約8mmとすれば機能する。これらの開口102の存在により周辺領域は開口間に梁103だけが形成される。したがって梁構造で中央領域100が支持されるため引出電極の熱容量が開口のない場合よりも小さくなり、X線管動作の立ち上げ時にエミッタチップから放射された輻射熱により引出電極22の温度が所定動作温度に到達し電子ビームスポットが安定するまでの時間が短縮される。
加速電極23は、引出電極22よりさらに高い正電圧が印加され、引出電極22によって引き出された電子ビームを加速するように構成されている。加速電極23の中心には、電子ビームが通過する円形の電子通過孔23aが形成されている。
収束電極24は、加速電極23とNAアパチャー電極25に挟まれた空間に配置される。加速電極23とNAアパチャー電極25を同電位にしたときに収束電極24はこれらの電極と異なる正電位に印加され、これらの電極23,24,25によって電子ビームを収束する単電位型の静電レンズが形成される。収束電極24の中心には、電子ビームが通過する円筒の電子通過孔24aが形成される。
NAアパチャー電極25は加速電極23と同電位にされて静電レンズの一部を形成し、静電レンズの出口側に配置されており、NAアパチャー電極25中心に電子ビームを絞り込む円形の電子通過孔25aが形成されてさらに収束された電子ビームの周辺部をカットする。
これら陰極20、抑制電極21、引出電極22、加速電極23、収束電極24は互いに絶縁状態で各電子通過孔が基準軸mに対して高精度に位置合わせされセラミックスの環状または筒状の絶縁支持体31,33,34により支持される。さらに、NAアパチャー電極25は加速電極23の周辺領域に金属の支持体35により高精度に支持されて、電子銃ユニットを構成する。この構成で、エミッタチップの先端と、引出電極、加速電極、収束電極およびNAアパチャー電極の電子通過孔中心は基準軸mに対して100μm以下、一般的な高精度加工技術を適用すれば、50μm以下の精度をもたせることができる。
このようにして構成された電子銃13の各電極はセラミック絶縁体のステム15に植設された筒状または柱状の導入端子36〜40に接続される。引出電極22は金属筒体32および金属フランジ30を介して導入端子39に接続される。電子銃13は、電子銃ユニットとして加速電極23の外周に周辺領域を突出して形成した支持フランジ23Aを、真空容器内壁に取り付けることにより装着され真空容器11に収納される。ステム15外周と真空容器11側壁の他端面とが封着されて真空容器が作製され、電子銃13の動作に必要な到達真空度になるまで真空容器11が加熱脱ガスされ真空排気後、封じ切る措置が取られてX線管10が完成する。
本実施形態の構成材料は金属部分が陰極およびターゲットを除いてはオーステナイト系ステンレス鋼である。すなわち各電極は電子通過孔の位置精度、垂直度、耐震動正、耐温度性能などから、耐熱性と、超高真空下で利用可能な金属が必要であり、ステンレス鋼を用いることが好ましい。またステムおよび各電極の絶縁支持はアルミナなどのセラミックスにすることが好ましい。
図3に示すように、引出電極22は電子通過孔22aを有する中央領域100とその外周の周辺領域101からなるが、本実施形態では引出電極材質をSUS304,SUS316などのオーステナイト系ステンレス鋼とし、電子通過孔22aを精密に形成するために、中央領域100と周辺領域101を分離して製造する。あらかじめ電子通過孔を精密に形成した金属円板からなる中央領域100を、開口を設けた周辺領域101に一体に接合して組み立てている。一例として中央領域100の厚みは0.3mm、周辺領域101の厚みは1.0mm、周辺領域を外縁で支持する金属支持筒32の厚みは1.0mmである。また電子通過孔22aの径は0.6mm、引出電極の中央領域100の径は約8mm、周辺領域101の径は約25mm、開口102は基準軸から半径16mmの部分に中心をもつ例えば6mm径の円孔である。
静電レンズを形成する加速電極23、収束電極24、NAアパチャー電極25もそれぞれ中央領域と周辺領域を別個に製造し最終的に一体に接合する。加速電極23およびNAアパチャー電極25の中央領域を金属円板で形成し、収束電極24の中央領域を金属筒体で形成している。各電極の周辺領域は別個に製造することで高精度加工上の制約が緩和される。
なお変形例として各電極の中央領域とフランジになる周辺領域を同一円板で形成することができる。
図2に示すように、X線管10の電子銃13の各電極への電圧供給は電源41にケーブル42を接続して供給される。一例として陰極20を基準電圧0Vとすると、抑制電極21に−500V(V1)、引出電極22に5kV(V2)、加速電極23、NAアパチャー電極25およびターゲット12に30kV(V3)、収束電極24には約500V(V4)を印加する。真空容器11もターゲット12と同電位である。通常、真空容器を接地電位にするので、陰極20の基準電位は相対的に−30kVになる。なおこれらの印加電圧はX線管に要求される動作に対応して可変される。
X線管10の起動時は電源41から陰極フィラメントに電流例えばフィラメント抵抗値を1Ωとするとき一例として2.5Aを流して加熱する。エミッタチップが加熱され、輻射熱で抑制電極21および引出電極22が加熱される。エミッタチップが1500℃になり、電極の電子通過孔や間隔寸法も熱平衡状態になると、電子ビームのターゲット面の焦点が安定するので各電極に電圧を印加してX線を発生できる状態になる。
