[go: up one dir, main page]

JP2013172069A - Semiconductor device and manufacturing method of the same - Google Patents

Semiconductor device and manufacturing method of the same Download PDF

Info

Publication number
JP2013172069A
JP2013172069A JP2012036186A JP2012036186A JP2013172069A JP 2013172069 A JP2013172069 A JP 2013172069A JP 2012036186 A JP2012036186 A JP 2012036186A JP 2012036186 A JP2012036186 A JP 2012036186A JP 2013172069 A JP2013172069 A JP 2013172069A
Authority
JP
Japan
Prior art keywords
semiconductor chip
chip
semiconductor device
semiconductor
support film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012036186A
Other languages
Japanese (ja)
Inventor
Shinichi Sakurada
伸一 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Memory Japan Ltd
Original Assignee
Elpida Memory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elpida Memory Inc filed Critical Elpida Memory Inc
Priority to JP2012036186A priority Critical patent/JP2013172069A/en
Publication of JP2013172069A publication Critical patent/JP2013172069A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
    • H01L2225/04All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same main group of the same subclass of class H10
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06562Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking at least one device in the stack being rotated or offset
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable inhibition of warpage and deflection at an overhang part even when semiconductor chips are stacked in an overhang state.SOLUTION: A semiconductor chip in which a plurality of semiconductor chips are stacked on a wiring board such that a part of an upper semiconductor chip overhangs a lower semiconductor chip, comprises: a chip support film provided on the upper semiconductor chip on a surface on the side opposite to the wiring board side for warping the upper semiconductor chip to a direction opposite to the wiring board side.

Description

本発明は半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device and a manufacturing method thereof.

近年、携帯電子機器の小型・薄型化に伴い、携帯電子機器に搭載される半導体装置も小型・薄型化しており、半導体装置に組み込まれる半導体チップの厚さも薄くなっている。
半導体装置には、MCP(Multi Chip Package)と呼ばれるタイプのものがある(特許文献1)。MCPでは、四角形、特に長方形状の半導体チップが交差積層される。長方形の場合、上側の半導体チップの一部が下側の半導体チップからはみ出す、いわゆるオーバーハング状態になる。
In recent years, with the reduction in size and thickness of portable electronic devices, semiconductor devices mounted on portable electronic devices have also been reduced in size and thickness, and the thickness of semiconductor chips incorporated in semiconductor devices has also been reduced.
There is a type of semiconductor device called MCP (Multi Chip Package) (Patent Document 1). In MCP, rectangular, particularly rectangular semiconductor chips are cross-laminated. In the case of a rectangle, a part of the upper semiconductor chip protrudes from the lower semiconductor chip, which is a so-called overhang state.

交差積層は、図10に示すようなダイボンディングコレット500で行われる。図10において、吸着面にゴム層510が設けられたダイボンディングコレット500で上側の半導体チップ700を吸着し、配線基板800に搭載された下側の半導体チップ600に積層搭載する。ダイボンディングコレット500による半導体チップの吸着は減圧による吸引を利用して行われる。ゴム層510は、ダイシングテープから半導体チップをピックアップする時にダイボンディングコレットと半導体チップの干渉を防ぐために設けられている。   Cross lamination is performed by a die bonding collet 500 as shown in FIG. In FIG. 10, the upper semiconductor chip 700 is sucked by a die bonding collet 500 having a rubber layer 510 provided on the suction surface, and is stacked and mounted on the lower semiconductor chip 600 mounted on the wiring substrate 800. Adsorption of the semiconductor chip by the die bonding collet 500 is performed using suction by reduced pressure. The rubber layer 510 is provided to prevent interference between the die bonding collet and the semiconductor chip when the semiconductor chip is picked up from the dicing tape.

特開2001−217383号公報JP 2001-217383 A

長方形状の半導体チップでチップ厚が薄く、オーバーハング量が大きい場合、ダイボンディングコレット500は吸着面がゴム層510であり、下側の半導体チップ600上に上側の半導体チップ700を積層する際に、図11に示すように、上側の半導体チップ700に反りや撓みが生じてしまう問題がある。また上側の半導体チップ700の積層時のチップの反りや撓みにより、オーバーハング部が配線基板800へ接触し、この接触により上側の半導体チップ700にクラックが発生してしまうことがある。   In the case of a rectangular semiconductor chip having a thin chip thickness and a large overhang amount, the die bonding collet 500 has a rubber layer 510 as the suction surface, and when the upper semiconductor chip 700 is stacked on the lower semiconductor chip 600. As shown in FIG. 11, there is a problem that the upper semiconductor chip 700 is warped or bent. Further, due to chip warpage or bending when the upper semiconductor chip 700 is stacked, the overhang portion may come into contact with the wiring substrate 800, and this contact may cause cracks in the upper semiconductor chip 700.

また上側の半導体チップ700の下面にはDAF(Die Attached Film)等の接着部材710が付されているのが普通であり、この場合には、オーバーハング部が撓んだ状態で配線基板800に接着される恐れもある。   Further, an adhesive member 710 such as DAF (Die Attached Film) is usually attached to the lower surface of the upper semiconductor chip 700. In this case, the wiring board 800 is bent with the overhanging portion bent. There is also a risk of adhesion.

そこで、本発明の課題は、オーバーハング状態で半導体チップを積層する場合でも、オーバーハング部での反りや撓みを抑制することができるようにしようとするものである。   Accordingly, an object of the present invention is to make it possible to suppress warping and bending at an overhang portion even when semiconductor chips are stacked in an overhang state.

