[go: up one dir, main page]

JP2013135169A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device Download PDF

Info

Publication number
JP2013135169A
JP2013135169A JP2011286248A JP2011286248A JP2013135169A JP 2013135169 A JP2013135169 A JP 2013135169A JP 2011286248 A JP2011286248 A JP 2011286248A JP 2011286248 A JP2011286248 A JP 2011286248A JP 2013135169 A JP2013135169 A JP 2013135169A
Authority
JP
Japan
Prior art keywords
semiconductor light
light emitting
emitting device
sealing material
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011286248A
Other languages
Japanese (ja)
Inventor
Koji Nakanishi
康二 中西
Kentaro Tamaki
研太郎 玉木
Hiroyuki Nomura
博幸 野村
Yuta Goto
佑太 後藤
Tetsuya Nemoto
哲也 根本
Koichi Hasegawa
公一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2011286248A priority Critical patent/JP2013135169A/en
Publication of JP2013135169A publication Critical patent/JP2013135169A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor light-emitting device which has excellent light extraction efficiency from a light-emitting surface of the semiconductor light-emitting element to the outside.SOLUTION: A semiconductor light-emitting device comprises: a semiconductor light-emitting element having a plurality of projections on a light extraction surface side; and an encapsulation material provided so as to cover the semiconductor light-emitting element and having a refraction factor at a wavelength of 408 nm of 1.50 and under.

Description

本発明は、半導体発光素子を封止して形成される半導体発光装置に関する。   The present invention relates to a semiconductor light emitting device formed by sealing a semiconductor light emitting element.

半導体発光素子は、湿気やゴミ等から保護するために透明樹脂などの封止材で封止される。半導体発光素子から発せられた光が、屈折率の高い半導体発光素子と封止材との界面での反射を防ぐには、封止材の屈折率を上げる必要がある。例えば、特許文献1には、アルケニル基を分子鎖末端に有するジフェニルシロキサン系化合物を含有する組成物から形成される封止材を用いた半導体発光装置が記載されている。特許文献2には、金属酸化物微粒子を含有する組成物から形成される封止材を用いた半導体発光装置が記載されている。   The semiconductor light emitting element is sealed with a sealing material such as a transparent resin in order to protect it from moisture, dust, and the like. In order to prevent light emitted from the semiconductor light emitting element from being reflected at the interface between the semiconductor light emitting element having a high refractive index and the sealing material, it is necessary to increase the refractive index of the sealing material. For example, Patent Document 1 describes a semiconductor light emitting device using a sealing material formed from a composition containing a diphenylsiloxane-based compound having an alkenyl group at the molecular chain end. Patent Document 2 describes a semiconductor light emitting device using a sealing material formed from a composition containing metal oxide fine particles.

特開2010−180323号公報JP 2010-180323 A 特開2006−316264号公報JP 2006-316264 A

封止材の屈折率を高くすると、半導体発光素子の発光面から封止材への光の取り出し効率は向上するが、封止材の屈折率が高くなると、封止材と外部(空気:屈折率=約1.00)との屈折率差が大きくなり、封止材と外部との界面で反射し、最終的に半導体発光素子の発光面から外部への光の取り出し効率は低下する。   Increasing the refractive index of the sealing material improves the light extraction efficiency from the light emitting surface of the semiconductor light emitting element to the sealing material. However, if the refractive index of the sealing material increases, the sealing material and the outside (air: refraction) The refractive index difference from the light emitting surface of the semiconductor light emitting element is finally reduced, which is reflected at the interface between the sealing material and the outside.

半導体素子の半導体層に高屈折率のGaNやInGaNなどを用いる場合、半導体発光素子の発光面と封止材との界面の反射を抑制するために、封止材の屈折率を高くする必要があり、最終的に半導体発光素子の発光面から外部への光の取り出し効率は低下する問題があった。   When high refractive index GaN, InGaN, or the like is used for the semiconductor layer of the semiconductor element, it is necessary to increase the refractive index of the sealing material in order to suppress reflection at the interface between the light emitting surface of the semiconductor light emitting element and the sealing material. In the end, there is a problem that the efficiency of extracting light from the light emitting surface of the semiconductor light emitting element to the outside is lowered.

