[go: up one dir, main page]

JP2007278003A - Method and apparatus for purification treatment of sewage pressure feed line system - Google Patents

Method and apparatus for purification treatment of sewage pressure feed line system Download PDF

Info

Publication number
JP2007278003A
JP2007278003A JP2006108143A JP2006108143A JP2007278003A JP 2007278003 A JP2007278003 A JP 2007278003A JP 2006108143 A JP2006108143 A JP 2006108143A JP 2006108143 A JP2006108143 A JP 2006108143A JP 2007278003 A JP2007278003 A JP 2007278003A
Authority
JP
Japan
Prior art keywords
sewage
gas
peripheral surface
pipeline
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006108143A
Other languages
Japanese (ja)
Inventor
Hironori Hara
裕紀 原
Masafumi Inoue
雅史 井上
Sunao Miyauchi
直 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2006108143A priority Critical patent/JP2007278003A/en
Publication of JP2007278003A publication Critical patent/JP2007278003A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Sewage (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

【課題】下水管路へ微生物活性の維持に必要とする十分な酸素を供給することができる下水圧送管路系の浄化処理方法および装置を提供する。
【解決手段】ポンプ12によって下水を圧送する下水圧送管路系において、ポンプ12に接続する下水管路13の内部、もしくはポンプ12を設置したマンホール11の内部に滞留する下水中に注入気体として酸素もしくはオゾンを含む気体を注入するものであって、注入気体が気泡径の分布において0.1μm〜200μmの範囲にピークを有する。
【選択図】図1
The present invention provides a purification method and apparatus for a sewage pressure feed line system capable of supplying sufficient oxygen necessary for maintaining microbial activity to a sewage pipe line.
In a sewage pumping line system in which sewage is pumped by a pump, oxygen is introduced as an injected gas in the sewage that stays in the sewage pipe connected to the pump or in the manhole in which the pump is installed. Alternatively, a gas containing ozone is injected, and the injected gas has a peak in the range of 0.1 μm to 200 μm in the bubble diameter distribution.
[Selection] Figure 1

Description

本発明は下水圧送管路系の浄化処理方法および装置に関し、下水管路における悪臭の発生を防止する技術に係るものである。   The present invention relates to a purification method and apparatus for a sewage pressure line system, and relates to a technique for preventing generation of malodor in a sewage line.

従来、圧送式の下水管路は、例えば図10に示すように、下水管路1の途中にマンホール2を設け、マンホール2にポンプ3を設置し、上流側の下水管路1からマンホール2に流れ込んだ下水をポンプ3によって下流側の下水管路1へ送り出している。   Conventionally, as shown in FIG. 10, for example, as shown in FIG. 10, the pressure-feed sewage pipe is provided with a manhole 2 in the middle of the sewage pipe 1, a pump 3 is installed in the manhole 2, and the upstream sewage pipe 1 is connected to the manhole 2. The sewage that has flowed in is sent out to the sewage pipe 1 on the downstream side by the pump 3.

このような圧送式の下水管路1においてポンプ3は常時運転しておらず、マンホール2の水位が予め定める運転開始水位に達した時点でポンプ3が起動して送水を行い、マンホール2の水位が予め定める運転停止水位に達した時点でポンプ3は停止する。   In such a pressure-feed type sewage pipe 1, the pump 3 is not always operated. When the water level of the manhole 2 reaches a predetermined operation start water level, the pump 3 is activated to supply water, and the water level of the manhole 2 is The pump 3 stops when the predetermined stop water level is reached.

ところで、下水管路1は嫌気性の環境下にあり、下水管路1の途中に下水が滞留すると腐敗によって悪臭の原因物質である硫化水素等が発生し、次回の送水時に下流側のマンホール2へ悪臭の原因物質が押し出される。   By the way, the sewage pipe line 1 is in an anaerobic environment, and if sewage stays in the middle of the sewage pipe line 1, hydrogen sulfide or the like causing a bad odor is generated due to decay, and the manhole 2 on the downstream side at the time of the next water supply is generated. Substances causing bad odor are pushed out.