本発明の第1の態様によれば、配線基板上に複数の半導体チップを、上側の半導体チップの一部がオーバーハングするように積層した半導体装置において、上側の半導体チップにおける前記配線基板側とは反対側の面に、当該上側の半導体チップを、前記配線基板側と反対方向に反らせるためのチップサポートフィルムを設けたことを特徴とする半導体装置が提供される。   According to the first aspect of the present invention, in a semiconductor device in which a plurality of semiconductor chips are stacked on a wiring board so that a part of the upper semiconductor chip is overhanged, the wiring board side of the upper semiconductor chip and A semiconductor device is provided in which a chip support film for warping the upper semiconductor chip in a direction opposite to the wiring substrate side is provided on the opposite surface.

本発明の第2の態様によれば、配線基板上に複数の半導体チップを、上側の半導体チップの一部がオーバーハングするように積層する半導体装置の製造方法において、上側の半導体チップにおける前記配線基板側とは反対側の面にチップサポートフィルムを設けることにより、当該上側の半導体チップを積層する際に、前記配線基板側への反りが発生することを抑制することを特徴とする半導体装置の製造方法が提供される。   According to the second aspect of the present invention, in the method of manufacturing a semiconductor device in which a plurality of semiconductor chips are stacked on a wiring board so that a part of the upper semiconductor chip is overhanged, the wiring in the upper semiconductor chip is provided. Providing a chip support film on a surface opposite to the substrate side suppresses occurrence of warpage to the wiring substrate side when the upper semiconductor chip is stacked. A manufacturing method is provided.

前記第1、第2の態様のいずれにおいても、前記チップサポートフィルムは、上側の半導体チップにおいて下側の半導体チップと重なる領域の少なくとも一部及びオーバーハング部の少なくとも一部を含む領域に設けることが望ましい。   In any of the first and second aspects, the chip support film is provided in a region including at least a part of an upper semiconductor chip that overlaps a lower semiconductor chip and at least a part of an overhang portion. Is desirable.

本発明によれば、上側となる半導体チップの一部がオーバーハング状態となるように積層するMCP型の半導体装置において、上側の半導体チップの表面(上面)にチップサポートフィルムを設けることで、このチップサポートフィルムが上側の半導体チップのオーバーハング部を上側に反らせるように機能する。これにより、上側の半導体チップの積層時にオーバーハング部での配線母基板側への反りや撓みを抑制することができ、良好に積層することができる。加えて、オーバーハング部での反りや撓みの発生を抑制することで、オーバーハング部の配線基板への接触や、これに起因するチップクラックを低減することができる。   According to the present invention, in the MCP type semiconductor device that is laminated so that a part of the upper semiconductor chip is overhanged, the chip support film is provided on the surface (upper surface) of the upper semiconductor chip. The chip support film functions to warp the overhang portion of the upper semiconductor chip upward. Thereby, it is possible to suppress warping or bending of the overhang portion toward the wiring mother board when the upper semiconductor chip is stacked, and it is possible to stack the layers satisfactorily. In addition, by suppressing the occurrence of warping and bending in the overhang portion, it is possible to reduce the contact of the overhang portion with the wiring board and chip cracks resulting therefrom.

本発明の第1の実施形態に係るMCP型の半導体装置の概略構成を示す平面図である。1 is a plan view showing a schematic configuration of an MCP type semiconductor device according to a first embodiment of the present invention. 図1に示された半導体装置の縦断面図である。FIG. 2 is a longitudinal sectional view of the semiconductor device shown in FIG. 1. 図1に示された半導体装置の組立フローを説明するための縦断面図である。FIG. 2 is a longitudinal sectional view for explaining an assembly flow of the semiconductor device shown in FIG. 1. 図1に示された半導体装置のダイシングテープからのピックアップ〜チップボンディング工程を説明するための縦断面図である。It is a longitudinal cross-sectional view for demonstrating the pick-up-chip bonding process from the dicing tape of the semiconductor device shown by FIG. 本発明の第2の実施形態に係るMCP型の半導体装置の概略構成を示す平面図である。It is a top view which shows schematic structure of the MCP type semiconductor device which concerns on the 2nd Embodiment of this invention. 図5に示された半導体装置の縦断面図である。FIG. 6 is a longitudinal sectional view of the semiconductor device shown in FIG. 5. 本発明の第3の実施形態に係るMCP型の半導体装置の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the MCP type semiconductor device which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係るMCP型の半導体装置の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the MCP type semiconductor device which concerns on the 4th Embodiment of this invention. 本発明の変形例に係るMCP型の半導体装置の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the MCP type semiconductor device which concerns on the modification of this invention. 一般的なMCP型の半導体装置における半導体チップの積層工程を説明するための縦断面図である。It is a longitudinal cross-sectional view for demonstrating the lamination | stacking process of the semiconductor chip in a common MCP type semiconductor device. 図10に続く半導体チップの積層工程を説明するための縦断面図である。FIG. 11 is a longitudinal sectional view for explaining a semiconductor chip stacking step following FIG. 10;

以下に、図面を参照して、本発明を幾つかの実施形態について説明する。   Hereinafter, several embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
図1及び図2は本発明の第1の実施形態に係るMCP型の半導体装置の概略構成を示す平面図及び縦断面図である。
(First embodiment)
1 and 2 are a plan view and a longitudinal sectional view showing a schematic configuration of an MCP type semiconductor device according to the first embodiment of the present invention.

