JP2013073832A - Positive electrode active material for lithium ion secondary battery - Google Patents
Positive electrode active material for lithium ion secondary battery Download PDFInfo
- Publication number
- JP2013073832A JP2013073832A JP2011212977A JP2011212977A JP2013073832A JP 2013073832 A JP2013073832 A JP 2013073832A JP 2011212977 A JP2011212977 A JP 2011212977A JP 2011212977 A JP2011212977 A JP 2011212977A JP 2013073832 A JP2013073832 A JP 2013073832A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- positive electrode
- electrode active
- active material
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 130
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 41
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 40
- 239000002131 composite material Substances 0.000 claims abstract description 57
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 claims abstract description 52
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 39
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 39
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 32
- 239000010703 silicon Substances 0.000 claims abstract description 31
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 15
- 229910052742 iron Inorganic materials 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims abstract description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 7
- 239000001301 oxygen Substances 0.000 claims abstract description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 77
- 239000000126 substance Substances 0.000 claims description 34
- 239000013078 crystal Substances 0.000 claims description 29
- 150000001875 compounds Chemical class 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 230000009467 reduction Effects 0.000 abstract description 8
- 229910013282 LiNiMO Inorganic materials 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 69
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 description 48
- 229910052912 lithium silicate Inorganic materials 0.000 description 48
- 150000003377 silicon compounds Chemical class 0.000 description 45
- 150000002816 nickel compounds Chemical class 0.000 description 41
- 238000000975 co-precipitation Methods 0.000 description 29
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 24
- 239000002994 raw material Substances 0.000 description 23
- 239000011259 mixed solution Substances 0.000 description 22
- 229910052759 nickel Inorganic materials 0.000 description 22
- 239000000047 product Substances 0.000 description 22
- 239000000203 mixture Substances 0.000 description 21
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- 230000007423 decrease Effects 0.000 description 16
- 238000010304 firing Methods 0.000 description 16
- 238000000921 elemental analysis Methods 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 238000002156 mixing Methods 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 229910004283 SiO 4 Inorganic materials 0.000 description 9
- 239000011164 primary particle Substances 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 8
- 229910017052 cobalt Inorganic materials 0.000 description 8
- 239000010941 cobalt Substances 0.000 description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 239000004570 mortar (masonry) Substances 0.000 description 8
- 229910000480 nickel oxide Inorganic materials 0.000 description 8
- 239000011149 active material Substances 0.000 description 7
- 239000008119 colloidal silica Substances 0.000 description 7
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 7
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 6
- OMOVVBIIQSXZSZ-UHFFFAOYSA-N [6-(4-acetyloxy-5,9a-dimethyl-2,7-dioxo-4,5a,6,9-tetrahydro-3h-pyrano[3,4-b]oxepin-5-yl)-5-formyloxy-3-(furan-3-yl)-3a-methyl-7-methylidene-1a,2,3,4,5,6-hexahydroindeno[1,7a-b]oxiren-4-yl] 2-hydroxy-3-methylpentanoate Chemical compound CC12C(OC(=O)C(O)C(C)CC)C(OC=O)C(C3(C)C(CC(=O)OC4(C)COC(=O)CC43)OC(C)=O)C(=C)C32OC3CC1C=1C=COC=1 OMOVVBIIQSXZSZ-UHFFFAOYSA-N 0.000 description 6
- 239000003513 alkali Substances 0.000 description 6
- 229910001593 boehmite Inorganic materials 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 6
- 238000005342 ion exchange Methods 0.000 description 6
- 229910000029 sodium carbonate Inorganic materials 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 5
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 5
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000007773 negative electrode material Substances 0.000 description 4
- 239000011255 nonaqueous electrolyte Substances 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 3
- 239000003929 acidic solution Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000010416 ion conductor Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 2
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 2
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 2
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 239000012255 powdered metal Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 235000002639 sodium chloride Nutrition 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910014211 My O Inorganic materials 0.000 description 1
- 229910021314 NaFeO 2 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910021446 cobalt carbonate Inorganic materials 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- ZOTKGJBKKKVBJZ-UHFFFAOYSA-L cobalt(2+);carbonate Chemical compound [Co+2].[O-]C([O-])=O ZOTKGJBKKKVBJZ-UHFFFAOYSA-L 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- -1 dimethyl carbonate Chemical compound 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- RAQDACVRFCEPDA-UHFFFAOYSA-L ferrous carbonate Chemical compound [Fe+2].[O-]C([O-])=O RAQDACVRFCEPDA-UHFFFAOYSA-L 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、ニッケルを含有するリチウムイオン二次電池用正極活物質に関する。さらに詳しくは、リチウム−ニッケル複合酸化物とリチウム、ケイ素及び酸素を含む非晶質性物質とを含むリチウムイオン二次電池用正極活物質に関する。 The present invention relates to a positive electrode active material for lithium ion secondary batteries containing nickel. More specifically, the present invention relates to a positive electrode active material for a lithium ion secondary battery including a lithium-nickel composite oxide and an amorphous material containing lithium, silicon, and oxygen.
非水電解質二次電池、特にリチウムイオン二次電池は、携帯電話、ポータブルパーソナルコンピュータ等に広く使用されている。また、非水電解質二次電池は、パワーツール用電源として採用され、将来のハイブリッド自動車用電源としても大きな期待を担っている。そのため、より高容量化された非水電解質二次電池が切望されている。 Nonaqueous electrolyte secondary batteries, particularly lithium ion secondary batteries, are widely used in mobile phones, portable personal computers and the like. Moreover, the nonaqueous electrolyte secondary battery is adopted as a power tool power source, and has great expectations as a power source for future hybrid vehicles. Therefore, a non-aqueous electrolyte secondary battery having a higher capacity is desired.
ところで、1991年にリチウムイオン二次電池の量産化が開始されてから10年の間に、電池構造の改良が進み、高密度充填の技術は大きく進歩した。しかし、正極活物質をコバルト酸リチウム等のリチウム−コバルト複合酸化物とし、負極活物質を黒鉛とする基本構成は、現在も変わらず主流となっている。そのような中、リチウムイオン二次電池のさらなる高性能化、低コスト化が望まれており、リチウム−コバルト複合酸化物に替わる新たな正極材へのニーズが高まっている。 By the way, during the 10 years since the start of mass production of lithium ion secondary batteries in 1991, the battery structure has been improved, and the technology for high-density filling has greatly advanced. However, the basic configuration in which the positive electrode active material is a lithium-cobalt composite oxide such as lithium cobaltate and the negative electrode active material is graphite is still mainstream. Under such circumstances, further improvement in performance and cost reduction of the lithium ion secondary battery are desired, and the need for a new positive electrode material replacing the lithium-cobalt composite oxide is increasing.
リチウム−コバルト複合酸化物に替わる有望な正極材として、ニッケルやマンガン、鉄を含有するリチウム含有遷移金属酸化物が活発に研究されている。その中でもリチウム−ニッケル複合酸化物は、リチウム−コバルト複合酸化物よりも高容量であることから、正極材への応用が期待されている。 As promising positive electrode materials that can replace lithium-cobalt composite oxides, lithium-containing transition metal oxides containing nickel, manganese, and iron have been actively studied. Among them, the lithium-nickel composite oxide has a higher capacity than the lithium-cobalt composite oxide, and is expected to be applied to a positive electrode material.
しかし、ニッケル酸リチウム等のリチウム−ニッケル複合酸化物の場合、Li+とNi2+のイオン半径がほぼ等しいため、本来Li+が占有すべきサイトにNi2+が混入しやすい。そのため、合成時に化学量論組成であるLiNiO2とは異なる結晶構造になる場合が多く、その結果として充放電サイクル時(充放電を繰り返した場合)に放電容量の低下が大きい等の課題がある。 However, in the case of a lithium-nickel composite oxide such as lithium nickelate, since the ion radii of Li + and Ni 2+ are almost equal, Ni 2+ tends to be mixed into the site that should be originally occupied by Li + . For this reason, the crystal structure is often different from that of LiNiO 2 having a stoichiometric composition at the time of synthesis, and as a result, there are problems such as a large reduction in discharge capacity during charge / discharge cycles (when charge / discharge is repeated). .
当該課題に対して、例えばLiNi1−x−yMxNyO2のMやNにCo、Mn、Al、Si等を含有させる方法(例えば、特許文献1参照。)や、活物質の粒子表面を炭素、SiO2、高分子化合物等でコーティングする方法(例えば、特許文献2及び特許文献3参照。)、活物質の粒子径を制御する方法(例えば、特許文献4参照。)等が開示されている。これらの方法により充放電サイクル時の放電容量の低下がある程度抑制されると報告されているものの、より一層の性能向上が望まれている。 In response to the problem, for example, a method of containing Co, Mn, Al, Si, or the like in M or N of LiNi 1-xy M x N y O 2 (see, for example, Patent Document 1) or an active material A method of coating the particle surface with carbon, SiO 2 , a polymer compound or the like (for example, see Patent Document 2 and Patent Document 3), a method for controlling the particle diameter of the active material (for example, see Patent Document 4), and the like. It is disclosed. Although it has been reported that the decrease in the discharge capacity during the charge / discharge cycle is suppressed to some extent by these methods, a further improvement in performance is desired.
また、正極材には、単に充放電サイクル時の放電容量の低下が少ないだけではなく、高い充放電速度でも容量低下が少ないことも同時に求められており、この点についてもより一層の性能向上が求められている。 In addition, the positive electrode material is required not only to have a small decrease in discharge capacity during the charge / discharge cycle, but also to have a small decrease in capacity even at a high charge / discharge rate. It has been demanded.
これらの課題を鑑み、本発明においては、充放電サイクル時の放電容量の低下が少なく、かつ高い充放電速度でも容量低下が少ないリチウムイオン二次電池用正極活物質を提供することを目的とする。 In view of these problems, it is an object of the present invention to provide a positive electrode active material for a lithium ion secondary battery in which a decrease in discharge capacity during a charge / discharge cycle is small and a decrease in capacity is small even at a high charge / discharge rate. .
本発明者らは上記課題を解決するため、鋭意検討を重ねた結果、リチウムイオン二次電池の正極材に、結晶子径が特定の大きさであるリチウム−ニッケル複合酸化物と、リチウム、ケイ素及び酸素を含む非晶質性物質とを含み、かつ前記非晶質性物質の含有量が、特定の範囲内である正極活物質を用いることにより、充放電サイクル時の放電容量の低下を少なくし、かつ高い充放電速度でも容量低下を少なくできることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the inventors of the present invention have developed a lithium-nickel composite oxide having a specific crystallite size, lithium, silicon, and a positive electrode material of a lithium ion secondary battery. And a non-crystalline substance containing oxygen, and the use of a positive electrode active material in which the content of the non-crystalline substance is within a specific range, reduces a decrease in discharge capacity during a charge / discharge cycle. In addition, the present inventors have found that the capacity reduction can be reduced even at a high charge / discharge rate, and have completed the present invention.
