[go: up one dir, main page]

JP2013000626A - Fine air bubble generator - Google Patents

Fine air bubble generator Download PDF

Info

Publication number
JP2013000626A
JP2013000626A JP2011131811A JP2011131811A JP2013000626A JP 2013000626 A JP2013000626 A JP 2013000626A JP 2011131811 A JP2011131811 A JP 2011131811A JP 2011131811 A JP2011131811 A JP 2011131811A JP 2013000626 A JP2013000626 A JP 2013000626A
Authority
JP
Japan
Prior art keywords
gas
liquid
insertion member
diffuser
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011131811A
Other languages
Japanese (ja)
Inventor
Makoto Yamaguchi
誠 山口
Shigemitsu Hamabe
重光 浜辺
Somei Kataoka
聡明 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011131811A priority Critical patent/JP2013000626A/en
Publication of JP2013000626A publication Critical patent/JP2013000626A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem that a conventional microbubble generator or minute air bubble generator makes rotation in a water flow inside a cylinder and generates fine air bubbles in the water flow by catching air sucked therein, and in this case it is likely that excessive energy is consumed for rotation of water or a flow is impeded.SOLUTION: Contrary to the conventional device, the water flow is travelled straight, and a flow of air caught in it is rotated to generate the fine air bubbles in the water flow. This has an advantage of requiring less energy in rotating the air flow as compared with the water flow. That is, an inflow passage in which a pressurized liquid passes is narrowed in the middle to have a cone shape, and an insertion member is inserted therein so that a clearance between a tapered part outer wall of the insertion member and an inner wall of the cone-shaped part serves as a distribution passage of gas sucked from a gas inflow passage. The gas is mixed with a high-speed liquid ahead of the insertion member while swirling when passing through the distribution passage to be turned into the fine air bubbles, and is emitted from a discharge passage at high speed.

Description

本発明は、液体中にマイクロバブルやマイクロ・ナノバブル或いはナノバブル級の微細気泡を発生させるための非常に簡単な構造の微細気泡発生装置に関するものであり、特に、湖水、海水、沼水、風呂水などの水質浄化に適したものに関する。   The present invention relates to a microbubble generator having a very simple structure for generating microbubbles, micro / nanobubbles or nanobubble-class microbubbles in a liquid, and in particular, lake water, seawater, swamp water, bath water, etc. It is related to things suitable for water purification.

従来から、マイクロバブル発生装置とか微小気泡発生装置などと言う水中に微細な気泡を発生される装置が多数出願されている。これらの多くは、筒の中で水流に回転を起こさせ、そこに吸い込ませた空気を巻き込んで微細気泡として水流中に発生させるものである。この場合、水の回転に余分なエネルギーを消耗したり流れを阻害したりする可能性がある。   Conventionally, many devices for generating fine bubbles in water, such as microbubble generators and microbubble generators, have been filed. Many of these are those that cause rotation of the water flow in the cylinder and entrain the air sucked into the water flow to generate fine bubbles in the water flow. In this case, there is a possibility that excessive energy is consumed or the flow is obstructed by the rotation of water.

一方、水流が直進するタイプの微小気泡発生装置も提案されている(特許文献1、特許文献2)。しかし、特許文献1の場合、空気はリングスリットから放出されるようになっており、十分に水と気泡の混合がなされるかは疑問である。また、特許文献2の場合、空気吸込用の溝はノズル部材内の流水通路に対して接戦方向に形成されているが、溝孔が1〜1.5mmと小さいため一寸したゴミでも詰まりやすく、また全体が溶接されているため分解し辛く、1年もすると殆ど目詰まりで微細気泡を出さなくなる欠点がある。   On the other hand, a microbubble generator of a type in which the water stream goes straight has also been proposed (Patent Document 1, Patent Document 2). However, in the case of Patent Document 1, air is discharged from the ring slit, and it is doubtful whether water and bubbles are sufficiently mixed. In addition, in the case of Patent Document 2, the air suction groove is formed in the direction of contact with the flowing water passage in the nozzle member. In addition, since the whole is welded, it is difficult to disassemble, and after one year, there is a defect that fine bubbles are hardly generated due to clogging.

即ち、筒の中を流れる水流中に微細な気泡を発生して含有させるためには、一般的に、水の回転流(渦流)の中に気体を巻き込み、その渦流を止める、そのときに巻き込まれた気体が拡散される、と言うことが必要であると言われている。この渦流への気体の巻き込み方が重要なポイントになる。これが、従来殆どの微小気泡発生装置が採用する方式である。   That is, in order to generate and contain fine bubbles in the water flow flowing in the cylinder, in general, gas is entrained in the rotating flow (vortex) of water, and the vortex is stopped. It is said that it is necessary to say that the generated gas is diffused. An important point is how to entrain gas in the vortex. This is the method employed by most conventional microbubble generators.

特許第3968737号公報Japanese Patent No. 3968737 特開2008−23513号公報JP 2008-23513 A

本発明は、上記とは逆に、水流は直進させ、これに巻き込む空気の流れを回転させて水流中に微細な気泡を発生させるものある。液体の回転よりも、気体のスピンの方が小さいエネルギーですみ、微細気泡の発生が高効率にできる利点がある。   In the present invention, contrary to the above, the water flow advances straight, and the flow of air entrained in the water flow is rotated to generate fine bubbles in the water flow. Gas spin requires less energy than liquid rotation, and has the advantage of generating fine bubbles more efficiently.

本発明はこのような観点からなされたもので、筒中を流れる液体(直流)の吸引力を利用して気体を吸引し、狭い摺鉢状の隙間を気体が通過する間に旋回させ、或いは旋回板や螺旋状の溝や突条を利用して気体流の回転を積極的に起こし、液体と混合して微細気泡を発生させるものである。そして、隙間は孔ではなくスリット状であるためゴミによる目詰まりも生じにくい。また、特許文献2と異なり水に混入される気体量も多く、大量の微細気泡が発生する利点がある。また、例え目詰まりしても簡単に分解できるので修復し易い。   The present invention has been made from such a point of view. The gas is sucked by using the suction force of the liquid (direct current) flowing through the cylinder, and swirled while the gas passes through the narrow mortar-shaped gap, or swirled. The rotation of the gas flow is actively caused by using a plate, a spiral groove or a ridge, and mixed with the liquid to generate fine bubbles. Since the gap is not a hole but a slit, clogging due to dust is less likely to occur. Further, unlike Patent Document 2, the amount of gas mixed in water is large, and there is an advantage that a large amount of fine bubbles are generated. In addition, even if clogged, it can be easily disassembled, so that it is easy to repair.

尚、液体は主として水であり、気体は主として空気であるので、以下、液体を水、気体を空気として説明することもある。尚、気体は、殺菌などのためにオゾンや一酸化炭素を使用することも多い。水は、清浄な水、河川水や港湾の解放された水域、養殖池、溜め池、庭園の池、湖沼等の閉鎖された水域の水、或いは風呂や温泉などどのような水でもかまわない。ただ、ゴミなどは吸引前に除去しておく必要がある。   Since the liquid is mainly water and the gas is mainly air, hereinafter, the liquid may be described as water and the gas may be described as air. The gas often uses ozone or carbon monoxide for sterilization. The water may be clean water, river water, free water in a port, aquaculture pond, reservoir, garden pond, water in a closed water area such as a lake, or any water such as a bath or hot spring. However, it is necessary to remove dust before suction.