この悪臭を防止するために、図10に示すように、下水管路1の途中にコンプレッサー4で空気を吹き込んでいる。
また、特許文献1においては、マンホールポンプ場が、圧送管から分岐した返送管と、返送管を開閉する開閉弁と、自吸式のエアレーションミキサと、圧送管に接続した水中ポンプとを備えている。
In order to prevent this bad odor, air is blown into the sewage pipe 1 by a compressor 4 as shown in FIG.
In Patent Document 1, a manhole pump station includes a return pipe branched from a pressure feed pipe, an on-off valve that opens and closes the return pipe, a self-priming aeration mixer, and a submersible pump connected to the pressure feed pipe. Yes.

この構成において、水中ポンプの運転停止状態が所定時間続く場合には、返送管の開閉弁を開放し、マンホールポンプ場のポンプ井に圧送管内の汚水を返送し、エアレーションミキサを起動し、返送した汚水に酸素を供給し、汚水の曝気処理を行う。次に、エアレーションミキサの運転を停止し、その後所定時間が経過すると、水中ポンプを起動し、汚水を圧送管に再び圧送している。   In this configuration, when the operation stop state of the submersible pump continues for a predetermined time, the return pipe open / close valve is opened, the sewage in the pressure feed pipe is returned to the pump well of the manhole pump station, the aeration mixer is activated, and the return is returned. Supply oxygen to the sewage and aerate the sewage. Next, the operation of the aeration mixer is stopped, and after a predetermined time has elapsed, the submersible pump is activated and the sewage is pumped again to the pumping pipe.

また、特許文献2では、下水圧送用ポンプと空気注入コンプレッサーとを備えた下水圧送管路において、前記空気注入コンプレッサーと前記下水圧送用ポンプとを平行運転し、下水圧送用ポンプが停止した後、一定時間経過後に下水圧送用ポンプを駆動しない場合にのみ空気注入コンプレッサーを単独駆動している。   Moreover, in patent document 2, in the sewage pressure feed line provided with the sewage pressure feed pump and the air injection compressor, the air injection compressor and the sewage pressure feed pump are operated in parallel, and after the sewage pressure feed pump is stopped, The air injection compressor is driven alone only when the sewage pump is not driven after a certain period of time.

また、特許文献3では、汚水圧送管内の底部に長手方向の適当間隔おきに空気吹出し穴を設けた空気管を配設し、圧送用のポンプの停止時にも空気吹出し穴から下水中に空気を気泡状に吹き出すことにより、汚水を攪拌、曝気して好気性状態を保ち、硫化水素の発生を抑制し、浄化機能を向上させている。
特開2005−248516号公報 特開平11−172756号公報 特開平7−150612号公報
Moreover, in patent document 3, the air pipe which provided the air blowing hole in the bottom part in a sewage pressure feeding pipe at intervals of the longitudinal direction is arrange | positioned, and air is discharged from the air blowing hole into the sewage even when the pump for pumping is stopped. By blowing out in the form of bubbles, the sewage is agitated and aerated to maintain the aerobic state, the generation of hydrogen sulfide is suppressed, and the purification function is improved.
JP 2005-248516 A Japanese Patent Laid-Open No. 11-172756 JP-A-7-150612

しかし、上記の構成においては、コンプレッサー4で下水管路1に直接に空気を吹き込むために、空気の気泡径が数mmから数cmの範囲にあり、気泡径が大きいために下水への溶解速度(溶解効率)が低く、結果として下水の溶存酸素濃度が低くなる。   However, in the above configuration, since air is blown directly into the sewage pipe 1 by the compressor 4, the bubble diameter of the air is in the range of several millimeters to several centimeters, and the bubble diameter is large. (Dissolution efficiency) is low, and as a result, the dissolved oxygen concentration of sewage is low.