本発明は、半導体発光素子の発光面から外部への光取り出し効率に優れた半導体発光装置を提供することを目的とする。   An object of this invention is to provide the semiconductor light-emitting device excellent in the light extraction efficiency from the light emission surface of a semiconductor light-emitting element to the exterior.

本発明者らは上記課題を解決すべく鋭意検討を行った。その結果、以下の構成を有する半導体発光装置により上記課題を解決できることを見出し、本発明を完成するに至った。すなわち本発明は、例えば以下の[1]〜[3]に関する。   The present inventors have intensively studied to solve the above problems. As a result, it has been found that the above problems can be solved by a semiconductor light emitting device having the following configuration, and the present invention has been completed. That is, the present invention relates to the following [1] to [3], for example.

[1]光取り出し面側に複数の突起物を有する半導体発光素子と、前記半導体発光素子を覆うように設けられた波長408nmにおける屈折率1.50以下の封止材とを有することを特徴とする半導体発光装置。
[2]前記封止材の波長408nmにおける屈折率が、1.42以下である前記[1]に記載の半導体発光装置。
[3]前記封止材が、フッ素原子含有ポリシロキサンを含有する封止材である前記[1]または前記[2]のいずれかに記載の半導体発光装置。
[1] A semiconductor light emitting device having a plurality of protrusions on the light extraction surface side, and a sealing material having a refractive index of 1.50 or less at a wavelength of 408 nm provided so as to cover the semiconductor light emitting device. A semiconductor light emitting device.
[2] The semiconductor light-emitting device according to [1], wherein a refractive index of the sealing material at a wavelength of 408 nm is 1.42 or less.
[3] The semiconductor light emitting device according to any one of [1] or [2], wherein the sealing material is a sealing material containing a fluorine atom-containing polysiloxane.

本発明によれば、半導体発光素子からでる光を効率よく外部に取り出すことができる。   According to the present invention, light emitted from a semiconductor light emitting element can be efficiently extracted outside.

以下、本発明の実施形態について説明する。
1.半導体発光素子
Hereinafter, embodiments of the present invention will be described.
1. Semiconductor light emitting device

本発明における半導体発光素子は、光取り出し面側に複数の突起物を有する。   The semiconductor light emitting device in the present invention has a plurality of protrusions on the light extraction surface side.

屈折率が3.00以上の半導体発光素子と、屈折率が1.45以下の封止材との間の臨界角は約29度以下である。半導体発光素子の発光層から封止材に向かう光のうち、半導体発光素子と封止材との界面に対する入射角が臨界角より大きい光は全反射することから、臨界角が29度以下では、多くの光が界面で反射することになる。 The critical angle between a semiconductor light emitting device having a refractive index of 3.00 or more and a sealing material having a refractive index of 1.45 or less is about 29 degrees or less. Of the light traveling from the light emitting layer of the semiconductor light emitting element to the encapsulant, light having an incident angle with respect to the interface between the semiconductor light emitting element and the encapsulant is totally reflected, so that when the critical angle is 29 degrees or less, A lot of light will be reflected at the interface.

しかしながら、本発明の半導体発光素子の光取り出し面側には複数の突起物を有していることから、臨界角より大きい入射角を有する光が、半導体発光素子と封止材との界面で全反射しても、反射光は別の界面に向かい、その反射光の入射角が臨界角よりも小さければ、光を封止材側に取り出すことができる。   However, since the semiconductor light emitting device of the present invention has a plurality of protrusions on the light extraction surface side, light having an incident angle larger than the critical angle is totally transmitted at the interface between the semiconductor light emitting device and the sealing material. Even if it is reflected, the reflected light is directed to another interface, and if the incident angle of the reflected light is smaller than the critical angle, the light can be extracted to the sealing material side.

このように半導体発光素子の光取り出し面側に複数の突起物を有することにより、一度、界面で全反射しても、その反射光は別の界面に向かい光を取り出せる可能性があることから、結果的に、半導体発光素子の発光層から封止材に向かう光の取り出し効率は向上することができる。   In this way, by having a plurality of protrusions on the light extraction surface side of the semiconductor light emitting element, even if it is totally reflected once at the interface, there is a possibility that the reflected light can be extracted toward another interface, As a result, the light extraction efficiency from the light emitting layer of the semiconductor light emitting element toward the sealing material can be improved.

