JP2013201314A - シリコンウェーハの製造方法 - Google Patents
シリコンウェーハの製造方法 Download PDFInfo
- Publication number
- JP2013201314A JP2013201314A JP2012069150A JP2012069150A JP2013201314A JP 2013201314 A JP2013201314 A JP 2013201314A JP 2012069150 A JP2012069150 A JP 2012069150A JP 2012069150 A JP2012069150 A JP 2012069150A JP 2013201314 A JP2013201314 A JP 2013201314A
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- temperature
- inert gas
- gas atmosphere
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
【解決手段】CZ法により窒素ノンドープにてV−リッチ領域からなる酸素濃度が0.8×1018atoms/cm3以下であるシリコン単結晶インゴットを切断してV−リッチ領域からなる円板状のウェーハを作製し、酸素分圧が1%未満である第1の不活性ガス雰囲気中、1150℃以上1250℃以下の最高到達温度で、30分以上2時間以下保持した後、前記第1の不活性ガス雰囲気を酸素分圧が3%以上15%以下である第2の不活性ガス雰囲気に切り替えて、1150℃以上1250℃以下の最高到達温度で、30分以上2時間以下保持する熱処理を行う。
【選択図】図1
Description
Defect)等の欠陥を低減させてデバイス特性の向上を図ることができるシリコンウェーハの製造方法に関する。
いずれも、主として、シリコンウェーハ(以下、単に、ウェーハともいう)が基板材料として用いられるが、デバイス形成領域となる部分は、ICの場合には基板の表層部(例えば、表面から深さ5μmまでの深さ領域)に限られるのに対して、ディスクリート素子の場合は、基板の厚さ方向全体を用いる点で大きく相違する。
従って、シリコンウェーハをディスクリート素子用として使用する場合には、ウェーハの表層部のみならず、バルク部のCOPやBMD等の欠陥を低減させることが必要である。
しかしながら、特許文献1に記載の技術は、引き上げ速度を低く制御して行う必要があるため、シリコン単結晶インゴットの育成効率を低下させるという問題がある。
更に、特許文献3に記載の技術は、COP及びボイドのサイズを縮小させることを目的として窒素をドープしているが、窒素をドープしたウェーハは、結晶内に窒素のas−grown析出核が多く形成されるため、この窒素を核としてサーマルドナーが発生し、抵抗値が不安定となりやすい問題がある。また、前述したような酸化熱処理において、ウェーハ内に過剰に格子間シリコンが注入された場合は、当該酸化熱処理後、ウェーハ内に積層欠陥が誘発される場合がある。
図1は、本発明の実施形態に係るシリコンウェーハの製造方法を示す工程フロー図である。
本実施形態に係るシリコンウェーハの製造方法は、図1に示すように、育成工程(S101)と、切断工程(S102)と、平坦化工程(S103)と、熱処理工程(S104)と、を備える。
具体的には、周知の単結晶引上装置を用いて、窒素ノンドープにてシリコン融液の液面に種結晶を接触させて、種結晶と石英ルツボを回転させながら種結晶を引き上げてネック部及び所望の直径まで拡径する拡径部を形成後、所望の直径を維持しながら、結晶の中心軸がV−リッチ領域となるようにV/G値(V:引き上げ速度、G:シリコン融点から1300℃までの温度範囲における引き上げ軸方向の結晶内温度勾配の平均値)を所定値(例えば、0.25〜0.35mm2/℃・min)に制御して直胴部を形成し、その後、所望の直径から縮径する縮径部を形成し、前記縮径部をシリコン融液から切り離すことで行う。
なお、本発明にいう「窒素ノンドープ」とは、シリコン単結晶インゴットの育成時に、故意に窒素ドープ(例えば、石英ルツボ内へのポリシリコン積載時に窒化膜が形成されたシリコンウェーハ片を同時に積載)を行わないことをいう。
また、前記育成するシリコン単結晶インゴットの酸素濃度の調整は、石英ルツボの回転数や炉内圧力、ヒータ温度などを調整することにより周知の方法で行う。
