[go: up one dir, main page]

JP2013006900A - Reforming furnace - Google Patents

Reforming furnace Download PDF

Info

Publication number
JP2013006900A
JP2013006900A JP2011138495A JP2011138495A JP2013006900A JP 2013006900 A JP2013006900 A JP 2013006900A JP 2011138495 A JP2011138495 A JP 2011138495A JP 2011138495 A JP2011138495 A JP 2011138495A JP 2013006900 A JP2013006900 A JP 2013006900A
Authority
JP
Japan
Prior art keywords
hole
reforming furnace
main body
protrusion
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011138495A
Other languages
Japanese (ja)
Other versions
JP5796366B2 (en
Inventor
Hiroshi Funakoshi
弘 舩越
Kenichiro Kondo
健一郎 近藤
Hironobu Fujiyoshi
裕信 藤吉
Shinji Mukai
新治 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011138495A priority Critical patent/JP5796366B2/en
Publication of JP2013006900A publication Critical patent/JP2013006900A/en
Application granted granted Critical
Publication of JP5796366B2 publication Critical patent/JP5796366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Industrial Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an eave on a flow path for a molten slag, thereby: preventing the molten slag from intruding into gaps formed by a closing body and a through-hole; and facilitating inserting and removing the closing bodies.SOLUTION: A reforming furnace 120 for reforming a gas in a cylindrical body 250 with its central axis directed vertically includes: the through-hole 254 provided in the body 250; the closing body 256 capable of closing the through-hole 254; and a protrusion portion 260 which is provided inside of the body, the lower end of which is located above the through-hole 254, and which is formed more protrusively to a central axis side than to an inner surface.

Description

本発明は、ガス化原料をガス化させることで生成されたガス化ガスを改質する改質炉に関する。   The present invention relates to a reforming furnace for reforming a gasification gas generated by gasifying a gasification raw material.

近年、石油に代えて、石炭やバイオマス、タイヤチップ等の固体原料をガス化してガス化ガスを生成する技術が開発されている。このようにして生成されたガス化ガスは、石炭ガス化複合発電(IGCC: Integrated coal Gasification Combined Cycle)といった効率的な発電システムや、水素の製造、合成燃料(合成石油)の製造、化学肥料(尿素)等の化学製品の製造等に利用されている。ガス化ガスの原料となる固体原料のうち、特に石炭は、可採年数が150年程度と、石油の可採年数の3倍以上であり、また、石油と比較して埋蔵地が偏在していないため、長期に亘り安定供給が可能な天然資源として期待されている。   2. Description of the Related Art In recent years, a technology has been developed that gasifies solid raw materials such as coal, biomass, and tire chips to generate gasified gas instead of petroleum. The gasified gas generated in this way can be used for efficient power generation systems such as Integrated Coal Gasification Combined Cycle (IGCC), hydrogen production, synthetic fuel (synthetic petroleum) production, chemical fertilizer ( (Urea) and other chemical products. Among solid raw materials used as raw materials for gasification gas, coal, in particular, has a recoverable period of about 150 years, more than three times the recoverable period of oil, and reserves are unevenly distributed compared to oil. Therefore, it is expected as a natural resource that can be stably supplied over a long period of time.

従来、石炭のガス化プロセスは、酸素や空気を用いて部分酸化することにより行われていたが、1800℃程度の高温、3MPa程度の高圧となるため、特別な耐熱、耐圧材料を要し、ガス化炉のコストが高くなるといった欠点を有していた。この問題を解決するために、水蒸気を利用し、700℃〜900℃程度の低温かつ常圧で石炭をガス化する技術が開発されている。この技術には、温度および圧力を低く設定することで、耐圧構造が不要な点や従来からの市販品が利用可能になるといったメリットがある。しかし、生成されたガス化ガスには、1800℃程度の高温で部分酸化されたガス化ガスと比較して、タール分が多く含まれている。そこで、生成されたガス化ガスに酸素や空気を加えて1000℃以上にし、酸化改質することで、ガス化ガスに含まれるタール分を除去する技術が開示されている(例えば、特許文献1、2)。   Conventionally, the coal gasification process has been performed by partial oxidation using oxygen or air, but since it has a high temperature of about 1800 ° C. and a high pressure of about 3 MPa, it requires special heat and pressure resistant materials, There was a drawback that the cost of the gasifier was high. In order to solve this problem, a technique for gasifying coal using steam at a low temperature of about 700 ° C. to 900 ° C. and normal pressure has been developed. This technology has the advantage that a pressure-resistant structure is not required by setting temperature and pressure low, and that a commercially available product can be used. However, the produced gasification gas contains a larger amount of tar than the gasification gas partially oxidized at a high temperature of about 1800 ° C. Therefore, a technique for removing tar content contained in the gasification gas by adding oxygen or air to the generated gasification gas to 1000 ° C. or higher and oxidative reforming is disclosed (for example, Patent Document 1). 2).