このため、下水管路内の好気性微生物へ必要量の酸素を十分に供給するためには大量の空気を供給する必要があり、消費するエネルギーが大きく、運転コストが高くなる。また、溶解しない空気が管内に気溜りを形成し、ポンプの運転時に送水を阻害するので、ポンプの運転が不安定となり、ポンプの消費電力が増加し、あるいはポンプが損傷する原因となっていた。   For this reason, in order to sufficiently supply the required amount of oxygen to the aerobic microorganisms in the sewage pipe, it is necessary to supply a large amount of air, which consumes a large amount of energy and increases the operating cost. In addition, undissolved air forms a puddle in the pipe and inhibits water supply during pump operation, resulting in unstable pump operation and increased pump power consumption or damage to the pump. .

本発明は上記の課題を解決するものであり、下水管路へ微生物活性の維持に必要とする十分な酸素を供給することができる下水圧送管路系の浄化処理方法および装置を提供することを目的とする。   This invention solves said subject, and provides the purification processing method and apparatus of a sewage pressure feed line system which can supply sufficient oxygen required for maintenance of microbial activity to a sewage pipe line. Objective.

上記課題を解決するために、本発明の下水圧送管路系の浄化処理方法は、ポンプによって下水を圧送する下水圧送管路系において、ポンプに接続する下水管路中、もしくはポンプを設置したマンホール内に滞留する下水中に酸素もしくはオゾンを含む気体を注入するものであって、前記気体が気泡径の分布において0.1μm〜200μmの範囲にピークを有することを特徴とする。   In order to solve the above-mentioned problems, a purification method for a sewage pressure pipeline system according to the present invention is a sewage pressure pipeline system in which sewage is pumped by a pump. A gas containing oxygen or ozone is injected into the sewage retained therein, and the gas has a peak in the range of 0.1 μm to 200 μm in the bubble diameter distribution.

本発明の下水圧送管路系の浄化処理装置は、マンホールにポンプを設置し、上流側の下水管路からマンホールに流れ込んだ下水をポンプによって下流側の下水管路へ送り出す下水圧送管路系において、下水管路を流れる下水に微細気泡を混気する微細気泡発生装置を備えたことを特徴とする。   The purification apparatus for the sewage pressure feed line system of the present invention is a sewage pressure feed line system in which a pump is installed in a manhole, and sewage flowing into the manhole from the upstream sewage pipe line is sent to the downstream sewage pipe line by the pump. Further, the present invention is characterized in that a fine bubble generating device for mixing fine bubbles in the sewage flowing through the sewage pipe is provided.

また、微細気泡の気泡径が0.1μm〜200μmであることを特徴とする。
また、微細気泡発生装置は、内周面が筒状をなすケーシングの内部に、外周面が筒状をなす気体供給部を配置し、ケーシングの内周面と気体供給部の外周面の間に下水が流れる混気流路を形成してなり、混気流路が一端で下水管路の上流側管路に連通し、他端で下水管路の下流側管路に連通し、酸素もしくはオゾンを含む気体の気体供給源に連通する気体供給部が微小孔を有する多孔体もしくは多孔質体からなることを特徴とする。
Moreover, the bubble diameter of a fine bubble is 0.1 micrometer-200 micrometers, It is characterized by the above-mentioned.
In addition, the fine bubble generating device includes a gas supply portion having an outer peripheral surface in a cylindrical shape inside a casing having an inner peripheral surface in a cylindrical shape, and a gap between the inner peripheral surface of the casing and the outer peripheral surface of the gas supply portion. It forms an air-mixing flow path through which sewage flows, and the air-mixing flow path communicates at one end with an upstream pipe of the sewer pipe and at the other end with a downstream pipe of the sewage pipe, and contains oxygen or ozone. The gas supply part connected to the gas supply source of gas consists of the porous body which has a micropore, or a porous body, It is characterized by the above-mentioned.

また、混気流路において下水が旋回して流れることを特徴とする。
また、気体供給部は外周面が円筒状をなし、ケーシングは内周面が円筒状をなして下水管路の上流側管路に連通する液体供給口を有し、液体供給口が混気流路へ接線方向に接続することを特徴とする。
Further, the sewage is swirled in the air-mixing flow path.
The gas supply part has a cylindrical outer peripheral surface, and the casing has a liquid supply port that has an inner peripheral surface cylindrical and communicates with the upstream pipe line of the sewage pipe. It is characterized by being connected in a tangential direction.