図2に示すように、ネック部2を形成した後、シリコン単結晶インゴット1の引き上げ速度V値を拡径部3側から縮径部4側にかけて漸減していくと、V/G値も減少し、これに伴って、シリコン単結晶インゴット1中の欠陥分布も変化する。なお、この場合は、G値はほとんど変化しない。
引き上げ速度V値が大きい、すなわち、V/G値が大きいときは、原子空孔(COP)が多く取り込まれたV−リッチ領域5が形成される。このV−リッチ領域5が消滅する臨界V/G値以下では、まず、酸化熱処理によってOSFがリング状に発生するOSFリング領域6が形成され、次に、空孔と格子間シリコン濃度との均衡により、原子の不足や余分の少ない無欠陥領域7が形成される。V/G値がさらに減少すると、格子間シリコンが多く取り込まれたI−リッチ領域8が形成される。
また、シリコン単結晶インゴットの育成を窒素ノンドープにて行うため、窒素のas−grown析出核の発生を抑制することができる。従って、窒素を核としたサーマルドナーの発生を抑制することができる。
熱処理工程(S104)は、例えば、図3に示すような熱処理シーケンスで行われる。
最初に、周知の縦型熱処理装置の温度T0(好ましくは800℃以下)に保持された反応室内に、前記平坦化したウェーハを、例えば、周知の縦型ボードに枚葉で複数枚保持して投入し、前記第1の不活性ガス雰囲気中、1150℃以上1250℃以下の最高到達温度T1(以下、これを温度T1と略する)まで昇温速度ΔTuで昇温し、前記温度T1で、30分以上2時間以下(t1)保持する。その後、前記第1の不活性ガス雰囲気を前記第2の不活性ガス雰囲気に切り替えて、更に、前記第2の不活性ガス雰囲気中、1150℃以上1250℃以下の最高到達温度(図3中ではT1)で、30分以上2時間以下(t2)保持する。その後、前記温度T1から前記反応室からのウェーハの取り出し温度(例えば、温度T0)まで、降温速度ΔTdで降温する。
前記酸素濃度は、後の熱処理工程(S104)や半導体デバイス形成時の熱処理工程におけるウェーハ強度確保(スリップ転位の発生の抑制)等の観点から、その下限値は、0.2×1018atoms/cm3以上であることが好ましい。
前記不活性ガスが、水素ガスである場合には、水素と酸素の混合ガス雰囲気となるため、爆発の危険性があり好ましくない。
熱処理工程(S104)は、生産性向上及びスリップ転位の発生の抑制のため、例えば、図4に示すような熱処理シーケンスで行うことが好ましい。
最初に、周知の縦型熱処理装置の温度T0(好ましくは800℃以下)で保持された反応室内に、前記平坦化したウェーハを、例えば、周知の縦型ボードに枚葉で複数枚保持して投入し、前記温度T1より低温である中間温度T2までは、比較的高い昇温速度ΔTu1で昇温し、前記中間温度T2から前記温度T1までは、比較的低い昇温速度ΔTu2で昇温し、更に、前記温度T1からの降温においても、前記温度T1から中間温度T2までは、比較的低い降温速度ΔTd2で降温し、更に、前記中間温度T2から前記反応室からの取り出し温度(例えば、温度T0)までは、比較高い降温速度ΔTd1で降温する。
このように、低温帯(投入又は取り出しする温度T0から中間温度T2)では、比較的高い昇温速度ΔTu1及び降温速度ΔTd1とすることで、当該熱処理における生産性を向上させることができ、高温帯(中間温度T2から最高到達温度T1)では、比較的低い昇温速度ΔTu2及び降温速度ΔTd2とすることで、当該熱処理におけるスリップ転位の発生を抑制することができる。
前記中間温度T2は1000℃であることが好ましい。1000℃を超える温度帯は、ウェーハに対する熱応力が大きくなる場合があるため、少なくとも1000℃以上の温度帯では、昇温速度ΔTu2及び降温速度ΔTd2共に1℃/分以上3℃/分以下であることが好ましい。
前記投入温度が800℃を超える場合には、室温(クリーンルーム:約25℃)からの急激な温度変化によりウェーハにスリップ転位が発生しやすくなるため好ましくない。
前記投入温度は、生産性等の観点からその下限値は、300℃以上であることが好ましい。
前記取り出し温度が800℃を超える場合には、室温(クリーンルーム:約25℃)への急激な温度変化によりウェーハにスリップ転位が発生しやすくなるため好ましくない。
前記取り出し温度は、生産性等の観点からその下限値は、300℃以上であることが好ましい。
このような窒素濃度とすることで、確実にサーマルドナーの発生を抑制することができる。
