[go: up one dir, main page]

JP2013186191A - Auxiliary exposing device - Google Patents

Auxiliary exposing device Download PDF

Info

Publication number
JP2013186191A
JP2013186191A JP2012049390A JP2012049390A JP2013186191A JP 2013186191 A JP2013186191 A JP 2013186191A JP 2012049390 A JP2012049390 A JP 2012049390A JP 2012049390 A JP2012049390 A JP 2012049390A JP 2013186191 A JP2013186191 A JP 2013186191A
Authority
JP
Japan
Prior art keywords
unit
irradiation
illuminance
substrate
exposure apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012049390A
Other languages
Japanese (ja)
Other versions
JP5836848B2 (en
Inventor
Shigeru Moriyama
茂 森山
Shigeki Tanaka
茂喜 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2012049390A priority Critical patent/JP5836848B2/en
Priority to TW102106194A priority patent/TWI540398B/en
Priority to KR1020130023182A priority patent/KR102006504B1/en
Priority to CN201310071266.0A priority patent/CN103309170B/en
Publication of JP2013186191A publication Critical patent/JP2013186191A/en
Application granted granted Critical
Publication of JP5836848B2 publication Critical patent/JP5836848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To significantly improve accuracy of the film thickness or line width, or in-plane uniformity of a resist pattern after development processing in lithography.SOLUTION: An auxiliary exposing device (AE)10 of the present invention comprises: a flat-flowing conveyance section 30 for conveying a substrate G at a certain posture in one horizontal direction; a UV irradiation unit 32 for irradiating a resist on the substrate G with an ultraviolet (UV) of a predetermined wavelength; a light-emitting driving section 34 for supplying driving current for light emission to a light-emitting element in the UV irradiation unit 32; a cooling mechanism 36 for cooling the light-emitting element in the UV irradiation unit 32 to a preset temperature; an illuminance measurement section 38 for measuring the illuminance of ultraviolet irradiation by the UV irradiation unit 32; a control section 40 for controlling the sections in the device; and a memory 42.

Description

本発明は、光リソグラフィに係り、特に被処理基板上に塗布されたレジスト膜に対して、マスクのパターンを転写する通常の露光処理とは別に紫外線を照射する補助露光装置に関する。   The present invention relates to photolithography, and more particularly to an auxiliary exposure apparatus that irradiates ultraviolet rays separately from a normal exposure process for transferring a mask pattern to a resist film coated on a substrate to be processed.

光リソグラフィ技術は、被処理基板の表面に堆積された薄膜(被加工膜)の上にレジスト(感光性樹脂)を塗布して、基板上のレジストにフォトマスクのパターン(回路パターン)を転写し、現像してレジストパターンを作成する技術である。光リソグラフィ技術は、半導体デバイスやFPD(フラットパネルディスプレイ)等における集積回路の微細化、高密度化を左右するキーテクノロジーである。   In optical lithography technology, a resist (photosensitive resin) is applied onto a thin film (processed film) deposited on the surface of a substrate to be processed, and a photomask pattern (circuit pattern) is transferred to the resist on the substrate. This is a technique for developing a resist pattern by developing. The photolithography technology is a key technology that affects the miniaturization and high density of integrated circuits in semiconductor devices and FPDs (flat panel displays).

これまで、光リソグラフィによる回路パターンの微細化は様々な方法で進展してきている。近年は、露光に用いる紫外線の短波長化や位相シフトマスクおよび化学増幅型レジストの採用等によって微細化のトレンドが維持されている。具体的には、紫外線の露光波長は、248nm(Krf)から193nm(Arf)に移行してきている。また、たとえばハーフトーン型の位相シフトマスク法は、フォトマスクの遮光部においてもわずかな光を透過させ、マスク開口部を通った光の振幅とマスク開口部周辺の透過光の振幅との干渉により解像性能を向上させるようにしている。化学増幅型レジストは、酸触媒を用いる増幅反応によって高感度が得られ、高い現像コントラストおよび高解像性を達成することができる。   Until now, miniaturization of circuit patterns by photolithography has progressed in various ways. In recent years, the trend of miniaturization has been maintained by shortening the wavelength of ultraviolet rays used for exposure, adopting phase shift masks and chemically amplified resists, and the like. Specifically, the exposure wavelength of ultraviolet rays has shifted from 248 nm (Krf) to 193 nm (Arf). In addition, for example, the halftone phase shift mask method transmits a small amount of light even in a light shielding portion of a photomask, and interference occurs between the amplitude of light passing through the mask opening and the amplitude of transmitted light around the mask opening. The resolution performance is improved. The chemically amplified resist can obtain high sensitivity by an amplification reaction using an acid catalyst, and can achieve high development contrast and high resolution.

特開2002−341525JP 2002-341525 A

しかしながら、上記のように光リソグラフィによる回路パターンの微細化が進展するにつれて、現像処理後の基板上に得られるレジストパターンの膜厚や線幅の面内均一性が大きな課題になってきている。すなわち、回路パターンが微細化するほど、レジストパターンの膜厚は薄く、線幅(line)は細くなり、それらの面内均一性を向上させることがますます難しくなる。しかも、光リソグラフィはレジスト塗布、露光、現像の基本工程を含むほか、それら基本工程の合間にベーキング等の前処理または後処理の工程も介在するので、そのような数多くのプロセスのひとつでもプロセス結果の面内均一性が低いと、それが最終のプロセス結果であるレジストパターンの膜厚や線幅の面内均一性を律速する。プロセス結果の面内均一性が低いプロセスが複数ある場合、この問題は一層複雑かつ顕著になる。   However, as circuit pattern miniaturization by photolithography advances as described above, the in-plane uniformity of the film thickness and line width of the resist pattern obtained on the substrate after development processing has become a major issue. That is, as the circuit pattern becomes finer, the resist pattern becomes thinner and the line width becomes thinner, making it more difficult to improve the in-plane uniformity. Moreover, photolithography includes basic steps of resist coating, exposure, and development, and also includes pre-processing and post-processing steps such as baking between these basic steps. If the in-plane uniformity is low, this limits the in-plane uniformity of the film thickness and line width of the resist pattern, which is the final process result. This problem becomes more complex and significant when there are multiple processes with low in-plane uniformity of process results.

この問題に対しては、従来から、各プロセス結果の面内均一性を個別に改善する技術が数多く提案されている。その一方で、最終のプロセス結果であるレジストパターンの膜厚または線幅を基板上の幾つかの代表点で測定して設定値からの偏差(誤差)を求め、たとえば露光工程に先立つプリベーキング工程において基板に対する加熱温度を領域別に上記偏差に応じて調整する手法も従来から行われている。このために、ベーキング装置において、エリア分割式の面状ヒータが用いられ、あるいはホットプレート上でプロキシミティピンの高さを各々独立に変更または調整できるような細工がなされている。しかしながら、このような従来の技法は、ハードウェア上の制約が大きく、またプロキシミティピンの高さ調整は調整作業の工数が非常に多く、その一方で面内均一化の達成度はよくないことが課題となっている。   Many techniques for improving the in-plane uniformity of each process result have been proposed for this problem. On the other hand, the film thickness or line width of the resist pattern, which is the final process result, is measured at several representative points on the substrate to obtain a deviation (error) from the set value, for example, a pre-baking process prior to the exposure process In the prior art, a method for adjusting the heating temperature for the substrate in accordance with the deviation is also conventionally performed for each region. For this reason, in the baking apparatus, an area division type planar heater is used, or the height of the proximity pins can be independently changed or adjusted on the hot plate. However, such conventional techniques have large hardware restrictions, and the height adjustment of proximity pins requires a lot of adjustment work, while achieving in-plane uniformity is not good. Has become an issue.

本発明は、かかる従来技術の課題を解決するものであり、光リソグラフィにおいて現像処理後のレジストパターンの膜厚または線幅の精度または面内均一性の大幅な向上を実現できる補助露光装置を提供する。   The present invention solves such problems of the prior art, and provides an auxiliary exposure apparatus capable of realizing a significant improvement in film thickness or line width accuracy or in-plane uniformity of a resist pattern after development processing in photolithography. To do.

本発明の補助露光装置は、光リソグラフィにおいて、被処理基板上に塗布されたレジスト膜にマスクのパターンを転写する露光処理とは別に、前記基板の表面の前記レジスト膜に所定波長の紫外線を照射する補助露光装置であって、前記紫外線光を発する1個または複数個の発光素子を設けた照射エリアを第1の方向に複数配列してなる紫外線照射ユニットと、各々の前記照射エリア毎に前記発光素子に発光用の駆動電流を供給する発光駆動部と、前記基板表面のレジスト膜を露光走査するように、前記基板に対して前記紫外線照射ユニットを前記第1の方向と交差する第2の方向に相対的に移動させる走査機構と、各々の前記照射エリアについて、前記発光駆動部を通じて、当該照射エリアに対する光出力の指令値と前記基板上の対応する被照射位置の照度との関係を表わす指令値−照度特性を取得する照度特性取得部と、前記露光走査中に、各々の前記照射エリアと対向する前記基板上の被照射位置の照度が目標値に一致または近似するように、各々の前記照射エリア毎に前記指令値−照度特性に基づいて前記発光駆動部を制御する照度制御部と、各々の前記照射エリアについて、前記指令値−照度特性を取得する時とその後に前記露光走査を行う時とで、各々の前記照射エリアの温度を同一または近似する温度に制御する温度管理機構とを有する。   The auxiliary exposure apparatus of the present invention irradiates the resist film on the surface of the substrate with ultraviolet rays having a predetermined wavelength separately from the exposure process in which the mask pattern is transferred to the resist film coated on the substrate to be processed in photolithography. An auxiliary exposure apparatus that performs irradiation with an ultraviolet irradiation unit in which a plurality of irradiation areas provided with one or a plurality of light emitting elements emitting ultraviolet light are arranged in a first direction, and for each of the irradiation areas A light emission driving section for supplying a light emission drive current to the light emitting element; and a second crossing the ultraviolet irradiation unit with the first direction with respect to the substrate so that the resist film on the substrate surface is exposed and scanned. A scanning mechanism that moves relative to the direction, and for each of the irradiation areas, through the light emission drive unit, the command value of the light output for the irradiation area and the corresponding value on the substrate An illuminance characteristic acquisition unit that acquires a command value-illuminance characteristic that represents a relationship with the illuminance at the irradiation position, and the illuminance at the irradiation position on the substrate that faces each irradiation area during the exposure scan becomes a target value. An illuminance control unit that controls the light emission driving unit based on the command value-illuminance characteristic for each of the irradiation areas, and the command value-illuminance characteristic of each of the irradiation areas is acquired so as to match or approximate. And a temperature management mechanism for controlling the temperature of each of the irradiation areas to the same or approximate temperature when performing the exposure scanning after that.

上記の装置構成においては、紫外線照射ユニットの第2の方向にライン状に配列された複数の照射エリアよりそれぞれ独立した光強度の紫外線が基板表面のレジストに照射される。走査機構により基板上で相対的に紫外線照射ユニットが第1の方向に移動することで、基板表面のレジスト全体について紫外線照射の走査つまり露光走査が行われる。   In the above apparatus configuration, the resist on the substrate surface is irradiated with ultraviolet rays having independent light intensities from a plurality of irradiation areas arranged in a line in the second direction of the ultraviolet irradiation unit. The ultraviolet irradiation unit is relatively moved in the first direction on the substrate by the scanning mechanism, so that the entire resist on the substrate surface is scanned for ultraviolet irradiation, that is, exposure scanning.

この露光走査中に、照度制御部は、各々の照射エリアと対向する基板上の被照射位置の照度が目標値に一致または近似するように、各々の照射エリア毎に指令値−照度特性に基づいて発光駆動部を制御する。ここで、指令値−照度特性は、当該照射エリアに対する光出力の指令値と基板上の対応する被照射位置の照度との関係を表わす特性(関数)であり、照度特性取得部によって予め取得されている。   During this exposure scan, the illuminance control unit is based on the command value-illuminance characteristics for each irradiation area so that the illuminance at the irradiated position on the substrate facing each irradiation area matches or approximates the target value. To control the light emission drive unit. Here, the command value-illuminance characteristic is a characteristic (function) representing the relationship between the command value of the light output for the irradiation area and the illuminance of the corresponding irradiated position on the substrate, and is acquired in advance by the illuminance characteristic acquisition unit. ing.