エミッタチップ先端から引出電極22によって引き出された電子ビームが、加速電極23によって加速され、収束電極24によって収束され、NAアパチャー25を通過してターゲット12の表面に入射する。ターゲットの表面には電子ビームの焦点(収束スポット)が形成され、そこで発生するX線がターゲット12を透過して容器外部に放出される。対象物43を透過したX線はX線平面検出器等の検出器44等で可視画像に変換される。
図6はX線管の動作に至る待機時間を、本実施形態の引出電極の一例の特性Aと、周辺領域に開口のない円板単板で形成された引出電極構造の比較例の特性Bとを比較して示す曲線図を示している。比較例の立ち上がり時間が2時間以上かかるのに対して、本実施形態では約1時間の短縮になっている。
(第2実施形態)
本実施形態は図4に示すように第1実施形態と異なる部分は引出電極22の周辺領域101形状にある。他は同じ構造である。本実施形態では複数の開口104を扇形状にし、金属梁105部分を車輪のスポークのようにハブに相当する内側環状体106から、半径方向に放射状に延ばし周縁部である外側環状体107に接続したものである。金属梁105は中央領域側で細く周縁で太く形成されている。
本実施形態は図4に示すように第1実施形態と異なる部分は引出電極22の周辺領域101形状にある。他は同じ構造である。本実施形態では複数の開口104を扇形状にし、金属梁105部分を車輪のスポークのようにハブに相当する内側環状体106から、半径方向に放射状に延ばし周縁部である外側環状体107に接続したものである。金属梁105は中央領域側で細く周縁で太く形成されている。
梁構造により開口面積を拡げることができ、引出電極の周辺領域の熱容量を減らすことができるため、起動から熱平衡に至る安定なX線焦点が得られるまでの時間を短縮することができる。
(第3実施形態)
図5に示すように、本実施形態は引出電極22の周辺領域101の梁108をセラミックスの絶縁性梁で形成したものである。他の部分は第2実施形態と同様の構成である。すなわち周辺領域101は中央領域100に接する金属の内側環状体106と周縁で支持筒32に固定される外側環状体107の間に絶縁性梁108を半径方向に延長しており、梁の間には複数の開口104を有している。中央領域100を熱容量の小さな(比熱×質量ではステンレス金属よりも約63%に低減できる)セラミックスの絶縁性梁108で支持することによって、周辺領域が金属で形成される構造よりもエミッタチップの輻射熱による熱平衡をより短時間に達成することができる。
図5に示すように、本実施形態は引出電極22の周辺領域101の梁108をセラミックスの絶縁性梁で形成したものである。他の部分は第2実施形態と同様の構成である。すなわち周辺領域101は中央領域100に接する金属の内側環状体106と周縁で支持筒32に固定される外側環状体107の間に絶縁性梁108を半径方向に延長しており、梁の間には複数の開口104を有している。中央領域100を熱容量の小さな(比熱×質量ではステンレス金属よりも約63%に低減できる)セラミックスの絶縁性梁108で支持することによって、周辺領域が金属で形成される構造よりもエミッタチップの輻射熱による熱平衡をより短時間に達成することができる。
中央領域100の電気的接続は接続線109を用いて周縁の金属支持筒32に接続することで得られる。また梁の表面に金属被覆を施して、接続線にすることができる。
以上の実施形態は引出電極の支持体を金属支持筒で形成しているが、絶縁筒体で形成することもできる。また、電子銃を単電位型で説明したが複数電位型など他の型の電子銃にも同様に適用することができるものである。
また以上説明した実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10:X線管
11:真空容器
12:ターゲット
13:電子銃
14:ターゲット支持板
15:ステム
20:陰極
20a:フィラメント
20b:エミッタチップ
21:抑制電極
21a,22a,23a,24a,25a:電子通過孔
22:引出電極
23:加速電極
24:収束電極
25:NAアパチャー電極
31,33,34:絶縁体
32:金属支持筒
36,37,38,39,40:導入端子
41:電源
42:ケーブル
43:対象物
44:検出器
100:中央領域
101:周辺領域
102,104:開口
103,105:金属梁
106:内側環状体
107:外側環状体
108:絶縁性梁
109:接続線
11:真空容器
12:ターゲット
13:電子銃
14:ターゲット支持板
15:ステム
20:陰極
20a:フィラメント
20b:エミッタチップ
21:抑制電極
21a,22a,23a,24a,25a:電子通過孔
22:引出電極
23:加速電極
24:収束電極
25:NAアパチャー電極
31,33,34:絶縁体
32:金属支持筒
36,37,38,39,40:導入端子
41:電源
42:ケーブル
43:対象物
44:検出器
100:中央領域
101:周辺領域
102,104:開口
103,105:金属梁
106:内側環状体
107:外側環状体
108:絶縁性梁
109:接続線
Claims (4)