また、微細気泡発生装置は、酸素もしくはオゾンを含む気体の気体供給源に連通するケーシングの内部に内周面が筒状をなす気体供給部を配置し、気体供給部の内部に下水が流れる混気流路を形成してなり、混気流路が一端で下水管路の上流側管路に連通し、他端で下水管路の下流側管路に連通し、気体供給部が微小孔を有する多孔体もしくは多孔質体からなることを特徴とする。   In addition, the fine bubble generating device includes a gas supply unit having an inner peripheral surface in a cylindrical shape inside a casing communicating with a gas supply source of gas containing oxygen or ozone, and a mixture in which sewage flows inside the gas supply unit. An air flow channel is formed, the mixed gas flow channel communicates at one end with the upstream pipeline of the sewage pipeline, and communicates with the downstream pipeline of the sewage pipeline at the other end. It consists of a body or a porous body.

また、混気流路において液体が旋回して流れることを特徴とする。
また、気体供給部は内周面が円筒状をなし、混気流路が一端で液体供給部に連通し、液体供給部は下水管路の上流側管路に連通する液体供給口と、内周面が円筒状をなして混気流路へ連通する液体流路とを有し、液体供給口が液体流路へ接線方向に接続することを特徴とする。
Moreover, the liquid is swirled in the air-mixing flow path.
In addition, the gas supply unit has an inner peripheral surface of a cylindrical shape, the air-mixing channel communicates with the liquid supply unit at one end, the liquid supply unit communicates with a liquid supply port that communicates with an upstream pipeline of the sewage pipeline, And a liquid channel that communicates with the air-mixing channel with a cylindrical surface, and the liquid supply port is connected to the liquid channel in a tangential direction.

以上のように本発明によれば、下水管路中、もしくはマンホール内に滞留する下水中に注入する酸素もしくはオゾンを含む気体が、その気泡径の分布において0.1μm〜200μmの範囲にピークを有することにより、注入気体の溶解速度が高くなり、微生物活性の維持に必要とする十分な下水中の溶存酸素濃度を、従来よりも少ない気体量で達成でき、短時間で悪臭を低減でき、消費するエネルギーが小さくなり、運転コストを抑制できる。   As described above, according to the present invention, the gas containing oxygen or ozone injected into the sewage pipe or the sewage staying in the manhole has a peak in the range of 0.1 μm to 200 μm in the bubble diameter distribution. By having it, the dissolution rate of the injected gas is increased, and sufficient dissolved oxygen concentration in sewage necessary for maintaining microbial activity can be achieved with a smaller amount of gas than before, malodor can be reduced in a short time, and consumption The energy to do becomes small, and the operation cost can be suppressed.

また、気泡径が小さいことにより、気泡同士が合体し難く、水流に連行され易く、浮上し難くなるので、管路中における気泡の移動距離が長くなって気溜りが生じ難くなり、送水を阻害する要因とならないので、ポンプの運転が不安定となることがなく、ポンプの消費電力が増加せず、ポンプが損傷する原因とならない。   In addition, the small bubble diameter makes it difficult for the bubbles to coalesce, to be easily entrained in the water flow, and to be difficult to float. Therefore, the operation of the pump does not become unstable, the power consumption of the pump does not increase, and the pump is not damaged.

また、下水管路の限られた空間中に微細気泡発生装置によって酸素もしくはオゾンを含む気体を微細気泡として混気することにより、下水管路を流れる下水に対する注入気体の溶解速度が高くなり、結果として下水管路中の下水へ微生物活性の維持に必要とする十分な酸素を供給することができる。   In addition, by mixing the gas containing oxygen or ozone as fine bubbles in the limited space of the sewage pipeline as fine bubbles, the dissolution rate of the injected gas with respect to the sewage flowing through the sewage pipeline is increased. As a result, sufficient oxygen necessary for maintaining microbial activity can be supplied to the sewage in the sewage pipe.