温度管理機構は、各々の照射エリアについて、照度特性取得部が指令値−照度特性を取得する時と、その後の露光走査中に照度制御部がその指令値−照度特性を用いる時とで、各々の照射エリアの温度を同一または近似する温度に制御する。これによって、基板上の各位置で基板表面のレジストに設定通りの露光量で紫外線を照射し、所望の補助露光処理を行うことができる。   The temperature management mechanism, for each irradiation area, when the illuminance characteristic acquisition unit acquires the command value-illuminance characteristic, and when the illuminance control unit uses the command value-illuminance characteristic during the subsequent exposure scan, The temperature of the irradiation area is controlled to the same or approximate temperature. As a result, it is possible to perform desired auxiliary exposure processing by irradiating the resist on the substrate surface with ultraviolet rays at a set exposure amount at each position on the substrate.

本発明の補助露光装置によれば、上記のような構成および作用により、光リソグラフィにおいて現像処理後のレジストパターンの膜厚または線幅の精度または面内均一性の大幅な向上を実現することができる。   According to the auxiliary exposure apparatus of the present invention, it is possible to achieve a significant improvement in the accuracy or in-plane uniformity of the resist pattern film thickness or line width after development processing in photolithography by the configuration and operation as described above. it can.

本発明の補助露光装置を適用できる光リソグラフィ用のインラインシステムのプロセスフロー上の構成を示すブロック図である。It is a block diagram which shows the structure on the process flow of the in-line system for optical lithography which can apply the auxiliary exposure apparatus of this invention. 実施形態において基板上の製品領域をマトリクス状に区画するフォーマットを示す図である。It is a figure which shows the format which partitions the product area | region on a board | substrate in matrix form in embodiment. 基板上のマトリクス区画の各単位領域毎にレジストパターンの膜厚(または線幅)の測定値を演算してマッピングする仕組みを示す図である。It is a figure which shows the mechanism which calculates and maps the measured value of the film thickness (or line width) of a resist pattern for every unit area | region of the matrix division on a board | substrate. 基板上のマトリクス区画の各単位領域毎に補正露光量を演算してマッピングする仕組みを示す図である。It is a figure which shows the mechanism which calculates and maps correction | amendment exposure amount for every unit area | region of the matrix division on a board | substrate. 基板上のマトリクス区画の各単位領域毎に照度の目標値を演算してマッピングする仕組みを示す図である。It is a figure which shows the mechanism which calculates and maps the target value of illumination intensity for every unit area | region of the matrix division on a board | substrate. 実施形態における補助露光装置の構成を示すブロック図である。It is a block diagram which shows the structure of the auxiliary exposure apparatus in embodiment. 上記補助露光装置における平流し搬送部およびUV照射ユニットの構成を示す斜視図である。It is a perspective view which shows the structure of the flat flow conveyance part and UV irradiation unit in the said auxiliary exposure apparatus. 上記補助露光装置における平流し搬送部およびUV照射ユニットの構成を示す側面図である。It is a side view which shows the structure of the flat flow conveyance part and UV irradiation unit in the said auxiliary exposure apparatus. 上記補助露光装置におけるUV照射ユニットの全体の構成および冷却機構の要部の構成を示す正面図である。It is a front view which shows the structure of the whole UV irradiation unit in the said auxiliary exposure apparatus, and the structure of the principal part of a cooling mechanism. 上記UV照射ユニットのライン状照射部における照射エリアおよび発光素子の配置構成を示す底面図である。It is a bottom view which shows the arrangement configuration of the irradiation area and light emitting element in the linear irradiation part of the said UV irradiation unit. 上記補助露光装置における冷却機構の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the cooling mechanism in the said auxiliary exposure apparatus. 上記冷却機構における照射エリア温度制御部の構成を示す図である。It is a figure which shows the structure of the irradiation area temperature control part in the said cooling mechanism. 上記補助露光装置における発光駆動部および照度測定部の構成を示すブロック図である。It is a block diagram which shows the structure of the light emission drive part in the said auxiliary exposure apparatus, and an illumination intensity measurement part. 上記補助露光装置における照度計移動機構の構成を示す一部分解正面図である。It is a partially exploded front view which shows the structure of the illumination meter moving mechanism in the said auxiliary exposure apparatus. 指令値−照度特性の一例(一次関数)を示すグラフ図である。It is a graph which shows an example (linear function) of command value-illuminance characteristics. メモリのテーブル上に指令値−照度特性の属性データを保管する仕組みを示す図である。It is a figure which shows the mechanism which stores the attribute data of command value-illuminance characteristic on the table of a memory. 基板上のマトリクス区画の各単位領域毎に指令値を演算してマッピングする仕組みを示す図である。It is a figure which shows the mechanism which calculates and maps instruction | command value for every unit area | region of the matrix division on a board | substrate. 実施形態の補助露光処理における基板とUV照射ユニット間の走査を示す略平面図である。It is a schematic plan view which shows the scan between the board | substrate and UV irradiation unit in the auxiliary exposure process of embodiment. 実施形態の補助露光処理の作用を示す略平面図である。It is a schematic plan view which shows the effect | action of the auxiliary exposure process of embodiment. 冷却機構の一変形例を示す断面図である。It is sectional drawing which shows the modification of a cooling mechanism. 図17の変形例における照射エリアおよび各冷却板の配置構成を示す図である。It is a figure which shows the arrangement configuration of the irradiation area and each cooling plate in the modification of FIG. 冷却機構の別の変形例を示す正面図である。It is a front view which shows another modification of a cooling mechanism. 図19の変形例における1グループ内の構成を示す拡大正面図である。It is an enlarged front view which shows the structure in 1 group in the modification of FIG.

以下に、添付図を参照して本発明の好適な実施の形態を説明する。
[基板処理システムの構成]
The preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
[Configuration of substrate processing system]

図1に、光リソグラフィにおいて本発明の補助露光装置を適用可能な基板処理装置のプロセスフロー上の構成を示す。この基板処理装置は、たとえばFPD製造用のインラインシステムであり、基本構成として、レジスト塗布ユニット(CT)、マスク露光装置(EXP)および現像ユニット(DEP)を備える。マスク露光装置(EXP)は、たとえばガラス製の被処理基板G上のレジストにフォトマスクのパターンを転写するための通常(正規)の露光装置である。   FIG. 1 shows a process flow configuration of a substrate processing apparatus to which the auxiliary exposure apparatus of the present invention can be applied in photolithography. This substrate processing apparatus is, for example, an in-line system for manufacturing an FPD, and includes a resist coating unit (CT), a mask exposure apparatus (EXP), and a developing unit (DEP) as basic components. The mask exposure apparatus (EXP) is a normal (regular) exposure apparatus for transferring a photomask pattern to a resist on a substrate to be processed G made of glass, for example.

さらに、この基板処理装置は、標準装備として、減圧乾燥ユニット(DP)、プリベークユニット(PRB)および冷却ユニット(COL)も備える。減圧乾燥ユニット(DP)は、レジスト塗布ユニット(CT)でレジストを塗布された直後の基板Gを減圧雰囲気の中に一定時間晒して、レジストに含まれている溶剤を一定段階まで蒸発させる。プリベークユニット(PRB)は、マスク露光処理の前に基板Gを一定温度で加熱して、レジスト中の残留溶剤を蒸発させるとともに、レジストと下地膜との密着性を向上させる。冷却ユニット(COL)は、プリベーク処理の直後に基板Gを基準温度まで冷却する。   Furthermore, this substrate processing apparatus also includes a vacuum drying unit (DP), a pre-bake unit (PRB), and a cooling unit (COL) as standard equipment. The reduced-pressure drying unit (DP) exposes the substrate G immediately after the resist is applied by the resist coating unit (CT) in a reduced-pressure atmosphere for a certain time to evaporate the solvent contained in the resist to a certain stage. The pre-bake unit (PRB) heats the substrate G at a constant temperature before the mask exposure process to evaporate the residual solvent in the resist and improve the adhesion between the resist and the base film. The cooling unit (COL) cools the substrate G to the reference temperature immediately after the pre-baking process.

本発明の補助露光装置(AE)10は、プロセスフローにおいて、たとえば減圧乾燥ユニット(DP)とプリベークユニット(PRB)との間に配置される。この場合、補助露光装置(AE)10では、基板G上の溶剤がまだ残っているレジストに対して、現像処理後に得られるレジストパターンの膜厚(または線幅)の精度または面内均一性を向上させるための後述するような特殊な補助露光処理が行われる。   The auxiliary exposure apparatus (AE) 10 of the present invention is disposed, for example, between a vacuum drying unit (DP) and a pre-bake unit (PRB) in the process flow. In this case, in the auxiliary exposure apparatus (AE) 10, the accuracy or in-plane uniformity of the film thickness (or line width) of the resist pattern obtained after the development processing is applied to the resist on which the solvent on the substrate G still remains. A special auxiliary exposure process as described later is performed for improvement.

この基板処理装置は、補助露光処理に必要な情報またはデータを補助露光装置(AE)10に与えるために、レジストパターン検査部12、入力部14および演算処理部16を備える。レジストパターン検査部12は、現像ユニット(DEP)で現像処理の済んだ後(通常は、さらに後段の図示しないポストベークユニットで加熱処理の済んだ後)のサンプル用の基板G上に得られたレジストパターンの膜厚(または線幅)をたとえば基板G上の幾つか(たとえば数十箇所)の代表点で測定する。   The substrate processing apparatus includes a resist pattern inspection unit 12, an input unit 14, and an arithmetic processing unit 16 in order to give information or data necessary for the auxiliary exposure process to the auxiliary exposure apparatus (AE) 10. The resist pattern inspection unit 12 was obtained on the sample substrate G after the development processing by the development unit (DEP) (usually after the heat treatment by the post bake unit not shown in the subsequent stage). The film thickness (or line width) of the resist pattern is measured at several representative points (for example, several tens of points) on the substrate G, for example.

演算処理部16は、メモリおよび各種インタフェースを含むマイクロコンピュータで構成され、補間部18、補正露光量演算部20および照射マップ作成部22の諸機能を有している。入力部14は、たとえばキーボード、マウスまたはタッチパネル等を有し、システム内の各部、特に演算処理部16および補助露光装置(AE)10に対して、管理者あるいはオペレータ等により入力された各種条件、初期値等の設定値データを与える。   The arithmetic processing unit 16 includes a microcomputer including a memory and various interfaces, and has various functions of an interpolation unit 18, a corrected exposure amount calculating unit 20, and an irradiation map creating unit 22. The input unit 14 includes, for example, a keyboard, a mouse, a touch panel, and the like. Various conditions input by an administrator or an operator to each unit in the system, particularly the arithmetic processing unit 16 and the auxiliary exposure apparatus (AE) 10, Gives set value data such as initial values.

補間部18は、レジストパターンの膜厚(または線幅)について、レジストパターン検査部12が取得した基板G上の代表点における測定値を基に、所定の補間処理によってガラス基板G上の他の位置または領域における測定値(正確には推測値)を演算する。この実施形態では、図2Aに示すように基板G上の製品領域PAをマトリクス状に区画し、マトリクス区画の各単位領域(i,j)毎にレジストパターンの膜厚(または線幅)の測定値(または補間処理で得られた推定値)Ai,jを演算して、たとえばメモリ内に構築されるテーブル上で図2Bに示すようにマッピングする。なお、図面では、理解と図解を容易にするために、マトリクス区画を9列(j=1〜9)で示している。実際は、マトリクス区画の行数および列数のいずれも、少なくとも数十以上あり、FPD用の大型基板では百以上ある。 The interpolating unit 18 determines the film thickness (or line width) of the resist pattern based on the measured value at the representative point on the substrate G acquired by the resist pattern inspecting unit 12 by performing a predetermined interpolation process. Calculate the measured value (exactly estimated value) at the position or area. In this embodiment, as shown in FIG. 2A, the product area PA on the substrate G is partitioned in a matrix, and the film thickness (or line width) of the resist pattern is measured for each unit area (i, j) of the matrix section. A value (or an estimated value obtained by the interpolation process) A i, j is calculated and mapped, for example, on a table constructed in the memory as shown in FIG. 2B. In the drawing, in order to facilitate understanding and illustration, the matrix sections are shown by 9 columns (j = 1 to 9). Actually, both the number of rows and the number of columns of the matrix section are at least several tens or more, and a large substrate for FPD has one hundred or more.