(試験1)
図1に示す工程フロー図に基づいて、サンプルを作製した。
具体的には、石英ルツボの回転数や炉内圧力を調整してCZ法により窒素ノンドープにてV/G値(V:引き上げ速度、G:シリコン融点から1300℃までの温度範囲における引き上げ軸方向の結晶内温度勾配の平均値)を0.28〜0.32mm2/℃・minに制御して直胴部がV−リッチ領域からなるN−type、面方位(100)、酸素濃度0.8×1018atoms/cm3であるシリコン単結晶インゴットを育成後、該インゴットの直胴部を切断してV−リッチ領域からなる窒素濃度が6.0×1013/cm3以下である直径200mmの円板状のスライスウェーハを得た。
この酸素濃度及び窒素濃度は、二次イオン質量分析装置(SIMS)を用いて測定したスライスウェーハの半導体デバイス形成面側の表面から深さ1μmまでの平均濃度である(以下同じ)。
次に、鏡面研磨を行ったウェーハを、周知の縦型ボートに枚葉で10枚保持して、周知の縦型熱処理装置の反応室内に投入し、図4に示す熱処理シーケンスにて、第1の不活性ガス雰囲気及び第2の不活性ガス雰囲気中の酸素分圧をそれぞれ変化させて、熱処理を行った。
・T0:600℃
・T1:1200℃
・T2:1000℃
・t1:60分
・t2:60分
・ΔTu1:5℃/分
・ΔTu2:1〜3℃/分
・ΔTd1:5℃/分
・ΔTd2:1〜3℃/分
前記欠陥密度の評価は、レイテックス社製LSTDスキャナMO601を用いて、各々の測定表面から深さ5μmまでの深さ領域の欠陥数を検出することで行った。
また、酸化膜除去後のウェーハの表面における積層欠陥の発生の有無を目視にて評価した。
更に、酸化膜除去後のウェーハに対して、450℃で2時間の低温熱処理を行い、熱処理前後のウェーハの抵抗率の変化(サーマルドナーの発生の有無)を評価した。この評価は、熱処理前後の抵抗率の変化が5%未満である場合は「無」とし、5%を超える場合には「有」とした。
また、酸化膜除去後のウェーハに対して、ウェーハ裏面に発生するスリップ長をX線トポグラフィ(株式会社リガク製 XRT300)にて評価し、10枚におけるスリップ長の平均値を算出した。
表1に本試験における試験条件及びその評価結果を示す。
表1からわかるように、窒素ノンドープであり、第1の不活性ガス雰囲気の酸素分圧が1%未満であり、かつ、第2の不活性ガス雰囲気の酸素分圧が3%から15%である場合(実施例1から4)においては、表層部及びバルク部において欠陥密度が1.0/cm2未満であり、表面及びバルク部のBMD密度も検出限界以下(約3.0×106/cm3以下)であり、積層欠陥の発生も無く、サーマルドナーの発生も認められない。
これに対し、第1の不活性ガス雰囲気の酸素分圧が1%未満であり、第2の不活性ガス雰囲気の酸素分圧が1%未満である場合(比較例1)は、表層部の欠陥密度は低いもののバルク部においては高いことが認められる。また、第1の不活性ガス雰囲気の酸素分圧が5%である場合(比較例3から8)は、バルク部の欠陥密度は低いものの表層部においては高いことが認められる。更に、第2の不活性ガス雰囲気の酸素分圧が30%である場合(比較例2、8)においては、バルク部においてBMD密度が増加し、かつ、積層欠陥が発生していることが認められる。
育成するシリコン単結晶インゴットの酸素濃度を0.4×1018atoms/cm3として、その他は、試験1と同様な条件にて、熱処理を行った。
得られた熱処理後のウェーハに対して、試験1と同様な方法で、表面及びバルク部の欠陥密度、表面及びバルク部のBMD密度、積層欠陥の発生の有無、サーマルドナーの発生の有無及びスリップ長の平均値を評価した。
表2に本試験における試験条件及びその評価結果を示す。
表2からわかるように、試験2においても、試験1と同様な傾向が認められる。
すなわち、窒素ノンドープであり、第1の不活性ガス雰囲気の酸素分圧が1%未満であり、かつ、第2の不活性ガス雰囲気の酸素分圧が3%から15%である場合(実施例5から8)においては、表層部及びバルク部において欠陥密度が1.0/cm2未満であり、表面及びバルク部のBMD密度も検出限界以下(約3.0×106/cm3以下)であり、積層欠陥の発生も無く、サーマルドナーの発生も認められない。