図1、図2において、MCP型の半導体装置1は、長方形状で短辺側にのみ電極パッド21、31が形成された第1(下側)、第2(上側)の半導体チップ20、30が、直角に交差するように、配線基板10上に積層搭載されている。第1の半導体チップ20はDAF等の接着部材22を介して配線基板10上に搭載されている。第2の半導体チップ30は、その両側が第1の半導体チップ20からオーバーハングするように、DAF等の接着部材32を介して第1の半導体チップ20上に搭載されている。後述されるように、半導体チップ20、30の電極パッド21、31はそれぞれ、配線基板10上の対応箇所に形成された接続パッド11、12にワイヤ15で接続される。図1では図示を省略しているが、配線基板10の回路面側は、半導体チップ20、30、ワイヤ15を含む全体が封止樹脂50でモールドされている。   1 and 2, the MCP-type semiconductor device 1 includes a first (lower) and second (upper) semiconductor chips 20 and 30 each having a rectangular shape and electrode pads 21 and 31 formed only on the short side. Are stacked on the wiring board 10 so as to intersect at right angles. The first semiconductor chip 20 is mounted on the wiring board 10 via an adhesive member 22 such as DAF. The second semiconductor chip 30 is mounted on the first semiconductor chip 20 via an adhesive member 32 such as DAF so that both sides thereof overhang from the first semiconductor chip 20. As will be described later, the electrode pads 21 and 31 of the semiconductor chips 20 and 30 are connected to connection pads 11 and 12 formed at corresponding positions on the wiring board 10 by wires 15, respectively. Although not shown in FIG. 1, the entire circuit board side of the wiring substrate 10 including the semiconductor chips 20 and 30 and the wires 15 is molded with a sealing resin 50.

第1の実施形態では、第2の半導体チップ30の回路面側(上面側)にチップサポートフィルム40が設けられている。チップサポートフィルム40は、例えばポリイミドフィルムが用いられる。   In the first embodiment, the chip support film 40 is provided on the circuit surface side (upper surface side) of the second semiconductor chip 30. As the chip support film 40, for example, a polyimide film is used.

チップサポートフィルム40は、第1の半導体チップ20の幅よりも大きい幅で構成されており、第1の半導体チップ20から突出する第の半導体チップ30のオーバーハング部を上側に反らせるように機能させる。このために、チップサポートフィルム40は、第1の半導体チップ20と第2の半導体チップ30が重なる領域と、オーバーハング部の根元部分に対応する領域にかかるように設けられる。これにより、第2の半導体チップ30の積層時にオーバーハング部の配線基板10側への反りや撓みを抑制することができ、良好に積層することができる。オーバーハング部での反りや撓みの発生を抑制することで、オーバーハング部の配線基板10への接触やこれに起因するチップクラックを低減できる。   The chip support film 40 is configured to have a width larger than the width of the first semiconductor chip 20, and functions to warp the overhang portion of the first semiconductor chip 30 protruding from the first semiconductor chip 20 upward. . For this purpose, the chip support film 40 is provided so as to cover a region where the first semiconductor chip 20 and the second semiconductor chip 30 overlap and a region corresponding to the root portion of the overhang portion. Thereby, when the second semiconductor chip 30 is stacked, warpage and bending of the overhang portion toward the wiring substrate 10 can be suppressed, and the stacking can be performed satisfactorily. By suppressing the occurrence of warping and bending at the overhang portion, it is possible to reduce contact of the overhang portion with the wiring substrate 10 and chip cracks resulting from this.

図3は第1の実施形態に係る半導体装置の組立フローを説明するための縦断面図である。   FIG. 3 is a longitudinal sectional view for explaining an assembly flow of the semiconductor device according to the first embodiment.

半導体装置の組立に際しては、配線母基板と呼ばれるものが使用される。配線母基板は、位置決め穴が形成された枠部に囲まれた領域に、マトリクス状に配置された複数の製品形成部を有している。半導体チップやその他の部品は製品形成部に搭載される。配線母基板の両面には絶縁膜が形成されているが、一面側の接続パッドが形成される領域や、他面側のランド部が形成される領域の絶縁膜は開口となっている。複数の製品形成部は後にダイシングラインに沿って個々に切断され配線基板となる。   In assembling a semiconductor device, a so-called wiring mother board is used. The wiring mother board has a plurality of product forming portions arranged in a matrix in a region surrounded by a frame portion in which positioning holes are formed. Semiconductor chips and other components are mounted on the product forming section. Insulating films are formed on both surfaces of the wiring mother board, but the insulating film in the region where the connection pads on one side and the land part on the other side are formed are openings. The plurality of product forming portions are later cut individually along the dicing lines to form wiring boards.

図3を参照して、配線母基板100を用いた半導体装置の組立方法を工程順に説明する。図3では、配線母基板100の両面に形成されている絶縁膜は図示を省略している。   With reference to FIG. 3, the assembly method of the semiconductor device using the wiring mother board 100 will be described in the order of steps. In FIG. 3, the insulating films formed on both surfaces of the wiring motherboard 100 are not shown.

まず、図3(a)に示すように、配線母基板100の各製品形成部110上に、第1(下側)の半導体チップ20、第2(上側)の半導体チップ30を順番に搭載する。第1の半導体チップ20は、その下面に設けられたDAF等の接着部材22により配線母基板100に接着固定される。同様に、第2の半導体チップ30は、その下面に設けられたDAF等の接着部材32により第1の半導体チップ20の上面に接着固定される。なお、このとき、第2の半導体チップ30の上面にはチップサポートフィルム40が貼付されている。   First, as shown in FIG. 3A, the first (lower) semiconductor chip 20 and the second (upper) semiconductor chip 30 are sequentially mounted on each product forming portion 110 of the wiring motherboard 100. . The first semiconductor chip 20 is bonded and fixed to the wiring mother board 100 by an adhesive member 22 such as DAF provided on the lower surface thereof. Similarly, the second semiconductor chip 30 is bonded and fixed to the upper surface of the first semiconductor chip 20 by an adhesive member 32 such as DAF provided on the lower surface thereof. At this time, a chip support film 40 is attached to the upper surface of the second semiconductor chip 30.