このような酸化改質を行う改質炉では、炉内のメンテナンスのため、人が出入りできる程度の貫通孔が外壁に設けられている。改質炉からの放熱を低減するために、炉内全体には耐火材が施工されており、貫通孔には耐火煉瓦で構成された抜き差し可能な閉塞体が嵌合される。かかる閉塞体と貫通孔との間には、閉塞体を改質炉から抜き差しするための隙間があるので、その隙間に改質炉内で発生した溶融スラグが入り込んでいた。すると、溶融スラグによって閉塞体と貫通孔とが粘着し、メンテナンス時に閉塞体を改質炉から引き抜くことができず、内部点検に支障を来すこととなっていた。また、このような閉塞体をホイスト等により強制的に引き抜くと、閉塞体の耐火煉瓦や改質炉の耐火材が損傷してしまうおそれがあった。さらに、改質炉の大きさによっては閉塞体が10〜15kgとなり、強制的に引き抜く際の作業員の安全性に懸念があった。   In a reforming furnace that performs such oxidation reforming, a through-hole that allows a person to enter and exit is provided in the outer wall for maintenance in the furnace. In order to reduce heat radiation from the reforming furnace, a refractory material is applied throughout the furnace, and a pluggable body made of refractory brick is fitted into the through hole. Since there is a gap for inserting and removing the plug from the reforming furnace between the plug and the through hole, molten slag generated in the reforming furnace has entered the gap. As a result, the closed body and the through-hole adhere to each other due to the molten slag, and the closed body cannot be pulled out from the reforming furnace during maintenance, which hinders internal inspection. Further, if such a closed body is forcibly pulled out by a hoist or the like, the firebrick of the closed body or the refractory material of the reforming furnace may be damaged. Furthermore, depending on the size of the reforming furnace, the closed body becomes 10 to 15 kg, and there is concern about the safety of workers when forcibly pulling out.

そこで、ガス反応部炉壁の一部を冷却水で冷却することで、溶融灰を固化して除去し、溶融灰の付着を防止する技術が開示されている(例えば、特許文献3)。また、ガス反応部炉壁の一部を冷却水で冷却して溶融スラグを固化し、固化したスラグに槌打装置で衝撃を与えて除去する技術も知られている(例えば、特許文献4)。   Therefore, a technique for solidifying and removing molten ash by cooling a part of the gas reaction unit furnace wall with cooling water and preventing adhesion of the molten ash is disclosed (for example, Patent Document 3). In addition, a technique is known in which a part of the gas reaction unit furnace wall is cooled with cooling water to solidify the molten slag, and the solidified slag is removed by impacting with a striking device (for example, Patent Document 4). .

特開2009−40862号公報JP 2009-40862 A 特開2007−45857号公報JP 2007-45857 A 特開平6−228578号公報JP-A-6-228578 特開平8−94265号公報JP-A-8-94265

しかし、特許文献3や特許文献4の技術を用いると、閉塞体と貫通孔との隙間に侵入した溶融スラグを除去できないばかりか積極的に固化させてしまい、閉塞体をより引き抜きにくくする結果を招いてしまう。また、特許文献4の技術では、さらに、槌打装置で衝撃を与えることで、閉塞体の耐火煉瓦に損傷を与えるおそれがあった。   However, when the techniques of Patent Document 3 and Patent Document 4 are used, the molten slag that has entered the gap between the closed body and the through-hole cannot be removed, but also solidifies positively, resulting in a more difficult to pull out the closed body. I will invite you. Moreover, in the technique of patent document 4, there was a possibility that the firebrick of a closed body might be damaged by giving an impact with a striking device.

本発明は、閉塞体と貫通孔との隙間への溶融スラグの侵入自体を防止し、閉塞体の抜き差しを容易にすることが可能な、改質炉を提供することを目的としている。   An object of the present invention is to provide a reforming furnace that can prevent the molten slag from entering the gap between the closed body and the through-hole itself and can easily insert and remove the closed body.

上記課題を解決するために、本体内でガスを改質する本発明の改質炉は、本体に設けられた貫通孔と、貫通孔を閉塞可能な閉塞体と、本体の内面に設けられ、その下端が貫通孔の鉛直上方に位置し、当該内面より本体中心側に突出形成された突起部と、を備えたことを特徴とする。   In order to solve the above problems, a reforming furnace of the present invention for reforming a gas in a main body is provided on a through hole provided in the main body, a closing body capable of closing the through hole, and an inner surface of the main body, The lower end is located vertically above the through-hole, and has a protrusion that protrudes from the inner surface toward the center of the main body.

突起部は、鉛直下方に向かうに従って本体中心側に突出する傾斜面を有し、その頂部が、貫通孔の上端から鉛直上方に向かうにしたがって本体中心側に離隔する仮想傾斜面よりもさらに本体中心側に位置してもよい。   The protrusion has an inclined surface that protrudes toward the center of the main body as it goes vertically downward, and the top of the protrusion is further centered from the virtual inclined surface that is separated from the upper end of the through hole toward the center of the main body as it goes vertically upward. It may be located on the side.

突起部の頂部に対して傾斜面と反対側にある面は、内面から本体中心側に立設して成るとしてもよい。   The surface on the opposite side of the inclined surface with respect to the top of the protrusion may be erected from the inner surface toward the center of the main body.

突起部の本体に沿った水平方向の幅は、貫通孔の幅より長くてもよい。   The horizontal width along the main body of the protrusion may be longer than the width of the through hole.