これに対し、第1の不活性ガス雰囲気の酸素分圧が1%未満であり、第2の不活性ガス雰囲気の酸素分圧が1%未満である場合(比較例9)は、表層部の欠陥密度は低いもののバルク部においては高いことが認められる。また、第1の不活性ガス雰囲気の酸素分圧が5%である場合(比較例11から16)は、バルク部の欠陥密度は低いものの表層部においては高いことが認められる。更に、第2の不活性ガス雰囲気の酸素分圧が30%である場合(比較例10、16)においては、バルク部においてBMD密度が増加し、かつ、積層欠陥が発生していることが認められる。
育成するシリコン単結晶インゴットの酸素濃度を1.2×1018atoms/cm3として、その他は、試験1の実施例1から4と同様な条件にて、熱処理を行った。
得られた熱処理後のウェーハに対して、試験1と同様な方法で、表面及びバルク部の欠陥密度、表面及びバルク部のBMD密度、積層欠陥の発生の有無、サーマルドナーの発生の有無及びスリップ長の平均値を評価した。
表3に本試験における試験条件及びその評価結果を示す。
表3からわかるように、酸素濃度を1.2×1018atoms/cm3とすることで、バルク部の欠陥密度が高くなり、また、バルク部のBMD密度も高くなり、積層欠陥の発生も認められる。
熱処理時の最高到達温度T1を1150℃として、その他は、試験1の実施例1から4と同様な条件にて、熱処理を行った。
得られた熱処理後のウェーハに対して、試験1と同様な方法で、表面及びバルク部の欠陥密度、表面及びバルク部のBMD密度、積層欠陥の発生の有無、サーマルドナーの発生の有無及びスリップ長の平均値を評価した。
表4に本試験における試験条件及びその評価結果を示す。
表4からわかるように、熱処理時の最高到達温度T1を1150℃とした場合でも、試験1の実施例1から4と同様な結果が得られることが認められる(実施例9から12)。
熱処理時の最高到達温度T1を1250℃として、その他は、試験1の実施例1から4と同様な条件にて、熱処理を行った。
得られた熱処理後のウェーハに対して、試験1と同様な方法で、表面及びバルク部の欠陥密度、表面及びバルク部のBMD密度、積層欠陥の発生の有無、サーマルドナーの発生の有無及びスリップ長の平均値を評価した。
表5に本試験における試験条件及びその評価結果を示す。
表5からわかるように、熱処理時の最高到達温度T1を1250℃とした場合でも、試験1の実施例1から4と同様な結果が得られることが認められる(実施例13から16)。
熱処理時の最高到達温度T1を1300℃として、その他は、試験1の実施例1から8と同様な条件にて、熱処理を行った。
得られた熱処理後のウェーハに対して、試験1と同様な方法で、スリップ長の平均値を評価した。
その結果、酸素濃度が高く、かつ、第2の不活性ガス雰囲気の酸素分圧が高いためスリップ転位の発生が一番抑制されると考えられる実施例3、4の条件で、既に、スリップ長が5〜7mmであることが認められたため、その他の試験を中止した。
2 ネック部
3 拡径部
4 縮径部
5 V−リッチ領域
6 リングOSF領域
7 無欠陥領域
8 I−リッチ領域
Claims (3)
- チョクラルスキー法により窒素ノンドープにてV−リッチ領域からなる酸素濃度が0.8×1018atoms/cm3以下であるシリコン単結晶インゴットを育成する工程と、
前記シリコン単結晶インゴットを切断してV−リッチ領域からなる円板状のウェーハを作製する工程と、
前記作製したウェーハを平坦化する工程と、
前記平坦化したウェーハを、酸素分圧が1%未満である第1の不活性ガス雰囲気中、1150℃以上1250℃以下の最高到達温度で、30分以上2時間以下保持した後、前記第1の不活性ガス雰囲気を酸素分圧が3%以上15%以下である第2の不活性ガス雰囲気に切り替えて、更に、前記第2の不活性ガス雰囲気中、1150℃以上1250℃以下の最高到達温度で、30分以上2時間以下保持する熱処理を行う工程と、
を備えることを特徴とするシリコンウェーハの製造方法。 - 前記育成されたシリコン単結晶インゴット中の窒素濃度は、6.0×1013atoms/cm3以下であることを特徴とする請求項1に記載のシリコンウェーハの製造方法。
- 前記シリコンウェーハは、ディスクリート素子用であることを特徴とする請求項1又は2に記載のシリコンウェーハの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012069150A JP2013201314A (ja) | 2012-03-26 | 2012-03-26 | シリコンウェーハの製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012069150A JP2013201314A (ja) | 2012-03-26 | 2012-03-26 | シリコンウェーハの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013201314A true JP2013201314A (ja) | 2013-10-03 |