図1にその原理を示す。半導体発光素子の光取り出し面側に突起物を有しない場合((a)参照)、半導体発光素子と封止材との界面で反射した光は、半導体発光素子の内部に向かい、封止材側へ光を取り出すことはできない。一方、半導体発光素子の光取り出し面側に突起物を有する場合((b)参照)、半導体発光素子と封止材との界面で反射した光は、別の界面に臨界角より小さい入射角で向かう可能性があり、その結果、一度全反射した光を封止材側へ光を取り出すことができる。   FIG. 1 shows the principle. When there is no protrusion on the light extraction surface side of the semiconductor light emitting element (see (a)), the light reflected at the interface between the semiconductor light emitting element and the sealing material is directed to the inside of the semiconductor light emitting element, and the sealing material side The light cannot be extracted. On the other hand, when the semiconductor light emitting device has a protrusion on the light extraction surface side (see (b)), the light reflected at the interface between the semiconductor light emitting device and the sealing material has an incident angle smaller than the critical angle at another interface. As a result, the light once totally reflected can be extracted to the sealing material side.

半導体発光素子は、特に限定なく、例えば、特開2009−170655号公報、特開2007−173530号公報、特開2007−157778号公報、特開2005−294870号公報、特開2004−296979号公報、特開2004−047662号公報、特開2003−243703号公報、特開2003−86841号公報、特開2002−329885号公報、特開2002−064221号公報、特開2001−274456号公報、特開2001−196629号公報、特開2001−177147号公報、特開2001−068786号公報、特開2000−261029号公報、特開2000−124502号公報、特開平10−294531号公報、特開平09−312442号公報及び特開平09−237916号公報に記載の公知の構造や材料や製法の半導体発光素子を用いることができる。   The semiconductor light emitting device is not particularly limited, and for example, JP 2009-170655 A, JP 2007-173530 A, JP 2007-157778 A, JP 2005-294870 A, JP 2004-296879 A. JP, 2004-047662, JP 2003-243703, JP 2003-88641, JP 2002-329885, JP 2002-064221, JP 2001-274456, JP-A-2001-196629, JP-A-2001-177147, JP-A-2001-068786, JP-A-2000-261629, JP-A-2000-124502, JP-A-10-294531, JP-A-09 No.-312442 and JP-A-09-237 It may be a semiconductor light-emitting device of known structure and material and the procedure described for 16 JP.

半導体発光素子の構造は、例えば、ダブルへテロ接合型、量子井戸接合型などを挙げることができる。また、半導体発光素子には、電流阻止層、パッシベーション層、カラーフィルター層等を設けてもよい。   Examples of the structure of the semiconductor light emitting device include a double heterojunction type and a quantum well junction type. The semiconductor light emitting device may be provided with a current blocking layer, a passivation layer, a color filter layer, and the like.

半導体発光素子の半導体層の材質は、例えば、InGaN、InGaAlN、GaNなどの窒化ガリウム系化合物や、SiC、InN、AlN、GaAs、GaP、GaAlAs、GaAsP、AlGaInPなどの他の無機化合物、銅フタロシアニン系誘導体、ポリフェニレンビニレン系誘導体、ポリアルキルチオフェン系誘導体、ポリアルキルフルオレン系誘導体などの有機化合物が挙げられる。これらの中でも、より顕著に本発明の効果を示せることから、高屈折率の窒化ガリウム系化合物が好ましい。   The material of the semiconductor layer of the semiconductor light emitting device is, for example, a gallium nitride compound such as InGaN, InGaAlN, or GaN, another inorganic compound such as SiC, InN, AlN, GaAs, GaP, GaAlAs, GaAsP, or AlGaInP, or a copper phthalocyanine compound. Examples thereof include organic compounds such as derivatives, polyphenylene vinylene derivatives, polyalkylthiophene derivatives, and polyalkylfluorene derivatives. Among these, a gallium nitride compound having a high refractive index is preferable because the effects of the present invention can be more remarkably exhibited.