本発明によれば、溶融スラグの流動経路に庇を設けて閉塞体と貫通孔との隙間への溶融スラグの侵入自体を防止し、閉塞体の抜き差しを容易にする。   According to the present invention, a slag is provided in the flow path of the molten slag to prevent the molten slag from entering the gap between the closed body and the through hole, thereby facilitating the insertion and removal of the closed body.

ガス化ガス精製システムを説明するための説明図である。It is explanatory drawing for demonstrating a gasification gas purification system. 改質炉の外観を模式的に示した斜視図である。It is the perspective view which showed the external appearance of the reforming furnace typically. 突起部を説明するための説明図である。It is explanatory drawing for demonstrating a projection part. 突起部の横断面形状を説明するための横断面図である。It is a cross-sectional view for demonstrating the cross-sectional shape of a projection part. 突起部の他の例を示した横断面図である。It is the cross-sectional view which showed the other example of the projection part.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

改質炉は、ガス化原料をガス化させることで生成されたガス化ガスを改質する目的で形成された炉である。本実施形態では、かかる改質炉のメンテナンス時に利用される、改質炉の内外を案内する貫通孔と、その貫通孔を閉塞する閉塞体について説明する。ここでは、改質炉の目的を把握すべく、ガス化ガスを生成する全体的な構成をガス化ガス精製システム100に基づいて説明し、その後、改質炉の具体的な構成を詳述する。   The reforming furnace is a furnace formed for the purpose of reforming a gasification gas generated by gasifying a gasification raw material. In the present embodiment, a description will be given of a through hole that guides the inside and outside of the reforming furnace and a closing body that closes the through hole, which are used during maintenance of the reforming furnace. Here, in order to grasp the purpose of the reforming furnace, the overall configuration for generating gasification gas will be described based on the gasification gas purification system 100, and then the specific configuration of the reforming furnace will be described in detail. .

(ガス化ガス精製システム100)
図1は、本実施形態にかかるガス化ガス精製システム100を説明するための説明図である。図1に示すように、ガス化ガス精製システム100は、ガス化ガス生成装置110と、改質炉120と、熱交換器130と、精製ガス化ガス抽出装置140と、排水処理器150とを含んで構成される。図1中、原料の流れを破線の矢印で、ガスの流れを実線の矢印で、砂や水の流れを一点鎖線の矢印でそれぞれ示す。
(Gasification gas purification system 100)
FIG. 1 is an explanatory diagram for explaining a gasification gas purification system 100 according to the present embodiment. As shown in FIG. 1, the gasification gas purification system 100 includes a gasification gas generation device 110, a reforming furnace 120, a heat exchanger 130, a purification gasification gas extraction device 140, and a waste water treatment device 150. Consists of including. In FIG. 1, the raw material flow is indicated by broken-line arrows, the gas flow is indicated by solid-line arrows, and the flow of sand and water is indicated by dashed-dotted arrows.

(ガス化ガス生成装置110)
ガス化ガス生成装置110として、本実施形態では、二塔式の流動層ガス化炉を挙げて説明する。二塔式流動層ガス化炉によるガス化ガス生成装置110は、ガス化炉210と、燃焼炉212と、媒体分離装置214とを含んで構成される。ここでは、ガス化ガス生成装置110として、流動化させた砂を循環させる流動層ガス化炉を例に挙げて説明するが、砂が自重で鉛直下方向に流下することで移動層を形成する移動層方式のガス化炉を用いることもできる。
(Gasified gas generator 110)
In the present embodiment, the gasification gas generator 110 will be described with a two-column fluidized bed gasification furnace. A gasification gas generation apparatus 110 using a two-column fluidized bed gasification furnace includes a gasification furnace 210, a combustion furnace 212, and a medium separation device 214. Here, a fluidized bed gasification furnace that circulates fluidized sand will be described as an example of the gasified gas generation device 110, but the moving bed is formed by the sand flowing down vertically by its own weight. A moving bed type gasification furnace can also be used.

ガス化ガス生成装置110では、全体として、硅砂(珪砂)等の砂で構成される流動媒体を熱媒体として循環させている。流動媒体としての砂の流れに着目すると、まず、燃焼炉212で1000℃程度に加熱された高温の砂が、燃焼排ガスと共に媒体分離装置214に導入され、媒体分離装置214において高温の砂と、燃焼排ガスに分離される。媒体分離装置214で分離された燃焼排ガスは、不図示のボイラ等で熱回収される。また、媒体分離装置214で分離された高温の砂は、ガス化炉210に導入され、ガス化炉210において、ガス化炉210の下方から導入される水蒸気、窒素、空気、酸素、二酸化炭素等のガス化剤によって流動層を形成する。   In the gasification gas generator 110, as a whole, a fluid medium made of sand such as silica sand (silica sand) is circulated as a heat medium. Focusing on the flow of sand as a fluid medium, first, high-temperature sand heated to about 1000 ° C. in the combustion furnace 212 is introduced into the medium separation device 214 together with the combustion exhaust gas, Separated into combustion exhaust gas. The combustion exhaust gas separated by the medium separator 214 is heat recovered by a boiler (not shown) or the like. Further, the high-temperature sand separated by the medium separation device 214 is introduced into the gasification furnace 210, and in the gasification furnace 210, water vapor, nitrogen, air, oxygen, carbon dioxide, etc. introduced from below the gasification furnace 210. A fluidized bed is formed by the gasifying agent.