本発明の微細気泡発生装置は、原理的に騒音発生部位がなく、機械的稼働部は陸上ポンプ或いは水中ポンプのみで、水量・水位の変動に左右されず、空気から水への酸素の移動効率が高く、空気量が少なくて済む利点がある。ポンプは揚程が25m程度、圧力は0.15〜0.3Mpa程度のもので十分である。   The microbubble generator of the present invention has no noise generating part in principle, and the mechanical operating part is only a land pump or a submersible pump, and is not affected by fluctuations in the amount of water or water level, and the efficiency of oxygen transfer from air to water There is an advantage that the amount of air is small and high. A pump having a lift of about 25 m and a pressure of about 0.15 to 0.3 Mpa is sufficient.

本発明の微細気泡発生装置の基本構造は、加圧した液体が通過する流入路と、気体を高速吸引するための気体流入路と、微細気泡を含有する液体を高速で放出させる吐出路を備えるとともに、流入路の途中を摺鉢状に窄め、該摺鉢部に挿入部材を挿入したものである。そして、挿入部材の外壁は摺鉢部の内壁と同じテーパで該内壁とは所定距離を離れた寸法を持っており、挿入部材の内面は摺鉢状をしていて液体の流路となるとともに、挿入部材のテーパ部外壁と上記摺鉢部内壁との間の間隙は、上記気体流入路から吸引される気体の流通路になる。気体は該気体流通路を通過する間に旋回しながら挿入部材の突出部からスロートの周囲或いは突出部の前方で高速液体と混合されて微細気泡となり、吐出路から高速放出される。吐出路は、ディフューザーやノズルで構成される。   The basic structure of the fine bubble generating device of the present invention includes an inflow path through which pressurized liquid passes, a gas inflow path for high-speed suction of gas, and a discharge path for discharging liquid containing fine bubbles at high speed. At the same time, the middle of the inflow path is narrowed into a bowl shape, and an insertion member is inserted into the bowl portion. The outer wall of the insertion member has the same taper as the inner wall of the mortar part, and has a dimension away from the inner wall by a predetermined distance. The inner surface of the insertion member is shaped like a mortar and serves as a liquid flow path. The gap between the outer wall of the tapered portion of the insertion member and the inner wall of the scallop portion serves as a flow path for the gas sucked from the gas inflow path. The gas is mixed with the high-speed liquid around the throat or in front of the protrusion from the protrusion of the insertion member while swirling while passing through the gas flow passage to form fine bubbles, and is discharged from the discharge path at high speed. The discharge path is composed of a diffuser and a nozzle.

このように簡単な構造のため保守・点検が容易であり、また安価で小型化できる利点がある。また、加圧水は内径3.3cmのパイプ或いはもう一回り太い内径のパイプで大量に送り込まれ、しかも直線状に送出されるので、吐出路から7m乃至10m以上も遠くへ噴出させることができ、空気中の酸素を十分に水中に拡散させることができる。   Such a simple structure is easy to maintain and inspect, and has the advantage of being inexpensive and miniaturized. In addition, pressurized water is fed in a large amount by a pipe with an inner diameter of 3.3 cm or another pipe with a larger inner diameter, and is sent in a straight line, so that it can be ejected 7 m to 10 m or more away from the discharge path. The oxygen inside can be sufficiently diffused in water.

この摺鉢部や挿入部材の窄み部の角度(図1(a)のθ)は、60°から120°であり、より好ましくは、70°〜100°である。   The angle (θ in FIG. 1A) of the scalloped portion or the constricted portion of the insertion member is 60 ° to 120 °, and more preferably 70 ° to 100 °.

この微細気泡発生装置の本体部分(流入路、気体流入路、吐出路を含む本体部分)は、プラスチックの押出成形や金属の削り出し、或いはプラスチックの削り出しなどで形成できる。但し、押出成形は型代がかるしそう大量に作るものではないため不向きである。また、気体がオゾンの場合、チタン以外の金属だと腐食するので、最も好ましいのは、プラスチックの削り出し、中でも、テフロン樹脂(ポリテトラフルオロエチレン樹脂、デュポンの登録商標)の削り出しである。ただ、プラスチックでは使用により磨耗の心配がある。この場合には、チタンの削り出しを使用するとよい。削り出しの場合、流入路の直径や長さなども自在にできる利点がある。   The main body portion (main body portion including the inflow path, the gas inflow path, and the discharge path) of the fine bubble generator can be formed by plastic extrusion, metal cutting, or plastic cutting. However, extrusion molding is not suitable because the mold cost is not so large. In addition, when the gas is ozone, it corrodes if it is a metal other than titanium, so that most preferable is cutting out plastic, and in particular cutting out Teflon resin (polytetrafluoroethylene resin, registered trademark of DuPont). However, there is a concern about wear due to the use of plastic. In this case, it is preferable to use titanium cutting. In the case of cutting, there is an advantage that the diameter and length of the inflow channel can be freely adjusted.

本体部分の両側はフランジを取り付け、一方のフランジで挿入部材の鍔を押さえ、他方のフランジでディフューザーの鍔を押さえる。各フランジの内側にはパッキングを装着する。各フランジは、4本のボルトとナットで締めつけて本体を組み立てる。流入路は一方のフランジの孔にパイプを挿入して形成し、該パイプには水中ポンプ或いは陸上ポンプから液体を圧入する。吐出路4はディフューザーで構成されるが、ディフューザーの外側にノズルを取り付け、該ノズルから、微細気泡を含有する液体を高速で放出させる。尚、ディフューザーの内面は前方に向かって緩い拡がり傾斜を有する。   A flange is attached to both sides of the main body, and the flange of the insertion member is pressed with one flange, and the flange of the diffuser is pressed with the other flange. A packing is attached inside each flange. Each flange is assembled with four bolts and nuts to assemble the main body. The inflow path is formed by inserting a pipe into the hole of one flange, and liquid is pressed into the pipe from a submersible pump or a land pump. The discharge path 4 is composed of a diffuser. A nozzle is attached to the outside of the diffuser, and a liquid containing fine bubbles is discharged from the nozzle at a high speed. In addition, the inner surface of the diffuser has a gentle spreading slope toward the front.

このディフューザーの内径は、前方(液体の流れる方向)に向かって平行ないし3°度程度の拡がりであれば、液体R2の放出はあまりうまくいかない。ましてや窄まったりすれば、詰まりが生じて放出はうまくできない。この拡がり角度(図4(a)、図5(a)のα)は、本発明者らの実験によれば、6°前後、即ち6°±0.1〜0.2°のとき放出がもっとも巧くできる。10°以上もすと、逆にうまく放出されない。   If the inner diameter of the diffuser is parallel or expands about 3 ° toward the front (the direction in which the liquid flows), the discharge of the liquid R2 is not very successful. If it is even more constricted, clogging will occur and release will not be successful. According to the experiments by the present inventors, the spread angle (α in FIGS. 4 (a) and 5 (a)) is about 6 °, that is, the emission is 6 ° ± 0.1 to 0.2 °. Can do the most skillful. If the angle is more than 10 °, it is not released well.