突起物は、どのような構造や数であってもよいが、半導体発光素子から封止材への光の取り出し効率を向上させるためには、突起物の形状は錐体状であり、突起物の底面と側面との交差角が異なる、できるだけ多くの突起物(少なくとも、10個以上)を有している方が好ましい。   The protrusion may have any structure or number, but in order to improve the light extraction efficiency from the semiconductor light emitting element to the sealing material, the protrusion has a cone shape. It is preferable to have as many protrusions (at least 10 or more) as possible with different crossing angles between the bottom surface and the side surface.

突起物は突起物を形成する際に半導体層へのダメージを防ぐため、通常、パッシベーション層に形成する。突起物は、レジストを用いたフォトファブリケーションや、インプリントにより形成することができる。
2.封止材
In order to prevent damage to the semiconductor layer when forming the protrusions, the protrusions are usually formed in the passivation layer. The protrusions can be formed by photofabrication using a resist or imprinting.
2. Sealing material

本発明における封止材は、前記半導体発光素子を覆うように設けられ、波長408nmにおける屈折率1.50以下である。 The sealing material in the present invention is provided so as to cover the semiconductor light emitting element, and has a refractive index of 1.50 or less at a wavelength of 408 nm.

封止材から外部への光取り出し効率を向上させるには、できるだけ封止材と外部との屈折率の差を小さくする、つまり、外部の屈折率は一定であることから、封止材の屈折率をできるだけ小さくするのが好ましい。ただし、封止材の屈折率を下げすぎると、半導体発光素子と封止材との間の臨界角が低くなりすぎ、半導体発光素子の発光面に形成した複数の突起物だけでは、半導体発光素子から封止材へ光りを取り出せなくなることから、封止材の屈折率は通常1.50以下好ましくは1.42以下、下限値は通常1.20以上好ましくは1.30以上である。 In order to improve the light extraction efficiency from the sealing material to the outside, the difference in refractive index between the sealing material and the outside is made as small as possible, that is, the refractive index of the outside is constant. It is preferable to make the rate as small as possible. However, if the refractive index of the encapsulant is lowered too much, the critical angle between the semiconductor light emitting element and the encapsulant becomes too low, and the semiconductor light emitting element can be obtained only with a plurality of protrusions formed on the light emitting surface of the semiconductor light emitting element. Therefore, the refractive index of the sealing material is usually 1.50 or less, preferably 1.42 or less, and the lower limit is usually 1.20 or more, preferably 1.30 or more.

封止材の屈折率が1.50以下であれば、封止材と外部との間の臨界角は、約42度以下となり、多くの光を封止材から外部へ取り出すことができる。また、封止材の屈折率が1.42以下であれば、封止材と外部との間の臨界角は、約45度以下となり、大部分の光を封止材から外部へ取り出すことができる。 If the refractive index of the encapsulant is 1.50 or less, the critical angle between the encapsulant and the outside is about 42 degrees or less, and a large amount of light can be extracted from the encapsulant. If the refractive index of the encapsulant is 1.42 or less, the critical angle between the encapsulant and the outside is about 45 degrees or less, and most of the light can be taken out from the encapsulant. it can.

なお、本発明における屈折率は、1気圧、25℃、波長408nmにおける絶対屈折率を意味する。屈折率は分光エリプソメータ(例えばJ.A.Woollam社製の装置名「M−2000」など)により測定できる。   In addition, the refractive index in this invention means the absolute refractive index in 1 atmosphere, 25 degreeC, and wavelength 408nm. The refractive index can be measured with a spectroscopic ellipsometer (for example, device name “M-2000” manufactured by JA Woollam).