すなわち、本発明は、
(1) 下記一般式(1)で表されるリチウム−ニッケル複合酸化物と、リチウム、ケイ素及び酸素を含む非晶質性物質とを含み、
前記リチウム−ニッケル複合酸化物の結晶子径が30〜100nmであり、
前記非晶質性物質の含有量が、ケイ素換算で1〜10質量%であることを特徴とするリチウムイオン二次電池用正極活物質;
一般式(1)・・・LixNi1−yMyO2
[式中、MはCo、Fe、及びAlから選択される1種以上の元素を表し、0.5<x<1.5であり、0≦y<0.2である。]、
(2) 前記非晶質性物質が、下記一般式(2)で表される化合物であることを特徴とする前記(1)に記載のリチウムイオン二次電池用正極活物質、
一般式(2)・・・LiaSibO
[式中、a及びbは、それぞれ独立して正の実数である。]、
(3) 前記リチウム−ニッケル複合酸化物の少なくとも一部の結晶において、結晶間に前記非晶質性物質が存在していることを特徴とする前記(1)又は(2)に記載のリチウムイオン二次電池用正極活物質、
(4) 前記(1)〜(3)のいずれか一つに記載のリチウムイオン二次電池用正極活物質を用いて得られることを特徴とするリチウムイオン二次電池、
を提供するものである。
That is, the present invention
(1) including a lithium-nickel composite oxide represented by the following general formula (1) and an amorphous substance containing lithium, silicon, and oxygen,
The crystallite diameter of the lithium-nickel composite oxide is 30 to 100 nm,
The positive electrode active material for a lithium ion secondary battery, wherein the content of the amorphous material is 1 to 10% by mass in terms of silicon;
The general formula (1) ··· Li x Ni 1 -y M y O 2
[Wherein, M represents one or more elements selected from Co, Fe, and Al, 0.5 <x <1.5, and 0 ≦ y <0.2. ],
(2) The positive electrode active material for a lithium ion secondary battery according to (1), wherein the amorphous material is a compound represented by the following general formula (2):
General formula (2) ... Li a Si b O
[Wherein, a and b are each independently a positive real number. ],
(3) The lithium ion according to (1) or (2), wherein the amorphous substance is present between the crystals in at least a part of the crystals of the lithium-nickel composite oxide. Positive electrode active material for secondary battery,
(4) A lithium ion secondary battery obtained by using the positive electrode active material for a lithium ion secondary battery according to any one of (1) to (3),
Is to provide.
本発明によれば、繰り返しの充放電でも容量低下が少なく、かつ高い充放電速度でも容量の低下が少ないニッケルを含有するリチウムイオン二次電池用正極活物質が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the positive electrode active material for lithium ion secondary batteries containing nickel with little capacity | capacitance fall by repeated charging / discharging, and little capacity | capacitance fall by a high charging / discharging speed | rate is provided.
<リチウムイオン二次電池用正極活物質>
本発明のリチウムイオン二次電池用正極活物質(以下、本発明の正極活物質)は、リチウム−ニッケル複合酸化物と、リチウム、ケイ素及び酸素を含む非晶質性物質(以下、リチウムシリケート)とを含み、前記リチウム−ニッケル複合酸化物の結晶子径が30〜100nmであり、前記非晶質性物質の含有量が、ケイ素換算で1〜10質量%であることを特徴とする。本発明のリチウムイオン二次電池用正極活物質が、充放電サイクル時の放電容量の低下及び高い充放電速度における容量低下が低減されるという効果が得られる理由は明らかではないが、結晶子径が特定の大きさであるリチウム−ニッケル複合酸化物に、リチウムシリケートが特定の割合で含まれていることにより、イオン伝導体(電解質)であるリチウムシリケートによって活物質中のリチウムイオンの拡散が促進される結果、充放電速度が速まり、高い充放電速度とした場合の容量低下が抑制されると推察される。
<Positive electrode active material for lithium ion secondary battery>
The positive electrode active material for a lithium ion secondary battery of the present invention (hereinafter referred to as the positive electrode active material of the present invention) is composed of a lithium-nickel composite oxide and an amorphous material containing lithium, silicon and oxygen (hereinafter referred to as lithium silicate). The crystallite diameter of the lithium-nickel composite oxide is 30 to 100 nm, and the content of the amorphous substance is 1 to 10% by mass in terms of silicon. The reason why the positive electrode active material for a lithium ion secondary battery of the present invention has the effect of reducing the discharge capacity during charge / discharge cycles and the capacity reduction at a high charge / discharge rate is not clear, but the crystallite diameter The lithium-nickel composite oxide with a specific size contains lithium silicate in a specific ratio, so that the lithium silicate, which is an ionic conductor (electrolyte), promotes the diffusion of lithium ions in the active material. As a result, it is surmised that the charge / discharge rate is increased, and the capacity reduction when the charge / discharge rate is high is suppressed.
[リチウム−ニッケル複合酸化物]
本発明の正極活物質に含まれるリチウム−ニッケル複合酸化物は、下記一般式(1)で表される。下記一般式(1)中、MはCo、Fe、及びAlから選択される1種以上の元素を表し、0.5<x<1.5であり、0≦y<0.2である。
一般式(1)・・・LixNi1−yMyO2
[Lithium-nickel composite oxide]
The lithium-nickel composite oxide contained in the positive electrode active material of the present invention is represented by the following general formula (1). In the following general formula (1), M represents one or more elements selected from Co, Fe, and Al, 0.5 <x <1.5, and 0 ≦ y <0.2.
The general formula (1) ··· Li x Ni 1 -y M y O 2
リチウム−ニッケル複合酸化物中のリチウムイオン量が過剰に存在した場合には、充放電時の正負極間でのLiイオンの移動を阻害し正極材としての性能が低下するおそれがある。そこで、一般式(1)中、xは0.5<x<1.5を満たす正の実数である。本発明において用いられるリチウム−ニッケル複合酸化物としては、0.8<x<1.3であることが好ましく、0.95<x<1.15であることがより好ましい。 When the amount of lithium ions in the lithium-nickel composite oxide is excessive, movement of Li ions between the positive and negative electrodes during charge / discharge may be hindered and the performance as the positive electrode material may be reduced. Therefore, in the general formula (1), x is a positive real number that satisfies 0.5 <x <1.5. The lithium-nickel composite oxide used in the present invention preferably satisfies 0.8 <x <1.3, and more preferably 0.95 <x <1.15.
一般式(1)中、yは0≦y<0.2である。yが0の場合、リチウム−ニッケル複合酸化物はLixNi1O2である。yが0.2未満であるため、本発明の正極活物質は充分量のNiを含有することができ、本発明の正極活物質を用いて得られた正極材の放電容量の低下を抑制される。本発明においては、yは0であってもよいが、結晶構造の安定化による充放電時の容量低下抑制の観点からは、0<y<0.2であることが好ましく、0.01≦y<0.2であることがより好ましく、0.01≦y≦0.1であることがよりさらに好ましく、0.02≦y≦0.06であることがよりさらに好ましい。 In general formula (1), y is 0 ≦ y <0.2. When y is 0, the lithium-nickel composite oxide is Li x Ni 1 O 2 . Since y is less than 0.2, the positive electrode active material of the present invention can contain a sufficient amount of Ni, and the decrease in the discharge capacity of the positive electrode material obtained using the positive electrode active material of the present invention is suppressed. The In the present invention, y may be 0, but from the viewpoint of suppressing a decrease in capacity during charge / discharge by stabilizing the crystal structure, 0 <y <0.2 is preferable, and 0.01 ≦ y <0.2 is more preferable, 0.01 ≦ y ≦ 0.1 is still more preferable, and 0.02 ≦ y ≦ 0.06 is still more preferable.
一般式(1)中、Mは、コバルト、鉄、及びアルミニウムから選択される少なくとも1種以上の元素である。すなわち、リチウム−ニッケル複合酸化物は、Mとしてコバルト、鉄、又はアルミニウムのうちのいずれか1種類のみからなる化合物であってもよく、Mとして上記元素群のうち2種類以上を含む化合物であってもよい。本発明において用いられるリチウム−ニッケル複合酸化物としては、上記元素のうち、特に好ましいものは、大気中で安定に存在する酸化数が3のみであるアルミニウムである。 In general formula (1), M is at least one element selected from cobalt, iron, and aluminum. That is, the lithium-nickel composite oxide may be a compound consisting of only one of cobalt, iron, or aluminum as M, and M is a compound containing two or more of the above element groups. May be. As the lithium-nickel composite oxide used in the present invention, among the above elements, aluminum having an oxidation number of only 3 that exists stably in the atmosphere is particularly preferable.
本発明の正極活物質中のリチウム−ニッケル複合酸化物の結晶子径は、30nm〜100nmである。本発明の正極活物質の結晶子径の大きさが小さすぎる場合には、一次粒子(本発明における一次粒子はリチウム−ニッケル複合酸化物の結晶とリチウムシリケートからなる)の大きさが小さくなりすぎ、その結果、粒界が増加し、粒子間のリチウムイオン拡散性が著しく低下することがある。一方で本発明の正極活物質の結晶子径の大きさが大きすぎる場合には、当該正極活物質中でリチウム−ニッケル複合酸化物の結晶構造中にリチウム欠損が生成しやすくなる。リチウム欠損は、充放電時に結晶の相転移を引き起こすため、充放電を繰返し行うと、電気化学活性ではない結晶構造が増加し容量が低下する。 The crystallite diameter of the lithium-nickel composite oxide in the positive electrode active material of the present invention is 30 nm to 100 nm. When the crystallite size of the positive electrode active material of the present invention is too small, the size of the primary particles (the primary particles in the present invention are composed of lithium-nickel composite oxide crystals and lithium silicate) is too small. As a result, the grain boundary increases, and the lithium ion diffusibility between the particles may be significantly reduced. On the other hand, when the crystallite diameter of the positive electrode active material of the present invention is too large, lithium deficiency is likely to be generated in the crystal structure of the lithium-nickel composite oxide in the positive electrode active material. Lithium vacancies cause crystal phase transitions during charge / discharge, and therefore repeated charge / discharge increases the crystal structure that is not electrochemically active and decreases the capacity.
本発明の正極活物質中のリチウム−ニッケル複合酸化物の結晶子径は、正極活物質の粉末試料のX線回折パターン(XRD)を測定し、得られた測定結果から以下のように解析することによって求められる。すなわち、一般式(1)で表されるリチウム−ニッケル複合酸化物はα−NaFeO2型(空間群R−3m)と呼ばれる層状岩塩型の結晶構造を有しており、そのXRDを測定すると、(104)面に帰属される回折ピーク「P104」が2Θ=43〜44°に現れる。測定したP104の半値幅を用いて、下記のSherrer式により、リチウム−ニッケル複合酸化物の結晶子径を算出することができる。Sherrer式中、Dはリチウム−ニッケル複合酸化物の結晶子径(nm)であり、KはSherrer定数(0.9)であり、λは回折X線の波長(nm)であり、βはP104の半値幅(rad)であり、θはP104の回折角(°)である。
D = Kλ/(βcosΘ) ・・・Sherrer式
なお、上記式に用いる回折ピークP104の半値幅は、粉末X線回折装置を用い、単色化CuKα線をX線源として使用し、ゴニオメーターの走査モードを連続として、XRDを測定し求めることができる。
The crystallite diameter of the lithium-nickel composite oxide in the positive electrode active material of the present invention is measured as follows by measuring the X-ray diffraction pattern (XRD) of the powder sample of the positive electrode active material. Is required. That is, the lithium-nickel composite oxide represented by the general formula (1) has a layered rock salt type crystal structure called α-NaFeO 2 type (space group R-3m), and when XRD is measured, A diffraction peak “P104” attributed to the (104) plane appears at 2Θ = 43 to 44 °. Using the measured half width of P104, the crystallite diameter of the lithium-nickel composite oxide can be calculated by the following Scherrer equation. In the Serrer equation, D is the crystallite size (nm) of the lithium-nickel composite oxide, K is the Serrer constant (0.9), λ is the wavelength of the diffracted X-ray (nm), and β is P104 Is the half-value width (rad) of, and θ is the diffraction angle (°) of P104.
D = Kλ / (βcosΘ) (Sherler equation) Note that the half-width of the diffraction peak P104 used in the above equation uses a powder X-ray diffractometer, uses a monochromated CuKα ray as an X-ray source, and scans the goniometer. XRD can be measured and determined with the mode as continuous.