挿入部材のテーパ部外壁に、旋回板或いは螺旋状の溝や突条を設けておくと、気体流入路3ら吸引される気体に積極的に旋回流を起こさせることができ、高速液体と微細気泡との混合がより強力に行われる。気体流通路7の寸法、即ち挿入部材のテーパ部外壁と摺鉢部内壁との間の間隙の寸法は、1.0〜1.5mm程度とするのが好ましいが、旋回板16を設ける場合は、その間隙の寸法は1.0〜2.5mm程度にするとよい。旋回板や螺旋状の突条の厚みも1.0〜2.5mm程度である。螺旋状の溝を設ける場合は間隙の寸法は1.0〜1.5mm程度とし、溝の深さは0.5mm程度とするとよい。尚、旋回板や螺旋状の突条や溝を設けたものにあっては、より細かな微細気泡(ナノバブル、マイクロ・ナノバブル)が発生する可能性が大きい。旋回板などが無い場合にはマイクロバブル級の微細気泡が発生すると思われる。   If a swirl plate or a spiral groove or protrusion is provided on the outer wall of the taper portion of the insertion member, the swirling flow can be positively caused in the gas sucked from the gas inflow path 3, and the high-speed liquid and fine Mixing with bubbles is more powerful. The size of the gas flow passage 7, that is, the size of the gap between the outer wall of the tapered portion of the insertion member and the inner wall of the mortar portion is preferably about 1.0 to 1.5 mm. The size of the gap is preferably about 1.0 to 2.5 mm. The thickness of the swivel plate and the spiral ridge is also about 1.0 to 2.5 mm. In the case of providing a spiral groove, the size of the gap is preferably about 1.0 to 1.5 mm, and the depth of the groove is preferably about 0.5 mm. In the case where a swivel plate or a spiral protrusion or groove is provided, there is a high possibility that finer fine bubbles (nano bubbles, micro / nano bubbles) are generated. When there is no swivel plate, it seems that microbubble class fine bubbles are generated.

吐出路をスロートとし、該スロートの前方にディフューザーを設けて該ディフューザーから微細気泡を含有した液体を高速放出したり、ディフューザーの前方にバッファタンク部を設けて、該バッファタンク部で気液混合物を減速して気体(微細気泡)の加圧溶解を行った後、微細気泡を含有した液体を高速放出したりすることもできる。或いは、吐出路をスロートとし、該スロートの前方に径を大きくしたリークションタンクを設けると、リークションタンク内で液体と微細気泡の混合物の流速を落として気体(微細気泡)の加圧溶解ができるので微細気泡の混合がより良好に行われる。そして、この場合、リークションタンクからより径を小さくしたディフューザーに連結し、ここから微細気泡を含有した液体を高速放出するようにする。リークションタンクとディフューザーの間にディフューザーの径よりも小さい孔径のオリフィスを設けると、気泡の更なる微細化が行える。リークションタンクのスロートからの拡がり角度(図5(b)のβ)は、図1(a)のθと同じか或いは幾分広い角度にするとよい。即ち、60°から120°であり、より好ましくは、80°〜100°である。   A discharge passage is used as a throat, and a diffuser is provided in front of the throat to discharge liquid containing fine bubbles from the diffuser at a high speed, or a buffer tank is provided in front of the diffuser, and a gas-liquid mixture is supplied in the buffer tank. After the pressure is reduced and the gas (fine bubbles) is pressurized and dissolved, the liquid containing the fine bubbles can be discharged at high speed. Alternatively, if a discharge tank having a discharge passage as a throat and having a large diameter in front of the throat is provided, the flow rate of the mixture of liquid and fine bubbles is reduced in the reaction tank, and the gas (fine bubbles) is dissolved under pressure. As a result, the fine bubbles can be mixed better. In this case, the diffusion tank is connected to a diffuser having a smaller diameter, and a liquid containing fine bubbles is discharged at high speed therefrom. If an orifice having a hole diameter smaller than that of the diffuser is provided between the reaction tank and the diffuser, the bubbles can be further refined. The spreading angle from the throat of the reaction tank (β in FIG. 5B) may be the same as or somewhat wider than θ in FIG. That is, it is 60 ° to 120 °, and more preferably 80 ° to 100 °.

上記いずれのタイプの微細気泡発生装置においても、気体流入路は、液体流入路に設けた摺鉢部の根元付近から中程位の間の位置に開口している。そして、気体は液体流入路を流れる加圧液体の吸引力で気体流入路から吸引され挿入部材のテーパ部外壁と摺鉢部内壁との間に形成された気体の流通路を通って旋回しながら挿入部材の突出部前方で高速液体と混合されて微細気泡となり、吐出路から高速放出される。   In any type of fine bubble generating device described above, the gas inflow path opens at a position between the vicinity of the root of the scalloped portion provided in the liquid inflow path and the middle position. The gas is sucked from the gas inflow path by the suction force of the pressurized liquid flowing through the liquid inflow path, and swirls through the gas flow path formed between the outer wall of the tapered portion of the insertion member and the inner wall of the mortar. It is mixed with the high-speed liquid in front of the protruding portion of the insertion member to form fine bubbles, which are discharged at high speed from the discharge path.

この気体流入路には、ニードルバルブやボールバルブなどのバルブを設けておけば、流入路を通過する気体量を調整して発生する気泡の直径や濃度(気泡の数)を可変にすることができる。また、気体流入路に逆止弁を組み込んでおけば、加圧液体の流入が停止した時に、気体流入路内にゴミなどの異物を含む液体が混入して、加圧液体の流入が開始されたときに気体通過を阻害することを防止することができる。   If a valve such as a needle valve or a ball valve is provided in this gas inflow path, the diameter and concentration (number of bubbles) of bubbles generated by adjusting the amount of gas passing through the inflow path can be made variable. it can. In addition, if a check valve is incorporated in the gas inflow path, when the inflow of pressurized liquid stops, liquid containing foreign substances such as dust enters the gas inflow path, and the inflow of pressurized liquid is started. It is possible to prevent the gas passage from being obstructed.

以上説明したように、本発明微細気泡発生装置は装置内で水流を直進させ、これに巻き込む空気の流れを回転させて水流中に微細な気泡を発生させるものある。従って、水流よりも空気流の方が回転させるエネルギーが少なくて済む利点がある。また、構造が非常にシンプルで製造も簡単にできて安価に得られ、故障も少ないなどの特徴がある。   As described above, the fine bubble generating apparatus of the present invention is configured to cause a water stream to travel straight in the apparatus and rotate the flow of air entrained in the apparatus to generate fine bubbles in the water stream. Therefore, there is an advantage that the air stream requires less energy to rotate than the water stream. In addition, the structure is very simple, can be manufactured easily, can be obtained at low cost, and there are few failures.