第2の半導体チップ30は、第1の半導体チップ20の短辺側に形成された電極パッド21(図1)を露出させるために直角に交差するように積層される。このとき、第2の半導体チップ30のオーバーハング部33が第1の半導体チップ20に対して突き出す方向は、封止樹脂の注入方向(図面に垂直な方向)に対して直角な方向(図面の左右方向)である。   The second semiconductor chip 30 is stacked so as to intersect at right angles in order to expose the electrode pads 21 (FIG. 1) formed on the short side of the first semiconductor chip 20. At this time, the direction in which the overhang portion 33 of the second semiconductor chip 30 protrudes from the first semiconductor chip 20 is a direction perpendicular to the injection direction (direction perpendicular to the drawing) of the sealing resin (in the drawing). Left and right direction).

次に、図3(b)に示すように、第1の半導体チップ20の電極パッド21(図1)と対応する接続パッド11(図1)との間、及び第2の半導体チップ30の電極パッド31と対応する接続パッド12との間を、それぞれワイヤ15により接続する。ワイヤ15は例えばAuからなり、ワイヤ15を用いた結線には、図示しないワイヤボンディング装置を用いることができる。結線は、例えば、超音波熱圧着法を用いたボールボンディングにより行われる。具体的には、溶融によりボールが形成されたワイヤ15の先端を電極パッド21又は31上に超音波熱圧着し、ワイヤ15が所定のループ形状を描くように、ワイヤ15の後端を対応する接続パッド11、12上に超音波熱圧着する。   Next, as shown in FIG. 3B, the electrode pad 21 (FIG. 1) of the first semiconductor chip 20 and the corresponding connection pad 11 (FIG. 1), and the electrode of the second semiconductor chip 30. Each of the pads 31 and the corresponding connection pad 12 is connected by a wire 15. The wire 15 is made of, for example, Au, and a wire bonding apparatus (not shown) can be used for connection using the wire 15. The connection is performed by, for example, ball bonding using an ultrasonic thermocompression bonding method. Specifically, the tip of the wire 15 on which a ball has been formed by melting is ultrasonically thermocompression bonded onto the electrode pad 21 or 31, and the rear end of the wire 15 corresponds so that the wire 15 draws a predetermined loop shape. Ultrasonic thermocompression bonding is performed on the connection pads 11 and 12.

次に、図3(c)に示すように、配線母基板100の一面側を一括モールドによって封止樹脂50でモールドする。一括モールドについては、例えばトランスファモールド装置が用いられるが、良く知られているので説明は省略する。   Next, as shown in FIG. 3C, one surface side of the wiring mother board 100 is molded with the sealing resin 50 by batch molding. For the batch molding, for example, a transfer molding apparatus is used, but since it is well known, description thereof is omitted.

次に、図3(d)に示すように、配線母基板100を反転させてその他面側の複数のランド部13にそれぞれ半田ボール16を搭載する。これらの半田ボール16は半導体装置1の外部端子として利用される。   Next, as shown in FIG. 3D, the wiring mother board 100 is inverted and the solder balls 16 are mounted on the plurality of land portions 13 on the other surface side. These solder balls 16 are used as external terminals of the semiconductor device 1.

半田ボール16の搭載は、例えば、複数のランド部13に対応して配列形成された複数の吸着孔を備える図示しない吸着機構を用いて行うことができる。この場合、吸着機構に複数の半田ボールを吸着保持させ、保持された半田ボールにフラックスを転写形成して、配線母基板100の複数のランド部13に一括搭載する。その後、リフロー処理により、半田ボール16とランド部13との間を接続固定する。   The mounting of the solder balls 16 can be performed, for example, by using a suction mechanism (not shown) including a plurality of suction holes arranged in correspondence with the plurality of land portions 13. In this case, a plurality of solder balls are sucked and held by the suction mechanism, a flux is transferred and formed on the held solder balls, and the solder balls are collectively mounted on the plurality of land portions 13 of the wiring motherboard 100. Thereafter, the solder ball 16 and the land portion 13 are connected and fixed by a reflow process.

次に、封止樹脂50の上面側をダイシングテープ(図示省略)に接着し、封止樹脂50及び配線母基板100をダイシングテープに支持させる。それから、上下を逆にし、図示しないダイシングブレードを用いて、配線母基板100及び封止樹脂50をダイシングラインDL(図3d)に沿って縦横に切断する。これにより、配線母基板100は、製品形成部110毎に個片化される。その後、個片化された製品形成部110及び封止樹脂50をダイシングテープからピックアップする(図3(e))ことで、図2に示すような半導体装置1が得られる。   Next, the upper surface side of the sealing resin 50 is bonded to a dicing tape (not shown), and the sealing resin 50 and the wiring mother board 100 are supported by the dicing tape. Then, the wiring mother board 100 and the sealing resin 50 are cut vertically and horizontally along the dicing line DL (FIG. 3d) using a dicing blade (not shown) upside down. Thereby, the wiring mother board 100 is separated into pieces for each product forming unit 110. Thereafter, the separated product forming portion 110 and the sealing resin 50 are picked up from the dicing tape (FIG. 3E), whereby the semiconductor device 1 as shown in FIG. 2 is obtained.