本発明の正極活物質中のリチウム−ニッケル複合酸化物のXRDでは、前記2Θ=43〜44°にある(104)面に帰属される回折ピーク「P104」の他に、2Θ=18〜19°にある(003)面に帰属されるピーク「P003」を有する。このP003の積分強度「I003」とP104の積分強度「I104」の積分強度比[I003/I104]は、リチウム−ニッケル複合酸化物の結晶構造におけるLi+とNi3+の配置に依存しており、リチウム−ニッケル複合酸化物の層状岩塩構造におけるLi+サイト量を反映するため、リチウム−ニッケル複合酸化物の放電容量の指標となる(例えば、P. Kalyani, N. Kalaiselvi, Adv. Mater. vol.6, p689 (2005).)。[I003/I104]が1.2以上であると、リチウム−ニッケル複合酸化物の結晶が十分に成長しており、正極活物質として高容量を示すため好ましい。[I003/I104]は大きいほど高容量となるため好ましいが、実際に合成可能なものは2.0以下となる。 In XRD of the lithium-nickel composite oxide in the positive electrode active material of the present invention, in addition to the diffraction peak “P104” attributed to the (104) plane at 2Θ = 43 to 44 °, 2Θ = 18 to 19 °. And has a peak “P003” attributed to the (003) plane. The integral intensity ratio [I003 / I104] of the integral intensity “I003” of P003 and the integral intensity “I104” of P104 depends on the arrangement of Li + and Ni 3+ in the crystal structure of the lithium-nickel composite oxide, Since it reflects the amount of Li + site in the layered rock salt structure of the lithium-nickel composite oxide, it is an indicator of the discharge capacity of the lithium-nickel composite oxide (for example, P. Kalyani, N. Kalaiselvi, Adv. Mater. Vol. 6, p689 (2005).). [I003 / I104] is preferably 1.2 or more, because the crystal of the lithium-nickel composite oxide is sufficiently grown and exhibits a high capacity as the positive electrode active material. [I003 / I104] is preferably as large as possible because it has a higher capacity, but the actual synthesizable value is 2.0 or less.
本発明の正極活物質中のリチウム−ニッケル複合酸化物の含有量は、多いほど高容量となるため好ましいが、高い充放電速度での容量の低下を抑制する効果のあるリチウムシリケートの含有量を確保するためには、80質量%〜95質量%であることが好ましく、90質量%〜95質量%であることがより好ましい。 The higher the lithium-nickel composite oxide content in the positive electrode active material of the present invention, the higher the capacity, which is preferable. However, the lithium silicate content that has the effect of suppressing the decrease in capacity at a high charge / discharge rate is preferable. In order to ensure, it is preferable that it is 80 mass%-95 mass%, and it is more preferable that it is 90 mass%-95 mass%.
本発明の正極活物質としては、リチウム−ニッケル複合酸化物の少なくとも一部の結晶において、結晶間にリチウムシリケートが存在しているものが好ましい。正極活物質中において、リチウム−ニッケル複合酸化物の結晶と結晶の隙間にリチウムシリケートが存在していることにより、より高い本発明の効果(高い充放電速度における優れた容量低下抑制効果)を得ることができる。これは、イオン伝導体(電解質)であるリチウムシリケートがリチウム−ニッケル複合酸化物の結晶間の隙間を埋めることにより、活物質中のリチウムイオンの拡散がより促進され、充放電速度が速くなるためと推察される。 The positive electrode active material of the present invention is preferably one in which lithium silicate is present between the crystals in at least some of the crystals of the lithium-nickel composite oxide. In the positive electrode active material, lithium silicate is present in the gap between the crystals of the lithium-nickel composite oxide, thereby obtaining a higher effect of the present invention (an excellent capacity reduction suppressing effect at a high charge / discharge rate). be able to. This is because lithium silicate, which is an ionic conductor (electrolyte), fills the gaps between the crystals of the lithium-nickel composite oxide, so that the diffusion of lithium ions in the active material is further promoted and the charge / discharge rate is increased. It is guessed.
結晶子径が30nm〜100nmであり、かつ[I003/I104]が1.2以上であるリチウム−ニッケル複合酸化物は、例えば、水酸化ニッケルや炭酸ニッケル等のニッケル前駆体を350〜500℃で焼成した後に、水酸化リチウム等のリチウム源をニッケルとリチウムのモル比が1〜1.2になる比率で混合し、600〜700℃で1〜5時間焼成する方法等で得ることができる。 The lithium-nickel composite oxide having a crystallite diameter of 30 nm to 100 nm and [I003 / I104] of 1.2 or more is obtained by, for example, using a nickel precursor such as nickel hydroxide or nickel carbonate at 350 to 500 ° C. After firing, a lithium source such as lithium hydroxide can be mixed at a molar ratio of nickel to lithium of 1 to 1.2 and fired at 600 to 700 ° C. for 1 to 5 hours.
[リチウムシリケート]
本発明の正極活物質に含まれるリチウムシリケートは、リチウム、ケイ素及び酸素を含む非晶質性物質である。リチウムシリケートの組成は特に限定されるものではないが、例えば、下記一般式(2)で表される化合物が挙げられる。下記一般式(2)中、a及びbは、正の実数である。
一般式(2)・・・LiaSibO
[Lithium silicate]
The lithium silicate contained in the positive electrode active material of the present invention is an amorphous material containing lithium, silicon, and oxygen. The composition of lithium silicate is not particularly limited, and examples thereof include a compound represented by the following general formula (2). In the following general formula (2), a and b are positive real numbers.
General formula (2) ... Li a Si b O
一般式(2)で表わされるリチウムシリケートとしては、a及びbが、1<a/b<6を満たす物質であることが好ましい。a/bを上記範囲内とすることにより、リチウムシリケート中のリチウム含有量を、イオン伝導体としての性能をより効果的に発揮するために充分であり、かつリチウムイオンの拡散が阻害されない程度のより好ましい量にすることができる。なお、一般式(2)で表わされるリチウムシリケートにおいて、a/bが大きくなりすぎる場合には、高コストとなるため、製造コストの点からも好ましくない。一般式(2)で表わされるリチウムシリケートとしては、例えば、Li4SiO4、Li2SiO3、Li6Si2O7、及びこれらの混合物が挙げられる。 The lithium silicate represented by the general formula (2) is preferably a substance in which a and b satisfy 1 <a / b <6. By setting a / b within the above range, the lithium content in the lithium silicate is sufficient to exhibit the performance as an ion conductor more effectively, and the diffusion of lithium ions is not hindered. A more preferable amount can be obtained. In addition, in the lithium silicate represented by the general formula (2), when a / b becomes too large, the cost becomes high, which is not preferable from the viewpoint of manufacturing cost. Examples of the lithium silicate represented by the general formula (2) include Li 4 SiO 4 , Li 2 SiO 3 , Li 6 Si 2 O 7 , and a mixture thereof.
本発明の正極活物質中のリチウムシリケートの含有量は、リチウム−ニッケル複合酸化物の結晶子径等の物性や、所望の正極活物質の容量等を考慮して適宜決定することができる。本発明においては、正極活物質中のリチウムシリケートの含有量は、ケイ素(Si)換算で1〜10質量%であり、1〜6質量%であることが好ましく、1〜3質量%であることがより好ましい。リチウムシリケートをケイ素(Si)換算で1質量%以上含有させることにより、高い充放電速度でも容量の低下がより少ない正極活物質を得ることができる。但し、本発明の正極活物質中のリチウムシリケートの含有量が多すぎると、相対的にリチウム−ニッケル複合酸化物の含有量が低下するため、所望の性能が発現されないおそれがある。 The content of lithium silicate in the positive electrode active material of the present invention can be appropriately determined in consideration of physical properties such as the crystallite diameter of the lithium-nickel composite oxide, the capacity of the desired positive electrode active material, and the like. In the present invention, the content of lithium silicate in the positive electrode active material is 1 to 10% by mass in terms of silicon (Si), preferably 1 to 6% by mass, and preferably 1 to 3% by mass. Is more preferable. By including lithium silicate in an amount of 1% by mass or more in terms of silicon (Si), a positive electrode active material with less decrease in capacity can be obtained even at a high charge / discharge rate. However, when the content of lithium silicate in the positive electrode active material of the present invention is too large, the content of the lithium-nickel composite oxide is relatively lowered, and thus the desired performance may not be exhibited.
[一次粒子の平均粒子径]
本発明の正極活物質は、リチウム−ニッケル複合酸化物の結晶間にリチウムシリケートが入り込んだ一次粒子を形成している。当該一次粒子の平均粒子径の下限値は、実質的には、本発明の正極活物質中のリチウム−ニッケル複合酸化物の結晶子径よりも大きくなる。この一次粒子の平均粒子径は30〜200nmであることが好ましい。一次粒子の平均粒子径を200nm以下とすることで、充放電の際にリチウムイオンの粒子間移動がより容易となるため、高い充放電速度(Cレート)でもより高い容量が得られる。なお、本発明の正極活物質においては、二次粒子の粒子径は特に制限はない。
[Average particle size of primary particles]
The positive electrode active material of the present invention forms primary particles in which lithium silicate enters between crystals of a lithium-nickel composite oxide. The lower limit of the average particle diameter of the primary particles is substantially larger than the crystallite diameter of the lithium-nickel composite oxide in the positive electrode active material of the present invention. The average particle diameter of the primary particles is preferably 30 to 200 nm. By making the average particle diameter of the primary particles 200 nm or less, lithium ions can move more easily between particles during charging and discharging, so that a higher capacity can be obtained even at a high charge / discharge rate (C rate). In the positive electrode active material of the present invention, the particle size of the secondary particles is not particularly limited.
<リチウムイオン二次電池用正極活物質の製造方法>
本発明の正極活物質は、どのような製造方法によって製造されたものであってもよい。本発明の正極活物質の好ましい製造方法としては、例えば、ニッケルとケイ素を含む共沈物を共沈法で製造し、当該共沈物を特定温度で焼成後、リチウム塩を添加し、再度特定温度で焼成することによって製造する方法が挙げられる。当該製造方法を用いることにより、リチウム−ニッケル複合酸化物の結晶子径を30nm〜100nmの範囲内に制御し、[I003/I104]を1.2以上とし、リチウムシリケートの含有量をケイ素換算で1〜10質量%とし、さらに得られた正極活物質中において、リチウムシリケートを偏在させることなく、リチウムシリケートをリチウム−ニッケル複合酸化物中に比較的均一に分散させやすい。詳細には、当該製造方法は、下記の共沈工程、第1焼成工程、リチウム混合工程、及び第2焼成工程を有することを特徴とする。
<Method for producing positive electrode active material for lithium ion secondary battery>
The positive electrode active material of the present invention may be manufactured by any manufacturing method. As a preferred method for producing the positive electrode active material of the present invention, for example, a coprecipitate containing nickel and silicon is produced by a coprecipitation method, the coprecipitate is baked at a specific temperature, a lithium salt is added, and the reprecipitation is performed. The method of manufacturing by baking at temperature is mentioned. By using this production method, the crystallite diameter of the lithium-nickel composite oxide is controlled within the range of 30 nm to 100 nm, [I003 / I104] is set to 1.2 or more, and the content of lithium silicate in terms of silicon It is easy to disperse the lithium silicate relatively uniformly in the lithium-nickel composite oxide without making the lithium silicate unevenly distributed in the obtained positive electrode active material. Specifically, the manufacturing method includes the following coprecipitation step, first firing step, lithium mixing step, and second firing step.
[共沈工程]
まず、ニッケル化合物を含有する水溶液(以下、ニッケル化合物溶液)とケイ素化合物を含有する水溶液(以下、ケイ素化合物溶液)とを混合し、得られた混合液中でニッケル化合物とケイ素化合物を反応させて、ニッケル及びケイ素を含む共沈物を得る。
[Co-precipitation process]
First, an aqueous solution containing a nickel compound (hereinafter referred to as a nickel compound solution) and an aqueous solution containing a silicon compound (hereinafter referred to as a silicon compound solution) are mixed, and the nickel compound and the silicon compound are reacted in the obtained mixed solution. A coprecipitate comprising nickel and silicon is obtained.
ニッケル化合物溶液中のニッケル化合物は、水溶性のニッケル化合物であれば特に限定されるものではない。また、1種類のニッケル化合物を含む水溶液であってもよく、2種類以上のニッケル化合物を含む水溶液であってもよい。ニッケル化合物溶液中のニッケル化合物としては、具体的には、炭酸ニッケル、硫酸ニッケル、硝酸ニッケル等の水溶性ニッケル化合物やこれらの混合物を用いることができ、特に硫酸ニッケルを用いることが好ましい。 The nickel compound in the nickel compound solution is not particularly limited as long as it is a water-soluble nickel compound. Moreover, the aqueous solution containing 1 type of nickel compounds may be sufficient, and the aqueous solution containing 2 or more types of nickel compounds may be sufficient. Specific examples of the nickel compound in the nickel compound solution include water-soluble nickel compounds such as nickel carbonate, nickel sulfate, and nickel nitrate, and mixtures thereof, and nickel sulfate is particularly preferable.