補正露光量演算部20は、基板G上のマトリクス区画の各単位領域(i,j)毎に補正露光量Bi,jを演算して、たとえばメモリ内に構築されるテーブル上で図2Cに示すようにマッピングする。ここで、補正露光量Bi,jは、各単位領域(i,j)内のレジストパターンの膜厚(または線幅)について測定値と設定値との差分(誤差)を零に近づけるための露光量である。 The corrected exposure amount calculation unit 20 calculates a corrected exposure amount B i, j for each unit area (i, j) of the matrix section on the substrate G, and displays the result shown in FIG. Map as shown. Here, the corrected exposure amount B i, j is used to bring the difference (error) between the measured value and the set value close to zero with respect to the film thickness (or line width) of the resist pattern in each unit region (i, j). Exposure amount.

この基板処理装置で使用されるレジストがたとえばポジ型の場合、基板G上の各位置で露光量が多いほどレジストパターンの膜厚および線幅(line)の変化は大きく、露光量が少ないほどレジストパターンの膜厚および線幅(line)の変化は小さくなる。この基板処理装置では、マスク露光装置(EXP)による通常のマスク露光処理と、補助露光装置(AE)10による補助的な露光処理とが多重に行われる。したがって、マスク露光装置(EXP)における通常のマスク露光処理では、補助露光装置(AE)10による補助露光処理を見込んで、補助露光処理を行わない場合よりも露光量を少なめに設定するのも好ましい。   When the resist used in the substrate processing apparatus is, for example, a positive type, the change in the resist pattern thickness and line width increases as the exposure amount increases at each position on the substrate G, and the resist decreases as the exposure amount decreases. Changes in pattern thickness and line width are reduced. In this substrate processing apparatus, a normal mask exposure process by a mask exposure apparatus (EXP) and an auxiliary exposure process by an auxiliary exposure apparatus (AE) 10 are performed in a multiplexed manner. Therefore, in the normal mask exposure process in the mask exposure apparatus (EXP), it is also preferable to set the exposure amount smaller than in the case where the auxiliary exposure process is not performed in anticipation of the auxiliary exposure process by the auxiliary exposure apparatus (AE) 10. .

照射マップ作成部22は、基板G上のマトリクス区画の各単位領域(i,j)毎に照度の目標値Ci,jを演算して、たとえばメモリ内に構築されるテーブル上で図2Dに示すようにマッピングする。ここで、補助露光装置(AE)10においてマトリクス区画の各単位領域(i,j)当たりの紫外線照射時間をtSとすると、Ci,j=Bi,j/tSである。

[補助露光装置の構成及び作用]
The irradiation map creation unit 22 calculates the illuminance target value C i, j for each unit area (i, j) of the matrix section on the substrate G, and displays the result shown in FIG. 2D on the table constructed in the memory, for example. Map as shown. Here, if the ultraviolet irradiation time per unit area (i, j) of the matrix section in the auxiliary exposure apparatus (AE) 10 is t S , C i, j = B i, j / t S.

[Configuration and operation of auxiliary exposure apparatus]

図3に、本発明の一実施形態における補助露光装置(AE)10の構成を示す。この補助露光装置(AE)10は、ハードウェア上の構成として、基板Gを一定の姿勢(たとえば仰向けの姿勢)で一水平方向(X方向)に搬送する平流し搬送部30と、この平流し搬送部30によって搬送される基板G上のレジストに所定波長の紫外線(UV)を照射するUV照射ユニット32と、このUV照射ユニット32内の発光素子に発光用の駆動電流を供給する発光駆動部34と、UV照射ユニット32内の発光素子を設定温度に冷却する冷却機構36と、UV照射ユニット32による紫外線照射の照度を測定する照度測定部38と、装置内の各部(特に平流し搬送部30、発光駆動部34、冷却機構36、照度測定部38)を制御するための制御部40と、この制御部40で用いる各種プログラムおよびデータを蓄積または保存するメモリ42とを有している。制御部40は、マイクロコンピュータで構成されており、所定のプログラムにしたがって後述する様々な所要の演算処理および制御を実行する。   FIG. 3 shows the configuration of an auxiliary exposure apparatus (AE) 10 in one embodiment of the present invention. The auxiliary exposure apparatus (AE) 10 has a hardware configuration in which the substrate G is transported in one horizontal direction (X direction) in a fixed posture (for example, a posture on the back), and the flat flow. A UV irradiation unit 32 for irradiating the resist on the substrate G transported by the transport unit 30 with ultraviolet rays (UV) of a predetermined wavelength, and a light emission drive unit for supplying a drive current for light emission to the light emitting elements in the UV irradiation unit 32 34, a cooling mechanism 36 that cools the light emitting elements in the UV irradiation unit 32 to a set temperature, an illuminance measuring unit 38 that measures the illuminance of ultraviolet irradiation by the UV irradiation unit 32, and each part in the apparatus (particularly a flat flow transport unit) 30, the light emission drive unit 34, the cooling mechanism 36, the illuminance measurement unit 38), and the storage unit 40 stores and stores various programs and data used in the control unit 40. That and a memory 42. The control unit 40 is composed of a microcomputer, and executes various required arithmetic processing and control described later according to a predetermined program.

平流し搬送部30は、たとえば多数のコロ44を搬送方向(X方向)に敷設してなるコロ搬送路46と、このコロ搬送路46上で基板Gを仰向けの姿勢で搬送するために各コロ44をたとえばベルトやギア等を有する伝動機構48を介して回転駆動する走査駆動部50とを有している。コロ搬送路46は、プロセスフロー(図1)において前隣の減圧乾燥ユニット(DP)の搬送系および後隣のプリベークユニット(PRB)の搬送系に接続されている。平流し搬送部30は、減圧乾燥ユニット(DP)で減圧乾燥処理を終えた基板Gを平流しでこの補助露光装置(AE)10内に搬入し、この補助露光装置(AE)10内で補助露光処理の走査のために基板Gを平流しで搬送し、補助露光処理を終えた基板Gを平流しでプリペークユニット(PRB)へ搬出するように構成されている。なお、制御部40は、コロ搬送路46の所々に配置されている位置センサ(図示せず)を通じて基板Gの現時の位置を検出ないし把握できるようになっている。   The flat flow transport unit 30 includes, for example, a roller transport path 46 formed by laying a large number of rollers 44 in the transport direction (X direction), and each roller in order to transport the substrate G in a supine posture on the roller transport path 46. 44 includes a scanning drive unit 50 that rotationally drives 44 via a transmission mechanism 48 having, for example, a belt, a gear, and the like. The roller transport path 46 is connected to the transport system of the front-rear pressure-reducing and drying unit (DP) and the transport system of the rear-next pre-baking unit (PRB) in the process flow (FIG. 1). The flat flow transport unit 30 flatly flows the substrate G that has been subjected to the vacuum drying process in the vacuum drying unit (DP), and carries the substrate G into the auxiliary exposure apparatus (AE) 10, and assists in the auxiliary exposure apparatus (AE) 10. The substrate G is transported in a flat flow for scanning of the exposure process, and the substrate G that has finished the auxiliary exposure process is transported in a flat flow to the pre-paque unit (PRB). The control unit 40 can detect or grasp the current position of the substrate G through position sensors (not shown) arranged in places on the roller conveyance path 46.

図4および図5に示すように、UV照射ユニット32は、コロ搬送路46の途中に設けられている。UV照射ユニット32は、基板搬送方向(X方向)と直交する水平方向(Y方向)にまっすぐ延びる長尺状のユニットとして構成され、後述するようにそのライン状照射部(54)を下に向けてコロ搬送路46の上方に配置される。図示省略するが、UV照射ユニット32の高さ位置を調整するための昇降機構を備えることも可能である。   As shown in FIGS. 4 and 5, the UV irradiation unit 32 is provided in the middle of the roller conveyance path 46. The UV irradiation unit 32 is configured as a long unit extending straight in the horizontal direction (Y direction) orthogonal to the substrate transport direction (X direction), and the line irradiation unit (54) faces downward as will be described later. And disposed above the roller conveyance path 46. Although not shown, it is possible to provide an elevating mechanism for adjusting the height position of the UV irradiation unit 32.

図6に、UV照射ユニット32の全体の構成および冷却機構36の要部の構成を示す。UV照射ユニット32は、ユニット長手方向(Y方向)にまっすぐ延びる一片の支持板52の下面52aに表面実装型の紫外線発光素子たとえばLED素子を所定のレイアウトで多数取り付けたライン状の照射部54を有している。支持板52は、熱伝導率の高い金属たとえばアルミニウムからなる。   FIG. 6 shows the overall configuration of the UV irradiation unit 32 and the configuration of the main part of the cooling mechanism 36. The UV irradiation unit 32 includes a line-shaped irradiation unit 54 in which a large number of surface-mounted ultraviolet light emitting elements such as LED elements are attached to a lower surface 52a of a single support plate 52 that extends straight in the unit longitudinal direction (Y direction). Have. The support plate 52 is made of a metal having a high thermal conductivity, such as aluminum.

図7に示すように、UV照射ユニット32のライン状照射部54は、支持板52の長手方向(Y方向)に沿って複数(9つ)の照射エリアSE1,SE2,SE3,・・・,SE9に分割されている。このエリア分割数(9つ)は基板Gの製品領域PAに設定されるマトリクス区画の列の数(9つ)に対応し、第nの照射エリアSEn(n=1〜9)は基板G上のマトリクス区画の第n列に対向するようになっている。 As shown in FIG. 7, the line irradiation unit 54 of the UV irradiation unit 32 includes a plurality (nine) of irradiation areas SE 1 , SE 2 , SE 3 ,... Along the longitudinal direction (Y direction) of the support plate 52. .., divided into SE 9 The number of area divisions (nine) corresponds to the number of matrix division columns (nine) set in the product area PA of the substrate G, and the nth irradiation area SE n (n = 1 to 9) is the substrate G. It faces the nth column of the upper matrix section.

各々の照射エリアSEnには、1個または複数個(図示の例では6個)のLED素子J1,J2,・・J6が1列または複数列(図示の例では2列)に配置されている。各々の照射エリアSEnに設けられる1組のLED素子J1,J2,・・J6は、図10につき後述するように電気的には直列に接続され、発光駆動部34からの同一または共通の駆動電流Inによって一斉に発光し、各照射エリアSEnの直下を通る基板G表面(マトリクス区画の第n列およびその周囲)のレジストに対して所定波長の紫外線を照射するようになっている。 In each irradiation area SE n , one or plural (six in the illustrated example) LED elements J 1 , J 2 ,... J 6 are arranged in one or plural columns (two in the illustrated example). Has been placed. A set of LED elements J 1 , J 2 ,... J 6 provided in each irradiation area SE n are electrically connected in series as will be described later with reference to FIG. emitted simultaneously by a common drive current I n, so as to irradiate the ultraviolet rays having a predetermined wavelength to the resist of the substrate G surface passes immediately below the illumination area SE n (n-th column and the surrounding matrix zone) ing.

図6に示すように、ライン状照射部54の下には、各照射エリアSEnの照射角を拡げるための長尺状の拡散板56が平行に配置されている。ライン状照射部54の背面側つまり支持板52の上面には、複数(9個)の板片状ペルチェモジュールPM1〜PM9が横一列に並んで取り付けられている。各々のペルチェモジュールPMnは、各対応する照射エリアSEnの後背(真上)に位置し、その冷却面(吸熱面)をたとえば白金の測温抵抗体58(n)を挟んで支持板52の上面に貼り付けている。ペルチェモジュールPM1〜PM9の上面つまり放熱面にはフィン構造のヒートシンク60が結合され、その上方には冷却用のファン62が設置されている。 As shown in FIG. 6, below the line-shaped irradiation unit 54, a long diffusion plate 56 for expanding the irradiation angle of each irradiation area SE n is arranged in parallel. A plurality (9 pieces) of plate-like Peltier modules PM 1 to PM 9 are attached to the back side of the line-shaped irradiation unit 54, that is, the upper surface of the support plate 52, in a horizontal row. Each Peltier module PM n is located behind (directly above) the corresponding irradiation area SE n , and its support surface 52 sandwiches its cooling surface (heat absorption surface) with, for example, a platinum resistance temperature detector 58 (n). It is affixed to the top surface. A fin-shaped heat sink 60 is coupled to the upper surface of the Peltier modules PM 1 to PM 9 , that is, a heat radiating surface, and a cooling fan 62 is disposed above the heat sink 60.