本発明微細気泡発生装置の一例を示すもので、(a)は微細気泡発生装置の縦断面図、(b)は挿入部材の正面図である。(実施例1)An example of this invention microbubble generator is shown, (a) is a longitudinal cross-sectional view of a microbubble generator, (b) is a front view of an insertion member. Example 1 本発明微細気泡発生装置の他の例を示すもので、(a)は微細気泡発生装置の縦断面図、(b)は挿入部材の正面図である。(c)は更に異なる挿入部材の正面図である。(実施例2)The other example of this invention microbubble generator is shown, (a) is a longitudinal cross-sectional view of a microbubble generator, (b) is a front view of an insertion member. (C) is a front view of a further different insertion member. (Example 2) 図1或いは図2の微細気泡発生装置における吐出路の長さを長くした吐出路を有する変形例を示すもので、(a)は縦断面図、(b)は気体の旋回状態を示す説明図である。(実施例3)The modification which has the discharge path which lengthened the length of the discharge path in the microbubble generator of FIG. 1 or FIG. 2 is shown, (a) is a longitudinal cross-sectional view, (b) is explanatory drawing which shows the turning state of gas. It is. (Example 3) 本発明微細気泡発生装置の異なる他の例の縦断面図である。(実施例4)It is a longitudinal cross-sectional view of the other example from which this invention microbubble generator differs. Example 4 本発明微細気泡発生装置の更に異なる他の例を示すもので、(a)は縦断面図、(b)は同じく縦断面図で液体の圧力説明図、(c)は気体の旋回状態を示す説明図である。(実施例5)FIG. 4 shows still another example of the microbubble generator of the present invention, where (a) is a longitudinal sectional view, (b) is a longitudinal sectional view of the same, and is an explanatory diagram of liquid pressure, and (c) is a gas swirling state. It is explanatory drawing. (Example 5)

加圧した液体が通過する流入路と、気体を高速吸引するための気体流入路と、微細気泡を含有する液体を高速で放出させる吐出路を備えるとともに、流入路の途中を摺鉢状に窄め、該摺鉢部に挿入部材を挿入する。挿入部材のテーパ部外壁と摺鉢部内壁との間の間隙は、上記気体流入路から吸引される気体の流通路になり、気体は該気体流通路を通過する間に旋回しながら挿入部材の突出部前方で高速液体と混合されて微細気泡となり、吐出路から高速放出される。   It has an inflow path through which pressurized liquid passes, a gas inflow path for high-speed suction of gas, and a discharge path for discharging liquid containing fine bubbles at high speed, and the middle of the inflow path is constricted in a slab shape. Therefore, an insertion member is inserted into the mortar. The gap between the outer wall of the tapered portion of the insertion member and the inner wall of the slab portion becomes a flow path for the gas sucked from the gas inflow path, and the gas swirls while passing through the gas flow path while the insertion member It is mixed with a high-speed liquid in front of the protruding portion to form fine bubbles, which are discharged from the discharge path at high speed.

図1は、本発明の請求項1に示す基本的な微細気泡発生装置の一例を示すもので、図1(a)は微細気泡発生装置の縦断面図、(b)は挿入部材の正面図である。この微細気泡発生装置1は、加圧した液体R1が通過する流入路2と、気体Kを高速吸引するための気体流入路3と、微細気泡MBを含有する液体R2を高速で放出させる吐出路4を備えている。そして、流入路2の途中を摺鉢状に窄めるとともに、該摺鉢部5には、該摺鉢部の内壁5aと同じテーパで該内壁5aとは所定距離を離れた寸法の外壁部6bをもつ挿入部材(ノズル)6を嵌挿する。該挿入部材の内面6aは摺鉢状をして液体R1の流路となるとともに、挿入部材6のテーパ部外壁6bと上記摺鉢部内壁5aとの間の間隙は、上記気体流入路3から吸引される気体Kの流通路7になる。気体Kは該気体流通路7を通過する間に旋回しながら挿入部材6の突出部6c前方で高速液体と混合されて微細気泡MBとなり、吐出路4から高速放出される。この吐出路4はディフューザー8、で構成される。   FIG. 1 shows an example of a basic fine bubble generating apparatus according to claim 1 of the present invention. FIG. 1 (a) is a longitudinal sectional view of the fine bubble generating apparatus, and FIG. 1 (b) is a front view of an insertion member. It is. This fine bubble generating device 1 includes an inflow passage 2 through which a pressurized liquid R1 passes, a gas inflow passage 3 for sucking the gas K at a high speed, and a discharge passage for discharging the liquid R2 containing the fine bubbles MB at a high speed. 4 is provided. Then, the middle of the inflow path 2 is narrowed into a mortar shape, and the mortar portion 5 has an outer wall portion having the same taper as the inner wall 5a of the mortar portion and a size separated from the inner wall 5a by a predetermined distance. An insertion member (nozzle) 6 having 6b is inserted. The inner surface 6a of the insertion member is shaped like a slab and serves as a flow path for the liquid R1, and a gap between the tapered outer wall 6b of the insertion member 6 and the inner slab part inner wall 5a is formed from the gas inflow passage 3. It becomes the flow path 7 of the gas K to be sucked. The gas K is swirled while passing through the gas flow passage 7 and mixed with the high-speed liquid in front of the protrusion 6 c of the insertion member 6 to form fine bubbles MB, and is discharged from the discharge path 4 at high speed. The discharge path 4 includes a diffuser 8.

この摺鉢部や挿入部材の窄み部の角度θは、60°から120°であり、より好ましくは、70°〜90°である。図1(a)のものは、θが80°である。また、突出部6cの内径は6〜8mm、ディフューザー8の始めの内径は10mm程度である。気体流入路の入り口は内径10mm、挿入部材6に接する部分の内径は6mm程度である。   The angle θ of the scalloped portion or the constricted portion of the insertion member is 60 ° to 120 °, and more preferably 70 ° to 90 °. In the case of FIG. 1A, θ is 80 °. Moreover, the internal diameter of the protrusion part 6c is 6-8 mm, and the internal diameter of the beginning of the diffuser 8 is about 10 mm. The inlet of the gas inflow passage has an inner diameter of 10 mm, and the inner diameter of the portion in contact with the insertion member 6 is about 6 mm.

尚、この微細気泡発生装置1の本体部分は、プラスチックの押出成形や金属の削り出し、或いはプラスチックの削り出しなどで形成できる。但し、押出成形は型代がかるしそう大量に作るものではないため不向きである。また、気体Kがオゾンの場合、金属だと腐食するので、最も好ましいのは、プラスチックの削り出し、中でも、テフロン樹脂(登録商標)の削り出し或いはチタンの削り出しである。削り出しの場合、流入路2の直径や長さなども自在にできる利点がある。   The main body portion of the microbubble generator 1 can be formed by plastic extrusion, metal cutting, or plastic cutting. However, extrusion molding is not suitable because the mold cost is not so large. In addition, when the gas K is ozone, it corrodes if it is a metal, so that the most preferable is the cutting of plastic, particularly the cutting of Teflon resin (registered trademark) or the cutting of titanium. In the case of cutting out, there is an advantage that the diameter and length of the inflow passage 2 can be freely set.

本体部分の両側はフランジ9、10を取り付け、フランジ9で挿入部材6の鍔6dを押さえ、フランジ10でディフューザー8の鍔8aを押さえる。符号11、12はパッキングである。各フランジ9、10は、4本のボルト13とナット13′で締めつけて本体を組み立てる。流入路2はフランジ9の孔9aにパイプ14を挿入して形成し、該パイプ14には水中ポンプ或いは陸上ポンプPから液体R1を圧入する。吐出路4はディフューザー8で構成されるが、ディフューザー8の外側にノズル15を取り付け、該ノズル15から、微細気泡MBを含有する液体R2を高速で放出させる。尚、ディフューザー8の内面8bは前方(液体R1の流れる方向、図で右向き)に向かって緩い拡がり傾斜(α)を有する。   The flanges 9 and 10 are attached to both sides of the main body, the flange 9 holds the flange 6d of the insertion member 6, and the flange 10 presses the flange 8a of the diffuser 8. Reference numerals 11 and 12 are packings. Each flange 9, 10 is fastened with four bolts 13 and nuts 13 'to assemble the main body. The inflow path 2 is formed by inserting a pipe 14 into the hole 9 a of the flange 9, and the liquid R 1 is pressed into the pipe 14 from a submersible pump or a land pump P. The discharge path 4 includes a diffuser 8. A nozzle 15 is attached to the outside of the diffuser 8, and the liquid R <b> 2 containing the fine bubbles MB is discharged from the nozzle 15 at a high speed. Note that the inner surface 8b of the diffuser 8 has a gentle spreading inclination (α) toward the front (the direction in which the liquid R1 flows, rightward in the figure).