ケイ素化合物溶液中のケイ素化合物は、水溶性のケイ素化合物であれば特に限定されるものではない。また、1種類のケイ素化合物を含む水溶液であってもよく、2種類以上のケイ素化合物を含む水溶液であってもよい。ケイ素化合物溶液中のケイ素化合物としては、具体的には、シリカ、水ガラス、コロイダルシリカ等の水溶性ケイ素化合物やこれらの混合物を用いることができ、特にコロイダルシリカを用いることが好ましい。 The silicon compound in the silicon compound solution is not particularly limited as long as it is a water-soluble silicon compound. Moreover, the aqueous solution containing 1 type of silicon compounds may be sufficient, and the aqueous solution containing 2 or more types of silicon compounds may be sufficient. Specific examples of the silicon compound in the silicon compound solution include water-soluble silicon compounds such as silica, water glass, and colloidal silica, and mixtures thereof, and colloidal silica is particularly preferable.
ニッケル化合物溶液は、酸性水溶液であることが好ましく、pHが1〜3であることが好ましく、pHが1〜2であることがより好ましい。一方、ケイ素化合物溶液は、塩基性水溶液であることが好ましく、pH9〜11であることが好ましく、pH9〜10であることがより好ましい。いずれの水溶液であっても、pHは酸やアンモニアを用いて好ましい範囲に調整することができる。 The nickel compound solution is preferably an acidic aqueous solution, preferably has a pH of 1 to 3, and more preferably has a pH of 1 to 2. On the other hand, the silicon compound solution is preferably a basic aqueous solution, preferably has a pH of 9 to 11, and more preferably has a pH of 9 to 10. In any aqueous solution, the pH can be adjusted to a preferred range using an acid or ammonia.
また、ケイ素化合物溶液には、炭酸アルカリを混合することもできる。ケイ素化合物溶液及びニッケル化合物溶液を混合した混合液に、さらに炭酸アルカリ溶液を添加してもよい。炭酸アルカリの存在下で反応を行うことにより、ニッケル及びケイ素を含む共沈物をより効率的に得ることが出来る。炭酸アルカリは、ニッケル化合物溶液及びケイ素化合物溶液の混合液中において、炭酸アルカリに対するニッケルのモル比が0.7〜1.0になるように混合させることが好ましい。炭酸アルカリとしては、炭酸ナトリウム等が挙げられる。 Moreover, an alkali carbonate can also be mixed with a silicon compound solution. An alkali carbonate solution may be further added to the mixed solution obtained by mixing the silicon compound solution and the nickel compound solution. By carrying out the reaction in the presence of alkali carbonate, a coprecipitate containing nickel and silicon can be obtained more efficiently. The alkali carbonate is preferably mixed so that the molar ratio of nickel to the alkali carbonate is 0.7 to 1.0 in the mixed solution of the nickel compound solution and the silicon compound solution. Examples of the alkali carbonate include sodium carbonate.
ニッケル化合物溶液及びケイ素化合物溶液は、混合後の混合液中に含まれるニッケルのモル数に対する当該混合液中に含まれるケイ素のモル数の比が0.05〜0.3となるように混合することが好ましく、0.06〜0.27となるように混合することがより好ましく、0.07〜0.25となるように混合することがさらに好ましい。混合液中のニッケルとケイ素のモル比が当該範囲内であれば、当該混合液中で反応を行った際に共沈物が生じやすく、良好な収率で共沈物を得ることができる。 The nickel compound solution and the silicon compound solution are mixed so that the ratio of the number of moles of silicon contained in the mixed solution to the number of moles of nickel contained in the mixed solution after mixing is 0.05 to 0.3. It is preferable that the mixing is performed so that the amount is 0.06 to 0.27, and it is further preferable that the mixing is performed so that the amount is 0.07 to 0.25. When the molar ratio of nickel and silicon in the mixed solution is within the above range, a coprecipitate is likely to be produced when the reaction is performed in the mixed solution, and the coprecipitate can be obtained with a good yield.
ニッケル化合物溶液及びケイ素化合物溶液の混合液のpHは6〜9の範囲内であることが好ましく、6〜8の範囲内であることがより好ましく、6.5〜7.5の範囲内であることがさらに好ましい。混合液のpHが当該範囲内であれば、当該混合液中で反応を行った際に共沈物が生じやすく、良好な収率で共沈物を得ることができる。 The pH of the mixture of the nickel compound solution and the silicon compound solution is preferably in the range of 6-9, more preferably in the range of 6-8, and in the range of 6.5-7.5. More preferably. If the pH of the mixed solution is within the range, a coprecipitate is likely to be produced when the reaction is performed in the mixed solution, and the coprecipitate can be obtained with a good yield.
次いで、得られた混合液を70〜90℃に保持することにより、ニッケル化合物とケイ素化合物を反応させて、ニッケル及びケイ素を含む共沈物を得る。ニッケル化合物溶液及びケイ素化合物溶液を混合した後に、得られた混合液を70〜90℃に加温してもよいが、ニッケル化合物溶液及びケイ素化合物溶液を70〜90℃に予め加温した後に、両液を混合することが好ましい。 Next, by holding the obtained mixed liquid at 70 to 90 ° C., the nickel compound and the silicon compound are reacted to obtain a coprecipitate containing nickel and silicon. After mixing the nickel compound solution and the silicon compound solution, the obtained mixed solution may be heated to 70 to 90 ° C, but after the nickel compound solution and the silicon compound solution are preheated to 70 to 90 ° C, It is preferable to mix both solutions.
反応時間は混合液中のニッケル化合物及びケイ素化合物の含有量、反応温度等を考慮して適宜決定することができる。また、反応中、混合液は静置していてもよく、撹拌等してもよい。例えば、混合液を70〜90℃で0.5〜2時間程度撹拌することにより、ニッケルとケイ素を含む共沈物を得ることができる。 The reaction time can be appropriately determined in consideration of the contents of the nickel compound and silicon compound in the mixed solution, the reaction temperature, and the like. Further, during the reaction, the mixed solution may be allowed to stand or may be stirred. For example, a coprecipitate containing nickel and silicon can be obtained by stirring the mixed solution at 70 to 90 ° C. for about 0.5 to 2 hours.
得られた共沈物は、ろ過、水洗後、乾燥させておくことが好ましい。乾燥処理は、共沈物に含まれている水分をある程度除去できる方法であればよい。例えば、公知の方法により100〜150℃程度の温度で乾燥処理することによって、水洗後の固形物(共沈物)を乾燥することができる。 The coprecipitate obtained is preferably dried after filtration and washing with water. The drying process may be any method that can remove water contained in the coprecipitate to some extent. For example, the solid (coprecipitate) after washing with water can be dried by drying at a temperature of about 100 to 150 ° C. by a known method.
[第1焼成工程]
次いで、共沈工程により得られた共沈物を焼成する。焼成温度は、350〜500℃であることが好ましく、350〜450℃であることがより好ましい。焼成温度を350℃以上とすることにより、ニッケル酸化物が効率よく得られ、500℃以下とすることにより、ニッケル酸化物の焼結を充分に抑制できる。その結果、最終的に得られるリチウム−ニッケル複合酸化物を、XRDによる「I003/I104」が高い結晶にしやすい。
[First firing step]
Next, the coprecipitate obtained by the coprecipitation step is fired. The firing temperature is preferably 350 to 500 ° C, and more preferably 350 to 450 ° C. By setting the firing temperature to 350 ° C. or higher, nickel oxide can be obtained efficiently, and by setting it to 500 ° C. or lower, the sintering of nickel oxide can be sufficiently suppressed. As a result, the finally obtained lithium-nickel composite oxide is easily crystallized with high “I003 / I104” by XRD.
また、焼成時間は、共沈物中のニッケルやケイ素から酸化物が合成されるために十分な時間であれば特に限定されるものではなく、焼成温度や共沈物の量等を考慮して適宜決定できる。例えば、0.5〜3時間であることが好ましく、0.5〜2時間であることが好ましい。 The firing time is not particularly limited as long as it is sufficient for the oxide to be synthesized from nickel or silicon in the coprecipitate, and is appropriately determined in consideration of the firing temperature and the amount of the coprecipitate. it can. For example, it is preferably 0.5 to 3 hours, and preferably 0.5 to 2 hours.
以上の工程により、本発明の正極活物質の原料である、「ニッケル酸化物」と、「ケイ素酸化物」との混合物(以下、単に「共沈後焼成物」と記載することがある。)が製造される。なお、当該方法では、共沈後焼成物において、ニッケル酸化物の結晶中にケイ素が入り込むことはない。 Through the above steps, a mixture of “nickel oxide” and “silicon oxide”, which is a raw material of the positive electrode active material of the present invention (hereinafter, sometimes simply referred to as “calcined product after coprecipitation”). Is manufactured. In this method, silicon does not enter the nickel oxide crystals in the fired product after coprecipitation.
[リチウム混合工程]
次いで、得られた共沈後焼成物にリチウム原料を混合させる。リチウム原料としては、硝酸リチウム、炭酸リチウム、水酸化リチウム等が使用できるが、好ましくは水酸化リチウムである。
[Lithium mixing process]
Next, a lithium raw material is mixed with the obtained co-precipitated fired product. As the lithium raw material, lithium nitrate, lithium carbonate, lithium hydroxide and the like can be used, and lithium hydroxide is preferable.
共沈後焼成物とリチウム原料の混合方法は特に限定されるものではなく、共沈後焼成物とリチウム原料を物理的に混合してもよく、共沈後焼成物にリチウム原料を含浸させてもよい。物理的に混合する場合、例えば、共沈後焼成物を粉砕後、リチウム原料を添加し、乳鉢ですり潰しながら十分に混合することにより、共沈後焼成物及びリチウム原料の均一な混合物を得ることができる。 The mixing method of the calcined product and lithium raw material after co-precipitation is not particularly limited, and the calcined product and lithium raw material after co-precipitation may be physically mixed. Also good. When physically mixing, for example, after pulverizing the calcined product after coprecipitation, adding a lithium raw material and mixing thoroughly while grinding in a mortar to obtain a uniform mixture of the calcined product and lithium raw material after coprecipitation Can do.
リチウム原料中のリチウムが、共沈後焼成物中のニッケル酸化物及びケイ素酸化物に取り込まれることにより、リチウム−ニッケル複合酸化物とリチウムシリケートを含む本発明の正極活物質が製造される。このため、共沈後焼成物に、当該共沈後焼成物中に含まれるニッケルのモル数の1〜1.2倍のモル数と、当該共沈後焼成物中に含まれるケイ素のモル数の3〜6倍、好ましくは4〜6倍のモル数とを合計したモル数に相当する量のリチウムを含有するリチウム原料を混合させることが好ましい。 Lithium in the lithium raw material is incorporated into nickel oxide and silicon oxide in the fired product after coprecipitation, whereby the positive electrode active material of the present invention containing a lithium-nickel composite oxide and lithium silicate is produced. For this reason, 1 to 1.2 times the number of moles of nickel contained in the fired product after co-precipitation and the number of moles of silicon contained in the fired product after co-precipitation It is preferable to mix a lithium raw material containing lithium in an amount corresponding to the total number of moles of 3 to 6 times, preferably 4 to 6 times the number of moles.
[第2焼成工程]
共沈後焼成物及びリチウム原料の混合物を、600〜700℃で焼成する。焼成温度を600℃以上とすることにより、一般式(1)で表されるリチウム−ニッケル複合酸化物の結晶を合成することができ、700℃以下とすることにより、リチウムの揮散を防ぐことができる。その結果、最終的に得られるリチウム−ニッケル複合酸化物を、XRDによる「I003/I104」が高い結晶にしやすい。
[Second firing step]
After the coprecipitation, the mixture of the fired product and the lithium raw material is fired at 600 to 700 ° C. By setting the firing temperature to 600 ° C. or higher, the lithium-nickel composite oxide crystal represented by the general formula (1) can be synthesized, and by setting it to 700 ° C. or lower, lithium volatilization can be prevented. it can. As a result, the finally obtained lithium-nickel composite oxide is easily crystallized with high “I003 / I104” by XRD.