図8に示すように、冷却機構36は、各々の照射エリアSEn毎に、1組のペルチェモジュールPMn、測温抵抗体58(n)および照射エリア温度制御部64(n)を設けている。図9に示すように、照射エリア温度制御部64(n)は、ブリッジ回路66、差動増幅回路68、コンパレータ70およびペルチェ駆動回路72を有している。 As shown in FIG. 8, the cooling mechanism 36 includes a pair of Peltier modules PM n , a resistance temperature detector 58 (n), and an irradiation area temperature control unit 64 (n) for each irradiation area SE n. Yes. As shown in FIG. 9, the irradiation area temperature control unit 64 (n) includes a bridge circuit 66, a differential amplifier circuit 68, a comparator 70, and a Peltier drive circuit 72.

ブリッジ回路66および差動増幅回路68は、現時の温度Tに応じた測温抵抗体58(n)の抵抗変化を電圧信号として取り出す。コンパレータ70は、差動増幅回路68からの電圧信号(温度検出信号)MTと制御部40からの設定温度Tnを指示する基準信号STnとを比較して、比較誤差δTnを生成する。ペルチェ駆動回路72は、比較誤差δTnを零にするように、たとえばPWM駆動方式でペルチェモジュールPMnに駆動電流を供給する。ペルチェモジュールPMnは、p型半導体とn型半導体とを電極を介して交互に電気的に直列に接合配列してなり、電流が流れると、ペルチェ効果によって冷却面(吸熱面)から反対側の面(放熱面)に熱が移動する。これによって、ペルチェモジュールPMnの冷却面に支持板52を介して熱的に結合されている照射エリアSEn(特にLED素子J1,J2,・・J6)が冷却される。 The bridge circuit 66 and the differential amplifier circuit 68 take out the resistance change of the resistance temperature detector 58 (n) corresponding to the current temperature T as a voltage signal. The comparator 70 compares the voltage signal (temperature detection signal) MT from the differential amplifier circuit 68 with the reference signal ST n indicating the set temperature T n from the control unit 40, and generates a comparison error δT n . The Peltier drive circuit 72 supplies a drive current to the Peltier module PM n by, for example, a PWM drive method so that the comparison error δT n becomes zero. The Peltier module PM n is formed by alternately joining a p-type semiconductor and an n-type semiconductor in series via electrodes. When a current flows, the Peltier module PM n is opposite to the cooling surface (heat absorption surface) by the Peltier effect. Heat moves to the surface (heat dissipation surface). As a result, the irradiation area SE n (particularly the LED elements J 1 , J 2 ,... J 6 ) thermally coupled to the cooling surface of the Peltier module PM n via the support plate 52 is cooled.

設定温度Tnは、各照射エリアSEnの温度(特にLED素子J1,J2,・・J6の温度)を設定値に保つための基準値である。通常は、全ての照射エリアSE1〜SE9について、設定温度T1〜T9が共通(同一)の値に選ばれ、周囲温度つまり室温よりも幾らか(好ましくは数℃だけ)低い温度たとえば20℃〜22℃に選ばれる。もっとも、照射エリアSE1〜SE9の間でそれぞれの設定温度T1〜T9が異なっていてもよい。 The set temperature T n is a reference value for keeping the temperature of each irradiation area SE n (particularly the temperatures of the LED elements J 1 , J 2 ,... J 6 ) at a set value. Normally, for all the irradiation areas SE 1 to SE 9 , the set temperatures T 1 to T 9 are selected to be common (identical) values, and the ambient temperature, that is, a temperature somewhat lower than room temperature (preferably only a few degrees C), for example, It is selected from 20 ° C to 22 ° C. However, among the illumination area SE 1 ~SE 9 may be different from each set temperature T 1 through T 9.

後述するように、補助露光処理のスループットを上げるために、走査速度を高くすると、露光時間が短くなり、各照射エリアSEnと対向する基板G上の各位置で所望の補正露光量を得るのに必要な照度は高くなる。このため、各照射エリアSEnについて設定される発光強度ひいては駆動電流Inが増大する。ところが、LED素子は、駆動電流が大きいと発熱量が著しく増大し、しかも熱に敏感な半導体素子であり、放熱が迅速かつ効率よく行われないと、その光出力(放射照度)が不安定になりやすい。 As will be described later, when the scanning speed is increased in order to increase the throughput of the auxiliary exposure processing, the exposure time is shortened, and a desired corrected exposure amount can be obtained at each position on the substrate G facing each irradiation area SE n . The required illuminance is high. Therefore, light emission intensity and thus the driving current I n is increased is set for each illumination area SE n. However, an LED element is a semiconductor element that significantly increases the amount of heat generated when the drive current is large and is sensitive to heat, and its light output (irradiance) becomes unstable if heat dissipation is not performed quickly and efficiently. Prone.

この実施形態では、後述するように、全ての照射エリアSE1〜SE9が発光駆動部34により独立に発光駆動され、それぞれの放射照度は独立に制御される。冷却機構36は、上記のように各々の照射エリアSEn毎に1組のペルチェモジュールPMn、測温抵抗体58(n)および照射エリア温度制御部64(n)を備える構成により、放射照度が高い照射エリアには冷却を強め、放射照度が低い照射エリアには冷却を弱めるように、各照射エリアSEn別にパッシブ的な冷却動作を行う。よって、ここでは、温度センサ(測温抵抗体)を実装しないアクティブ(オープンループ)冷却制御(強制冷却)は好ましくない。なぜならば、全ての照射エリアSE1〜SE9を一様に冷却する場合はもちろん、各照射エリアSEn毎に個別に冷却する場合でも、たとえば15℃以下のアクティブ冷却(強制冷却)を行えば、照度の低い照射エリアはLED温度が低くなりすぎて、照度が安定するまで時間遅れが発生するからである。 In this embodiment, as will be described later, all the irradiation areas SE 1 to SE 9 are driven to emit light independently by the light emission drive unit 34, and the respective irradiance is controlled independently. As described above, the cooling mechanism 36 includes a pair of Peltier modules PM n , a resistance temperature detector 58 (n), and an irradiation area temperature control unit 64 (n) for each irradiation area SE n. A passive cooling operation is performed for each irradiation area SE n so as to increase the cooling in the irradiation area with a high irradiance and weaken the cooling in the irradiation area with a low irradiance. Therefore, the active (open loop) cooling control (forced cooling) in which the temperature sensor (resistance temperature detector) is not mounted is not preferable here. This is because not only when all the irradiation areas SE 1 to SE 9 are uniformly cooled, but also when each of the irradiation areas SE n is individually cooled, for example, if active cooling (forced cooling) of 15 ° C. or less is performed. This is because, in the irradiation area with low illuminance, the LED temperature becomes too low and a time delay occurs until the illuminance is stabilized.

この実施形態においては、補助露光処理のスループットを上げるために走査速度を高く設定しても、あるいは照射エリアの間で放射照度が大きく異なっていても、ライン状照射部54の端から端まで、つまり全ての照射エリアSE1〜SE9の温度をそれぞれの設定温度T1〜T9に安定かつ正確に保つことができる。このことは、後に説明するように各々の照射エリアSEn毎に個別の指令値−照度特性を用いて露光量補正処理を実施するうえで非常に重要である。 In this embodiment, even if the scanning speed is set high in order to increase the throughput of the auxiliary exposure processing, or even if the irradiance is greatly different between the irradiation areas, from the end of the line irradiation unit 54 to the end, That is, the temperatures of all the irradiation areas SE 1 to SE 9 can be stably and accurately maintained at the respective set temperatures T 1 to T 9 . This is very important in performing exposure amount correction processing using individual command value-illuminance characteristics for each irradiation area SE n as will be described later.

図10に、発光駆動部34および照度測定部38の構成を示す。発光駆動部34は、各々の照射エリアSEn毎にLEDドライバ74(n)を備えている。各々の照射エリアSEnに設けられる一組のLED素子J1,J2,・・J6は、電気的には直列接続でLEDドライバ74(n)の負荷回路を構成する。制御部40は、各々の照射エリアSEnに対する発光出力の指令値Vnとして電圧値表示のディジタル信号DVnを出力する。このディジタル信号DVnはディジタル−アナログ変換器(DAC)76(n)によりアナログの電圧信号AVnに変換され、このアナログ電圧信号AVnがLEDドライバ74(n)に与えられる。LEDドライバ74(n)は、定電流源回路を有しており、制御部40からの指令値(電圧信号)Vnに応じた駆動電流Inを定電流で当該照射エリアSEn内のLED素子J1,J2,・・J6に供給する。こうして、LED素子J1,J2,・・J6は、同一または共通の駆動電流Inによって発光駆動され、所定波長の紫外線光を発する。 FIG. 10 shows the configuration of the light emission drive unit 34 and the illuminance measurement unit 38. The light emission drive unit 34 includes an LED driver 74 (n) for each irradiation area SE n . A set of LED elements J 1 , J 2 ,... J 6 provided in each irradiation area SE n is electrically connected in series to constitute a load circuit of the LED driver 74 (n). Control unit 40 outputs the digital signal DV n voltage values displayed as the command value V n of the light output for each illumination area SE n of. The digital signal DV n digital - are converted to analog converter (DAC) by 76 (n) into an analog voltage signal AV n, the analog voltage signal AV n is applied to the LED driver 74 (n). LED driver 74 (n) has a constant current source circuit, LED of the illumination area SE n the drive current I n corresponding to the command value (voltage signal) V n from the control unit 40 with a constant current elements J 1, J 2, and supplies the · · J 6. Thus, it LED elements J 1, J 2, ·· J 6 is driven to emit light by the same or a common drive current I n, emits ultraviolet light of a predetermined wavelength.

一般に、LED素子には個体差と経時変化が付き物である。このため、同一の駆動電流を供給しても、各照射エリアSEn内で個々のLED素子J1,J2,・・J6の光出力が異なり、それらの合成出力も時間の経過とともに変化し、照射エリアSE1〜SE9の間でそれぞれの放射照度または照射強度が区々になることは、決して稀なことではなく、むしろ普通である。 In general, LED elements are accompanied by individual differences and changes over time. For this reason, even if the same drive current is supplied, the light outputs of the individual LED elements J 1 , J 2 ,... J 6 are different within each irradiation area SE n , and their combined outputs also change over time. However, it is not rare that the irradiance or the irradiation intensity varies between the irradiation areas SE 1 to SE 9 .

この実施形態では、このようなLED素子の特質に鑑みて、照度測定部38を備えるとともに、制御部40において発光駆動部34および照度測定部38を通じて後述するような照度特性取得動作を定期的に実施するようにしている。   In this embodiment, in view of the characteristics of such LED elements, the illuminance measurement unit 38 is provided, and the control unit 40 periodically performs an illuminance characteristic acquisition operation as described later through the light emission drive unit 34 and the illuminance measurement unit 38. I am trying to do it.

照度測定部38は、紫外線の照度を測定するための照度計80と、この照度計80をUV照射ユニット32の真下で照射ライン方向(Y方向)に移動させるための照度計移動機構82とを備えている。照度計80は、その頂部80a付近に光電変換素子たとえばフォトダイオードを有しており、その受光面に入射した紫外線の光強度に対応した電気信号(照度測定信号)MLを生成するようになっている。照度計80より出力される照度測定信号MLは、アナログ−ディジタル変換器(ADC)84を介して制御部40に送られる。   The illuminance measuring unit 38 includes an illuminance meter 80 for measuring the illuminance of ultraviolet rays, and an illuminance meter moving mechanism 82 for moving the illuminance meter 80 in the irradiation line direction (Y direction) directly below the UV irradiation unit 32. I have. The illuminance meter 80 has a photoelectric conversion element such as a photodiode in the vicinity of the top 80a, and generates an electric signal (illuminance measurement signal) ML corresponding to the light intensity of ultraviolet light incident on the light receiving surface. Yes. The illuminance measurement signal ML output from the illuminometer 80 is sent to the control unit 40 via an analog-digital converter (ADC) 84.