ガス化炉210では、流動層に、褐炭等の石炭、石油コークス(ペトロコークス)、バイオマス、タイヤチップ等のガス化原料が供給され、ガス化原料が、水蒸気と砂の熱により、雰囲気温度700℃〜900℃でガス化されてガス化ガスが生成される。そして、砂は最終的に燃焼炉212に戻り、循環流動層を形成する。   In the gasifier 210, coal such as lignite, petroleum coke (petro coke), biomass, tire chips and other gasification raw materials are supplied to the fluidized bed, and the gasification raw material is heated to an atmospheric temperature of 700 by the heat of steam and sand. Gasification gas is produced by gasification at a temperature of from 900C to 900C. The sand finally returns to the combustion furnace 212 to form a circulating fluidized bed.

仮にガス化原料が石炭である場合、生成されるガスは、水素、一酸化炭素、二酸化炭素、メタンを主成分とし、灰、タール、窒素や窒素化合物、硫黄や硫黄化合物を少量含んでいる。   If the gasification raw material is coal, the generated gas is mainly composed of hydrogen, carbon monoxide, carbon dioxide and methane, and contains a small amount of ash, tar, nitrogen and nitrogen compounds, sulfur and sulfur compounds.

(改質炉120)
改質炉(酸化改質炉)120は、ガス化炉210で生成されたガス化ガスに酸素や空気を加え、ガス化ガスに含まれるタール分を900℃〜1500℃で改質(酸化改質)する。こうして、タールのほとんどが改質炉120で除去される。また、タール分と共にガス化ガスに含まれる灰は、改質炉120の熱により溶融スラグとなる。改質炉120の構造については後ほど詳述する。
(Reforming furnace 120)
The reforming furnace (oxidation reforming furnace) 120 adds oxygen and air to the gasification gas generated in the gasification furnace 210, and reforms (oxidizes and reforms) the tar content contained in the gasification gas at 900 ° C to 1500 ° C. Quality). Thus, most of the tar is removed by the reforming furnace 120. Further, the ash contained in the gasification gas together with the tar content becomes molten slag by the heat of the reforming furnace 120. The structure of the reforming furnace 120 will be described in detail later.

(熱交換器130)
熱交換器130は、ガス化ガス生成装置110から導入されたガス化ガスと水蒸気との熱交換を行い、ガス化ガスの顕熱を水蒸気で回収すると共に、ガス化ガスの出口温度を300℃〜600℃にする。
(Heat exchanger 130)
The heat exchanger 130 performs heat exchange between the gasification gas introduced from the gasification gas generator 110 and water vapor, collects the sensible heat of the gasification gas with water vapor, and sets the outlet temperature of the gasification gas to 300 ° C. Bring to ~ 600 ° C.

(精製ガス化ガス抽出装置140)
精製ガス化ガス抽出装置140は、第1冷却器220と、第2冷却器222と、昇圧器224と、脱硫器230と、脱アンモニア器232と、脱塩器234とを含んで構成される。第1冷却器220は、水をスプレー噴霧することにより、300℃〜600℃となったガス化ガスをさらに冷却する。これにより、ガス化ガスに残存するタール分や粉塵が凝縮し、ガス化ガスから除去される。第2冷却器222は、海水、ブライン等を用いて、ガス化ガスを30℃以下にさらに冷却し、残存するタール、ミストや粉塵を凝縮して除去する。昇圧器224は、ターボ型や容積型の圧縮機やポンプで構成され、第2冷却器222を通過したガス化ガスを1MPa〜5MPaに昇圧する。脱硫器230は、ガス化ガスに含まれる硫黄や硫黄化合物を除去する。脱アンモニア器232は、ガス化ガスに含まれるアンモニア等の窒素化合物を除去する。脱塩器234は、ガス化ガスに含まれる塩素や塩素化合物を除去する。
(Purified gasification gas extraction device 140)
The purified gasification gas extraction apparatus 140 includes a first cooler 220, a second cooler 222, a booster 224, a desulfurizer 230, a deammonizer 232, and a demineralizer 234. . The 1st cooler 220 further cools the gasification gas which became 300 to 600 degreeC by spraying water. Thereby, tar content and dust remaining in the gasification gas are condensed and removed from the gasification gas. The second cooler 222 further cools the gasification gas to 30 ° C. or lower using seawater, brine, etc., and condenses and removes remaining tar, mist, and dust. The booster 224 includes a turbo-type or volume-type compressor or pump, and boosts the gasification gas that has passed through the second cooler 222 to 1 MPa to 5 MPa. The desulfurizer 230 removes sulfur and sulfur compounds contained in the gasification gas. The deammonizer 232 removes nitrogen compounds such as ammonia contained in the gasification gas. The desalinator 234 removes chlorine and chlorine compounds contained in the gasification gas.