微細気泡発生装置は、気体供給部の表面上に微小な半気泡状に噴出する酸素もしくはオゾンを含む気体を下水の旋回流が気体供給部の表面に沿って剪断することで微細気泡を発生させ、発生した微細気泡を下水の旋回流が連行する。このため、微生物活性のために必要十分な量の酸素もしくはオゾンを含む気体を微細気泡として下水中に容易に混気することができる。   The microbubble generator generates microbubbles by swirling sewage swirling along the surface of the gas supply section with a gas containing oxygen or ozone ejected in the form of small semi-bubbles on the surface of the gas supply section. The swirl flow of the sewage is entrained through the generated fine bubbles. For this reason, a gas containing oxygen or ozone in a sufficient amount necessary for microbial activity can be easily mixed into the sewage as fine bubbles.

以下、本発明の実施の形態を図面に基づいて説明する。図1に示すように、下水圧送管路系は、マンホール11にポンプ12を設置し、上流側の下水管路13からマンホール11に流れ込んだ下水をポンプ12によって下流側の下水管路13へ送り出すものであり、浄化処理装置をなす微細気泡発生装置14を備えている。本実施の形態において、微細気泡発生装置14は下水管路13の途中に注入気体として酸素もしくはオゾンを含む気体を注入するものであるが、この注入気体としては酸素ガス、空気、オゾンガス、オゾン化空気等の酸素もしくはオゾンを含むものであれば良い。また、微細気泡発生装置14としてはマンホール11の内部に設置して大気中の空気を吸い込む自吸式のものを使用することも可能である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the sewage pressure transmission line system has a pump 12 installed in a manhole 11, and sewage flowing into the manhole 11 from the upstream sewage pipe 13 is sent to the downstream sewage pipe 13 by the pump 12. It is provided with a fine bubble generating device 14 that forms a purification treatment device. In the present embodiment, the fine bubble generator 14 injects a gas containing oxygen or ozone as an injection gas in the middle of the sewage pipe 13, and the injection gas includes oxygen gas, air, ozone gas, ozonization. Any material containing oxygen such as air or ozone may be used. Further, as the fine bubble generating device 14, a self-priming type device that is installed inside the manhole 11 and sucks air in the atmosphere can be used.

図2に示すように、微細気泡発生装置14は、内周面が筒状をなすケーシング21の内部に、外周面が筒状をなす気体供給部22を配置し、ケーシング21の内周面と気体供給部22の外周面の間に下水が流れる混気流路23を形成してなる。   As shown in FIG. 2, the fine bubble generating device 14 includes a gas supply unit 22 having an outer peripheral surface in a cylindrical shape inside a casing 21 having an inner peripheral surface in a cylindrical shape, and an inner peripheral surface of the casing 21. An air-mixing flow path 23 in which sewage flows is formed between the outer peripheral surfaces of the gas supply unit 22.

混気流路23は一端で下水管路13の上流側管路に連通し、他端で下水管路13の下流側管路に連通し、気体供給部22にコンプレッサー24を接続している。コンプレッサー24は吸込側が注入気体の供給源(例えば大気、オゾン発生装置)に連通しており、気体供給部22が微小孔を有する多孔体もしくは多孔質体からなる。本実施の形態では気体供給部22がセラミックス製の多孔壁体からなり、微細孔から噴出する微細気泡の気泡径が0.1μm〜200μm以下となる。   The air-mixing channel 23 communicates at one end with the upstream pipeline of the sewage pipeline 13, communicates with the downstream pipeline of the sewage pipeline 13 at the other end, and connects the compressor 24 to the gas supply unit 22. The compressor 24 communicates with the supply source of the injected gas (for example, the atmosphere, ozone generator) on the suction side, and the gas supply unit 22 is made of a porous body or a porous body having micropores. In the present embodiment, the gas supply part 22 is made of a ceramic porous wall, and the bubble diameter of the fine bubbles ejected from the fine holes is 0.1 μm to 200 μm or less.