照度計移動機構82は、図11に示すように、照度計80の受光部80aがコロ搬送路46上を移動するときの基板Gの表面と同じ高さになるように照度計80をキャリッジ86に搭載し、UV照射ユニット32と平行(Y方向)に延びるレール88上でたとえばリニアモータ(図示せず)によりキャリッジ86および照度計80を双方向で任意に移動させ、レール88上の任意の位置に照度計80を停止または静止できるようになっている。照度計80の外部配線(電気ケーブル)は、ケーブルベア90の中に収まっている。なお、UV照射ユニット32およびレール88は隣接するコロ44の中間に設けられており、照度特性取得動作を実行しないときはキャリッジ86および照度計80がコロ搬送路46の外(脇)に退避するようになっている。   As shown in FIG. 11, the illuminometer moving mechanism 82 moves the illuminometer 80 to the carriage 86 so that the light receiving portion 80 a of the illuminometer 80 is at the same height as the surface of the substrate G when moving on the roller transport path 46. The carriage 86 and the illuminance meter 80 are arbitrarily moved in both directions by a linear motor (not shown), for example, on a rail 88 that is mounted on the rail 88 and extends parallel to the UV irradiation unit 32 (Y direction). The illuminometer 80 can be stopped or stopped at the position. The external wiring (electric cable) of the illuminance meter 80 is accommodated in the cable bear 90. The UV irradiation unit 32 and the rail 88 are provided in the middle of the adjacent rollers 44, and the carriage 86 and the illuminance meter 80 are retracted outside (side) the roller conveyance path 46 when the illuminance characteristic acquisition operation is not performed. It is like that.

ここで、この実施形態における照度特性取得動作を説明する。この照度特性取得動作は、たとえば一定の装置稼働時間毎または一定の月日毎に定期的に行われる。制御部40は、平流し搬送部30を止めて(コロ搬送路46上に基板Gが無い状態にして)、発光駆動部34、冷却機構36、照度測定部38の各部および全体のシーケンスを制御する。   Here, the illuminance characteristic acquisition operation in this embodiment will be described. This illuminance characteristic acquisition operation is performed periodically, for example, every certain device operating time or every certain month and day. The control unit 40 stops the flat flow conveyance unit 30 (with no substrate G on the roller conveyance path 46), and controls each unit of the light emission drive unit 34, the cooling mechanism 36, and the illuminance measurement unit 38 and the entire sequence. To do.

冷却機構36は、制御部40の制御の下で、補助露光処理が行われる時と全く同じように動作する。すなわち、冷却機構36は、制御部40からの基準信号ST1〜ST9に応じて、UV照射ユニット32の照射エリアSE1〜SE9の温度をそれぞれ設定温度T1〜T9に保つようにパッシブ的な冷却動作を行う。それぞれの設定温度T1〜T9は、上記したように、通常は同じ値に選ばれてよい。 The cooling mechanism 36 operates under the control of the control unit 40 in exactly the same way as when auxiliary exposure processing is performed. That is, the cooling mechanism 36 keeps the temperatures of the irradiation areas SE 1 to SE 9 of the UV irradiation unit 32 at the set temperatures T 1 to T 9 according to the reference signals ST 1 to ST 9 from the control unit 40. Perform passive cooling. As described above, the set temperatures T 1 to T 9 may be normally selected to be the same value.

一方、発光駆動部34と照度測定部38は、制御部40の制御の下で次のように連携して動作する。すなわち、発光駆動部34は、始めに第1の照射エリアSE1のみを所定値の駆動電流で発光駆動する。これに合わせて、照度測定部38は、照度計80を第1の照射エリアSE1の真下付近に移動させる。照度計80は各位置で照度測定信号MLを出力する。制御部40は、照度計80をライン方向(Y方向)で前後に微動させながら、照度計80からの照度測定信号MLをモニタして、第1の照射エリアSE1の真下付近で照度の最も高い位置(ピーク位置)P1を決定し、このピーク位置P1に照度計80の位置を合わせる。 On the other hand, the light emission drive unit 34 and the illuminance measurement unit 38 operate in cooperation as follows under the control of the control unit 40. In other words, the light emission drive unit 34 first performs light emission driving only on the first irradiation area SE 1 with a predetermined driving current. In accordance with this, the illuminance measurement unit 38 moves the illuminance meter 80 to a position immediately below the first irradiation area SE 1 . The illuminometer 80 outputs an illuminance measurement signal ML at each position. The control unit 40 monitors the illuminance measurement signal ML from the illuminometer 80 while finely moving the illuminometer 80 back and forth in the line direction (Y direction), and has the highest illuminance in the vicinity immediately below the first irradiation area SE 1. A high position (peak position) P 1 is determined, and the position of the illuminometer 80 is adjusted to this peak position P 1 .

次いで、制御部40は、発光駆動部34にm段階(mは2以上の整数)の発光出力指令値V1-1,V1-2,・・V1-mを順次与え、それらの発光出力指令値V1-1,V1-2,・・V1-mに対応して照度計80より逐次出力される照度測定信号MLを取り込んで、ピーク位置P1における照度測定値L1-1,L1-2,・・L1-mを求める。そして、発光出力指令値V1-1,V1-2,・・V1-mと照度測定値L1-1,L1-2,・・L1-mとをグラフ上でプロットして、たとえば図12に示すような一次関数の指令値−照度特性α1(n=1の場合)を取得する。この指令値−照度特性α1は、その一次関数の直線の傾きをa1、切片をb1とすると、α=a1V+b1の式で表わされる。 Next, the control unit 40 sequentially gives light emission output command values V 1-1 , V 1-2 ,... V 1-m to the light emission drive unit 34 (m is an integer of 2 or more), and emits the light emission. The illuminance measurement signal ML sequentially output from the illuminometer 80 corresponding to the output command values V 1-1 , V 1-2 ,... V 1-m is taken in, and the illuminance measurement value L 1− at the peak position P 1 is acquired. 1 , L 1-2 ,... L 1-m is obtained. Then, the light emitting output command value V 1-1, V 1-2, ·· V 1-m and the measured illuminance value L 1-1, L 1-2, plots and · · L 1-m on the graph For example, a linear function command value-illuminance characteristic α 1 (when n = 1) as shown in FIG. 12 is acquired. This command value-illuminance characteristic α 1 is expressed by an equation: α = a 1 V + b 1 , where a 1 is the slope of the straight line of the linear function and b 1 is the intercept.

制御部40は、第2〜第9の照射エリアSE2〜SE9についても、発光駆動部34と照度測定部38を通じて上記と同様の動作を繰り返し、それぞれの指令値−照度特性α2〜α9を取得する。 The control unit 40 also repeats the same operation as described above for the second to ninth irradiation areas SE 2 to SE 9 through the light emission drive unit 34 and the illuminance measurement unit 38, and the respective command value-illuminance characteristics α 2 to α. Get 9

この実施形態では、補助露光処理の精度を高めるために、照射エリアSEnと対向する基板G上のマトリクス区画の第n列の領域について、当該照射エリアSEnと近接する(たとえば1つ隣りまでの)照射エリアSEn-1,SEn+1の指令値−照度特性βn-1,γn+1も併せて取得する。その場合、照度計80は、第1の照射エリアSE1の直下の第1ピーク位置P1で隣接照射エリアSEn-1,SEn+1からのそれぞれの紫外線光を受光して照度を測定する。 In this embodiment, in order to enhance the accuracy of the auxiliary exposure process, the area of the n-th column of the matrix partition on the illumination area SE n and opposing substrates G, adjacent with the illumination area SE n (e.g. up to one next of) the illumination area SE n-1, SE n + 1 of the command value - illuminance characteristic β n-1, γ n + 1 also together acquires. In that case, the illuminance meter 80 receives each ultraviolet light from the adjacent irradiation areas SE n-1 and SE n + 1 at the first peak position P 1 immediately below the first irradiation area SE 1 and measures the illuminance. To do.

制御部40は、上記のようにして各々の照射エリアSEn毎に取得した主指令値−照度特性αnおよび隣接指令値−照度特性βn-1,γn+1を規定する所定の属性データ(傾き、切片)をたとえばメモリ42に構築される図13に示すようなテーブル上で保管する。そして、定期的に上記照度特性取得動作を行う度毎に、新たに取得した指令値−照度特性αn,βn-1,γn+1に置き換えてテーブル内容を更新する。 The control unit 40 has predetermined attributes that define the main command value-illuminance characteristic α n and adjacent command values-illuminance characteristics β n−1 , γ n + 1 acquired for each irradiation area SE n as described above. Data (tilt, intercept) is stored on a table as shown in FIG. Each time the illuminance characteristic acquisition operation is performed periodically, the table contents are updated by replacing with newly acquired command value-illuminance characteristics α n , β n−1 , γ n + 1 .

次に、この実施形態における補助露光処理について説明する。補助露光処理を行う時は、制御部40の制御の下で、発光駆動部34および冷却機構36だけでなく平流し搬送部30も動作する。平流し搬送部30は、減圧乾燥ユニット(DP)で減圧乾燥処理を終えた基板Gを平流しでこの補助露光装置(AE)10内に搬入し、この補助露光装置(AE)10内で補助露光処理の走査のために基板Gを平流しで搬送する。ここで、平流し搬送速度vは、補助露光処理における走査速度であり、基板G上のマトリクス区画の各単位領域(i,j)当たりの紫外線照射時間tSとも関係する。すなわち、比例定数をKとすると、v=K/tsの逆比例関係がある。 Next, auxiliary exposure processing in this embodiment will be described. When the auxiliary exposure process is performed, not only the light emission drive unit 34 and the cooling mechanism 36 but also the flat flow transport unit 30 operate under the control of the control unit 40. The flat flow transport unit 30 flatly flows the substrate G that has been subjected to the vacuum drying process in the vacuum drying unit (DP), and carries the substrate G into the auxiliary exposure apparatus (AE) 10, and assists in the auxiliary exposure apparatus (AE) 10. The substrate G is transported in a flat flow for scanning exposure processing. Here, the flattening conveyance speed v is a scanning speed in the auxiliary exposure process, and is also related to the ultraviolet irradiation time t S per unit area (i, j) of the matrix section on the substrate G. That is, if a proportional constant is K, the inverse proportional relation of v = K / t s.

制御部40は、補助露光処理に先立ち、演算処理部16より入力した照射マップ(図2D)とメモリ42のテーブルに保持している最新の指令値−照度特性αn,βn-1,γn+1(図13)とを参照して、基板G上のマトリクス区画の各単位領域(i,j)毎に指令値Vi,jを演算して、たとえばメモリ42内に構築されるテーブル上で図14に示すようにマッピングする。 Prior to the auxiliary exposure processing, the control unit 40 has the irradiation command (FIG. 2D) input from the arithmetic processing unit 16 and the latest command value-illuminance characteristics α n , β n−1 , γ held in the table of the memory 42. With reference to n + 1 (FIG. 13), a command value V i, j is calculated for each unit area (i, j) of the matrix section on the substrate G, for example, a table constructed in the memory 42 Mapping is performed as shown in FIG.