Family
ID=49521299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012069150A Pending JP2013201314A (ja) | 2012-03-26 | 2012-03-26 | シリコンウェーハの製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013201314A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015216375A (ja) * | 2014-05-09 | 2015-12-03 | ジルトロニック アクチエンゲゼルシャフトSiltronic AG | シリコンからなる半導体ウエハおよびその製造方法 |
JP2016174115A (ja) * | 2015-03-18 | 2016-09-29 | グローバルウェーハズ・ジャパン株式会社 | シリコンウェーハの製造方法 |
CN109830437A (zh) * | 2019-01-25 | 2019-05-31 | 西安奕斯伟硅片技术有限公司 | 一种晶圆热处理方法和晶圆 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11260677A (ja) * | 1998-01-06 | 1999-09-24 | Sumitomo Metal Ind Ltd | 半導体シリコンウェーハ並びにその製造方法と熱処理装置 |
JP2000277527A (ja) * | 1999-03-26 | 2000-10-06 | Mitsubishi Materials Silicon Corp | シリコンウェーハ及びその製造方法。 |
JP2001156076A (ja) * | 1999-11-29 | 2001-06-08 | Nippon Steel Corp | シリコン半導体基板の製造方法 |
JP2010040589A (ja) * | 2008-07-31 | 2010-02-18 | Covalent Materials Corp | シリコンウェーハの製造方法 |
JP2010062466A (ja) * | 2008-09-05 | 2010-03-18 | Sumco Corp | 垂直シリコンデバイス用シリコンウェーハ及びその製造方法、シリコン単結晶、並びに、垂直シリコンデバイス |
JP2010177495A (ja) * | 2009-01-30 | 2010-08-12 | Covalent Materials Corp | シリコンウェーハの熱処理方法 |
JP2011243899A (ja) * | 2010-05-21 | 2011-12-01 | Sumco Corp | シリコンウェーハの製造方法 |
-
2012
- 2012-03-26 JP JP2012069150A patent/JP2013201314A/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11260677A (ja) * | 1998-01-06 | 1999-09-24 | Sumitomo Metal Ind Ltd | 半導体シリコンウェーハ並びにその製造方法と熱処理装置 |
JP2000277527A (ja) * | 1999-03-26 | 2000-10-06 | Mitsubishi Materials Silicon Corp | シリコンウェーハ及びその製造方法。 |
JP2001156076A (ja) * | 1999-11-29 | 2001-06-08 | Nippon Steel Corp | シリコン半導体基板の製造方法 |
JP2010040589A (ja) * | 2008-07-31 | 2010-02-18 | Covalent Materials Corp | シリコンウェーハの製造方法 |