図1(b)は、挿入部材6の正面図である。符号6bは挿入部材6のテーパ部外壁、符号6cは突出部、符号6dは鍔である。   FIG. 1B is a front view of the insertion member 6. Reference numeral 6b denotes an outer wall of the tapered portion of the insertion member 6, reference numeral 6c denotes a protruding portion, and reference numeral 6d denotes a flange.

次に、図2は本発明の請求項2に示す微細気泡発生装置の一例を示すもので、(a)は微細気泡発生装置の縦断面図、(b)は挿入部材の正面図である。この微小気泡発生装置1′は、挿入部材6′のテーパ部外壁6′bに、気体流入路3から吸引される気体Kに積極的に旋回流を起こさせる旋回板16を設け(図2(b)では4枚)たものであり、それ以外の形状・寸法は、気体流通路7の寸法以外は図1の挿入部材6と同じである。また、挿入部材6′以外の構成も図1の場合と同じである。気体流通路7の寸法は、図1の場合が1〜1.5mm程度であり、図2の場合1.0〜2.5mm程度である。旋回板16の厚みも 1.0〜2.5mm程度である。   Next, FIG. 2 shows an example of the fine bubble generator shown in claim 2 of the present invention, wherein (a) is a longitudinal sectional view of the fine bubble generator, and (b) is a front view of the insertion member. This microbubble generator 1 'is provided with a swirl plate 16 that positively causes a swirl flow in the gas K drawn from the gas inflow passage 3 on the outer wall 6'b of the insertion member 6' (FIG. 2 ( 4), the other shapes and dimensions are the same as those of the insertion member 6 in FIG. The configuration other than the insertion member 6 'is the same as that in FIG. The dimension of the gas flow passage 7 is about 1 to 1.5 mm in the case of FIG. 1 and about 1.0 to 2.5 mm in the case of FIG. The thickness of the swivel plate 16 is also about 1.0 to 2.5 mm.

図2(b)の挿入部材6′の場合、旋回板16により気体Kは気体流通路7を通過する間に強制的に旋回させられて、挿入部材6′の突出部6′c前方で高速液体と混合されて微細気泡MBとなり、吐出路4から高速放出される。また、図2(c)に示す挿入部材6′′の場合、テーパ部外壁6点′′bに螺旋条の溝16′或いは突条を設けたもので突出部6′′c前方で高速液体と混合されて微細気泡MBとなり、吐出路4から高速放出される。従って、図2(b)、(c)の装置では、気体の流れが右向きとなり、高速液体と微細気泡MBとの混合がより強力に行われる。ただ、混合に対する抵抗は図1の場合よりも大きくなる。図2(b)、(c)のように、テーパ部外壁6′bや6′′bに旋回板や螺旋状の突条や溝を設けたものの場合、発生する微細気泡は、より細かい(ナノバブル、マイクロ・ナノバブル)ものがが発生する可能性が大きい。   In the case of the insertion member 6 ′ in FIG. 2B, the gas K is forcibly swirled while passing through the gas flow passage 7 by the swivel plate 16, and high-speed in front of the protrusion 6 ′ c of the insertion member 6 ′. It is mixed with the liquid to form fine bubbles MB, and is discharged from the discharge path 4 at a high speed. In addition, in the case of the insertion member 6 ″ shown in FIG. 2 (c), a spiral groove 16 ′ or a protrusion is provided on the taper portion outer wall 6′′b. Are mixed to form fine bubbles MB and discharged from the discharge passage 4 at high speed. Therefore, in the apparatus shown in FIGS. 2B and 2C, the gas flow is directed to the right, and the high-speed liquid and the fine bubbles MB are mixed more strongly. However, the resistance to mixing is greater than in the case of FIG. As shown in FIGS. 2B and 2C, in the case where the outer wall 6′b or 6 ″ b of the taper portion is provided with a swivel plate or a spiral protrusion or groove, the generated fine bubbles are finer ( Nanobubbles, micro-nanobubbles) are likely to occur.

図3(a)に示す微細気泡発生装置1′′は、図1或いは図2の挿入部材の突出部6c、6′c、6′′cの先に細長いスロート17を組み込んだ変形例を示す。そして、この長いスロート17において加圧が行われて微細気泡MBの溶解度が増し、次のオリフィス18で微細気泡MBの剪断が行われ、ディフューザー8部分で微細気泡MBが飽和になり、放出される。図3(a)の下部に示すものは、は微細気泡発生装置1′′内部の液体R1に加わる圧力の変動を示す図である。即ち、摺鉢部5まで送り込まれた液体R1の圧力が次第に低下して挿入部材突出部6cの近傍で真空状態となり、スロート17部分で加圧され、オリフィス18部分で剪断され、ディフューザー8で微細気泡MBは飽和となり、大気圧となる。   A microbubble generator 1 ″ shown in FIG. 3 (a) shows a modification in which an elongated throat 17 is incorporated at the tip of the protruding portions 6c, 6′c, 6 ″ c of the insertion member of FIG. 1 or FIG. . Then, pressurization is performed in the long throat 17 to increase the solubility of the fine bubbles MB, the fine bubbles MB are sheared at the next orifice 18, and the fine bubbles MB are saturated and discharged at the diffuser 8 portion. . What is shown in the lower part of FIG. 3A is a diagram showing the fluctuation of the pressure applied to the liquid R1 inside the fine bubble generating device 1 ″. That is, the pressure of the liquid R1 fed to the mortar portion 5 gradually decreases and becomes a vacuum state in the vicinity of the insertion member protruding portion 6c, is pressurized at the throat 17 portion, is sheared at the orifice 18 portion, and is fined at the diffuser 8. The bubble MB becomes saturated and becomes atmospheric pressure.

図3(b)は、流通路7(挿入部材のテーパ部外壁6bと摺鉢部内壁5aの間の隙間)にある気体Kの流れと吐出部先端6cにおける微細気泡MBの動きを模式的に示す説明図である。ここで、流通路7において、気体K(右向き)は次第に回転を早め、吐出部先端6c近傍で液体R1に巻き込まれて微細気泡MBになり、吐出路4から放出される。   FIG. 3B schematically shows the flow of the gas K in the flow passage 7 (the gap between the tapered outer wall 6b of the insertion member and the inner wall 5a of the sliding bowl) and the movement of the fine bubbles MB at the discharge tip 6c. It is explanatory drawing shown. Here, in the flow passage 7, the gas K (rightward) gradually rotates faster, is entrained in the liquid R <b> 1 in the vicinity of the discharge portion distal end 6 c, becomes a fine bubble MB, and is discharged from the discharge path 4.

図4に示す微細気泡発生装置30は、スロート17にディフューザー8を直結し、ディフューザー8の前方にバッファタンク19を設け、バッファタンク19から微細気泡MBを多量に含んだ液体R2を高速で放出するものである。図4の下部に示すものは、微細気泡発生装置30内部の液体R1に加わる圧力の変動を示す図である。即ち、摺鉢部5(ノズル部)まで送り込まれた液体R1の圧力が次第に低下し、スロート17部で負圧(真空吸引)となり、ディフューザー8部分で加圧され、パッファタンク19で静圧剪断される。   4 directly connects the diffuser 8 to the throat 17 and provides a buffer tank 19 in front of the diffuser 8 to discharge the liquid R2 containing a large amount of fine bubbles MB from the buffer tank 19 at high speed. Is. What is shown in the lower part of FIG. 4 is a diagram showing fluctuations in pressure applied to the liquid R <b> 1 inside the microbubble generator 30. That is, the pressure of the liquid R1 sent to the mortar part 5 (nozzle part) gradually decreases, becomes negative pressure (vacuum suction) at the throat 17 part, is pressurized at the diffuser 8 part, and is hydrostatically sheared at the puffer tank 19. Is done.