なお、第2の半導体チップ30に設けられるチップサポートフィルム40は、半導体チップとして個片化後に半導体チップ上に搭載しても良いし、ウエハ状態で搭載するように構成しても良い。   Note that the chip support film 40 provided on the second semiconductor chip 30 may be mounted on the semiconductor chip after being singulated as a semiconductor chip, or may be configured to be mounted in a wafer state.

図4は第1の実施形態による半導体装置の組立工程における半導体チップのダイシングテープからのピックアップ〜半導体チップのボンディング工程を説明するための縦断面図である。ここでは、配線母基板100に既にボンディングされている第1の半導体チップ20上に第2の半導体チップ30を積層するものとする。   FIG. 4 is a longitudinal sectional view for explaining a semiconductor chip pick-up process to a semiconductor chip bonding process in the semiconductor device assembling process according to the first embodiment. Here, it is assumed that the second semiconductor chip 30 is stacked on the first semiconductor chip 20 that is already bonded to the wiring motherboard 100.

図4(a)において、半導体チップTiは、ダイシングテープDTに定間隔で一列状に貼り付けられた状態にて搬送される。このとき、各半導体チップTiの上面にはチップサポートフィルム40が貼付され、下面にはDAF等の接着部材32が貼付されている。半導体チップのピックアップ位置には、ダイシングテープDTの下側に突上げ部60が配置され、上側にはボンディングコレット65が待機状態で位置している。突上げ部60は、中央に配置された第2突上げ部62と、ダイシングテープDTの搬送方向に関して上流側、下流側に配置された第1突上げ部61、61と、搬送方向に関して更に上流側、下流側に配置された吸着ステージ63、63と、を含む。ボンディングコレット65は、中央の第2の弾性体67による吸着部と、搬送方向の上流側、下流側の第1の弾性体66による吸着部と、を有する。   In FIG. 4A, the semiconductor chips Ti are transported in a state where they are attached to the dicing tape DT in a line at regular intervals. At this time, a chip support film 40 is attached to the upper surface of each semiconductor chip Ti, and an adhesive member 32 such as DAF is attached to the lower surface. At the pickup position of the semiconductor chip, a push-up portion 60 is disposed below the dicing tape DT, and a bonding collet 65 is positioned on the upper side in a standby state. The push-up portion 60 includes a second push-up portion 62 disposed in the center, first push-up portions 61 and 61 disposed on the upstream side and the downstream side in the transport direction of the dicing tape DT, and further upstream in the transport direction. And suction stages 63 and 63 disposed on the downstream side. The bonding collet 65 has a suction part by the second elastic body 67 at the center, and a suction part by the first elastic body 66 on the upstream side and the downstream side in the transport direction.

図4(b)において、半導体チップTiがピックアップ位置に到達すると、ダイシングテープDTの搬送が一時停止し、吸着ステージ63、63は減圧による吸引作用によりダイシングテープDTを吸着保持する。続いて、第1突上げ部61、61と第2突上げ部62が上動する。ここで、第2突上げ部62の突上げ量が第1突上げ部61の突上げ量より少し大きいことにより、半導体チップTiの長手方向の両側がダイシングテープDTから剥離する。すると、ボンディングコレット65が下動し、第1の弾性体66による吸着部及び第2の弾性体67による吸着部によって半導体チップTiを吸着する。それから、第1突上げ部61、第2突上げ部62は元の位置に下動する。これにより、半導体チップTiはダイシングテープDTから完全に剥離する。ボンディングコレット65は半導体チップTiを吸着した状態で移動し、第1の半導体チップ20上への積層位置まで搬送する。   In FIG. 4B, when the semiconductor chip Ti reaches the pickup position, the conveyance of the dicing tape DT is temporarily stopped, and the suction stages 63 and 63 suck and hold the dicing tape DT by the suction action by the reduced pressure. Subsequently, the first push-up portions 61 and 61 and the second push-up portion 62 move up. Here, when the amount of protrusion of the second protrusion 62 is slightly larger than the amount of protrusion of the first protrusion 61, both sides in the longitudinal direction of the semiconductor chip Ti are peeled from the dicing tape DT. Then, the bonding collet 65 moves downward, and the semiconductor chip Ti is adsorbed by the adsorbing portion by the first elastic body 66 and the adsorbing portion by the second elastic body 67. Then, the 1st thrusting part 61 and the 2nd thrusting part 62 move down to the original position. Thereby, the semiconductor chip Ti is completely peeled from the dicing tape DT. The bonding collet 65 moves in a state where the semiconductor chip Ti is adsorbed, and transports it to the stacking position on the first semiconductor chip 20.

図4(c)において、ボンディングコレット65は、配線母基板100上にボンディングされている第1の半導体チップ20の真上の位置に到達すると、吸着している半導体チップTiを第1の半導体チップ20の上に載せた後、吸着を解放し、次の半導体チップTiのピックアップに向う。   In FIG. 4C, when the bonding collet 65 reaches a position directly above the first semiconductor chip 20 bonded on the wiring motherboard 100, the adsorbed semiconductor chip Ti is removed from the first semiconductor chip. After being placed on 20, the suction is released and the next semiconductor chip Ti is picked up.

以上のようにして、図4(d)に示すように、第1の半導体チップ20の上に、第2の半導体チップ30が交差した状態で積層される。   As described above, as shown in FIG. 4D, the second semiconductor chip 30 is stacked on the first semiconductor chip 20 in a crossed state.