(排水処理器150)
排水処理器150は、熱交換器130、第1冷却器220、第2冷却器222、昇圧器224で回収されたタールや粉塵を含有する排水に対し、SS(浮遊性固形物)、アンモニアとシアンの除去、有機物およびアンモニアの酸化などを行い、放流基準を満たすように処理を実行する。排水処理器150で処理した後の水(処理後水)は、熱交換器130や第1冷却器220等に再利用される。
(Wastewater treatment device 150)
The waste water treatment device 150 is composed of SS (floating solid), ammonia and waste water containing tar and dust collected by the heat exchanger 130, the first cooler 220, the second cooler 222, and the booster 224. Cyan is removed, organic matter and ammonia are oxidized, and the process is executed to meet the discharge standard. Water (treated water) after being treated by the waste water treatment device 150 is reused for the heat exchanger 130, the first cooler 220, and the like.

このように、ガス化ガス生成装置110で生成されたガス化ガスは、熱交換器130、第1冷却器220、第2冷却器222、昇圧器224においてタールや粉塵が除去され、脱硫器230で硫黄が、脱アンモニア器232でアンモニアが、脱塩器234で塩素がそれぞれ除去されることにより精製され、精製ガス化ガスとなる。以下では、ガス化ガス精製システム100の改質炉120の構造について詳述する。   In this way, the gasified gas generated by the gasified gas generation device 110 is removed of tar and dust in the heat exchanger 130, the first cooler 220, the second cooler 222, and the booster 224, and the desulfurizer 230. Then, the sulfur is purified by removing ammonia by the deammonizer 232 and chlorine by the demineralizer 234 to be purified gasified gas. Hereinafter, the structure of the reforming furnace 120 of the gasification gas purification system 100 will be described in detail.

(改質炉120の具体的構成)
図2は、改質炉120の外観を模式的に示した斜視図である。改質炉120は、図2(a)の如く、中心軸が鉛直方向にある筒形状(ここでは円筒形状)の本体250で構成される。改質炉の本体250は、外側のケーシング材とその内側に取り付けられる耐火材から成る。ガス化炉210で生成されたガス化ガスは、改質炉120の本体250側面上部の導入口250aから導入され、本体250上部に設置された熱源252により900℃〜1500℃に加熱されて本体250側面下部の導出口250bから導出される。このとき、ガス化ガスに含まれるタール分が熱分解される。また、タール分と共にガス化ガスに含まれる灰は、熱源252の熱により溶融スラグとなる。
(Specific configuration of the reforming furnace 120)
FIG. 2 is a perspective view schematically showing the appearance of the reforming furnace 120. As shown in FIG. 2A, the reforming furnace 120 includes a cylindrical body (here, a cylindrical shape) 250 having a central axis in the vertical direction. The main body 250 of the reforming furnace is composed of an outer casing material and a refractory material attached to the inside thereof. The gasification gas generated in the gasification furnace 210 is introduced from an inlet 250a on the upper side of the main body 250 of the reforming furnace 120, and is heated to 900 ° C. to 1500 ° C. by a heat source 252 installed on the upper portion of the main body 250. It is derived from the outlet 250b at the lower side of the 250 side surface. At this time, the tar content contained in the gasification gas is thermally decomposed. Further, the ash contained in the gasification gas together with the tar content becomes molten slag by the heat of the heat source 252.

改質炉120の本体250には、炉内のメンテナンスのため人が出入りできる程度(例えば、縦1m×横1m×貫通厚み1m)の貫通孔254が、例えば、図2(a)に示すように外壁の上下に2カ所設けられ、貫通孔254には、貫通孔254を閉塞可能な閉塞体256が嵌合されている。閉塞体256は、図2(b)のように、貫通孔254からの放熱を低減するための複数(ここでは8つ)の耐火煉瓦256aで構成され、その改質炉120の外面に相当する面には、引き抜き治具で狭持するための突出部材256bや、引き手256cが設けられている。   The main body 250 of the reforming furnace 120 has a through-hole 254 that allows a person to go in and out for maintenance in the furnace (for example, 1 m in length × 1 m in width × 1 m in penetration thickness) as shown in FIG. Two closures are provided on the top and bottom of the outer wall, and a closing body 256 capable of closing the through hole 254 is fitted into the through hole 254. As shown in FIG. 2B, the closing body 256 is composed of a plurality (eight in this case) of refractory bricks 256 a for reducing heat radiation from the through holes 254, and corresponds to the outer surface of the reforming furnace 120. The surface is provided with a protruding member 256b for holding with a pulling jig and a pulling hand 256c.

ただし、閉塞体256と貫通孔254との間には、閉塞体256を改質炉120から抜き差しするための数mm〜数十mmの隙間があるので、その隙間に改質炉120内で発生した溶融スラグが入り込み、粘着してメンテナンス作業に支障を来すおそれがある。そこで、本実施形態では、改質炉120の内壁に、溶融スラグを含むガス化ガスの鉛直下方への流動経路を貫通孔254から離隔する、庇として機能する突起部260を形成する。   However, since there is a gap of several mm to several tens of mm between the closing body 256 and the through hole 254 for inserting and removing the closing body 256 from the reforming furnace 120, the gap is generated in the reforming furnace 120. The molten slag that has entered may stick and stick to the maintenance work. Therefore, in the present embodiment, the protrusion 260 that functions as a ridge is formed on the inner wall of the reforming furnace 120 so as to separate the vertically downward flow path of the gasified gas including the molten slag from the through hole 254.