上記の構成により、コンプレッサー24により注入気体を供給し、気体供給部22を通して混気流路23に供給する。この混気流路23に噴出する微細気泡を気体供給部22の外周面に沿って流れる下水が連行することで、ポンプ12に接続する下水管路13の内部に(自吸式の場合はポンプ12を設置したマンホール11に滞留する下水中に)注入気体を注入する。   With the above configuration, the injection gas is supplied by the compressor 24 and supplied to the air-mixing flow path 23 through the gas supply unit 22. The sewage flowing along the outer peripheral surface of the gas supply unit 22 entrains the fine bubbles ejected into the air-mixing flow path 23, thereby allowing the fine gas bubbles to flow inside the sewage pipe 13 connected to the pump 12 (in the case of the self-priming type, the pump 12 The injection gas is injected into the sewage that stays in the manhole 11 in which is installed.

この注入気体がその気泡径の分布において0.1μm〜200μmの範囲にピークを有するものであることにより、注入気体の溶解速度が高くなり、微生物活性の維持に必要とする十分な下水中の溶存酸素濃度を、従来よりも少ない気体量で達成でき、短時間で悪臭を低減でき、コンプレッサー24で消費するエネルギーが小さくなり、運転コストを抑制できる。   The injection gas has a peak in the range of 0.1 μm to 200 μm in the bubble size distribution, so that the dissolution rate of the injection gas is increased, and sufficient sewage dissolved in the microbial activity is maintained. Oxygen concentration can be achieved with a smaller amount of gas than before, malodor can be reduced in a short time, energy consumed by the compressor 24 is reduced, and operating costs can be suppressed.

ここで、表1および図9において、注入気体の各平均気泡径における注入気体が飽和するまでの時間Txおよびそのときの溶存酸素濃度を説明する。   Here, in Table 1 and FIG. 9, the time Tx until the injected gas is saturated at each average bubble diameter of the injected gas and the dissolved oxygen concentration at that time will be described.

Figure 2007278003
表1および図9に示すように、平均気泡径が小さくなるほどに注入気体が飽和するまでの時間が短くなり、飽和時における溶存酸素濃度が高くなる。平均気泡径が0.1μmより小さくすると圧力損失が大きくなって非現実的なものとなり、平均気泡径が10mmより大きくなると微生物活性の維持に必要とする十分な下水中の溶存酸素濃度の達成が困難となる。
Figure 2007278003
As shown in Table 1 and FIG. 9, the time until the injected gas is saturated becomes shorter as the average bubble diameter becomes smaller, and the dissolved oxygen concentration at the time of saturation becomes higher. If the average bubble diameter is less than 0.1 μm, the pressure loss increases and becomes unrealistic. If the average bubble diameter is greater than 10 mm, sufficient dissolved oxygen concentration in sewage necessary for maintaining microbial activity is achieved. It becomes difficult.

また、気泡径が小さいことにより、気泡同士が合体し難く、水流に連行され易く、浮上し難くなるので、下水管路13の管路中における気泡の移動距離が長くなって管路中に気溜りが生じ難くなり、ポンプ12による送水を阻害する要因とならないので、ポンプ12の運転が不安定となることがなく、ポンプ12の消費電力が増加せず、ポンプ12が損傷する原因とならない。   In addition, since the bubble diameter is small, it is difficult for the bubbles to coalesce, to be easily entrained in the water flow, and to be difficult to rise. Therefore, the movement distance of the bubbles in the pipe line of the sewage pipe 13 becomes long, and the air bubbles are Since accumulation does not easily occur and does not hinder water supply by the pump 12, the operation of the pump 12 does not become unstable, the power consumption of the pump 12 does not increase, and the pump 12 is not damaged.