上記第1の実施形態によれば、第1、第2の半導体チップ20、30を直角に交差するように積層するMCP型の半導体装置において、第2の半導体チップ30の表面(上面)に、第1の半導体チップ20の幅よりも大きい幅を持つチップサポートフィルム40を設けている。特に、チップサポートフィルム40の形成領域を、第1の半導体チップ20と第2の半導体チップ30とが重なる領域及びオーバーハング部33の根元側の一部領域とすることで、チップサポートフィルム40が第1の半導体チップ20から突出する第2の半導体チップ30のオーバーハング部33を上側に反らせるように機能する。これにより、第2の半導体チップ30の積層時にオーバーハング部33での配線母基板側への反りや撓みを抑制することができ、良好に積層することができる。オーバーハング部33での反りや撓みの発生を抑制することで、オーバーハング部33の配線母基板(配線基板)への接触やチップクラックを低減することができる。   According to the first embodiment, in the MCP type semiconductor device in which the first and second semiconductor chips 20 and 30 are stacked so as to intersect at right angles, the surface (upper surface) of the second semiconductor chip 30 is A chip support film 40 having a width larger than the width of the first semiconductor chip 20 is provided. In particular, the chip support film 40 is formed by setting the formation region of the chip support film 40 as a region where the first semiconductor chip 20 and the second semiconductor chip 30 overlap and a partial region on the base side of the overhang portion 33. The overhang portion 33 of the second semiconductor chip 30 protruding from the first semiconductor chip 20 functions to warp upward. Thereby, when the second semiconductor chip 30 is stacked, warping and bending of the overhang portion 33 toward the wiring mother board can be suppressed, and the stacking can be performed satisfactorily. By suppressing the occurrence of warping and bending in the overhang portion 33, contact of the overhang portion 33 with the wiring mother board (wiring substrate) and chip cracks can be reduced.

(第2の実施形態)
図5、図6は本発明の第2の実施形態に係る半導体装置の概略構成を示す平面図及び縦断面図である。図5、図6において、図1、図2に示されている要素と同じ要素には同じ参照番号を付し、説明は省略する。また図5でも封止樹脂は図示を省略している。
(Second Embodiment)
5 and 6 are a plan view and a longitudinal sectional view showing a schematic configuration of a semiconductor device according to the second embodiment of the present invention. 5 and 6, the same elements as those shown in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof is omitted. In FIG. 5, the sealing resin is not shown.

図5、図6に示すように、チップサポートフィルム40’、40’は、上側の第2の半導体チップの30のオーバーハング部の根元付近、すなわち第1の半導体チップ20と第2の半導体チップ30とが重なる領域の一部と、オーバーハング部の根元側の一部、にのみ設けるように構成している。オーバーハング部の根元付近にチップサポートフィルム40’を設けることで、チップサポートフィルム40’は、第1の実施形態と同様に、オーバーハング部の配線基板側への反りや撓みを抑制する。また一つの半導体装置に用いるチップサポートフィルムの量を減らすことができ、第1の実施形態に比べコストを低減できる。   As shown in FIGS. 5 and 6, the chip support films 40 ′ and 40 ′ are near the root of the overhang portion of the upper second semiconductor chip 30, that is, the first semiconductor chip 20 and the second semiconductor chip. 30 is configured to be provided only in a part of a region overlapping with 30 and a part on the base side of the overhang portion. By providing the chip support film 40 ′ in the vicinity of the base of the overhang portion, the chip support film 40 ′ suppresses the warpage or bending of the overhang portion toward the wiring board as in the first embodiment. In addition, the amount of chip support film used in one semiconductor device can be reduced, and the cost can be reduced as compared with the first embodiment.

(第3の実施形態)
図7は本発明の第3の実施形態に係る半導体装置の概略構成を示す縦断面図である。図7において、図2に示されている要素と同じ要素には同じ参照番号を付し、説明は省略する。
(Third embodiment)
FIG. 7 is a longitudinal sectional view showing a schematic configuration of a semiconductor device according to the third embodiment of the present invention. In FIG. 7, the same elements as those shown in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted.

図7に示す半導体装置1−1は、4つの半導体チップ20−1、30−1、20−2、30−2を交差積層した例である。オーバーハング部を有する2〜4段目の半導体チップ30−1、20−2、30−2の上面にそれぞれ、第1の実施形態と同様に、チップサポートフィルム40−1、40−2、40−3を設けることで、3段以上の半導体チップ積層においても第1の実施形態と同様な効果が得られる。   The semiconductor device 1-1 shown in FIG. 7 is an example in which four semiconductor chips 20-1, 30-1, 20-2, 30-2 are cross-stacked. Similarly to the first embodiment, chip support films 40-1, 40-2, and 40 are provided on the upper surfaces of the second to fourth stages of semiconductor chips 30-1, 20-2, and 30-2 having overhang portions, respectively. By providing −3, the same effects as those of the first embodiment can be obtained even in the case of stacking three or more semiconductor chips.

(第4の実施形態)
図8は本発明の第4の実施形態に係る半導体装置の概略構成を示す縦断面図である。図8において、図2に示されている要素と同じ要素には同じ参照番号を付し、説明は省略する。
(Fourth embodiment)
FIG. 8 is a longitudinal sectional view showing a schematic configuration of a semiconductor device according to the fourth embodiment of the present invention. In FIG. 8, the same elements as those shown in FIG.