JP2010062466A (ja) * | 2008-09-05 | 2010-03-18 | Sumco Corp | 垂直シリコンデバイス用シリコンウェーハ及びその製造方法、シリコン単結晶、並びに、垂直シリコンデバイス |
JP2010177495A (ja) * | 2009-01-30 | 2010-08-12 | Covalent Materials Corp | シリコンウェーハの熱処理方法 |
JP2011243899A (ja) * | 2010-05-21 | 2011-12-01 | Sumco Corp | シリコンウェーハの製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015216375A (ja) * | 2014-05-09 | 2015-12-03 | ジルトロニック アクチエンゲゼルシャフトSiltronic AG | シリコンからなる半導体ウエハおよびその製造方法 |
JP2016174115A (ja) * | 2015-03-18 | 2016-09-29 | グローバルウェーハズ・ジャパン株式会社 | シリコンウェーハの製造方法 |
CN109830437A (zh) * | 2019-01-25 | 2019-05-31 | 西安奕斯伟硅片技术有限公司 | 一种晶圆热处理方法和晶圆 |
CN109830437B (zh) * | 2019-01-25 | 2021-05-28 | 西安奕斯伟硅片技术有限公司 | 一种晶圆热处理方法和晶圆 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101390024B1 (ko) | 실리콘 웨이퍼의 제조 방법 | |
US20050247259A1 (en) | Silicon wafer and method for manufacturing the same | |
JP6044660B2 (ja) | シリコンウェーハの製造方法 | |
JP2001144275A (ja) | 貼り合わせsoiウエーハの製造方法および貼り合わせsoiウエーハ | |
JP5682471B2 (ja) | シリコンウェーハの製造方法 | |
KR20140001815A (ko) | 실리콘 기판의 제조 방법 및 실리콘 기판 | |
JP5944643B2 (ja) | シリコンウェーハの熱処理方法 | |
KR20140021543A (ko) | 실리콘 기판의 제조방법 및 실리콘 기판 | |
JP5999949B2 (ja) | シリコンウェーハの製造方法 | |
JP2013048137A (ja) | シリコンウェーハの製造方法 | |
JP2013201314A (ja) | シリコンウェーハの製造方法 | |
CN111406129A (zh) | 处理单晶硅铸锭以改善激光散射环状/核状图案的方法 | |
JP5997552B2 (ja) | シリコンウェーハの熱処理方法 | |
JP2007045662A (ja) | 半導体シリコンウェーハおよびその製造方法 | |
KR101524913B1 (ko) | 실리콘 웨이퍼 | |
JP2013030723A (ja) | シリコンウェーハの製造方法 | |
JP5965607B2 (ja) | シリコンウェーハの製造方法 | |
JP5565079B2 (ja) | Soiウェーハの製造方法 | |
JP6493105B2 (ja) | エピタキシャルシリコンウェーハ | |
JP6317700B2 (ja) | シリコンウェーハの製造方法 | |
JP3760889B2 (ja) | エピタキシャルウェーハの製造方法 | |
KR20130033985A (ko) | 실리콘 웨이퍼의 열처리 방법 | |
JP5211550B2 (ja) | シリコン単結晶ウェーハの製造方法 | |
JP2013206981A (ja) | シリコンウェーハ | |
JP2024090466A (ja) | シリコンウェーハの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20141201 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160119 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160517 |