第2焼成工程により得られた焼成物が本発明の正極活物質である。当該製造方法では、ニッケルとケイ素を共沈させた共沈物を焼成した後、得られた共沈後焼成物にリチウムを担持させることによって本発明の正極活物質を製造する。共沈後焼成物中では、ニッケル酸化物とケイ素酸化物が比較的近接して存在しており、このため、当該共沈後焼成物にリチウムを担持させることによって、リチウム−ニッケル複合酸化物の結晶とリチウムシリケートが比較的近接して存在する正極活物質が得られると推察される。 The fired product obtained by the second firing step is the positive electrode active material of the present invention. In this production method, the positive electrode active material of the present invention is produced by firing a coprecipitate obtained by coprecipitation of nickel and silicon and then supporting lithium on the obtained fired product after coprecipitation. In the fired product after coprecipitation, nickel oxide and silicon oxide are relatively close to each other. For this reason, by supporting lithium in the fired product after coprecipitation, It is presumed that a positive electrode active material in which crystals and lithium silicate are relatively close to each other is obtained.
第2焼成工程により得られた焼成物を粉砕したものが、本発明の正極活物質の一次粒子である。粉砕方法は特に限定されるものではなく、乳鉢等によりすり潰してもよく、ボールミル等の粉砕機を用いて粉砕してもよい。 A product obtained by pulverizing the fired product obtained in the second firing step is the primary particle of the positive electrode active material of the present invention. The pulverization method is not particularly limited, and may be crushed with a mortar or the like, or pulverized using a pulverizer such as a ball mill.
[金属Mを含有する正極活物質]
リチウム−ニッケル複合酸化物として、前記一般式(1)で表される化合物のうち、0<y<0.2である化合物を含む正極活物質を製造する場合、すなわち、金属Mとしてコバルト、鉄、及びアルミニウムから選択される1種以上の元素を含む正極活物質を製造する場合には、共沈工程において、ケイ素化合物溶液又はニッケル化合物溶液の少なくとも一方に、コバルト、鉄、又はアルミニウムを溶解させておき、これらの原子をニッケル及びケイ素と共沈させた後、得られた共沈物を第1焼成工程により焼成することが好ましい。コバルト等の金属Mを共に共沈させることにより、ケイ素酸化物と、金属Mがニッケル酸化物の格子内に組み込まれたニッケル複合酸化物(Ni1−yMyO2、0<y<0.2)とを得ることができる。なお、金属Mは、そのほとんどがニッケル酸化物の結晶中に入り込み、結晶中のニッケル原子と置き換わった状態で存在する。その後、得られた共沈後焼成物に、前記したリチウム混合工程によってリチウムを混合させた後、さらに焼成することにより、金属Mを含むリチウム−ニッケル複合酸化物(LixNi1−yMyO2、0<y<0.2)の結晶及びリチウムシリケートを含む正極活物質が得られる。共沈によりこれらの金属を含有させることにより、結晶中にリチウム、ニッケル、金属M(アルミニウム、コバルト、鉄)をより均一に分散させることができる。
[Positive electrode active material containing metal M]
As a lithium-nickel composite oxide, when manufacturing a positive electrode active material containing a compound represented by the general formula (1) where 0 <y <0.2, that is, as the metal M, cobalt, iron And a positive electrode active material containing at least one element selected from aluminum, cobalt, iron, or aluminum is dissolved in at least one of the silicon compound solution and the nickel compound solution in the coprecipitation step. It is preferable that after coprecipitation of these atoms with nickel and silicon, the obtained coprecipitate is fired in the first firing step. By coprecipitating a metal M such as cobalt together, a silicon oxide and a nickel composite oxide in which the metal M is incorporated in a lattice of nickel oxide (Ni 1- y My O 2 , 0 <y <0 .2) can be obtained. Most of the metal M enters the crystal of the nickel oxide and exists in a state where it is replaced with nickel atoms in the crystal. Thereafter, lithium is mixed in the obtained post-coprecipitation fired product by the above-described lithium mixing step, and further fired to obtain a lithium-nickel composite oxide containing metal M (Li x Ni 1- y My). A positive electrode active material containing O 2 , 0 <y <0.2) crystals and lithium silicate is obtained. By containing these metals by coprecipitation, lithium, nickel, and metal M (aluminum, cobalt, iron) can be more uniformly dispersed in the crystal.
金属Mとしてコバルトを含有させる場合には、コバルト原料として、硫酸コバルト、硝酸コバルト、炭酸コバルト等の化合物を用いることができる。また、鉄を含有させる場合には、鉄原料として、硫酸鉄、硝酸鉄、炭酸鉄等を用いることができる。アルミニウムを含有させる場合には、アルミニウム原料として、硝酸アルミニウム、硫酸アルミニウム、水酸化アルミニウム、ベーマイト等を用いることができる。これらの金属Mの原料は、ケイ素化合物溶液又はニッケル化合物溶液のうち、酸性水溶液である方に溶解させることが好ましい。また、金属Mの原料を含む酸性溶液を、ケイ素化合物溶液及びニッケル化合物溶液の混合液に添加した後、共沈させてもよい。 When cobalt is contained as the metal M, compounds such as cobalt sulfate, cobalt nitrate, and cobalt carbonate can be used as the cobalt raw material. Moreover, when iron is contained, iron sulfate, iron nitrate, iron carbonate, or the like can be used as an iron raw material. When aluminum is contained, aluminum nitrate, aluminum sulfate, aluminum hydroxide, boehmite, or the like can be used as the aluminum raw material. These raw materials for the metal M are preferably dissolved in a silicon compound solution or a nickel compound solution which is an acidic aqueous solution. Further, an acidic solution containing the metal M raw material may be coprecipitated after being added to the mixed solution of the silicon compound solution and the nickel compound solution.
また、前記一般式(1)で表される化合物のうち、0<y<0.2である化合物を含む正極活物質は、金属Mを含まない共沈物を得た後に、金属M原料を添加することによっても製造できる。例えば、乾燥処理した後の共沈物に、粉末状の金属M原料を物理的に混合した後、第1焼成工程以降の工程を行ってもよく、第1焼成工程後の共沈後焼成物に、粉末状の金属M原料をリチウム原料と共に物理的に混合した後、後述の第2焼成工程を行ってもよく、第1焼成工程後の共沈後焼成物にリチウム原料と共に金属M原料を含浸させた後に後述の第2焼成工程を行ってもよい。金属M原料としては、ケイ素化合物溶液又はニッケル化合物溶液に添加される金属M原料として例示されたものを用いることができる。 Further, among the compounds represented by the general formula (1), the positive electrode active material containing a compound satisfying 0 <y <0.2 is obtained as a metal M raw material after obtaining a coprecipitate containing no metal M. It can also be produced by adding. For example, the powdered metal M raw material may be physically mixed into the coprecipitate after the drying treatment, and then the steps after the first firing step may be performed, or the post-coprecipitation fired product after the first firing step. In addition, after the powdered metal M raw material is physically mixed with the lithium raw material, a second baking step described later may be performed, and the metal M raw material together with the lithium raw material is added to the fired product after coprecipitation after the first baking step. After the impregnation, a second baking step described later may be performed. As a metal M raw material, what was illustrated as a metal M raw material added to a silicon compound solution or a nickel compound solution can be used.
<リチウムイオン二次電池>
本発明のリチウムイオン二次電池は、本発明の正極活物質を用いて得られることを特徴とする。
リチウムイオン二次電池は、正極活物質を正極集電体に結着してなる正極と、負極活物質を負極集電体に結着してなる負極と、有機溶媒等の非水溶媒にリチウム塩等の電解質を溶解してなる非水電解液とを主要な構成とする。
本発明のリチウムイオン二次電池は、正極活物質として本発明の正極活物質を用いる以外は、常法により製造することができる。
<Lithium ion secondary battery>
The lithium ion secondary battery of the present invention is obtained using the positive electrode active material of the present invention.
A lithium ion secondary battery includes a positive electrode formed by binding a positive electrode active material to a positive electrode current collector, a negative electrode formed by binding a negative electrode active material to a negative electrode current collector, and lithium in a non-aqueous solvent such as an organic solvent. A non-aqueous electrolyte obtained by dissolving an electrolyte such as a salt is a main component.
The lithium ion secondary battery of this invention can be manufactured by a conventional method except using the positive electrode active material of this invention as a positive electrode active material.
正極集電体に結着させる正極活物質は、本発明の正極活物質のみであってもよく、本発明の正極活物質とその他の正極活物質とを組み合わせて用いてもよい。また、負極活物質としては、例えば黒鉛やコークス等の炭素材料や金属リチウム等を用いることができる。正極集電体としては、板状のアルミニウム等が用いられ、負極集電体としては、板状の銅等が用いられる。非水溶媒としては、エチレンカーボネート等の環状カーボネート、ジメチルカーボネート等の鎖状カーボネート、及びこれらの混合溶媒等を用いることができる。電解質としては、LiPF6等のリチウム塩を用いることができる。 The positive electrode active material to be bound to the positive electrode current collector may be only the positive electrode active material of the present invention, or a combination of the positive electrode active material of the present invention and another positive electrode active material. Moreover, as a negative electrode active material, carbon materials, such as graphite and coke, metal lithium, etc. can be used, for example. As the positive electrode current collector, plate-like aluminum or the like is used, and as the negative electrode current collector, plate-like copper or the like is used. As the non-aqueous solvent, cyclic carbonates such as ethylene carbonate, chain carbonates such as dimethyl carbonate, and mixed solvents thereof can be used. As the electrolyte, a lithium salt such as LiPF 6 can be used.
正極又は負極は、例えば正極活物質又は負極活物質、導電助剤、バインダー、及び分散剤等を混合して、適当な粘度に調整した活物質ペーストを作製し、この活物質ペーストを集電体に塗工し、プレスして作製することができる。
本発明のリチウムイオン二次電池の形状は特に限定されるものではなく、コイン型であってもよく、円筒型であってもよく、角型であってもよく、ポリマータイプ(ラミネートフィルムで包まれた角型形状のもの)であってもよい。
For the positive electrode or the negative electrode, for example, a positive electrode active material or a negative electrode active material, a conductive additive, a binder, a dispersant, and the like are mixed to produce an active material paste adjusted to an appropriate viscosity, and this active material paste is used as a current collector. It can be coated and pressed.
The shape of the lithium ion secondary battery of the present invention is not particularly limited, and may be a coin type, a cylindrical type, a square type, or a polymer type (wrapped with a laminate film). It may be of a square shape).
次に実施例を示して本発明をさらに詳細に説明するが、本発明はこれらの例により何ら制限されるものではない。 EXAMPLES Next, although an Example is shown and this invention is demonstrated further in detail, this invention is not restrict | limited at all by these examples.