次に、図5(a)は本発明の請求項5に示すの微細気泡発生装置の縦断面図の一例を示すものである。この微細気泡発生装置40は、図1に示す微細気泡発生装置1の吐出路4をスロート17とし、該スロート17の前方に径を大きくしたリークションタンク20を設けたものである。そして、このリークションタンク20内で液体と微細気泡MBの混合物(液体R2)の流速を落として気体の加圧溶解を行い、次いで径を小さくしたディフューザー8から微細気泡を含有した液体R2を高速放出するものである。   Next, FIG. 5 (a) shows an example of a longitudinal sectional view of the fine bubble generating apparatus according to claim 5 of the present invention. This fine bubble generating device 40 has a discharge passage 4 of the fine bubble generating device 1 shown in FIG. 1 as a throat 17 and a reaction tank 20 having a large diameter in front of the throat 17. In this reaction tank 20, the flow rate of the mixture of the liquid and the fine bubbles MB (liquid R2) is reduced, the gas is dissolved under pressure, and then the liquid R2 containing the fine bubbles is sent from the diffuser 8 having a reduced diameter at a high speed. To be released.

この微細気泡発生装置40では、リークションタンク20で微細気泡MBの混合物(液体R2)の流速を落として気体の加圧溶解を行うため、微細気泡MBの溶解度がより向上して、より濃度の高い微細気泡が発生する。   In this fine bubble generating device 40, since the pressure of the mixture of the fine bubbles MB (liquid R2) is reduced in the reaction tank 20 to perform gas pressure dissolution, the solubility of the fine bubbles MB is further improved and the concentration of the fine bubbles MB is increased. High fine bubbles are generated.

尚、図5(a)において、リークションタンク18とディフューザー8の間にディフューザー8の径よりも小さい孔径のオリフィス18を設けておくと、気泡MBの更なる微細化ができる(本発明請求項6)。オリフィス18は、ディフューザー8の根元を小さく抉ったものでもよいし、オリフィス板を嵌めるようにしてもよい。   In FIG. 5A, if an orifice 18 having a smaller diameter than that of the diffuser 8 is provided between the reaction tank 18 and the diffuser 8, the bubbles MB can be further refined (claims of the present invention). 6). The orifice 18 may be formed by narrowing the base of the diffuser 8 or may be fitted with an orifice plate.

図5(b)は、同図(a )における微細気泡発生装置40内の液体R1に加わる圧力の変動を示す図である。即ち、摺鉢部5まで送り込まれた液体R1の圧力が次第に低下して挿入部材突出部6cの近傍で真空状態となり、リークションタンク20部分で加圧され、オリフィス18部分で剪断されてクラスターが小さくなり、ディフューザー8で微細気泡MBは飽和となり、大気圧となる。リークションタンクのスロートからの拡がり角度(図5(b)のβ)は、図1(a)のθよりは幾分広い角度にするとよい。即ち、60°から120°であり、より好ましくは、80°〜100°である。図5(b)の場合、αは90°である。   FIG. 5B is a diagram showing fluctuations in pressure applied to the liquid R1 in the fine bubble generating device 40 in FIG. That is, the pressure of the liquid R1 fed to the mortar portion 5 gradually decreases and becomes a vacuum state in the vicinity of the insertion member protruding portion 6c, is pressurized in the region of the reaction tank 20 and is sheared in the portion of the orifice 18 to form a cluster. The microbubbles MB become saturated and become atmospheric pressure by the diffuser 8. The spreading angle from the throat of the reaction tank (β in FIG. 5B) may be a little wider than θ in FIG. That is, it is 60 ° to 120 °, and more preferably 80 ° to 100 °. In the case of FIG. 5B, α is 90 °.

図5(c)は、流通路7(挿入部材のテーパ部外壁6bと摺鉢部内壁5aの間の隙間)にある気体Kの流れと吐出部先端6cにおける微細気泡MBの動きを模式的に示す説明図である。ここで、流通路7において、気体Kは次第に回転(右向き)を早め、吐出部先端6c近傍で液体R1に巻き込まれて微細気泡MBになり、吐出路4から放出される。   FIG. 5C schematically shows the flow of the gas K in the flow passage 7 (the gap between the tapered outer wall 6b of the insertion member and the inner wall 5a of the sliding bowl) and the movement of the fine bubbles MB at the discharge tip 6c. It is explanatory drawing shown. Here, in the flow passage 7, the gas K gradually rotates (toward the right), is entrained in the liquid R <b> 1 in the vicinity of the discharge portion distal end 6 c, becomes a fine bubble MB, and is discharged from the discharge path 4.

また、前記各実施例において、ディフューザー8の内径は、前方(液体R1の流れる方向、図で右向き)に向かって平行ないし3度程度の拡がりであれば、液体R2の放出はあまりうまくいかない。ましてや窄まったりすれば、詰まりが生じて放出はうまくできない。この拡がり角度は本発明者らの実験の結果、6°前後、即ち6°±0.1〜0.2°のとき放出がもっとも巧くできることが判明した。10°以上もすると、逆にうまく放出されないものである(本発明請求項7)。   Further, in each of the above embodiments, if the inner diameter of the diffuser 8 extends in parallel or about 3 degrees toward the front (the direction in which the liquid R1 flows, rightward in the figure), the liquid R2 cannot be discharged very well. If it is even more constricted, clogging will occur and release will not be successful. As a result of experiments by the present inventors, it has been found that when the spread angle is around 6 °, that is, 6 ° ± 0.1 to 0.2 °, the release can be most accomplished. On the other hand, when the angle is 10 ° or more, it is not released well (claim 7).

次に、気体流入路3は、流入路2に設けたの摺鉢部5の根元付近から中程位の間の位置に開口している。そして、気体Kは流入路2を流れる加圧液体R1の吸引力で気体流入路3から吸引され挿入部材6のテーパ部外壁6bと上記摺鉢部内壁5aとの間に形成された気体Kの流通路7を通って旋回しながら挿入部材6の突出部6c前方で高速液体と混合されて微細気泡MBとなり、吐出路4から高速放出される。   Next, the gas inflow path 3 is opened to a position between the vicinity of the root of the mortar portion 5 provided in the inflow path 2 and a middle position. Then, the gas K is sucked from the gas inflow path 3 by the suction force of the pressurized liquid R1 flowing through the inflow path 2, and the gas K formed between the tapered outer wall 6b of the insertion member 6 and the inner wall 5a of the slide bowl is formed. While swirling through the flow passage 7, it is mixed with the high-speed liquid in front of the protruding portion 6 c of the insertion member 6 to become a fine bubble MB, and is discharged from the discharge path 4 at high speed.