ここで、各指令値Vi,jは、主指令値−照度特性αjおよび隣接指令値−照度特性βj-1,γj+1の全部を加味して目的の照度Ci,jが得られるように決定または選定される。たとえば、マトリクス区画の第i行の単位領域(i,2)〜(i,9)に注目すると、それぞれの単位領域(1,2)〜(1,9)で目的の照度C1,1〜C1,9が得られるように、第i行分の各指令値Vi,1〜Vi,9が決定または選定される。そのために、たとえば、指令値V1,1〜V1,9を変数とし、照度Ci,1〜Ci,9を既値として、指令値−照度特性(一次関数)αn,βn-1,γn+1(n=1,2,・・,9)の連立方程式を解く演算が行われる。あるいは、指令値−照度特性αn,βn-1,γn+1(n=1,2,・・,9)の変数(各指令値V1,1〜V1,9)に適当な数値を当てはめて照度Ci,1〜Ci,9を演算し、照度Ci,1〜Ci,9の演算値がそれぞれ目的の値に近づくまで上記当てはめを所定回数繰り返す方法も好適に採られる。 Here, each command value V i, j includes the main command value-illuminance characteristic α j and the adjacent command value-illuminance characteristics β j−1 , γ j + 1 in consideration of the target illuminance C i, j. Determined or selected to obtain. For example, when attention is paid to the unit areas (i, 2) to (i, 9) in the i-th row of the matrix section, the target illuminances C 1,1 to C in the respective unit areas (1, 2) to (1, 9). The command values V i, 1 to V i, 9 for the i-th row are determined or selected so that C 1,9 is obtained. For this purpose, for example, command values V 1,1 to V 1,9 are used as variables, and illuminances C i, 1 to C i, 9 are used as existing values, and command values-illuminance characteristics (primary functions) α n , β n− An operation for solving simultaneous equations of 1 and γ n + 1 (n = 1, 2,..., 9) is performed. Or, it is suitable for the variables of command value-illuminance characteristics α n , β n−1 , γ n + 1 (n = 1, 2,..., 9) (each command value V 1,1 to V 1,9 ). calculates the illuminance C i, 1 -C i, 9 by fitting the numerical illuminance C i, 1 -C i, a method of calculating values of 9 repeats a predetermined number of times fitting the to respectively approach the desired value suitably adopted It is done.

一方で、制御部40は、冷却機構36に対しては、照度特性取得動作の時と全く同じように動作させる。すなわち、上記のようにUV照射ユニット32の照射エリアSE1〜SE9の温度をそれぞれ設定温度T1〜T9に保つようにバッシブな冷却動作を冷却機構36に行わせる。 On the other hand, the control unit 40 causes the cooling mechanism 36 to operate in exactly the same manner as in the illuminance characteristic acquisition operation. That is, as described above, the cooling mechanism 36 is caused to perform a basic cooling operation so as to keep the temperatures of the irradiation areas SE 1 to SE 9 of the UV irradiation unit 32 at the set temperatures T 1 to T 9 , respectively.

そして、制御部40は、図15に示すように、発光駆動部34および平流し搬送部30を通じて補助露光処理のための基板GとUV照射ユニット32間の走査を行わせる。この走査では、基板Gの上のマトリクス区画の第i行の単位領域(i,1)〜(i,9)がUV照射ユニット32の真下を通過する時に、発光駆動部34のLEDドライバ74(1)〜74(9)に第i行分の各指令値Vi,1〜Vi,9を与える。これにより、第i行の単位領域(i,1)〜(i,9)に対して、UV照射ユニット32のライン状照射部54よりライン方向(Y方向)で照射エリアSEn毎に独立した光出力を有する帯状の紫外線が設定照度Ci,1〜Ci,9で一定時間照射される。ここで、第i行分の一定時間照射は、連続照射またはパルス照射のいずれであってもよい。 Then, as shown in FIG. 15, the control unit 40 causes the substrate G and the UV irradiation unit 32 for auxiliary exposure processing to be scanned through the light emission drive unit 34 and the flat flow transport unit 30. In this scanning, when the unit areas (i, 1) to (i, 9) in the i-th row of the matrix section on the substrate G pass directly under the UV irradiation unit 32, the LED driver 74 ( The command values V i, 1 to V i, 9 for the i-th row are given to 1) to 74 (9). Accordingly, the unit areas (i, 1) to (i, 9) in the i-th row are independent of each irradiation area SE n in the line direction (Y direction) from the line-shaped irradiation unit 54 of the UV irradiation unit 32. A belt-shaped ultraviolet ray having a light output is irradiated for a predetermined time at a set illuminance C i, 1 to C i, 9 . Here, the irradiation for a fixed time for the i-th row may be either continuous irradiation or pulse irradiation.

こうして、図16に示すように、基板GがUV照射ユニット32の真下を通過する際に、照射ライン(マトリクス区画の各行)上で単位領域(i,j)毎に独立した照度または露光量の補助的露光が行われる。この補助露光処理が済むと、基板Gはプリベークユニット(PRB)、冷却ユニット(COL)、マスク露光装置(EXP)および現像ユニット(DEP)に順次送られる。その結果、現像ユニット(DEP)より搬出された基板G上には、所望の精度および面内均一性を示すレジストパターンの膜厚(または線幅)が得られる。

[他の実施形態または変形例]
Thus, as shown in FIG. 16, when the substrate G passes directly under the UV irradiation unit 32, the illuminance or exposure amount independent for each unit region (i, j) on the irradiation line (each row of the matrix section). Auxiliary exposure is performed. When this auxiliary exposure processing is completed, the substrate G is sequentially sent to a pre-bake unit (PRB), a cooling unit (COL), a mask exposure device (EXP), and a development unit (DEP). As a result, a resist pattern film thickness (or line width) exhibiting desired accuracy and in-plane uniformity is obtained on the substrate G carried out of the developing unit (DEP).

[Other Embodiments or Modifications]

上記した実施形態における補助露光装置(AE)10の冷却機構36は、UV照射ユニット32の各々の照射エリアSEn毎に1組のペルチェモジュールPMn、照明エリア温度制御部64(n)および測温抵抗体(温度センサ)58(n)を設け、測温抵抗体58(n)の検出する温度Tが設定温度Tnに一致するように、照明エリア温度制御部64(n)が閉ループ制御でペルチェモジュールPMnに駆動電流Inを供給するように構成された。 The cooling mechanism 36 of the auxiliary exposure apparatus (AE) 10 in the above-described embodiment includes a pair of Peltier modules PM n , an illumination area temperature control unit 64 (n), and a measurement for each irradiation area SE n of the UV irradiation unit 32. resistance temperature (temperature sensor) provided 58 (n), so that the detection temperature T of the measuring resistor 58 (n) matches the set temperature T n, the lighting area temperature control unit 64 (n) is the closed loop control configured in such a driving current is supplied I n the Peltier module PM n.

一変形例として、図17に示すように、測温抵抗体(温度センサ)58(n)を使わずに、各照射エリアSEnの温度が設定温度Tnになるように各照明エリア温度制御部64(n)がオープンループ制御でペルチェモジュールPMnに駆動電流Inを供給するように構成することも可能である。この場合、各照明エリア温度制御部64(n)は、ペルチェ駆動回路72のみで構成されてよい。ただし、制御部40は、各照明エリア温度制御部64(n)に与える基準信号STnに指令値Vnに応じた補正をかける。すなわち、発光駆動部34のLEDドライバ74(n)に与える指令値Vnが大きいほど相対的に冷却を強め、指令値Vnが小さいほど相対的に冷却を弱めるように基準信号STnに補正をかける。 As a modification, as shown in FIG. 17, each illumination area temperature control is performed so that the temperature of each irradiation area SE n becomes the set temperature T n without using the resistance temperature detector (temperature sensor) 58 (n). part 64 (n) that is possible to configure to supply the driving current I n to the Peltier module PM n the open-loop control. In this case, each illumination area temperature control unit 64 (n) may be configured by only the Peltier drive circuit 72. However, the control unit 40 applies correction according to the command value V n to the reference signal ST n given to each illumination area temperature control unit 64 (n). That is, the command value V n applied to the LED driver 74 of the light emission drive portion 34 (n) strengthened relatively cool the larger, the correction to the reference signal ST n to weaken the relatively cool enough command value V n is small multiply.

このように冷却機構36をオープンループ制御方式に構成する場合は、相隣接する照射エリアSEn,SEN+1の間で温度干渉を極力少なくするのが好ましい。このために、図17および図18に示すように、たとえば、照射エリアSEn,SEN+1にそれぞれ個別の支持板52(n),52(n+1)を充てる構成を好適に採ることができる。この場合、各支持板52(n),52(n+1)は、熱伝導率の低いたとえば樹脂製のホルダ92に装着される。このように相隣接する照射エリア間で温度干渉を防ぐ断熱部は、上記閉ループ制御方式の実施形態でも適用可能である。 Thus, when the cooling mechanism 36 is configured in an open loop control system, it is preferable to reduce temperature interference as much as possible between the adjacent irradiation areas SE n and SE N + 1 . For this purpose, as shown in FIGS. 17 and 18, for example, it is preferable to employ a configuration in which individual support plates 52 (n) and 52 (n + 1) are filled in the irradiation areas SE n and SE N + 1 , respectively. Can do. In this case, each of the support plates 52 (n) and 52 (n + 1) is mounted on a holder 92 made of, for example, resin having low thermal conductivity. Thus, the heat insulation part which prevents temperature interference between the irradiation areas which adjoin each other is applicable also in embodiment of the said closed loop control system.

また、冷却機構36に関する別の変形例として、たとえば図19および図20に示すように、連続する数個たとえば3つの照射エリアSEn,SEN+1,SEN+2を1つのグループにして、各グループ毎に1組のペルチェモジュールPMM、照明エリア温度制御部64(M)および測温抵抗体(温度センサ)58(M)を設ける構成を採ることもできる。 As another modification of the cooling mechanism 36, for example, as shown in FIGS. 19 and 20, several consecutive irradiation areas SE n , SE N + 1 , SE N + 2 are grouped into one group. In addition, a configuration in which one set of Peltier module PM M , illumination area temperature controller 64 (M), and resistance temperature detector (temperature sensor) 58 (M) can be adopted for each group.

上記したように、基板G上で区画されるマトリクスの列の数、つまりUV照射ユニット32上で分割される照射エリアSEの数は一般に数十以上あるいは百以上である。その中で、連続する数個程度の照射エリアSEn,SEN+1,SEN+2に設定されるそれぞれの放射照度は大体近似しており、極端に異なることはない。したがって、冷却機構36においては、1組のペルチェモジュールPMM、照明エリア温度制御部64(M)および測温抵抗体(温度センサ)58(M)によって、各グループ内の連続または近接する照射エリアSEn,SEN+1,SEN+2を安定かつ正確に共通冷却することができる。 As described above, the number of matrix columns partitioned on the substrate G, that is, the number of irradiation areas SE divided on the UV irradiation unit 32 is generally several tens or more or one hundred or more. Among them, the irradiances set in about several consecutive irradiation areas SE n , SE N + 1 , SE N + 2 are approximately approximate and are not extremely different. Accordingly, in the cooling mechanism 36, a set of Peltier modules PM M , an illumination area temperature control unit 64 (M), and a resistance temperature detector (temperature sensor) 58 (M) provide a continuous or adjacent irradiation area in each group. SE n , SE N + 1 , SE N + 2 can be cooled stably and accurately.

冷却機構36に関しては、他にも種種の変形が可能である。たとえば、ペルチェモジュールは、応答性にすぐれた最適な冷却手段である。しかし、ペルチェモジュールに代えて、応答性の低下を伴うが、たとえば水冷式の冷却手段を用いることも可能である。   Various other modifications are possible for the cooling mechanism 36. For example, the Peltier module is an optimal cooling means with excellent responsiveness. However, in place of the Peltier module, there is a decrease in responsiveness. For example, a water-cooling cooling means can be used.

また、冷却機構36の別の変形例として、UV照射ユニット32の各々の照射エリアSEnの温度を周囲温度(室温)よりも高い設定温度に制御する温度管理機構も使用可能である。 As another modification of the cooling mechanism 36, a temperature management mechanism that controls the temperature of each irradiation area SE n of the UV irradiation unit 32 to a set temperature higher than the ambient temperature (room temperature) can be used.

UV照射ユニット32においても種種の変形が可能である。特に、各照射エリアSEn内でLED素子を配置するレイアウトは任意であり、たとえば複数個のLED素子を千鳥状に配置する構成も可能である。 Various modifications can also be made in the UV irradiation unit 32. In particular, the layout in which the LED elements are arranged in each irradiation area SE n is arbitrary. For example, a configuration in which a plurality of LED elements are arranged in a staggered manner is also possible.

上記した実施形態における補助露光装置(AE)10は、基板Gを平流しで搬送する平流し搬送部30を備え、UV照射ユニット32を走査方向で一定位置に固定した。しかし、基板Gをたとえばステージに固定し、ステージ上でUV照射ユニット32を走査方向に移動させる走査方式や、基板GとUV照射ユニット32の双方を移動させる走査方式も可能である。   The auxiliary exposure apparatus (AE) 10 in the above-described embodiment includes the flat flow transport unit 30 that transports the substrate G by flat flow, and fixes the UV irradiation unit 32 at a fixed position in the scanning direction. However, for example, a scanning method in which the substrate G is fixed to a stage and the UV irradiation unit 32 is moved in the scanning direction on the stage, or a scanning method in which both the substrate G and the UV irradiation unit 32 are moved is possible.