封止材の材質は、屈折率が1.50以下であり、且つ、可視光領域でできるだけ透明な材料であれば、有機系材料であっても、無機系材料であってもよい。これらの中でも、耐熱性、耐光性に優れる無機系材料の方が好ましい。また、無機系材料の中では、汎用性が高いことから、通常、ポリシロキサンを含有する材料を用いる。ポリシロキサンを含有する材料の中でも、フッ素原子を含有するポリシロキサンは、屈折率を容易に下げることができることから好ましい。   The material of the sealing material may be an organic material or an inorganic material as long as it has a refractive index of 1.50 or less and is as transparent as possible in the visible light region. Among these, an inorganic material excellent in heat resistance and light resistance is preferable. Moreover, since the versatility is high among inorganic materials, a material containing polysiloxane is usually used. Among materials containing polysiloxane, a polysiloxane containing a fluorine atom is preferable because the refractive index can be easily lowered.

本発明における封止材には、粘度を調整するためのシリカなどの無機粒子や、光の波長を変換するための蛍光体、熱を放出するための窒化硼素などの伝熱性粒子などを含有することができる。
また、半導体発光素子と同じく、封止材から外部への光取り出し効率を向上させるために、封止材の光取り出し面に複数の突起物を形成してもよい。
3.半導体発光装置
The sealing material in the present invention contains inorganic particles such as silica for adjusting the viscosity, a phosphor for converting the wavelength of light, and heat conductive particles such as boron nitride for releasing heat. be able to.
Further, in the same manner as the semiconductor light emitting device, a plurality of protrusions may be formed on the light extraction surface of the sealing material in order to improve the light extraction efficiency from the sealing material to the outside.
3. Semiconductor light emitting device

本発明の半導体発光装置は、光取り出し面側に複数の突起物を有する半導体発光素子と、前記半導体発光素子を覆うように設けられた波長408nmにおける屈折率1.50以下の封止材とを有することを特徴とする。   The semiconductor light emitting device of the present invention comprises a semiconductor light emitting element having a plurality of protrusions on the light extraction surface side, and a sealing material having a refractive index of 1.50 or less at a wavelength of 408 nm provided so as to cover the semiconductor light emitting element. It is characterized by having.

本発明の半導体発光装置は、半導体発光素子の光取り出し面側に複数の突起物を形成した後、半導体発光素子と外部電極を電気的に接続し、その後、波長408nmにおける屈折率1.50以下の封止材で半導体発光素子を被覆することにより製造することができる。   In the semiconductor light emitting device of the present invention, after forming a plurality of protrusions on the light extraction surface side of the semiconductor light emitting element, the semiconductor light emitting element and the external electrode are electrically connected, and then the refractive index is 1.50 or less at a wavelength of 408 nm. It can be manufactured by covering the semiconductor light emitting element with a sealing material.

なお、本発明の半導体発光装置における半導体発光素子と外部電極との電気的接続は、ワイヤーボンディング型であっても、フリップチップ型であってもよい。   The electrical connection between the semiconductor light emitting element and the external electrode in the semiconductor light emitting device of the present invention may be a wire bonding type or a flip chip type.

図2に半導体発光装置の製法を模式的に示した例を示す。
図2(a)に示すように、有機金属気相成長法などにより、サファイヤ基板上200上に、バッファ層201並びにn型GaNのクラッド層202、InGaN/GaNの活性層203及びp型のGaNクラッド層204を順次形成する。次いで、クラッド層204上にスパッタ法にてスズドープ酸化インジウム(ITO膜205)を形成する。
FIG. 2 shows an example schematically showing a method for manufacturing a semiconductor light emitting device.
As shown in FIG. 2A, the buffer layer 201, the n-type GaN cladding layer 202, the InGaN / GaN active layer 203, and the p-type GaN are formed on the sapphire substrate 200 by metal organic chemical vapor deposition. The clad layer 204 is formed sequentially. Next, tin-doped indium oxide (ITO film 205) is formed on the clad layer 204 by sputtering.

次いで図2(b)に示すように、パッシベーション膜206を形成し、インプリント法によりパッシベーション膜206に複数の突起物207を形成する。次いで、フォトファブリケーション法などにより、n型クラッド層202を露出させた後、スパッタ法などにより、外部接続用電極208を形成する。その後、レーザーダイシングにより素子を分離し、半導体発光素子210を形成する。   Next, as shown in FIG. 2B, a passivation film 206 is formed, and a plurality of protrusions 207 are formed on the passivation film 206 by an imprint method. Next, after exposing the n-type cladding layer 202 by a photofabrication method or the like, an external connection electrode 208 is formed by a sputtering method or the like. Thereafter, the elements are separated by laser dicing, and the semiconductor light emitting element 210 is formed.