この気体流入路3には、ニードルバルブやボールバルブなどのバルブ31を設けておけば、流入路を通過する気体量を調整して発生する気泡の直径や濃度(気泡の数)を可変にすることができる。また、気体流入路3に逆止弁32を組み込んでおけば、加圧液体の流入が停止した時に、気体流入路内にゴミなどの異物を含む液体が混入して、加圧液体の流入が開始されたときに気体通過を阻害することを防止することができる(本発明請求項8、請求項9)。   If a valve 31 such as a needle valve or a ball valve is provided in the gas inflow path 3, the diameter and concentration (number of bubbles) of bubbles generated by adjusting the amount of gas passing through the inflow path are made variable. be able to. Further, if the check valve 32 is incorporated in the gas inflow path 3, when the inflow of the pressurized liquid is stopped, the liquid containing foreign matters such as dust is mixed in the gas inflow path, and the inflow of the pressurized liquid is prevented. It is possible to prevent gas passage from being hindered when started (claims 8 and 9 of the present invention).

加圧した液体が通過する流入路の途中を摺鉢状に窄めて該部分に挿入部材を嵌め込み、挿入部材のテーパ部外壁と上記摺鉢状部分の内壁との間の間隙を気体流入路から吸引される気体の流通路とし、気体は該流通路を通過する間に旋回しながら挿入部材の前方で高速液体と混合されて微細気泡となり、吐出路から高速放出されるので、液体の旋回が不要となりエネルギーのロスが少ない微細気泡発生装置を提供する。   In the middle of the inflow path through which the pressurized liquid passes, the insertion member is fitted into the portion, and the gap between the outer wall of the tapered portion of the insertion member and the inner wall of the scallop-shaped portion is inserted into the gas inflow path. Since the gas is swirled while passing through the flow passage, the gas is mixed with the high-speed liquid in the front of the insertion member to form fine bubbles and discharged from the discharge passage at high speed. Is provided, and a fine bubble generating device with less energy loss is provided.

1・1′・1′′・30・40 微細気泡発生装置
2 流入路
R1 加圧液体
3 気体流入路
31 バブル
32 逆止弁
K 気体
4 吐出路
R2 微細気泡を含有する液体
MB 微細気泡
5 摺鉢部
5a 摺鉢部の内壁
6・6′・6′′ 挿入部材
6a・6′a・6′′a 内面
6b・6′b・6′′b テーパ部外壁
6c・6′c・6′′c 突出部
6d・6′d・6′′d 鍔
7 気体Kの流通路
8 ディフューザー
θ 摺鉢部や挿入部材の窄み部の角度
α ディフューザーの拡がり角度
β リークションタンクのスロートからの拡がり角度
8a 鍔
8b 内面
9 フランジ
9a 孔
10 フランジ
11 パッキング
12 パッキング
13 ボルト
13′ ナット
14 パイプ
P 水中ポンプ或いは陸上ポンプ
15 ノズル
16 旋回板
17 スロート
18 オリフィス
19 バッファタンク
20 リークションタンク
1, 1 ′, 1 ″, 30, 40 Fine bubble generator 2 Inflow path R1 Pressurized liquid 3 Gas inflow path 31 Bubble 32 Check valve K Gas 4 Discharge path R2 Liquid containing fine bubbles MB Fine bubbles 5 Sliding Bowl part 5a Inner wall of sliding bowl part 6, 6 ', 6 "Insert member 6a, 6'a, 6" a Inner surface 6b, 6'b, 6 "b Taper part outer wall 6c, 6'c, 6' ′ C Projection 6d ・ 6′d ・ 6′′d 鍔 7 Gas K flow path 8 Diffuser θ Angle of sliding bowl and constriction of insertion member α Expansion angle of diffuser β Expansion from throat of the reaction tank Angle 8a 鍔 8b Inner surface 9 Flange 9a Hole 10 Flange 11 Packing 12 Packing 13 Bolt 13 'Nut 14 Pipe P Submersible pump or Onshore pump 15 Nozzle 16 Swivel plate 17 Throat 18 Orifice 19 Buffer tank 20 Reaction tank

Claims (9)

加圧した液体が通過する流入路と、気体を高速吸引するための気体流入路と、微細気泡を含有する液体を高速で放出させる吐出路を備え、流入路の途中を摺鉢状に窄めるとともに、該摺鉢状の部分に嵌挿され該摺鉢状部分の内壁と同じテーパで該内壁とは所定距離を離れた寸法の外壁をもつ挿入部材であって、該挿入部材の内面は摺鉢状で液体の流路となるとともに、挿入部材のテーパ部外壁と上記摺鉢状部分の内壁との間の間隙を上記気体流入路から吸引される気体の流通路とし、気体は該流通路を通過する間に旋回しながら挿入部材の前方で高速液体と混合されて微細気泡となり、吐出路から高速放出されることを特徴とする微細気泡発生装置。   Equipped with an inflow path through which pressurized liquid passes, a gas inflow path for high-speed suction of gas, and a discharge path for releasing liquid containing fine bubbles at high speed, and the middle of the inflow path is constricted in a slab shape And an insertion member that is inserted into the scallop-shaped part and has an outer wall that is the same taper as the inner wall of the scallop-shaped part and that is separated from the inner wall by a predetermined distance, and the inner surface of the insertion member is A scallop-like liquid flow path and a gap between the outer wall of the taper portion of the insertion member and the inner wall of the scallop-shaped portion are used as a gas flow passage sucked from the gas inflow passage, and the gas flows A fine bubble generator characterized by being mixed with a high-speed liquid in front of an insertion member while turning while passing through a path to form fine bubbles and discharged at high speed from a discharge path. 挿入部材のテーパ部外壁に、気体流入路から吸引される気体に積極的に旋回流を起こさせる旋回板、或いは螺旋状の溝や突条を設け、該旋回板或いは螺旋状の溝や突条で旋回された気体を挿入部材の前方で高速液体と混合させるものである、請求項1記載の微細気泡発生装置。   Provided on the outer wall of the tapered portion of the insertion member is a swirling plate or a spiral groove or ridge that positively causes a swirling flow in the gas sucked from the gas inflow passage. The fine bubble generating device according to claim 1, wherein the gas swirled in is mixed with a high-speed liquid in front of the insertion member. 吐出路をスロートとし、該スロートの前方にディフューザーを設けて該ディフューザーから微細気泡を含有した液体を高速放出するものである、請求項1又は請求項2記載の微細気泡発生装置。   The fine bubble generator according to claim 1 or 2, wherein a discharge passage is used as a throat, a diffuser is provided in front of the throat, and a liquid containing fine bubbles is discharged from the diffuser at a high speed. ディフューザーの前方にバッファタンク部を設けて、該バッファタンク部で液体と微小気泡の混合物の流速を落として気体(微細気泡)の加圧溶解を行った後、微細気泡を含有した液体を高速放出するものである、請求項3記載の微細気泡発生装置。   A buffer tank is provided in front of the diffuser. After the gas (fine bubbles) is dissolved under pressure by reducing the flow rate of the mixture of liquid and fine bubbles in the buffer tank, the liquid containing fine bubbles is released at high speed. The fine bubble generating apparatus according to claim 3, wherein 吐出路をスロートとし、該スロートの前方に径を大きくしたリークションタンクを設け、該リークションタンク内で液体と微小気泡の混合物の流速を落として気体(微細気泡)の加圧溶解を行い、次いで径を小さくしたディフューザーから微細気泡を含有した液体を高速放出するものである、請求項1又は請求項2記載の微細気泡発生装置。   A discharge tank having a discharge path as a throat and a rectification tank having a large diameter in front of the throat is provided, and the flow rate of the mixture of liquid and microbubbles is reduced in the reaction tank to perform gas (microbubble) pressure dissolution. The fine bubble generating device according to claim 1 or 2, wherein a liquid containing fine bubbles is discharged at a high speed from a diffuser having a reduced diameter. リークションタンクとディフューザーの間にディフューザーの径よりも小さい孔径のオリフィスを設けて気泡の更なる微細化を行うものである、請求項5記載の微細気泡発生装置。   6. The fine bubble generating apparatus according to claim 5, wherein an orifice having a smaller hole diameter than that of the diffuser is provided between the reaction tank and the diffuser to further refine the bubbles. ディフューザーの内径は、前方に向かって6°前後の角度の広がりを有するものである、請求項3、請求項4、請求項5又は請求項6記載の微細気泡発生装置。   The microbubble generator according to claim 3, claim 4, claim 5 or claim 6, wherein the inner diameter of the diffuser has an angular spread of about 6 ° toward the front. 気体を高速吸引する流入路を通過する気体量をニードルバルブやボールバルブなどのバルブで調整することにより、発生する気泡の直径や濃度(気泡の数)を可変することができる請求項1乃至請求項7記載の何れか一項に記載の微細気泡発生装置。   The diameter and concentration (number of bubbles) of the generated bubbles can be varied by adjusting the amount of gas passing through the inflow path for sucking the gas at high speed by using a valve such as a needle valve or a ball valve. Item 8. The fine bubble generating device according to any one of Items 7 to 9. 加圧液体の流入が停止した時に、気体流入路内にゴミなどの異物を含む液体が混入して、加圧液体の流入が開始されたときに気体通過を阻害することを防止するために、気体流入路に逆止弁を取り付けてなる請求項1乃至請求項8記載の何れか一項に記載の微細気泡発生装置。   In order to prevent a liquid containing foreign substances such as dust from entering the gas inflow passage when the inflow of the pressurized liquid is stopped and inhibiting the gas passage when the inflow of the pressurized liquid is started, The microbubble generator according to any one of claims 1 to 8, wherein a check valve is attached to the gas inflow passage.
JP2011131811A 2011-06-14 2011-06-14 Fine air bubble generator Withdrawn JP2013000626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011131811A JP2013000626A (en) 2011-06-14 2011-06-14 Fine air bubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011131811A JP2013000626A (en) 2011-06-14 2011-06-14 Fine air bubble generator