図8に示す半導体装置1−2は、第1の半導体チップ20’上にこの第1の半導体チップ20’の電極パッド21’を露出させるように、第2の半導体チップ30’をシフトして積層した実施形態である。すなわち、第2の半導体チップ30’の両端部のうちの片側だけを第1の半導体チップ20’からオーバーハングさせている。この場合にも、チップサポートフィルム40は、第1の半導体チップ20’と第2の半導体チップ30’とが重なる領域の一部と、オーバーハング部の根元側の一部の領域にかかるように形成される。このように、オーバーハング部を有する第2の半導体チップ30’の上面であって、第1の半導体チップ20’と重なる領域及びオーバーハング部の根元側の一部にチップサポートフィルム40を設けることで、第1の実施形態と同様な効果が得られる。第4の実施形態は、半導体チップが長方形のほか、四角形、特に正方形のような場合に適している。   The semiconductor device 1-2 shown in FIG. 8 shifts the second semiconductor chip 30 ′ so that the electrode pad 21 ′ of the first semiconductor chip 20 ′ is exposed on the first semiconductor chip 20 ′. It is the laminated embodiment. That is, only one side of the both ends of the second semiconductor chip 30 'is overhanging from the first semiconductor chip 20'. Also in this case, the chip support film 40 covers a part of the region where the first semiconductor chip 20 ′ and the second semiconductor chip 30 ′ overlap and a part of the region on the base side of the overhang portion. It is formed. As described above, the chip support film 40 is provided on the upper surface of the second semiconductor chip 30 ′ having the overhang portion and in a region overlapping the first semiconductor chip 20 ′ and a part of the base side of the overhang portion. Thus, the same effect as in the first embodiment can be obtained. The fourth embodiment is suitable for the case where the semiconductor chip is a rectangle, in particular, a square, particularly a square.

以上、本発明者によってなされた発明をいくつかの実施形態に基づき説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。   As mentioned above, although the invention made by this inventor was demonstrated based on some embodiment, it cannot be overemphasized that this invention is not limited to the said embodiment, In the range which does not deviate from the summary, it can change variously. Yes.

上記実施形態では、チップサポートフィルムとしては、ボンディング時の耐熱性を考慮してポリイミドテープを配置する場合について説明したが、半導体チップのオーバーハング部の撓みを抑制できる材科であればどのようなテープを用いても良い。   In the above embodiment, the chip support film has been described with respect to the case where the polyimide tape is disposed in consideration of heat resistance during bonding. However, any material can be used as long as the material can suppress the bending of the overhang portion of the semiconductor chip. A tape may be used.

また2つの半導体チップの積層、4つの半導体チップの積層した半導体装置について説明したが、一部がオーバーハングするように半導体チップが積層された半導体装置であればどのような半導体装置に適用しても良い。例えば、図9に変形例として示したMCP型の半導体装置1−3は、第1の半導体チップ20と第2の半導体チップ30がスペーサ70を介して積層されている。スペーサ70もDAF等の接着部材71を介して第1の半導体チップ20の上面に設けられる。この場合にはスペーサ70は半導体チップより小さく、部分的に配置されるため、第2の半導体チップ30の上面であって、スペーサ70と第2の半導体チップ30とが重なる領域及びオーバーハング部の根元側の一部にチップサポートフィルム40を配置することで第1の実施形態と同様な効果が得られる。この変形例は、例えば長方形状の半導体チップを交差積層することが困難である場合や、正方形状の上側の半導体チップをシフトして積層することが困難である場合に適している。   In addition, a semiconductor device in which two semiconductor chips are stacked and a semiconductor device in which four semiconductor chips are stacked has been described. However, any semiconductor device in which semiconductor chips are stacked so as to partially hang may be applied to any semiconductor device. Also good. For example, in the MCP type semiconductor device 1-3 shown as a modified example in FIG. 9, the first semiconductor chip 20 and the second semiconductor chip 30 are stacked via the spacer 70. The spacer 70 is also provided on the upper surface of the first semiconductor chip 20 via an adhesive member 71 such as DAF. In this case, since the spacer 70 is smaller than the semiconductor chip and is partially disposed, the region on the upper surface of the second semiconductor chip 30 where the spacer 70 and the second semiconductor chip 30 overlap, and the overhang portion. The effect similar to 1st Embodiment is acquired by arrange | positioning the chip | tip support film 40 in a part of base side. This modification is suitable, for example, when it is difficult to cross-stack rectangular semiconductor chips, or when it is difficult to shift and stack square upper semiconductor chips.

また上記実施形態ではガラスエポキシ基材からなる配線基板について説明したが、ポリイミド基材からなるフレキシブルな配線基板等に適用しても良い。   Moreover, although the said embodiment demonstrated the wiring board which consists of a glass epoxy base material, you may apply to the flexible wiring board etc. which consist of a polyimide base material.