- X線を透過発生するターゲットを備えた真空容器とこの真空容器に収納され前記ターゲットに電子ビームを衝突させる電子銃を具備するX線管において、前記電子銃は、電子を発生する陰極とこの陰極から電子を引き出しこの電子を通過させる電子通過孔を形成した引出電極とこの引出電極により引き出された電子を前記電子ビームに収束させる静電レンズを形成する電極とを有しており、前記引出電極は前記電子通過孔を有する中央領域とこの中央領域の周囲に形成され支持体により支持される周辺領域とからなり、前記周辺領域に複数の開口が設けられていることを特徴とするX線管。
- 前記周辺領域は前記開口間に複数の梁を具備していることを特徴とする請求項1記載のX線管。
- 前記複数の梁が金属で形成されていることを特徴とする請求項2記載のX線管。
- 前記複数の梁が絶縁体で形成されていることを特徴とする請求項2記載のX線管。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012102986A JP2013232308A (ja) | 2012-04-27 | 2012-04-27 | X線管 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012102986A JP2013232308A (ja) | 2012-04-27 | 2012-04-27 | X線管 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013232308A true JP2013232308A (ja) | 2013-11-14 |
Family
ID=49678588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012102986A Pending JP2013232308A (ja) | 2012-04-27 | 2012-04-27 | X線管 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013232308A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016027575A1 (ja) * | 2014-08-20 | 2017-05-25 | 株式会社島津製作所 | 電子源およびそれを備えたx線管 |
WO2021210255A1 (ja) * | 2020-04-13 | 2021-10-21 | 浜松ホトニクス株式会社 | 電子ビーム発生器及びx線発生装置 |
-
2012
- 2012-04-27 JP JP2012102986A patent/JP2013232308A/ja active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016027575A1 (ja) * | 2014-08-20 | 2017-05-25 | 株式会社島津製作所 | 電子源およびそれを備えたx線管 |
WO2021210255A1 (ja) * | 2020-04-13 | 2021-10-21 | 浜松ホトニクス株式会社 | 電子ビーム発生器及びx線発生装置 |
JPWO2021210255A1 (ja) * | 2020-04-13 | 2021-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101988538B1 (ko) | X선 발생 장치 | |
JP6619916B1 (ja) | X線発生管、x線発生装置およびx線撮像装置 | |
CN104952677B (zh) | X射线产生装置 | |
JP7068117B2 (ja) | 荷電粒子線装置 | |
JP2015028879A (ja) | X線発生用ターゲット及びx線発生装置 | |
US10181390B2 (en) | X-ray tube including support for latitude supply wires | |
JP6374989B2 (ja) | 荷電粒子線装置、及び荷電粒子線装置用部材の製造方法 | |
JPWO2014007167A1 (ja) | X線管 | |
JP2014197534A (ja) | X線発生管、該x線発生管を備えたx線発生装置及びx線撮影システム | |
JP2009026600A (ja) | 電子銃およびx線源 | |
JP5370967B2 (ja) | X線管 | |
JP2013232308A (ja) | X線管 | |
JP2019003863A (ja) | 電子ビーム装置、ならびに、これを備えるx線発生装置および走査電子顕微鏡 | |
CN110942967A (zh) | 一种x射线管 | |
JP4619176B2 (ja) | マイクロフォーカスx線管 | |
US2153223A (en) | Cathode ray tube | |
JP7196046B2 (ja) | X線管 | |
US10074503B2 (en) | Electron gun and radiation generating apparatus | |
KR101089231B1 (ko) | X선관 | |
KR101089234B1 (ko) | X선관 | |
CN111383876A (zh) | X射线管 | |
US20240274392A1 (en) | X-ray tube | |
CN104658841A (zh) | X射线管 | |
JP2016207281A (ja) | 電子管用カソード構体 | |
KR101869753B1 (ko) | 전자빔제어수단을 포함하는 엑스선 발생장치 |