[実施例1]
イオン交換水1Lに、Ni(SO4)2・6H2O(和光純薬製)126.5g、ベーマイトAP−3(触媒化成工業製)1.24gを加え、80℃に加温し酸性のニッケル化合物溶液を得た。別途用意したイオン交換水1Lに、コロイダルシリカ スノーテックスXS(日産化学製)33.9g、炭酸ナトリウム59.4gを加え、80℃に加温し塩基性のケイ素化合物溶液を得た。ニッケル化合物溶液とケイ素化合物溶液を80℃に保持しながら、ケイ素化合物溶液をニッケル化合物溶液に30分間連続的に加えて1時間攪拌することにより、共沈反応を行った。ケイ素化合物溶液の全量をニッケル化合物溶液に加えた時点における混合液のpHは7.1であった。
当該混合液中の沈殿物をろ過して回収した後、4Lのイオン交換水で洗浄を行い、120℃で12時間乾燥することにより共沈物aを得た。
続いて、この共沈物aを400℃で1時間焼成した。その後、焼成した共沈物a3.004gと水酸化リチウム(関東化学製)2.917gを混合し乳鉢にて20分間混練りした。そして、得られた混合物Aを660℃にて3時間焼成し、LixNi1−yAlyO2とリチウムシリケートからなる正極活物質Aを得た。正極活物質A中のLixNi1−yAlyO2におけるx、yは、元素分析の結果から、それぞれ1.14、0.038であった。また、正極活物質A中のリチウムシリケートは、元素分析の結果から、Li4SiO4と推定された。
得られた正極材活物質A中のケイ素の量を元素分析により測定した結果を表1に示す。なお、この測定値は、仕込み量から計算される数値とほぼ一致した。
得られた正極材活物質Aの粉末X線回折パターンを以下に示す条件で測定した。測定条件と結果を図1に示す。この測定結果から前記したScherrerの式により結晶子径を算出した。結果は表1に示す。また、LixNi1−yAlyO2結晶の(003)面/(104)面の強度比I003/I104についても表1に示す。
[Example 1]
To 1 L of ion-exchanged water, 126.5 g of Ni (SO 4 ) 2 · 6H 2 O (manufactured by Wako Pure Chemical Industries) and 1.24 g of boehmite AP-3 (manufactured by Catalytic Chemical Industry) are added, and the mixture is heated to 80 ° C. to be acidic. A nickel compound solution was obtained. 3 L of colloidal silica Snowtex XS (Nissan Chemical) and 59.4 g of sodium carbonate were added to 1 L of ion-exchanged water separately prepared, and heated to 80 ° C. to obtain a basic silicon compound solution. While maintaining the nickel compound solution and the silicon compound solution at 80 ° C., the silicon compound solution was continuously added to the nickel compound solution for 30 minutes and stirred for 1 hour to carry out a coprecipitation reaction. The pH of the mixed solution when the whole amount of the silicon compound solution was added to the nickel compound solution was 7.1.
The precipitate in the mixed solution was collected by filtration, washed with 4 L of ion exchange water, and dried at 120 ° C. for 12 hours to obtain a coprecipitate a.
Subsequently, the coprecipitate a was baked at 400 ° C. for 1 hour. Thereafter, 3.004 g of the calcined coprecipitate a and 2.917 g of lithium hydroxide (manufactured by Kanto Kagaku) were mixed and kneaded in a mortar for 20 minutes. The resulting mixture A was calcined for 3 hours at 660 ° C., to obtain a Li x Ni 1-y Al y O 2 positive active material A consisting of lithium silicate. Li x Ni 1-y Al y O 2 in the x, y in the positive electrode active material A from the results of elemental analysis were respectively 1.14,0.038. Moreover, the lithium silicate in the positive electrode active material A was estimated to be Li 4 SiO 4 from the result of elemental analysis.
Table 1 shows the results of measuring the amount of silicon in the obtained positive electrode active material A by elemental analysis. This measured value almost coincided with the value calculated from the charged amount.
The powder X-ray diffraction pattern of the obtained positive electrode active material A was measured under the following conditions. Measurement conditions and results are shown in FIG. From this measurement result, the crystallite diameter was calculated by the Scherrer equation described above. The results are shown in Table 1. Table 1 also shows the intensity ratio I003 / I104 of the (003) plane / (104) plane of the Li x Ni 1-y Al y O 2 crystal.
(XRD測定条件)
粉末X線回折装置:RINT−2500V(リガク製)、
X線::
単色化:CuKα線、管電圧:50kV、管電流:150mA、
ゴニオメーター:縦型
検出器:シンチレーションカウンター
走査軸:2θ/θ
走査モード:連続
スキャン::
スキャンステップ:0.002°、スキャンスピード:0.25°/min
スリット::
固定スリット:使用、発散スリット:1°、散乱スリット:1°、受光スリット:0.15mm
(XRD measurement conditions)
Powder X-ray diffractometer: RINT-2500V (Rigaku),
X-ray ::
Monochromatic: CuKα line, tube voltage: 50 kV, tube current: 150 mA,
Goniometer: Vertical detector: Scintillation counter Scan axis: 2θ / θ
Scan mode: Continuous scan ::
Scan step: 0.002 °, scan speed: 0.25 ° / min
slit::
Fixed slit: used, divergent slit: 1 °, scattering slit: 1 °, light receiving slit: 0.15 mm
以上のようにして得られた正極活物質A0.2258gを、ケッチェンブラック 0.01257g及びポリフッ化ビニリデン(PVdF)0.01261gと混合して乳鉢にて30分間混練りした。その後、この混練り物にN−メチル−2−ピロリドン(NMP)300μLを添加してアルミ箔に塗布して乾燥させ、コインセル電池の正極に使用する塗布電極を作製した。作製した塗布電極は直径14mmで、活物質の厚さは13μmであった。この塗布電極を正極に、金属リチウムを負極として、不活性ガス雰囲気でリチウムイオン電池の2032コインセルを作製した。
このコインセルを充放電評価装置(北斗電工製、製品名:HJ1001−SD8)に装填し、25℃、不活性ガス雰囲気で、正極活物質Aの充放電特性を評価した。この評価は、Cレート換算で0.1C、及び1Cに相当する電流値での定電流モードで、カットオフ電位3Vから4.3V vs. Li/Li+で行った。
0.2258 g of the positive electrode active material A obtained as described above was mixed with 0.01257 g of ketjen black and 0.01261 g of polyvinylidene fluoride (PVdF) and kneaded in a mortar for 30 minutes. Thereafter, 300 μL of N-methyl-2-pyrrolidone (NMP) was added to the kneaded product, applied to an aluminum foil, and dried to prepare a coated electrode used for the positive electrode of a coin cell battery. The prepared coated electrode had a diameter of 14 mm and the active material thickness was 13 μm. Using this coated electrode as a positive electrode and metallic lithium as a negative electrode, a 2032 coin cell of a lithium ion battery was produced in an inert gas atmosphere.
This coin cell was loaded into a charge / discharge evaluation apparatus (Hokuto Denko, product name: HJ1001-SD8), and the charge / discharge characteristics of the positive electrode active material A were evaluated in an inert gas atmosphere at 25 ° C. This evaluation is performed in a constant current mode with current values corresponding to 0.1 C and 1 C in terms of C rate, and a cutoff potential of 3 V to 4.3 V vs. Performed with Li / Li + .
[実施例2]
イオン交換水1Lに、Ni(SO4)2・6H2O(和光純薬製)126.5g、ベーマイトAP−3(触媒化成工業製)1.24gを加え、80℃に加温し酸性のニッケル化合物溶液を得た。別途用意したイオン交換水1Lに、コロイダルシリカ スノーテックスXS(日産化学製)17.0g、炭酸ナトリウム59.4gを加え、80℃に加温し、塩基性のケイ素化合物溶液を得た。ニッケル化合物溶液とケイ素化合物溶液を80℃に保持しながら、ケイ素化合物溶液をニッケル化合物溶液に30分間連続的に加えて1時間攪拌することにより、共沈反応を行った。ケイ素化合物溶液の全量をニッケル化合物溶液に加えた時点における混合液のpHは7.2であった。
当該混合液中の沈殿物をろ過して回収した後、4Lのイオン交換水で洗浄を行い、120℃で12時間乾燥することにより共沈物bを得た。
続いて、この共沈物bを400℃で1時間焼成した。その後、焼成した前駆体b3.001gと水酸化リチウム(関東化学製)2.490gを混合し乳鉢にて20分間混練りした。そして、この混合物Bを660℃で3時間焼成し、LixNi1−yAlyO2とリチウムシリケートからなる正極活物質Bを得た。なお、正極活物質B中のLixNi1−yAlyO2におけるx、yは、元素分析の結果から、それぞれ1.11、0.036であった。また、正極活物質B中のリチウムシリケートは、元素分析の結果から、Li4SiO4と推定された。この正極活物質Bの充放電特性を、実施例1と同様の条件で評価した。
[Example 2]
To 1 L of ion-exchanged water, 126.5 g of Ni (SO 4 ) 2 · 6H 2 O (manufactured by Wako Pure Chemical Industries) and 1.24 g of boehmite AP-3 (manufactured by Catalytic Chemical Industry) are added, and the mixture is heated to 80 ° C. to be acidic. A nickel compound solution was obtained. To 1 L of ion-exchanged water separately prepared, 17.0 g of colloidal silica Snowtex XS (Nissan Chemical) and 59.4 g of sodium carbonate were added and heated to 80 ° C. to obtain a basic silicon compound solution. While maintaining the nickel compound solution and the silicon compound solution at 80 ° C., the silicon compound solution was continuously added to the nickel compound solution for 30 minutes and stirred for 1 hour to carry out a coprecipitation reaction. The pH of the mixed solution when the whole amount of the silicon compound solution was added to the nickel compound solution was 7.2.
The precipitate in the mixed solution was collected by filtration, washed with 4 L of ion exchange water, and dried at 120 ° C. for 12 hours to obtain a coprecipitate b.
Subsequently, the coprecipitate b was fired at 400 ° C. for 1 hour. Thereafter, 3.001 g of the calcined precursor b and 2.490 g of lithium hydroxide (manufactured by Kanto Chemical) were mixed and kneaded in a mortar for 20 minutes. Then, the mixture B was calcined for 3 hours at 660 ° C., to obtain a Li x Ni 1-y Al y O 2 positive active material B consisting of lithium silicate. Note that x and y in Li x Ni 1-y Al y O 2 in the positive electrode active material B were 1.11 and 0.036, respectively, from the results of elemental analysis. Further, the lithium silicate in the positive electrode active material B was estimated to be Li 4 SiO 4 from the result of elemental analysis. The charge / discharge characteristics of this positive electrode active material B were evaluated under the same conditions as in Example 1.
また、正極活物質Bの中の一次粒子を、透過型電子顕微鏡とエネルギー分散X線分光法で観察した。透過型電子顕微鏡の写真を図2に、図2中の物質A及び物質Bのエネルギー分散X線分光法の測定結果をそれぞれ図3、4に示す。
図2に示すように、透過型電子顕微鏡写真から、画像の濃淡の異なる2種類の物質が確認された。濃くみえる物質は粒子状であり(図2中の物質A)、この粒子状の物質の周囲に、薄く輪郭があまり鮮明ではない物質が存在していた(図2中の物質B)。濃い粒子状の物質がLixNi1−yAlyO2の結晶であり、薄い物質が非晶質性のリチウムシリケートであると推察された。そこで、図2中の物質A及び物質Bについて、エネルギー分散X線分光法により測定したところ、物質Aはニッケルを多く含んでおり、物質Bはケイ素を多く含んでいたことから、実際に物質AがLixNi1−yAlyO2の結晶であり、物質Bがリチウムシリケートであることが確認された(図3及び4)。
つまり、正極活物質Bの透過型電子顕微鏡写真から、本発明の正極活物質では、リチウム−ニッケル複合酸化物の結晶と結晶の間に、非晶質性のリチウムシリケートが存在していることが確認された。
The primary particles in the positive electrode active material B were observed with a transmission electron microscope and energy dispersive X-ray spectroscopy. A photograph of a transmission electron microscope is shown in FIG. 2, and measurement results of energy dispersive X-ray spectroscopy of substance A and substance B in FIG. 2 are shown in FIGS.
As shown in FIG. 2, two types of substances having different shades of images were confirmed from a transmission electron micrograph. The substance that appears dark is in the form of particles (substance A in FIG. 2), and there is a thin substance with a sharp outline around the particulate substance (substance B in FIG. 2). It was inferred that the dense particulate material was Li x Ni 1-y Al y O 2 crystals, and the thin material was amorphous lithium silicate. Therefore, the substance A and substance B in FIG. 2 were measured by energy dispersive X-ray spectroscopy. As a result, the substance A contained a lot of nickel and the substance B contained a lot of silicon. Was a crystal of Li x Ni 1-y Al y O 2 , and the substance B was confirmed to be lithium silicate (FIGS. 3 and 4).
That is, from the transmission electron micrograph of the positive electrode active material B, in the positive electrode active material of the present invention, amorphous lithium silicate exists between the crystals of the lithium-nickel composite oxide. confirmed.