図3は、突起部260を説明するための説明図である。特に図3(a)は正面図に相当し、図3(b)は、図3(a)のAA横断面図、図3(c)は、図3(a)のBB縦断面図を示す。突起部260は、改質炉120の本体250内面に設けられ、突起部260の下端は、貫通孔254の鉛直上方に位置し、改質炉120内壁より内側に突出形成されている。本実施形態において、突起部260は、本体250の内壁である耐火材と一体形成される。したがって、突起部260の材料は本体250内壁の耐火材と等しくなる。ただし、突起部260を本体と別体に設けるとしてもよく、その材料も本体250内壁の耐火材と等しいのみならず、さらに剛性の高い他の材料を用いてもよい。   FIG. 3 is an explanatory diagram for explaining the protrusion 260. In particular, FIG. 3 (a) corresponds to a front view, FIG. 3 (b) shows an AA cross-sectional view of FIG. 3 (a), and FIG. 3 (c) shows a BB vertical cross-sectional view of FIG. 3 (a). . The protrusion 260 is provided on the inner surface of the main body 250 of the reforming furnace 120, and the lower end of the protrusion 260 is positioned vertically above the through hole 254 and protrudes inward from the inner wall of the reforming furnace 120. In the present embodiment, the protrusion 260 is integrally formed with a refractory material that is an inner wall of the main body 250. Therefore, the material of the protrusion 260 is equal to the refractory material of the inner wall of the main body 250. However, the protrusion 260 may be provided separately from the main body, and the material thereof is not only the same as that of the refractory material on the inner wall of the main body 250, but another material having higher rigidity may be used.

また、突起部260の本体250に沿った水平方向の幅W1は、貫通孔254の庇として機能すべく、突起部260の側面から溶融スラグが流入するのを回避するため、貫通孔254の幅W2より長く形成される。こうして、閉塞体256と貫通孔254との隙間への溶融スラグの侵入自体を防止することが可能となる。   Further, the horizontal width W1 along the main body 250 of the protrusion 260 is the width of the through hole 254 in order to prevent the molten slag from flowing from the side surface of the protrusion 260 in order to function as a flange of the through hole 254. It is formed longer than W2. In this way, it is possible to prevent the molten slag from entering the gap between the closing body 256 and the through hole 254 itself.

図4は、突起部260の横断面形状を説明するための横断面図である。突起部260は、図4(a)に示すように、鉛直下方に向かうに従って中心軸側(本体250中心側)に突出する傾斜面262を有す。かかる構成により、ガス化ガスや溶融スラグの流動経路が図4(b)のように形成され、閉塞体256と貫通孔254との隙間への溶融スラグの侵入自体を防止することが可能となる。   FIG. 4 is a cross-sectional view for explaining the cross-sectional shape of the protrusion 260. As shown in FIG. 4A, the protrusion 260 has an inclined surface 262 that protrudes toward the central axis (center side of the main body 250) as it goes vertically downward. With such a configuration, the flow path of the gasified gas and the molten slag is formed as shown in FIG. 4B, and it is possible to prevent the molten slag from entering the gap between the closing body 256 and the through hole 254 itself. .

また、突起部260の頂部264は、貫通孔254の上端から鉛直上方に向かうにしたがって中心軸側に離隔する仮想傾斜面266よりもさらに中心軸側に位置する。ここで、仮想傾斜面266は、貫通孔254の上端よりW3=1m鉛直上方において、中心軸側にW4=1cm突出した面を想定している。   In addition, the top portion 264 of the protrusion 260 is located further on the central axis side than the virtual inclined surface 266 that is separated toward the central axis side from the upper end of the through-hole 254 toward the vertical direction. Here, it is assumed that the virtual inclined surface 266 is a surface protruding W4 = 1 cm toward the central axis, W3 = 1 m vertically above the upper end of the through hole 254.

したがって、突起部260の鉛直位置に焦点をあてた場合、突起部260の頂部264が突出している長さW5は、突起部260の鉛直位置が仮に貫通孔254の上端の位置にあるとすると、0以上であり、貫通孔254の上端から0.5m鉛直上方の位置にあるとすると、0.5cm以上であり、貫通孔254の上端から1m鉛直上方の位置にあるとすると、1cm以上となる。かかる長さが突起部260の突出している長さW5の下限となる。ただし、突起部260の頂部264の鉛直位置は貫通孔254に近いほどよい。   Therefore, when the vertical position of the protrusion 260 is focused, the length W5 of the protrusion 260 protruding from the top 264 of the protrusion 260 is assumed that the vertical position of the protrusion 260 is at the upper end of the through hole 254. If it is 0 or more and is located at a position 0.5 m vertically above the upper end of the through hole 254, it is 0.5 cm or more, and if it is located 1 m vertically above the upper end of the through hole 254, it is 1 cm or more. . This length is the lower limit of the length W5 at which the protrusion 260 protrudes. However, the vertical position of the top 264 of the protrusion 260 is better as it is closer to the through hole 254.