1、1−1、1−2、1−3 半導体装置
10 配線基板
11、12 接続パッド
13 ランド
15 ワイヤ
20 第1の半導体チップ
21、31 電極パッド
22、32 接着部材
30 第2の半導体チップ
DESCRIPTION OF SYMBOLS 1, 1-1, 1-2, 1-3 Semiconductor device 10 Wiring board 11, 12 Connection pad 13 Land 15 Wire 20 1st semiconductor chip 21, 31 Electrode pad 22, 32 Adhesive member 30 2nd semiconductor chip

Claims (6)

配線基板上に複数の半導体チップを、上側の半導体チップの一部がオーバーハングするように積層した半導体装置において、
上側の半導体チップにおける前記配線基板側とは反対側の面に、当該上側の半導体チップを、前記配線基板側と反対方向に反らせるためのチップサポートフィルムを設けたことを特徴とする半導体装置。
In a semiconductor device in which a plurality of semiconductor chips are stacked on a wiring board so that a part of the upper semiconductor chip is overhanged,
A semiconductor device, wherein a chip support film for warping the upper semiconductor chip in a direction opposite to the wiring substrate side is provided on a surface of the upper semiconductor chip opposite to the wiring substrate side.
前記チップサポートフィルムを、上側の半導体チップにおいて下側の半導体チップと重なる領域の少なくとも一部及びオーバーハング部の少なくとも一部を含む領域に設けたことを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the chip support film is provided in a region including at least a part of an upper semiconductor chip overlapping with a lower semiconductor chip and at least a part of an overhang portion. . 前記半導体チップは長方形状であって、上側の半導体チップはその両側が下側の半導体チップからオーバーハングするように交差積層され、前記チップサポートフィルムは前記下側の半導体チップの幅より大きな幅を持つことを特徴とする請求項1又は2に記載の半導体装置。   The semiconductor chip has a rectangular shape, and the upper semiconductor chip is cross-laminated so that both sides thereof overhang from the lower semiconductor chip, and the chip support film has a width larger than the width of the lower semiconductor chip. The semiconductor device according to claim 1, wherein the semiconductor device is provided. 上側の半導体チップと下側の半導体チップの間に、これらの半導体チップよりも小さい面積のスペーサが介在していることを特徴とする請求項1〜3のいずれか1項に記載の半導体装置。   4. The semiconductor device according to claim 1, wherein a spacer having an area smaller than these semiconductor chips is interposed between the upper semiconductor chip and the lower semiconductor chip. 5. 配線基板上に複数の半導体チップを、上側の半導体チップの一部がオーバーハングするように積層する半導体装置の製造方法において、
上側の半導体チップにおける前記配線基板側とは反対側の面にチップサポートフィルムを設けることにより、当該上側の半導体チップを積層する際に、前記配線基板側への反りが発生することを抑制することを特徴とする半導体装置の製造方法。
In a manufacturing method of a semiconductor device in which a plurality of semiconductor chips are stacked on a wiring board so that a part of the upper semiconductor chip is overhanged.
Providing a chip support film on the surface of the upper semiconductor chip opposite to the wiring board side suppresses the occurrence of warpage to the wiring board side when the upper semiconductor chip is stacked. A method of manufacturing a semiconductor device.
前記チップサポートフィルムを設ける領域を、上側の半導体チップにおいて下側の半導体チップと重なる領域の少なくとも一部及びオーバーハング部の少なくとも一部を含む領域とすることを特徴とする請求項5に記載の半導体装置の製造方法。   The region where the chip support film is provided is a region including at least a part of a region overlapping the lower semiconductor chip and at least a part of an overhang portion in the upper semiconductor chip. A method for manufacturing a semiconductor device.
JP2012036186A 2012-02-22 2012-02-22 Semiconductor device and manufacturing method of the same Pending JP2013172069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012036186A JP2013172069A (en) 2012-02-22 2012-02-22 Semiconductor device and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012036186A JP2013172069A (en) 2012-02-22 2012-02-22 Semiconductor device and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2013172069A true JP2013172069A (en) 2013-09-02

Family

ID=49265822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012036186A Pending JP2013172069A (en) 2012-02-22 2012-02-22 Semiconductor device and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2013172069A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11227855B2 (en) 2018-10-16 2022-01-18 Samsung Electronics Co., Ltd. Semiconductor package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11227855B2 (en) 2018-10-16 2022-01-18 Samsung Electronics Co., Ltd. Semiconductor package
US12300665B2 (en) 2018-10-16 2025-05-13 Samsung Electronics Co., Ltd. Semiconductor package

Similar Documents

Publication Publication Date Title
KR101225622B1 (en) Chip unit and method for manufacturing the same, and stack package having the same
JP5543086B2 (en) Semiconductor device and manufacturing method thereof
JP2009099697A (en) Semiconductor apparatus and method of manufacturing the same
TWI430425B (en) Integrated circuit package system employing bump technology
JP2008078367A (en) Semiconductor device
JP2013115190A (en) Semiconductor device manufacturing method
JP2010147070A (en) Semiconductor device
JP2013045863A (en) Semiconductor device and manufacturing method of the same
JP2012230981A (en) Semiconductor device and manufacturing method of the same
JP5184132B2 (en) Semiconductor device and manufacturing method thereof
KR20150135412A (en) Semiconductor device
KR20130022821A (en) Stacked package and method of manufacturing the same
KR20150042043A (en) Frame Stiffener For Semiconductor Package And Method For Manufacturing The Same
JP2012059829A (en) Peeling device for semiconductor chip, die-bonding apparatus, peeling method for semiconductor chip, and method of manufacturing semiconductor device
US20090057916A1 (en) Semiconductor package and apparatus using the same
WO2014203739A1 (en) Semiconductor device and method for manufacturing same
CN108511352A (en) Electronic package structure and method for fabricating the same
JP2014013836A (en) Semiconductor device
JP2013172069A (en) Semiconductor device and manufacturing method of the same
JP2008085032A (en) Semiconductor device
JP4556671B2 (en) Semiconductor package and flexible circuit board
JP2013165230A (en) Suction collet and method of manufacturing semiconductor device
US8878070B2 (en) Wiring board and method of manufacturing a semiconductor device
WO2014103855A1 (en) Semiconductor device and manufacturing method therefor
JP4652428B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130730