[実施例3]
実施例1で得られた混合物Aを680℃で3時間焼成し、LixNi1−yAlyO2とリチウムシリケートからなる正極活物質Cを得た。なお、正極活物質C中のLixNi1−yAlyO2におけるx、yは、元素分析の結果から、それぞれ1.10、0.038であった。また、正極活物質C中のリチウムシリケートは、元素分析の結果から、Li4SiO4と推定された。この正極活物質Cの充放電特性を、実施例1と同様の条件で評価した。
[Example 3]
The mixture A obtained in Example 1 was baked at 680 ° C. for 3 hours to obtain a positive electrode active material C composed of Li x Ni 1-y Al y O 2 and lithium silicate. Incidentally, Li x Ni 1-y Al y O 2 in the x, y in the positive electrode active material C from the results of elemental analysis were respectively 1.10,0.038. Further, the lithium silicate in the positive electrode active material C was estimated to be Li 4 SiO 4 from the result of elemental analysis. The charge / discharge characteristics of this positive electrode active material C were evaluated under the same conditions as in Example 1.
[実施例4]
イオン交換水1Lに、Ni(SO4)2・6H2O(和光純薬製)126.5g、ベーマイトAP−3(触媒化成工業製)0.72gを加え、80℃に加温し酸性のニッケル化合物溶液を得た。別途用意したイオン交換水1Lに、コロイダルシリカ スノーテックスXS(日産化学製)33.9g、炭酸ナトリウム59.4gを加え、80℃に加温し、塩基性のケイ素化合物溶液を得た。ニッケル化合物溶液とケイ素化合物溶液を80℃に保持しながら、ケイ素化合物溶液をニッケル化合物溶液に30分間連続的に加えて1時間攪拌することにより、共沈反応を行った。ケイ素化合物溶液の全量をニッケル化合物溶液に加えた時点における混合液のpHは7.1であった。
当該混合液中の沈殿物をろ過して回収した後、4Lのイオン交換水で洗浄を行い、120℃で12時間乾燥することにより、ニッケル化合物からなる共沈物dを得た。
続いて、この共沈物dを400℃で1時間焼成した。その後、焼成した共沈物d3.004gと水酸化リチウム(関東化学製)2.917gを混合し乳鉢にて20分間混練りした。そして、得られた混合物Dを660℃にて3時間焼成し、LixNi1−yAlyO2とリチウムシリケートからなる正極活物質Dを得た。正極活物質D中のLixNi1−yAlyO2におけるx、yは、元素分析の結果から、それぞれ1.10、0.024であった。また、正極活物質D中のリチウムシリケートは、元素分析の結果から、Li4SiO4と推定された。この正極活物質Dの充放電特性を、実施例1と同様の条件で評価した。
[Example 4]
To 1 L of ion-exchanged water, 126.5 g of Ni (SO 4 ) 2 · 6H 2 O (manufactured by Wako Pure Chemical Industries) and 0.72 g of boehmite AP-3 (manufactured by Catalyst Kasei Kogyo) are added, and heated to 80 ° C. to become acidic. A nickel compound solution was obtained. 3 L of colloidal silica Snowtex XS (Nissan Chemical) and 59.4 g of sodium carbonate were added to 1 L of ion-exchanged water separately prepared, and heated to 80 ° C. to obtain a basic silicon compound solution. While maintaining the nickel compound solution and the silicon compound solution at 80 ° C., the silicon compound solution was continuously added to the nickel compound solution for 30 minutes and stirred for 1 hour to carry out a coprecipitation reaction. The pH of the mixed solution when the whole amount of the silicon compound solution was added to the nickel compound solution was 7.1.
The precipitate in the mixture was collected by filtration, washed with 4 L of ion exchange water, and dried at 120 ° C. for 12 hours to obtain a coprecipitate d made of a nickel compound.
Subsequently, the coprecipitate d was baked at 400 ° C. for 1 hour. Thereafter, 3.004 g of calcined coprecipitate d and 2.917 g of lithium hydroxide (manufactured by Kanto Chemical) were mixed and kneaded in a mortar for 20 minutes. The resulting mixture D was calcined for 3 hours at 660 ° C., to obtain a Li x Ni 1-y Al y O 2 positive active material D consisting of lithium silicate. X and y in Li x Ni 1-y Al y O 2 in the positive electrode active material D were 1.10 and 0.024, respectively, from the results of elemental analysis. Moreover, the lithium silicate in the positive electrode active material D was estimated to be Li 4 SiO 4 from the result of elemental analysis. The charge / discharge characteristics of this positive electrode active material D were evaluated under the same conditions as in Example 1.
[比較例1]
イオン交換水1Lに、Ni(SO4)2・6H2O(和光純薬製)126.5g、ベーマイトAP−3(触媒化成工業製)1.24gを加え、80℃に加温し、ニッケル化合物溶液を得た。別途用意したイオン交換水1Lに、コロイダルシリカ スノーテックスXS(日産化学製)4.9g、炭酸ナトリウム59.4gを加え、80℃に加温し、ケイ素化合物溶液を得た。ニッケル化合物溶液とケイ素化合物溶液を80℃に保持しながら、ケイ素化合物溶液をニッケル化合物溶液に30分間連続的に加えて1時間攪拌することにより、共沈反応を行った。ケイ素化合物溶液の全量を酸性溶液に加えた時点における混合液のpHは7.2であった。
当該混合液中の沈殿物をろ過して回収した後、4Lのイオン交換水で洗浄を行い、120℃で12時間乾燥することにより共沈物eを得た。
続いて、この共沈物eを400℃で1時間焼成した。その後、焼成した前駆体e3.002gと水酸化リチウム(関東化学製)1.985gを混合し乳鉢にて20分間混練りした。そして、この混合物Eを660℃にて3時間焼成し、LixNi1−yAlyO2とリチウムシリケートからなる正極活物質Eを得た。なお、正極活物質E中のLixNi1−yAlyO2におけるx、yは、元素分析の結果から、それぞれ1.10、0.038であった。また、正極活物質E中のリチウムシリケートは、元素分析の結果から、Li4SiO4と推定された。この正極活物質Eの充放電特性を、実施例1と同様の条件で評価した。
[Comparative Example 1]
To 1 L of ion-exchanged water, 126.5 g of Ni (SO 4 ) 2 · 6H 2 O (manufactured by Wako Pure Chemical Industries) and 1.24 g of boehmite AP-3 (manufactured by Catalyst Kasei Kogyo) are added, heated to 80 ° C., nickel A compound solution was obtained. 4.9 g of colloidal silica Snowtex XS (Nissan Chemical) and 59.4 g of sodium carbonate were added to 1 L of ion-exchanged water separately prepared, and heated to 80 ° C. to obtain a silicon compound solution. While maintaining the nickel compound solution and the silicon compound solution at 80 ° C., the silicon compound solution was continuously added to the nickel compound solution for 30 minutes and stirred for 1 hour to carry out a coprecipitation reaction. The pH of the mixed solution when the whole amount of the silicon compound solution was added to the acidic solution was 7.2.
The precipitate in the liquid mixture was collected by filtration, washed with 4 L of ion exchange water, and dried at 120 ° C. for 12 hours to obtain a coprecipitate e.
Subsequently, the coprecipitate e was baked at 400 ° C. for 1 hour. Thereafter, 3.002 g of the calcined precursor e and 1.985 g of lithium hydroxide (manufactured by Kanto Chemical) were mixed and kneaded in a mortar for 20 minutes. Then, the mixture E was calcined for 3 hours at 660 ° C., to obtain a Li x Ni 1-y Al y O 2 positive active material E consisting of lithium silicate. Note that x and y in Li x Ni 1-y Al y O 2 in the positive electrode active material E were 1.10 and 0.038, respectively, from the results of elemental analysis. Further, the lithium silicate in the positive electrode active material E was estimated to be Li 4 SiO 4 from the result of elemental analysis. The charge / discharge characteristics of this positive electrode active material E were evaluated under the same conditions as in Example 1.
[比較例2]
イオン交換水1Lに、Ni(SO4)2・6H2O(和光純薬製)126.5g、ベーマイトAP−3(触媒化成工業製)1.24gを加え、80℃に加温し、ニッケル化合物溶液を得た。別途用意したイオン交換水1Lに、コロイダルシリカ スノーテックスXS(日産化学製)86.6g、炭酸ナトリウム59.4gを加え、80℃に加温し、ケイ素化合物溶液を得た。ニッケル化合物溶液とケイ素化合物溶液を80℃に保持しながら、ケイ素化合物溶液をニッケル化合物溶液に30分間連続的に加えて1時間攪拌することにより、共沈反応を行った。ケイ素化合物溶液の全量を酸性溶液に加えた時点における混合液のpHは7.2であった。
当該混合液中の沈殿物をろ過して回収した後、4Lのイオン交換水で洗浄を行い、120℃で12時間乾燥することにより共沈物fを得た。
続いて、この共沈物fを400℃で1時間焼成した。その後、焼成した前駆体f3.002gと水酸化リチウム(関東化学製)1.985gを混合し乳鉢にて20分間混練りした。そして、この混合物Fを660℃にて3時間焼成し、LixNi1−yAlyO2とリチウムシリケートからなる正極活物質Eを得た。正極活物質E中のリチウムシリケートは、元素分析の結果から、Li4SiO4と推定された。この正極活物質Eの充放電特性を、実施例1と同様の条件で評価した。
[Comparative Example 2]
To 1 L of ion-exchanged water, 126.5 g of Ni (SO 4 ) 2 · 6H 2 O (manufactured by Wako Pure Chemical Industries) and 1.24 g of boehmite AP-3 (manufactured by Catalyst Kasei Kogyo) are added, heated to 80 ° C., nickel A compound solution was obtained. To 1 L of ion exchange water prepared separately, 86.6 g of colloidal silica Snowtex XS (Nissan Chemical) and 59.4 g of sodium carbonate were added and heated to 80 ° C. to obtain a silicon compound solution. While maintaining the nickel compound solution and the silicon compound solution at 80 ° C., the silicon compound solution was continuously added to the nickel compound solution for 30 minutes and stirred for 1 hour to carry out a coprecipitation reaction. The pH of the mixed solution when the whole amount of the silicon compound solution was added to the acidic solution was 7.2.
The precipitate in the mixed solution was collected by filtration, washed with 4 L of ion exchange water, and dried at 120 ° C. for 12 hours to obtain a coprecipitate f.
Subsequently, the coprecipitate f was baked at 400 ° C. for 1 hour. Thereafter, the fired precursor f3.002 g and lithium hydroxide (manufactured by Kanto Chemical) 1.985 g were mixed and kneaded in a mortar for 20 minutes. Then, the mixture F was calcined for 3 hours at 660 ° C., to obtain a Li x Ni 1-y Al y O 2 positive active material E consisting of lithium silicate. The lithium silicate in the positive electrode active material E was estimated to be Li 4 SiO 4 from the result of elemental analysis. The charge / discharge characteristics of this positive electrode active material E were evaluated under the same conditions as in Example 1.
[比較例3]
実施例1で得られた混合物Aを750℃で10時間焼成し、LixNi1−yAlyO2とリチウムシリケートからなる正極活物質Gを得た。なお、正極活物質G中のリチウムシリケートは、元素分析の結果から、Li4SiO4と推定された。この正極活物質Gの充放電特性を、実施例1と同様の条件で評価した。
[Comparative Example 3]
The mixture A obtained in Example 1 was baked at 750 ° C. for 10 hours to obtain a positive electrode active material G composed of Li x Ni 1-y Al y O 2 and lithium silicate. Note that the lithium silicate in the positive electrode active material G was estimated to be Li 4 SiO 4 from the results of elemental analysis. The charge / discharge characteristics of this positive electrode active material G were evaluated under the same conditions as in Example 1.
[比較例4]
実施例1で得られた混合物Aを570℃で10時間焼成し、LixNi1−yAlyO2とリチウムシリケートからなる正極活物質Hを得た。なお、正極活物質H中のリチウムシリケートは、元素分析の結果から、Li4SiO4と推定された。この正極活物質Hの充放電特性を、実施例1と同様の条件で評価した。
[Comparative Example 4]
The mixture A obtained in Example 1 was baked at 570 ° C. for 10 hours to obtain a positive electrode active material H composed of Li x Ni 1-y Al y O 2 and lithium silicate. Note that the lithium silicate in the positive electrode active material H was estimated to be Li 4 SiO 4 from the results of elemental analysis. The charge / discharge characteristics of this positive electrode active material H were evaluated under the same conditions as in Example 1.