また、突起部260の突出している長さW5の上限は特に限定する必要はないが、突起部260の材質および剛性を踏まえて20cm以下とするのが好ましい。さらに、上記傾斜面262から頂部264を跨いだ面268(頂部264から傾斜面262と反対側にある面268)は、傾斜面262と逆に、鉛直下方に向かうに従って断面厚みが内面側に漸減してもよく、さらには、内面から中心軸側に垂直に立設して成るのが望ましく、さらには、鉛直下方に向かうに従って断面厚みが中心軸側に漸減するのが望ましい。ただし、本体250内面と面268との成す角αが0°≦α≦110°の範囲であれば、突起部260は庇としての機能を担うことができる。   The upper limit of the protruding length W5 of the protruding portion 260 is not particularly limited, but is preferably 20 cm or less in consideration of the material and rigidity of the protruding portion 260. Further, the surface 268 extending from the inclined surface 262 to the top portion 264 (the surface 268 on the opposite side of the inclined surface 262 from the top portion 264) gradually decreases in cross-sectional thickness toward the inner surface side as it goes vertically downward. In addition, it is desirable to vertically stand from the inner surface to the central axis side, and it is further desirable that the cross-sectional thickness gradually decreases toward the central axis side as it goes vertically downward. However, if the angle α formed between the inner surface of the main body 250 and the surface 268 is in the range of 0 ° ≦ α ≦ 110 °, the protrusion 260 can serve as a ridge.

以上、説明した改質炉120によれば、改質炉120の貫通孔254を閉塞体256で閉塞するので、改質炉120からの放熱を低減することができ、突起部260が、壁面を自重で垂下する、または、ガス化ガスと共に降下する溶融スラグの閉塞体256と貫通孔254との隙間への侵入自体を防止するので、閉塞体256の損傷を伴うことなく、閉塞体256の抜き差しを容易にすることが可能となる。したがって、メンテナンス時において、容易に改質炉120内の点検を実行することができる。   As described above, according to the reforming furnace 120 described above, since the through hole 254 of the reforming furnace 120 is closed by the closing body 256, the heat radiation from the reforming furnace 120 can be reduced, and the protrusions 260 Since the molten slag that hangs down under its own weight or falls together with the gasification gas is prevented from entering the gap between the closed body 256 and the through-hole 254, the closed body 256 can be inserted and removed without causing damage to the closed body 256. Can be facilitated. Therefore, it is possible to easily check the inside of the reforming furnace 120 during maintenance.

また、突起部260によって、図4(b)の如く、鉛直下方に流れるガス化ガスが突起部260に衝突して乱れが生じ、ガス化ガスの温度分布の隔たりを回避し、均一化することが可能となるので、ガス化ガスに含まれるタール分の改質効率(分解率)が向上する。さらに、突起部260に衝突したガス化ガスは、攪拌により改質炉120内での滞留時間が長くなるので、タールの改質時間を十分に確保することが可能となる。また、突起部260は、改質炉120上部に位置する熱源252の輻射熱によって閉塞体256の劣化が促進するのを防止することができる。   Further, as shown in FIG. 4B, the gasification gas flowing vertically downward collides with the projection 260 and is disturbed by the projection 260, thereby avoiding the temperature distribution of the gasification gas and making it uniform. Therefore, the reforming efficiency (decomposition rate) of tar contained in the gasification gas is improved. Furthermore, since the gasification gas that collided with the protrusion 260 has a longer residence time in the reforming furnace 120 due to agitation, a sufficient tar reforming time can be secured. Further, the protrusion 260 can prevent the deterioration of the closing body 256 from being promoted by the radiant heat of the heat source 252 located above the reforming furnace 120.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Is done.

例えば、上述した実施形態においては、図5(a)に示したような、縦断面が三角形になるような突起部260を挙げて説明したが、突起部260は、鉛直下方に向かうに従って中心軸側に突出する傾斜面262を有すれば足り、図5(b)のような縦断面が台形であったり、図5(c)のように、傾斜面262が凸状の曲面であったり、また、図5(d)のように、凹状の曲面であってもよい。   For example, in the above-described embodiment, the projecting portion 260 having a triangular longitudinal section as illustrated in FIG. 5A has been described. However, the projecting portion 260 has a central axis as it goes vertically downward. It is sufficient to have the inclined surface 262 protruding to the side, and the longitudinal section as shown in FIG. 5B is trapezoidal, as shown in FIG. 5C, the inclined surface 262 is a convex curved surface, Moreover, as shown in FIG.5 (d), a concave curved surface may be sufficient.

本発明は、ガス化原料をガス化させることで生成されたガス化ガスを改質する改質炉に関する。   The present invention relates to a reforming furnace for reforming a gasification gas generated by gasifying a gasification raw material.