次いで図2(c)に示すように、半導体発光素子210を、すり鉢状の溝を有するパッケージ211の溝の底面に配置し、ワイヤーボンディングにより、外部電極212と外部接続用電極206とを電気的に接続する。 Next, as shown in FIG. 2C, the semiconductor light emitting device 210 is disposed on the bottom surface of the groove of the package 211 having a mortar-shaped groove, and the external electrode 212 and the external connection electrode 206 are electrically connected by wire bonding. Connect to.

次いで図2(d)に示すように、パッケージ211の溝内に蛍光体214などを含む封止材を形成するための塗料(フッ素原子含有ポリシロキサンを含有する組成物)を注型し、加熱処理により塗料を硬化させて、封止材213を形成し、半導体発光装置を形成することができる。   Next, as shown in FIG. 2D, a coating material (a composition containing fluorine atom-containing polysiloxane) for forming a sealing material including the phosphor 214 and the like in the groove of the package 211 is cast and heated. The coating material can be cured by treatment to form the sealing material 213, thereby forming a semiconductor light emitting device.

本発明の半導体発光装置はあらゆる用途の光源として用いることができる。例えば、液晶ディスプレイのバックライト、ディスプレイの画素、赤外線センサーなどのセンサー光源、信号機や車両などのランプなどを挙げることができる。   The semiconductor light-emitting device of the present invention can be used as a light source for every application. For example, the backlight of a liquid crystal display, the pixel of a display, sensor light sources, such as an infrared sensor, lamps, such as a traffic light and a vehicle, can be mentioned.

半導体発光素子の発光層から封止材に向かう光の取り出し効率は向上する原理を模式的に示した図。The figure which showed typically the principle which the extraction efficiency of the light which goes to the sealing material from the light emitting layer of a semiconductor light-emitting device improves. 半導体発光装置の製法を模式的に示した図。The figure which showed the manufacturing method of the semiconductor light-emitting device typically.

100 半導体発光素子と封止材との界面。
101 発光層から封止材に向かう光(臨界角より大きい入射角を有する光)。
102 101が半導体発光素子と封止材との界面で全反射した光。
103 封止材へ向かう光。
104 102が半導体発光素子と封止材との界面で反射した光。
200 サファイヤ基板。
201 バッファ層。
202 n型GaNのクラッド層。
203 InGaN/GaNの活性層。
204 p型のGaNクラッド層。
205 ITO膜。
206 パッシベーション膜。
207 突起物。
208 外部接続用電極。
210 半導体発光素子。
211 パッケージ。
211a 溝
212 外部電極。
213 封止材。
214 蛍光体。
215 ワイヤー
100 Interface between semiconductor light emitting element and sealing material.
101 Light traveling from the light emitting layer toward the sealing material (light having an incident angle larger than the critical angle).
102 101 light totally reflected at the interface between the semiconductor light emitting element and the sealing material.
103 Light toward the encapsulant.
104 Light reflected by the interface 102 between the semiconductor light emitting element and the sealing material.
200 Sapphire substrate.
201 Buffer layer.
202 Cladding layer of n-type GaN.
203 InGaN / GaN active layer.
204 p-type GaN cladding layer.
205 ITO film.
206 Passivation film.
207 Protrusion.
208 External connection electrode.
210 Semiconductor light emitting device.
211 packages.
211a Groove 212 External electrode.
213 Sealant.
214 phosphor.
215 wire

Claims (3)