表1に示すように、正極活物質中のリチウムシリケートの含有量がケイ素換算で1〜10質量%であり、かつLixNi1−yAlyO2の結晶子径が30〜100nmである正極活物質A〜D(実施例1〜4)は、0.1Cに相当する電流値での定電流モードにおける充放電サイクルにおける、1サイクル目の放電容量に対する、30サイクル目の放電容量の低下量(0.1Cに相当する電流値での定電流モードにおける充放電サイクル時の放電容量の低下量)が少なかった。また、0.1Cに相当する電流値での定電流モードと1Cに相当する電流値での定電流モードでの30サイクル目の放電容量の比率([1Cに相当する電流値での定電流モードにおける30サイクル目の放電容量]/[0.1Cに相当する電流値での定電流モードにおける30サイクル目の放電容量])(以下、放電容量比率[1C/0.1C])はいずれも80%以上と高く、高い充放電速度でも放電容量の低下は少なかった。 As shown in Table 1, the content of lithium silicate in the positive electrode active material is 1 to 10% by mass in terms of silicon, and the crystallite diameter of Li x Ni 1-y Al y O 2 is 30 to 100 nm. The positive electrode active materials A to D (Examples 1 to 4) are reduced in the discharge capacity at the 30th cycle relative to the discharge capacity at the 1st cycle in the charge / discharge cycle in the constant current mode at a current value corresponding to 0.1C The amount (the amount of decrease in discharge capacity during the charge / discharge cycle in the constant current mode at a current value corresponding to 0.1 C) was small. Further, the ratio of the discharge capacity at the 30th cycle in the constant current mode at a current value corresponding to 0.1 C and the constant current mode at a current value corresponding to 1 C ([constant current mode at a current value corresponding to 1 C) 30th cycle discharge capacity] / [30th cycle discharge capacity in constant current mode at a current value corresponding to 0.1 C]) (hereinafter, discharge capacity ratio [1C / 0.1C]) is 80 The discharge capacity decreased little even at a high charge / discharge rate.
正極活物質中のリチウムシリケートの含有量がケイ素換算で1質量%未満である正極活物質E(比較例1)は、0.1Cに相当する電流値での定電流モードにおける充放電サイクル時の放電容量の低下量は、正極活物質A〜Dと同程度に少なかったものの、放電容量比率[1C/0.1C]は45%であり、正極活物質A〜Dよりも明らかに低かった。 The positive electrode active material E (Comparative Example 1) in which the content of lithium silicate in the positive electrode active material is less than 1% by mass in terms of silicon is a charge / discharge cycle in a constant current mode at a current value corresponding to 0.1C. Although the amount of decrease in the discharge capacity was as small as that of the positive electrode active materials A to D, the discharge capacity ratio [1C / 0.1C] was 45%, which was clearly lower than that of the positive electrode active materials A to D.
正極活物質中のリチウムシリケートの含有量がケイ素換算で10質量%超である正極活物質F(比較例2)は、0.1Cに相当する電流値での定電流モードにおける充放電サイクル時の放電容量の低下量、放電容量比率[1C/0.1C]のいずれも、正極活物質A〜Dと同程度であったものの、放電容量自体が正極活物質A〜Dよりも明らかに低かった。 The positive electrode active material F (Comparative Example 2) in which the content of lithium silicate in the positive electrode active material is more than 10% by mass in terms of silicon is obtained during the charge / discharge cycle in the constant current mode at a current value corresponding to 0.1C. Although both the decrease in the discharge capacity and the discharge capacity ratio [1C / 0.1C] were similar to the positive electrode active materials A to D, the discharge capacity itself was clearly lower than the positive electrode active materials A to D. .
結晶子径が100nmよりも大きかった正極活物質G(比較例3)では、放電容量比率[1C/0.1C]は正極活物質A〜Dよりもやや小さい程度であったが、0.1Cに相当する電流値での定電流モードにおける充放電サイクル時の放電容量の低下量が正極活物質A〜Dよりも明らかに多かった。 In the positive electrode active material G (Comparative Example 3) in which the crystallite diameter was larger than 100 nm, the discharge capacity ratio [1C / 0.1C] was slightly smaller than that of the positive electrode active materials A to D. The amount of decrease in the discharge capacity during the charge / discharge cycle in the constant current mode at a current value corresponding to was clearly greater than that of the positive electrode active materials A to D.
結晶子径が30nmよりも小さかった正極活物質H(比較例4)では、[I003/I104]が1.2よりも小さかった。また、正極活物質Hの0.1Cに相当する電流値での定電流モードにおける充放電サイクル時の放電容量の低下量及び放電容量比率[1C/0.1C]は、正極活物質A〜Dと同等かやや小さい程度であったが、放電容量自体が正極活物質A〜Dよりも明らかに低かった。 In the positive electrode active material H (Comparative Example 4) whose crystallite diameter was smaller than 30 nm, [I003 / I104] was smaller than 1.2. Moreover, the amount of decrease in discharge capacity and the discharge capacity ratio [1C / 0.1C] during the charge / discharge cycle in the constant current mode at a current value corresponding to 0.1 C of the positive electrode active material H are the positive electrode active materials A to D. The discharge capacity itself was clearly lower than that of the positive electrode active materials A to D.
Claims (4)
前記リチウム−ニッケル複合酸化物の結晶子径が30〜100nmであり、
前記非晶質性物質の含有量が、ケイ素換算で1〜10質量%であることを特徴とするリチウムイオン二次電池用正極活物質。
一般式(1)・・・LixNi1−yMyO2
[式中、MはCo、Fe、及びAlから選択される1種以上の元素を表し、0.5<x<1.5であり、0≦y<0.2である。] A lithium-nickel composite oxide represented by the following general formula (1) and an amorphous substance containing lithium, silicon and oxygen,
The crystallite diameter of the lithium-nickel composite oxide is 30 to 100 nm,
Content of the said amorphous substance is 1-10 mass% in conversion of silicon, The positive electrode active material for lithium ion secondary batteries characterized by the above-mentioned.
The general formula (1) ··· Li x Ni 1 -y M y O 2
[Wherein, M represents one or more elements selected from Co, Fe, and Al, 0.5 <x <1.5, and 0 ≦ y <0.2. ]
一般式(2)・・・LiaSibO
[式中、a及びbは、それぞれ独立して正の実数である。] The positive electrode active material for a lithium ion secondary battery according to claim 1, wherein the amorphous material is a compound represented by the following general formula (2).
General formula (2) ... Li a Si b O
[Wherein, a and b are each independently a positive real number. ]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011212977A JP2013073832A (en) | 2011-09-28 | 2011-09-28 | Positive electrode active material for lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011212977A JP2013073832A (en) | 2011-09-28 | 2011-09-28 | Positive electrode active material for lithium ion secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013073832A true JP2013073832A (en) | 2013-04-22 |
Family
ID=48478169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011212977A Withdrawn JP2013073832A (en) | 2011-09-28 | 2011-09-28 | Positive electrode active material for lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013073832A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017188312A (en) * | 2016-04-06 | 2017-10-12 | 住友金属鉱山株式会社 | Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery |
WO2018056139A1 (en) * | 2016-09-21 | 2018-03-29 | Basf戸田バッテリーマテリアルズ合同会社 | Cathode active material and method of manufacturing same, and nonaqueous electrolyte secondary battery |
JP2018056118A (en) * | 2016-09-21 | 2018-04-05 | Basf戸田バッテリーマテリアルズ合同会社 | Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery |
JP2018098174A (en) * | 2016-12-15 | 2018-06-21 | Basf戸田バッテリーマテリアルズ合同会社 | Positive electrode active material and nonaqueous electrolyte secondary battery |
KR20210030977A (en) * | 2018-07-16 | 2021-03-18 | 유미코아 | Rechargeable lithium-ion battery with improved life characteristics |
US11121365B2 (en) | 2016-09-21 | 2021-09-14 | Basf Toda Battery Materials Llc | Positive electrode active material and method for producing same, and non-aqueous electrolyte secondary battery using same |
WO2024092501A1 (en) * | 2022-11-01 | 2024-05-10 | 宁德时代新能源科技股份有限公司 | Positive electrode sheet and preparation method therefor, secondary battery, and electric device |
-
2011
- 2011-09-28 JP JP2011212977A patent/JP2013073832A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017188312A (en) * | 2016-04-06 | 2017-10-12 | 住友金属鉱山株式会社 | Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery |
WO2018056139A1 (en) * | 2016-09-21 | 2018-03-29 | Basf戸田バッテリーマテリアルズ合同会社 | Cathode active material and method of manufacturing same, and nonaqueous electrolyte secondary battery |
JP2018056118A (en) * | 2016-09-21 | 2018-04-05 | Basf戸田バッテリーマテリアルズ合同会社 | Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery |
US11121365B2 (en) | 2016-09-21 | 2021-09-14 | Basf Toda Battery Materials Llc | Positive electrode active material and method for producing same, and non-aqueous electrolyte secondary battery using same |
US12183916B2 (en) | 2016-09-21 | 2024-12-31 | Basf Toda Battery Materials Llc | Positive electrode active material and method for producing same, and non-aqueous electrolyte secondary battery using same |
JP2018098174A (en) * | 2016-12-15 | 2018-06-21 | Basf戸田バッテリーマテリアルズ合同会社 | Positive electrode active material and nonaqueous electrolyte secondary battery |
KR20210030977A (en) * | 2018-07-16 | 2021-03-18 | 유미코아 | Rechargeable lithium-ion battery with improved life characteristics |
KR102624999B1 (en) | 2018-07-16 | 2024-01-12 | 유미코아 | Rechargeable lithium-ion battery with improved lifespan characteristics |
WO2024092501A1 (en) * | 2022-11-01 | 2024-05-10 | 宁德时代新能源科技股份有限公司 | Positive electrode sheet and preparation method therefor, secondary battery, and electric device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102603503B1 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte secondary battery | |
Chen et al. | A review on cathode materials for advanced lithium ion batteries: microstructure designs and performance regulations | |
JP6968428B2 (en) | Manufacturing method of positive electrode active material for secondary battery and positive electrode active material for secondary battery manufactured by this method | |
Wang et al. | Li1. 2Ni0. 13Co0. 13Mn0. 54O2 with controllable morphology and size for high performance lithium-ion batteries | |
JP6176109B2 (en) | Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery | |
JP5712544B2 (en) | Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery | |
KR101587293B1 (en) | Li-Ni-BASED COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE | |
US10312508B2 (en) | Lithium metal composite oxide powder | |
JP6578634B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same | |
JP5987401B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery | |
JP6533734B2 (en) | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery | |
JP6996198B2 (en) | Manufacturing method of positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery and lithium ion secondary battery | |
KR102447292B1 (en) | Positive electrode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery | |
CN113169333A (en) | Positive electrode active material for lithium secondary battery and lithium secondary battery including the same | |
JP6408097B2 (en) | Positive electrode active material and non-aqueous electrolyte secondary battery | |
JP2013073832A (en) | Positive electrode active material for lithium ion secondary battery | |
JP2024513397A (en) | Positive electrode active material for lithium secondary batteries and lithium secondary batteries containing the same | |
JP2023040082A (en) | Metal composite hydroxide and manufacturing method thereof, positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery using the same | |
JP2013073833A (en) | Method of preparing cathode active material for lithium ion secondary battery | |
JP6343951B2 (en) | Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery | |
JP4628704B2 (en) | Positive electrode material for lithium secondary battery and method for producing the same | |
JP2013087040A (en) | Lithium compound oxide and production method of the same, and lithium ion secondary battery | |
WO2018056139A1 (en) | Cathode active material and method of manufacturing same, and nonaqueous electrolyte secondary battery | |
KR20080088177A (en) | Spinel type positive electrode active material for lithium secondary battery and manufacturing method thereof | |
KR102533325B1 (en) | Lithium transition metal composite oxide and manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20141202 |