上記実施形態における基板処理装置(図1)は、プロセスフローにおいて、補助露光装置(AE)10を減圧乾燥ユニット(DP)とプリベークユニット(PRB)との間に配置した。しかし、補助露光装置(AE)10は、プロセスフローにおいてレジスト塗布ユニット(CT)と現像ユニット(DEP)の間であれば任意の位置に配置できる。したがって、プリベークユニット(PRB)と冷却ユニット(COL)との間、冷却ユニット(COL)とマスク露光装置(EXP)との間、またはマスク露光装置(EXP)と現像ユニット(DEP)との間に補助露光装置(AE)10を配置することも可能である。   In the substrate processing apparatus (FIG. 1) in the above embodiment, the auxiliary exposure apparatus (AE) 10 is disposed between the reduced pressure drying unit (DP) and the pre-baking unit (PRB) in the process flow. However, the auxiliary exposure apparatus (AE) 10 can be disposed at any position as long as it is between the resist coating unit (CT) and the development unit (DEP) in the process flow. Therefore, between the pre-bake unit (PRB) and the cooling unit (COL), between the cooling unit (COL) and the mask exposure apparatus (EXP), or between the mask exposure apparatus (EXP) and the development unit (DEP). An auxiliary exposure device (AE) 10 may be arranged.

また、本発明の補助露光装置(AE)は、ポジ型のレジストを用いる場合だけでなく、ネガ型のレジストを用いるアプリケーションにも適用可能である。本発明における被処理基板はFPD用のガラス基板に限らず、他のフラットパネルディスプレイ用基板、半導体ウエハ、有機EL、太陽電池用の各種基板、CD基板、フォトマスク、プリント基板等も可能である。   Further, the auxiliary exposure apparatus (AE) of the present invention can be applied not only to the case of using a positive type resist but also to an application using a negative type resist. The substrate to be treated in the present invention is not limited to a glass substrate for FPD, and other flat panel display substrates, semiconductor wafers, organic EL, various substrates for solar cells, CD substrates, photomasks, printed substrates, and the like are also possible. .

10 補助露光装置(AE)
12 レジストパターン検査部
14 入力部
16 演算処理部
30 平流し搬送部
32 UV照射ユニット
SE(1)〜SE(9),SE(n) 照射エリア
34 発光駆動部
36 冷却機構
38 照度測定部
40 制御部
42 メモリ
50 走査駆動部
52 支持板
54 ライン状照射部
56 拡散板
58(1)〜58(9),58(n) 測温抵抗体(温度センサ)
PM(1)〜PM(9),PM(n) ペルチェモジュール
60 ヒートシンク
64(1)〜64(9),64(n) 照射エリア温度制御部
74(1)〜74(9),74(n) LEDドライバ
80 照度計
82 照度計移動機構
10 Auxiliary exposure equipment (AE)
DESCRIPTION OF SYMBOLS 12 Resist pattern inspection part 14 Input part 16 Arithmetic processing part 30 Flat flow conveyance part 32 UV irradiation unit SE (1) -SE (9), SE (n) Irradiation area 34 Light emission drive part 36 Cooling mechanism 38 Illuminance measurement part 40 Control Unit 42 Memory 50 Scanning drive unit 52 Support plate 54 Line-shaped irradiation unit 56 Diffusion plate 58 (1) to 58 (9), 58 (n) Resistance temperature detector (temperature sensor)
PM (1) to PM (9), PM (n) Peltier module 60 Heat sink 64 (1) to 64 (9), 64 (n) Irradiation area temperature controller 74 (1) to 74 (9), 74 (n ) LED driver 80 Illuminance meter 82 Illuminance meter moving mechanism

Claims (15)

光リソグラフィにおいて、被処理基板上に塗布されたレジスト膜にマスクのパターンを転写する露光処理とは別に、前記基板の表面の前記レジスト膜に所定波長の紫外線を照射する補助露光装置であって、
前記紫外線光を発する1個または複数個の発光素子を設けた照射エリアを第1の方向に複数配列してなる紫外線照射ユニットと、
各々の前記照射エリア毎に前記発光素子に発光用の駆動電流を供給する発光駆動部と、
前記基板表面のレジスト膜を露光走査するように、前記基板に対して前記紫外線照射ユニットを前記第1の方向と交差する第2の方向に相対的に移動させる走査機構と、
各々の前記照射エリアについて、前記発光駆動部を通じて、当該照射エリアに対する光出力の指令値と前記基板上の対応する被照射位置の照度との関係を表わす指令値−照度特性を取得する照度特性取得部と、
前記露光走査中に、各々の前記照射エリアと対向する前記基板上の被照射位置の照度が目標値に一致または近似するように、各々の前記照射エリア毎に前記指令値−照度特性に基づいて前記発光駆動部を制御する照度制御部と、
各々の前記照射エリアについて、前記指令値−照度特性を取得する時とその後に前記露光走査を行う時とで、各々の前記照射エリアの温度を同一または近似する温度に制御する温度管理機構と
を有する補助露光装置。
In photolithography, an auxiliary exposure apparatus for irradiating the resist film on the surface of the substrate with ultraviolet rays of a predetermined wavelength separately from the exposure process for transferring a mask pattern to a resist film applied on a substrate to be processed,
An ultraviolet irradiation unit in which a plurality of irradiation areas provided with one or a plurality of light emitting elements emitting ultraviolet light are arranged in a first direction;
A light emission drive unit for supplying a drive current for light emission to the light emitting element for each of the irradiation areas;
A scanning mechanism for moving the ultraviolet irradiation unit relative to the substrate in a second direction intersecting the first direction so as to expose and scan the resist film on the substrate surface;
For each of the irradiation areas, through the light emission drive unit, an illuminance characteristic acquisition for acquiring a command value-illuminance characteristic indicating a relationship between a command value of light output for the irradiation area and the illuminance of a corresponding irradiated position on the substrate And
Based on the command value-illuminance characteristic for each irradiation area so that the illuminance at the irradiated position on the substrate facing the irradiation area matches or approximates a target value during the exposure scanning. An illuminance control unit for controlling the light emission drive unit;
A temperature management mechanism that controls the temperature of each irradiation area to the same or approximate temperature when the command value-illuminance characteristic is acquired for each of the irradiation areas and when the exposure scanning is performed thereafter. Auxiliary exposure apparatus having.
前記発光素子は、表面実装型のLED素子であり、
前記紫外線照射ユニットは、各々の前記照射エリアにおいて熱伝導率の高い支持部材に前記LED素子を取り付けている、
請求項1に記載の補助露光装置。
The light emitting element is a surface mount type LED element,
The ultraviolet irradiation unit has the LED element attached to a support member having high thermal conductivity in each of the irradiation areas.
The auxiliary exposure apparatus according to claim 1.
前記温度管理機構は、前記支持部材に結合される冷却機構を有する、請求項2に記載の補助露光装置。   The auxiliary exposure apparatus according to claim 2, wherein the temperature management mechanism includes a cooling mechanism coupled to the support member. 前記冷却機構は、
前記支持部材に冷却面を向けて取り付けられるペルチェモジュールと、
前記ペルチェモジュールの放熱面に接続されるヒートシンクと、
前記ペルチェモジュールに定電流制御で所定の電流を供給する照明エリア温度制御部と
を有する、請求項3に記載の補助露光装置。
The cooling mechanism is
A Peltier module attached to the support member with the cooling surface facing;
A heat sink connected to the heat dissipation surface of the Peltier module;
The auxiliary exposure apparatus according to claim 3, further comprising: an illumination area temperature control unit that supplies a predetermined current to the Peltier module by constant current control.
各々の前記照射エリア毎に前記ペルチェモジュールと前記照明エリア温度制御部が設けられる、請求項4に記載の補助露光装置。   The auxiliary exposure apparatus according to claim 4, wherein the Peltier module and the illumination area temperature control unit are provided for each of the irradiation areas. 各々の前記照射エリア毎に、前記支持部材に温度センサが個別に取り付けられ、前記照明エリア温度制御部が前記温度センサの検出した温度を設定温度に一致させるように前記ペルチェモジュールに駆動電流を供給する、請求項5に記載の補助露光装置。   For each irradiation area, a temperature sensor is individually attached to the support member, and the illumination area temperature control unit supplies a drive current to the Peltier module so that the temperature detected by the temperature sensor matches the set temperature. The auxiliary exposure apparatus according to claim 5. 各々の前記照射エリア毎に、前記照明エリア温度制御部が前記指令値に応じた駆動電流を前記ペルチェモジュールに供給する、請求項5に記載の補助露光装置。   The auxiliary exposure apparatus according to claim 5, wherein the illumination area temperature control unit supplies a drive current corresponding to the command value to the Peltier module for each of the irradiation areas. 隣接する2つの前記照射エリアの間で熱的な相互干渉を防ぐための断熱部を有する、請求項5〜7のいずれか一項に記載の補助露光装置。   The auxiliary exposure apparatus according to any one of claims 5 to 7, further comprising a heat insulating portion for preventing thermal mutual interference between the two adjacent irradiation areas. 全ての前記照射エリアがその配列方向に沿って複数のグループに組分けされ、各々のグループ毎に前記ペルチェモジュールと前記照明エリア温度制御部が設けられる、請求項4に記載の補助露光装置。   The auxiliary exposure apparatus according to claim 4, wherein all the irradiation areas are grouped into a plurality of groups along the arrangement direction, and the Peltier module and the illumination area temperature control unit are provided for each group. 各々のグループ毎に、前記支持部材に温度センサが個別に取り付けられ、前記照明エリア温度制御部が前記温度センサの検出した温度を設定温度に一致させるように前記ペルチェモジュールに駆動電流を供給する、請求項9に記載の補助露光装置。   For each group, a temperature sensor is individually attached to the support member, and the lighting area temperature control unit supplies a drive current to the Peltier module so that the temperature detected by the temperature sensor matches a set temperature. The auxiliary exposure apparatus according to claim 9. 隣接する2つのグループの間で熱的な相互干渉を防ぐための断熱部を有する、請求項9または請求項10に記載の補助露光装置。   The auxiliary exposure apparatus according to claim 9 or 10, further comprising a heat insulating portion for preventing thermal mutual interference between two adjacent groups. 前記照度特性取得部は、
前記露光走査中に各々の前記照射エリアより前記紫外線光を照射される時の前記基板の表面と同一の高さ位置にて、所定の指令値に応じて各々の前記照射エリアより発せられる前記紫外線光を受光してその光強度を表わす信号を出力する光電変換素子と、
前記光電変換素子の出力信号に基づいて照度の測定値を求める照度測定部と、
複数の前記指令値とそれらにそれぞれ対応する前記照度測定値とをプロットして前記指令値−照度特性に当てはまる関数を決定する関数決定部と
を有する、請求項1〜11のいずれか一項に記載の補助露光装置。
The illuminance characteristic acquisition unit
The ultraviolet rays emitted from the irradiation areas according to a predetermined command value at the same height position as the surface of the substrate when the ultraviolet rays are irradiated from the irradiation areas during the exposure scanning. A photoelectric conversion element that receives light and outputs a signal indicating the light intensity;
An illuminance measurement unit for obtaining a measurement value of illuminance based on an output signal of the photoelectric conversion element;
A function determining unit that plots a plurality of the command values and the illuminance measurement values corresponding to each of the command values and determines a function that applies to the command value-illuminance characteristics, according to any one of claims 1 to 11. Auxiliary exposure apparatus as described.
前記走査機構は、前記基板を仰向けの姿勢で前記第2の方向に一定の速度で搬送する平流し方式の基板搬送部を有する、請求項1〜12のいずれか一項に記載の補助露光装置。   13. The auxiliary exposure apparatus according to claim 1, wherein the scanning mechanism includes a flat-flow-type substrate transport unit that transports the substrate in a supine posture at a constant speed in the second direction. . 前記基板上の製品領域をマトリクス状に区画し、前記マトリクスの行方向および列方向を前記第1および第2の方向にそれぞれ対応させるとともに、前記マトリクスの各列を前記紫外線照射ユニットの各々の前記照射エリアに1対1の対応関係で対向させ、前記マトリクスの各単位領域毎に前記照度目標値を設定する、請求項1〜13のいずれか一項に記載の補助露光装置。   Product regions on the substrate are partitioned in a matrix, the row direction and the column direction of the matrix correspond to the first and second directions, respectively, and each column of the matrix is set to each of the ultraviolet irradiation units. 14. The auxiliary exposure apparatus according to claim 1, wherein the illuminance target value is set for each unit region of the matrix so as to face the irradiation area in a one-to-one correspondence relationship. 前記照度目標値は、前記基板上の各位置で現像処理後のレジストパターンの膜厚または線幅の測定値または補間による推測値と設定値との誤差に基づいて設定される、請求項14に記載の補助露光装置。   The illuminance target value is set on the basis of an error between a measured value of a resist pattern after development processing or a line width measured at each position on the substrate or an estimated value by interpolation and a set value. Auxiliary exposure apparatus as described.
JP2012049390A 2012-03-06 2012-03-06 Auxiliary exposure equipment Active JP5836848B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012049390A JP5836848B2 (en) 2012-03-06 2012-03-06 Auxiliary exposure equipment
TW102106194A TWI540398B (en) 2012-03-06 2013-02-22 Auxiliary exposure device
KR1020130023182A KR102006504B1 (en) 2012-03-06 2013-03-05 Assist exposure apparatus
CN201310071266.0A CN103309170B (en) 2012-03-06 2013-03-06 Auxiliary exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012049390A JP5836848B2 (en) 2012-03-06 2012-03-06 Auxiliary exposure equipment