Publications (1)

Publication Number Publication Date
JP2013000626A true JP2013000626A (en) 2013-01-07

Family

ID=47669781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011131811A Withdrawn JP2013000626A (en) 2011-06-14 2011-06-14 Fine air bubble generator

Country Status (1)

Country Link
JP (1) JP2013000626A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015006645A (en) * 2013-06-25 2015-01-15 学校法人八戸工業大学 Treatment method for protein-containing wastewater, purification method for wastewater, and treatment system for wastewater
WO2018225906A1 (en) * 2017-06-07 2018-12-13 황재구 Microbubble generating apparatus
WO2018225904A1 (en) * 2017-06-07 2018-12-13 황재구 Pipe structure enabling bubble generation
JP2019214012A (en) * 2018-06-12 2019-12-19 株式会社Okutec Fluid mixer, and emulsion preparation method
JP2020501893A (en) * 2016-12-15 2020-01-23 スミス,マイケル System and method for creating cavitation in a fluid
JP2020014984A (en) * 2018-07-23 2020-01-30 株式会社Pmt Mixer, fine bubble-containing fluid generation device, gas-liquid mixed phase fluid flow forming method and fine bubble-containing fluid generation method
JP2021045704A (en) * 2019-09-18 2021-03-25 三菱ケミカルエンジニアリング株式会社 Nozzle for fine air bubble generation, method for mixing air bubbles containing fine air bubbles with liquid by using the nozzle for fine air bubble generation, and biological reaction device provided with the nozzle for fine air bubble generation

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015006645A (en) * 2013-06-25 2015-01-15 学校法人八戸工業大学 Treatment method for protein-containing wastewater, purification method for wastewater, and treatment system for wastewater
JP2020501893A (en) * 2016-12-15 2020-01-23 スミス,マイケル System and method for creating cavitation in a fluid
WO2018225906A1 (en) * 2017-06-07 2018-12-13 황재구 Microbubble generating apparatus
WO2018225904A1 (en) * 2017-06-07 2018-12-13 황재구 Pipe structure enabling bubble generation
KR20190137884A (en) * 2017-06-07 2019-12-11 (주)해드림디앤엠 Tubular structure capable of bubble generation
KR102273004B1 (en) 2017-06-07 2021-07-05 (주)해드림디앤엠 Tube structure capable of generating bubbles
JP2019214012A (en) * 2018-06-12 2019-12-19 株式会社Okutec Fluid mixer, and emulsion preparation method
WO2019239833A1 (en) * 2018-06-12 2019-12-19 株式会社Okutec Fluid-mixing apparatus and emulsion preparation method
JP2020014984A (en) * 2018-07-23 2020-01-30 株式会社Pmt Mixer, fine bubble-containing fluid generation device, gas-liquid mixed phase fluid flow forming method and fine bubble-containing fluid generation method
WO2020022274A1 (en) * 2018-07-23 2020-01-30 株式会社Pmt Mixer, device for generating fluids containing fine bubbles, method for forming flow of gas-liquid mixed-phase fluids, and method for generating fluids containing fine bubbles
JP6999135B2 (en) 2018-07-23 2022-01-18 株式会社Pmt Mixer, fine bubble-containing fluid generator, gas-liquid multiphase fluid flow formation method and fine bubble-containing fluid generation method
JP2021045704A (en) * 2019-09-18 2021-03-25 三菱ケミカルエンジニアリング株式会社 Nozzle for fine air bubble generation, method for mixing air bubbles containing fine air bubbles with liquid by using the nozzle for fine air bubble generation, and biological reaction device provided with the nozzle for fine air bubble generation

Similar Documents

Publication Publication Date Title
JP2013000626A (en) Fine air bubble generator
JP6169749B1 (en) Microbubble generator
KR101483412B1 (en) Micro bubble nozzle
JP2008086868A (en) Microbubble generator
CN1236858C (en) liquid sprayer
JP2010075838A (en) Bubble generation nozzle
JP6533988B1 (en) Fine bubble generating device and fine bubble generating method, and shower device and oil water separation device having the fine bubble generating device
JP5257819B2 (en) Micro bubble generator
JP2007021343A (en) Microbubble generator
JP5573879B2 (en) Microbubble generator
JP2007278003A (en) Method and device for purifying sewage force-feed pipeline system
JP2010284619A (en) Microbubble generation apparatus and shower head
CN109731490A (en) A kind of the nano bubble method for generation and device of secondary pressurized multiple stage crushing
JP2007307450A (en) Bubble generating device
JP2008023435A (en) Microbubble generator
JP2012250138A (en) Microbubble generation nozzle and microbubble generator
JP5269493B2 (en) Micro bubble generator
JP2012120997A (en) Method for producing microbubble and device therefor
JP2007268390A (en) Bubble generating device
JP2018134587A (en) Microbubble generator
JP2002059186A (en) Water-jet type fine bubble generator
JP2007117799A (en) Microbubble generator and microbubble generating apparatus using the same
JP2008290051A (en) Fine bubble generator
KR100854687B1 (en) Fine bubble generator
JP2010029774A (en) Fine bubble generating apparatus

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902