100 …ガス化ガス精製システム
110 …ガス化ガス生成装置
120 …改質炉
130 …熱交換器
140 …精製ガス化ガス抽出装置
150 …排水処理器
250 …本体
254 …貫通孔
256 …閉塞体
260 …突起部
262 …傾斜面
264 …頂部
266 …仮想傾斜面
268 …面
DESCRIPTION OF SYMBOLS 100 ... Gasification gas purification system 110 ... Gasification gas production | generation apparatus 120 ... Reforming furnace 130 ... Heat exchanger 140 ... Purification gasification gas extraction apparatus 150 ... Waste water treatment device 250 ... Main body 254 ... Through-hole 256 ... Closure body 260 ... Projection 262 ... inclined surface 264 ... top 266 ... virtual inclined surface 268 ... surface

Claims (4)

本体内でガスを改質する改質炉であって、
前記本体に設けられた貫通孔と、
前記貫通孔を閉塞可能な閉塞体と、
前記本体の内面に設けられ、その下端が前記貫通孔の鉛直上方に位置し、当該内面より本体中心側に突出形成された突起部と、
を備えたことを特徴とする改質炉。
A reforming furnace for reforming gas in the body,
A through hole provided in the main body;
A closing body capable of closing the through hole;
A protrusion formed on the inner surface of the main body, the lower end of which is positioned vertically above the through-hole, and protrudes from the inner surface toward the center of the main body;
A reforming furnace characterized by comprising:
前記突起部は、鉛直下方に向かうに従って本体中心側に突出する傾斜面を有し、その頂部が、前記貫通孔の上端から鉛直上方に向かうにしたがって本体中心側に離隔する仮想傾斜面よりもさらに本体中心側に位置することを特徴とする請求項1に記載の改質炉。   The protrusion has an inclined surface that protrudes toward the center of the main body as it goes vertically downward, and a top portion of the protrusion further than a virtual inclined surface that separates toward the center of the main body as it goes vertically upward from the upper end of the through hole. The reforming furnace according to claim 1, wherein the reforming furnace is located on the center side of the main body. 前記突起部の頂部に対して前記傾斜面と反対側にある面は、前記内面から本体中心側に立設して成ることを特徴とする請求項2に記載の改質炉。   The reforming furnace according to claim 2, wherein a surface that is opposite to the inclined surface with respect to a top portion of the protrusion is erected from the inner surface toward the center of the main body. 前記突起部の本体に沿った水平方向の幅は、前記貫通孔の幅より長いことを特徴とする請求項1から3のいずれか1項に記載の改質炉。   The reforming furnace according to any one of claims 1 to 3, wherein a horizontal width along the main body of the protrusion is longer than a width of the through hole.
JP2011138495A 2011-06-22 2011-06-22 Reforming furnace Active JP5796366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011138495A JP5796366B2 (en) 2011-06-22 2011-06-22 Reforming furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011138495A JP5796366B2 (en) 2011-06-22 2011-06-22 Reforming furnace

Publications (2)

Publication Number Publication Date
JP2013006900A true JP2013006900A (en) 2013-01-10
JP5796366B2 JP5796366B2 (en) 2015-10-21

Family

ID=47674524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011138495A Active JP5796366B2 (en) 2011-06-22 2011-06-22 Reforming furnace

Country Status (1)

Country Link
JP (1) JP5796366B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7552661B2 (en) 2021-07-21 2024-09-18 Jfeスチール株式会社 Method for refining coke oven gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097747U (en) * 1983-12-07 1985-07-03 株式会社日立製作所 coal gasifier
JP2003307303A (en) * 2002-04-16 2003-10-31 Ebara Corp Melting furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097747U (en) * 1983-12-07 1985-07-03 株式会社日立製作所 coal gasifier
JP2003307303A (en) * 2002-04-16 2003-10-31 Ebara Corp Melting furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7552661B2 (en) 2021-07-21 2024-09-18 Jfeスチール株式会社 Method for refining coke oven gas

Also Published As

Publication number Publication date
JP5796366B2 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
US8529648B2 (en) Mixing and feeding aqueous solution of alkali metal salt and particles of sulfur-containing carbonaceous fuel for gasification
US20110209407A1 (en) Heat recovery in black water flash systems
EP0223821A1 (en) METHOD FOR RECOVERING CHEMICALS AND ENERGY.
CA2673274A1 (en) Process and installation for generating electrical energy in a gas and steam turbine (combined cycle) power generating plant
JPS59176391A (en) coal gasifier
USH1325H (en) One stage coal gasification process
JP6098129B2 (en) Circulating fluidized bed gasifier
US20110209406A1 (en) Gasification system employing ejectors
JP6139845B2 (en) Carbon fuel gasification system
JP5796366B2 (en) Reforming furnace
JP5614027B2 (en) Circulating fluidized bed gasification method and apparatus
JP4930732B2 (en) Circulating fluidized bed gasification method and apparatus
JP2008208259A (en) Fuel gasification apparatus
JP4563627B2 (en) Gasification furnace for organic waste and organic waste gasification generator
AU2012100987A4 (en) Containerized Gassifier System
HK1198257A1 (en) Countercurrent gasification using synthesis gas as the working medium
CN214654697U (en) Coal gasification device
JP5509793B2 (en) Circulating fluidized bed gasifier
AU2011301418C1 (en) Method for generating synthesis gas
JP2002256274A (en) Fluidized bed gasification equipment
JP6008514B2 (en) Gas purification equipment for gasification gas
US7883682B2 (en) Carbon dioxide rich off-gas from a two stage gasification process
JP2005239492A (en) Hydrogen production apparatus and hydrogen production method
KR20140041232A (en) Gasifier including combined syngas cooler
US10131856B2 (en) Gasification quench system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150803

R151 Written notification of patent or utility model registration

Ref document number: 5796366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250