Publications (2)

Publication Number Publication Date
JP2013186191A true JP2013186191A (en) 2013-09-19
JP5836848B2 JP5836848B2 (en) 2015-12-24

Family

ID=49134536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012049390A Active JP5836848B2 (en) 2012-03-06 2012-03-06 Auxiliary exposure equipment

Country Status (4)

Country Link
JP (1) JP5836848B2 (en)
KR (1) KR102006504B1 (en)
CN (1) CN103309170B (en)
TW (1) TWI540398B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150113797A (en) * 2014-03-31 2015-10-08 도시바 라이텍쿠 가부시키가이샤 Method and apparatus for fabricating liquid crystal panel
JP2016086940A (en) * 2014-10-31 2016-05-23 日立工機株式会社 Electric dust collector
JP2016183990A (en) * 2015-03-25 2016-10-20 株式会社Screenホールディングス Exposure apparatus, substrate processing apparatus, exposure method of substrate, and substrate processing method
JP2017167174A (en) * 2016-03-14 2017-09-21 東京エレクトロン株式会社 Auxiliary exposure equipment
JP2018060001A (en) * 2016-10-04 2018-04-12 東京エレクトロン株式会社 Auxiliary exposure apparatus and method for acquiring exposure light quantity distribution
JP2018097127A (en) * 2016-12-13 2018-06-21 東京エレクトロン株式会社 Light irradiation device
KR20220047529A (en) 2020-10-09 2022-04-18 도쿄엘렉트론가부시키가이샤 Substrate processing method, substrate processing apparatus, and storage medium
KR20220136898A (en) 2021-04-01 2022-10-11 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus and method of processing substrate
KR20230054293A (en) 2021-10-15 2023-04-24 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus, substrate processing method and recording medium
KR20230106509A (en) 2022-01-06 2023-07-13 도쿄엘렉트론가부시키가이샤 Auxiliary exposure apparatus, exposure method, and storage medium
WO2023210432A1 (en) * 2022-04-28 2023-11-02 東京エレクトロン株式会社 Substrate-processing method, computer storage medium, substrate-processing system, and substrate-processing device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6495707B2 (en) 2015-03-25 2019-04-03 株式会社Screenホールディングス Exposure apparatus and substrate processing apparatus
HK1256939A1 (en) * 2016-02-29 2019-10-04 株式会社尼康 Exposure device, flat panel display manufacturing method, device manufacturing method, light blocking device and exposure method
CN107037693A (en) * 2016-10-28 2017-08-11 张家港奇点光电科技有限公司 A kind of new UVLED exposure light source uniformity real-time testing systems
JP6866631B2 (en) * 2016-12-20 2021-04-28 東京エレクトロン株式会社 Optical processing equipment, coating, developing equipment, optical processing method and storage medium
JP6969348B2 (en) * 2017-12-15 2021-11-24 東京エレクトロン株式会社 Substrate processing equipment, substrate processing method and storage medium
CN109991815B (en) * 2017-12-29 2020-10-16 上海微电子装备(集团)股份有限公司 A flood-exposure compensation plate, flood-exposure device and lithography device
CN110582155A (en) * 2018-06-08 2019-12-17 北京北方华创微电子装备有限公司 plasma glow starting detection device and method and process chamber
JP7192375B2 (en) * 2018-10-09 2022-12-20 東京エレクトロン株式会社 Coating/developing apparatus and coating/developing method.
US20200375027A1 (en) * 2019-05-21 2020-11-26 Applied Materials, Inc. Single Layer PCB Circuit Layout For Uniform Radial LED Array
KR102264491B1 (en) * 2020-11-10 2021-06-15 김명진 Light source apparatus for photoresist exposure
CN115087215B (en) * 2022-08-03 2023-07-18 东莞锐视光电科技有限公司 Circuit board processing method adopting photoetching machine and photoetching machine
CN118295220B (en) * 2024-06-05 2024-08-02 天水天光半导体有限责任公司 Silicon wafer positioning system of contact type exposure machine and silicon wafer positioning method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001043562A (en) * 1999-08-03 2001-02-16 Sony Corp Manufacture of optical information recording medium and manufacturing device for optical information recording medium
JP2001517866A (en) * 1997-09-22 2001-10-09 クアンタム デバイシーズ, インコーポレイテッド Technology for manufacturing and mounting multi-wavelength semiconductor laser array devices (chips) and their application in system architecture
JP2006235205A (en) * 2005-02-24 2006-09-07 Fuji Photo Film Co Ltd Temperature control device and temperature control method
JP2008250139A (en) * 2007-03-30 2008-10-16 Fujifilm Corp Exposure method and exposure apparatus in exposure apparatus
JP2008250141A (en) * 2007-03-30 2008-10-16 Fujifilm Corp Exposure method and exposure apparatus in exposure apparatus
JP2011237596A (en) * 2010-05-10 2011-11-24 Hitachi High-Technologies Corp Exposure apparatus, exposure method, and manufacturing method of display panel substrate
JP2012013814A (en) * 2010-06-30 2012-01-19 Tokyo Electron Ltd Local exposure device and local exposure method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002341525A (en) 2001-05-14 2002-11-27 Fuji Photo Film Co Ltd Positive photoresist transfer material and substrate surface processing method using the same
JP5020662B2 (en) * 2006-05-26 2012-09-05 キヤノン株式会社 Stage apparatus, exposure apparatus, and device manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001517866A (en) * 1997-09-22 2001-10-09 クアンタム デバイシーズ, インコーポレイテッド Technology for manufacturing and mounting multi-wavelength semiconductor laser array devices (chips) and their application in system architecture
JP2001043562A (en) * 1999-08-03 2001-02-16 Sony Corp Manufacture of optical information recording medium and manufacturing device for optical information recording medium
JP2006235205A (en) * 2005-02-24 2006-09-07 Fuji Photo Film Co Ltd Temperature control device and temperature control method
JP2008250139A (en) * 2007-03-30 2008-10-16 Fujifilm Corp Exposure method and exposure apparatus in exposure apparatus
JP2008250141A (en) * 2007-03-30 2008-10-16 Fujifilm Corp Exposure method and exposure apparatus in exposure apparatus
JP2011237596A (en) * 2010-05-10 2011-11-24 Hitachi High-Technologies Corp Exposure apparatus, exposure method, and manufacturing method of display panel substrate
JP2012013814A (en) * 2010-06-30 2012-01-19 Tokyo Electron Ltd Local exposure device and local exposure method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102179182B1 (en) 2014-03-31 2020-11-16 도시바 라이텍쿠 가부시키가이샤 Method and apparatus for fabricating liquid crystal panel
KR20150113797A (en) * 2014-03-31 2015-10-08 도시바 라이텍쿠 가부시키가이샤 Method and apparatus for fabricating liquid crystal panel
JP2016086940A (en) * 2014-10-31 2016-05-23 日立工機株式会社 Electric dust collector
JP2016183990A (en) * 2015-03-25 2016-10-20 株式会社Screenホールディングス Exposure apparatus, substrate processing apparatus, exposure method of substrate, and substrate processing method
JP2017167174A (en) * 2016-03-14 2017-09-21 東京エレクトロン株式会社 Auxiliary exposure equipment
KR20170106918A (en) 2016-03-14 2017-09-22 도쿄엘렉트론가부시키가이샤 Auxiliary exposure device
KR102456281B1 (en) 2016-03-14 2022-10-18 도쿄엘렉트론가부시키가이샤 Auxiliary exposure device
KR20210135974A (en) 2016-03-14 2021-11-16 도쿄엘렉트론가부시키가이샤 Auxiliary exposure device
KR102327108B1 (en) * 2016-03-14 2021-11-15 도쿄엘렉트론가부시키가이샤 Auxiliary exposure device
JP2018060001A (en) * 2016-10-04 2018-04-12 東京エレクトロン株式会社 Auxiliary exposure apparatus and method for acquiring exposure light quantity distribution
US10642168B2 (en) 2016-10-04 2020-05-05 Tokyo Electron Limited Auxiliary exposure apparatus and exposure amount distribution acquisition method
KR20180037590A (en) 2016-10-04 2018-04-12 도쿄엘렉트론가부시키가이샤 Assist exposure apparatus and method of obtaining exposure distribution
JP2018097127A (en) * 2016-12-13 2018-06-21 東京エレクトロン株式会社 Light irradiation device
KR20220047529A (en) 2020-10-09 2022-04-18 도쿄엘렉트론가부시키가이샤 Substrate processing method, substrate processing apparatus, and storage medium
US11693319B2 (en) 2020-10-09 2023-07-04 Tokyo Electron Limited Substrate processing method, substrate processing apparatus, and storage medium
KR20220136898A (en) 2021-04-01 2022-10-11 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus and method of processing substrate
US11733612B2 (en) 2021-04-01 2023-08-22 Tokyo Electron Limited Substrate processing apparatus and method of processing substrate
KR20230054293A (en) 2021-10-15 2023-04-24 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus, substrate processing method and recording medium
KR20230106509A (en) 2022-01-06 2023-07-13 도쿄엘렉트론가부시키가이샤 Auxiliary exposure apparatus, exposure method, and storage medium
WO2023210432A1 (en) * 2022-04-28 2023-11-02 東京エレクトロン株式会社 Substrate-processing method, computer storage medium, substrate-processing system, and substrate-processing device

Also Published As

Publication number Publication date
KR20130102007A (en) 2013-09-16
TW201341971A (en) 2013-10-16
KR102006504B1 (en) 2019-08-01
JP5836848B2 (en) 2015-12-24
TWI540398B (en) 2016-07-01
CN103309170B (en) 2016-08-24
CN103309170A (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5836848B2 (en) Auxiliary exposure equipment
TWI491999B (en) Partial exposure device, partial exposure method and memory medium
TWI502622B (en) Heat treatment apparatus, coating/developing processing system, heat treatment method, coating/developing processing method and storage medium recorded program
TWI495959B (en) Local exposure method and partial exposure device
TWI603156B (en) Local site exposure apparatus
TW201837980A (en) Optical processing apparatus, coating/development apparatus, optical processing method, and storage medium
TWI401547B (en) A substrate processing method, and a substrate processing system
CN102681356B (en) Local exposure method and local exposure device
JP5298236B2 (en) Local exposure apparatus and local exposure method
JP2019076817A (en) Ultraviolet irradiation apparatus and ultraviolet irradiation method
JP4920317B2 (en) Substrate processing method, program, computer-readable recording medium, and substrate processing system
JP6523194B2 (en) Auxiliary exposure device
JP2014146013A (en) Pattern formation device and pattern formation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151104

R150 Certificate of patent or registration of utility model

Ref document number: 5836848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250