光取り出し面側に複数の突起物を有する半導体発光素子と、前記半導体発光素子を覆うように設けられた波長408nmにおける屈折率1.50以下の封止材とを有することを特徴とする半導体発光装置。 A semiconductor light emitting device comprising: a semiconductor light emitting device having a plurality of protrusions on the light extraction surface side; and a sealing material having a refractive index of 1.50 or less at a wavelength of 408 nm provided so as to cover the semiconductor light emitting device. apparatus. 前記封止材の波長408nmにおける屈折率が、1.42以下である請求項1に記載の半導体発光装置。   The semiconductor light-emitting device according to claim 1, wherein a refractive index of the sealing material at a wavelength of 408 nm is 1.42 or less. 前記封止材が、フッ素原子含有ポリシロキサンを含有する封止材である請求項1または請求項2のいずれかに記載の半導体発光装置。   The semiconductor light-emitting device according to claim 1, wherein the sealing material is a sealing material containing a fluorine atom-containing polysiloxane.
JP2011286248A 2011-12-27 2011-12-27 Semiconductor light-emitting device Pending JP2013135169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011286248A JP2013135169A (en) 2011-12-27 2011-12-27 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011286248A JP2013135169A (en) 2011-12-27 2011-12-27 Semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
JP2013135169A true JP2013135169A (en) 2013-07-08

Family

ID=48911657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011286248A Pending JP2013135169A (en) 2011-12-27 2011-12-27 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JP2013135169A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015035504A (en) * 2013-08-09 2015-02-19 日亜化学工業株式会社 Light source device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029510A (en) * 2002-06-27 2004-01-29 Nitto Denko Corp Light diffusing layer, light diffusing sheet, optical element and image display device
JP2007103901A (en) * 2005-09-09 2007-04-19 Matsushita Electric Works Ltd Light emitting device
JP2007324220A (en) * 2006-05-30 2007-12-13 Toshiba Corp Optical semiconductor device
JP2010010279A (en) * 2008-06-25 2010-01-14 Sharp Corp Light-emitting device and manufacturing method therefor
JP2011249856A (en) * 2011-09-14 2011-12-08 Toshiba Corp Semiconductor light-emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029510A (en) * 2002-06-27 2004-01-29 Nitto Denko Corp Light diffusing layer, light diffusing sheet, optical element and image display device
JP2007103901A (en) * 2005-09-09 2007-04-19 Matsushita Electric Works Ltd Light emitting device
JP2007324220A (en) * 2006-05-30 2007-12-13 Toshiba Corp Optical semiconductor device
JP2010010279A (en) * 2008-06-25 2010-01-14 Sharp Corp Light-emitting device and manufacturing method therefor
JP2011249856A (en) * 2011-09-14 2011-12-08 Toshiba Corp Semiconductor light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015035504A (en) * 2013-08-09 2015-02-19 日亜化学工業株式会社 Light source device

Similar Documents

Publication Publication Date Title
KR102427642B1 (en) Semiconductor light emitting device
US8564005B2 (en) Light-emitting device package
KR102607596B1 (en) Semiconductor light emitting device and semiconductor light emitting device package using the same
JP6087096B2 (en) Semiconductor light emitting device and manufacturing method thereof
CN103765585B (en) The solid state radiation sensor device and its associated system and method for solid state radiation sensor with chip upside-down mounting type installation
JP6328497B2 (en) Semiconductor light emitting device, package device, and light emitting panel device
WO2011016201A1 (en) Light-emitting element and light-emitting device
KR101974353B1 (en) Light emittind device and light emitting device package
CN106415861A (en) Light emitting element and lighting device
CN103107261A (en) Semiconductor light emitting device and package
KR101181000B1 (en) Light emitting device, method for fabricating the same and light emitting device package
KR20170143336A (en) Semiconductor device and display device having thereof
CN103094432A (en) Semiconductor light emitting device and fabrication method thereof
KR102639100B1 (en) Semiconductor device package and display device including the same
KR101203138B1 (en) Luminous device and the method therefor
CN102163671A (en) Optical semiconductor device and manufacture method thereof, optical semiconductor module
JP5034342B2 (en) Light emitting device
JP2013135169A (en) Semiconductor light-emitting device
KR20120018535A (en) Light emitting diode chip including current blocking layer and method of manufacturing the same
JP2015211158A (en) Semiconductor light emitting element
KR20200086937A (en) Light emitting device and light emitting device package having the same
KR101251340B1 (en) Light emitting diode and manufacturing method of the same
US11411145B2 (en) Light-emitting element package
KR101115538B1 (en) Luminous device and the method therefor
KR102530762B1 (en) Semiconductor light emitting device package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160308