また、下水管路13の限られた空間中に微細気泡発生装置14によって注入気体を微細気泡として混気することにより、下水管路13を流れる下水に対する注入気体の溶解速度が高くなり、結果として下水管路13の下水へ微生物活性の維持に必要とする十分な酸素を供給することができる。   Further, by mixing the injected gas as fine bubbles in the limited space of the sewage pipeline 13 as a fine bubble, the dissolution rate of the injected gas into the sewage flowing through the sewage pipeline 13 is increased, and as a result. Sufficient oxygen required for maintaining microbial activity can be supplied to the sewage of the sewage pipe 13.

また、微細気泡発生装置14は、図3に示す構成とすることも可能である。図3に示すように、微細気泡発生装置14は、ケーシング21の内部に、内周面が円筒状をなす気体供給部22を配置し、気体供給部22の内部に下水が流れる混気流路23を形成しており、混気流路23は一端で下水管路13の上流側管路に連通し、他端で下水管路13の下流側管路に連通し、ケーシング21にコンプレッサー24を接続している。   Moreover, the fine bubble generator 14 can also be configured as shown in FIG. As shown in FIG. 3, in the fine bubble generating device 14, an air supply channel 23 in which a gas supply unit 22 having an inner peripheral surface formed in a cylindrical shape is disposed inside a casing 21, and sewage flows into the gas supply unit 22. The air-mixing flow path 23 communicates at one end with the upstream pipeline of the sewage pipeline 13, and communicates with the downstream pipeline of the sewage pipeline 13 at the other end, and connects the compressor 24 to the casing 21. ing.

上記の構成により、コンプレッサー24により注入気体を供給し、気体供給部22を通して混気流路23に供給する。この混気流路23に噴出する微細気泡を気体供給部22の内周面に沿って流れる下水が連行する。   With the above configuration, the injection gas is supplied by the compressor 24 and supplied to the air-mixing flow path 23 through the gas supply unit 22. Sewage flowing along the inner peripheral surface of the gas supply unit 22 entrains the fine bubbles ejected into the air-mixing channel 23.

また、微細気泡発生装置14は、図4〜図7に示す構成とすることも可能である。ここでは、微細気泡発生装置14のケーシング51は、内周面が円筒状をなす外筒部52と、外筒部52の両端に配置するフランジ部53、54と、一方のフランジ部53に水密に接合し、ボルト等の締結部材(図示省略)によって取り付けた端板55とからなる。   Moreover, the fine bubble generator 14 can also be configured as shown in FIGS. Here, the casing 51 of the fine bubble generating device 14 includes an outer cylinder part 52 having an inner peripheral surface of a cylindrical shape, flange parts 53 and 54 disposed at both ends of the outer cylinder part 52, and one flange part 53 in a watertight manner. And an end plate 55 attached by a fastening member (not shown) such as a bolt.

ケーシング51の外筒部52の内部には内筒を形成する気体供給部56を同心状に配置しており、気体供給部56は外周面が円筒状をなし、微小孔を有する多孔体もしくは多孔質体からなり、本実施の形態においては、気体供給部56がセラミックス製の多孔壁体からなる。   A gas supply part 56 forming an inner cylinder is disposed concentrically inside the outer cylinder part 52 of the casing 51, and the gas supply part 56 has a cylindrical outer peripheral surface and is a porous body or a porous body having micropores. In the present embodiment, the gas supply unit 56 is made of a ceramic porous wall.

ケーシング51の外筒部52の内周面と気体供給部56の外周面の間には下水が旋回流で流れる混気流路57を形成しており、混気流路57はケーシング51の軸心方向の一端で開口し、他端がゴムスカート58で水密に閉栓されている。ゴムスカート58は気体供給部56の端部に外嵌して一方のフランジ部53に保持されており、気体供給部56と端板55の間、気体供給部56と外筒部52の間に介装している。   Between the inner peripheral surface of the outer cylinder part 52 of the casing 51 and the outer peripheral surface of the gas supply part 56, an air-mixing flow path 57 through which sewage flows in a swirling flow is formed. The other end is watertightly closed with a rubber skirt 58. The rubber skirt 58 is externally fitted to the end of the gas supply unit 56 and is held by one flange portion 53, and between the gas supply unit 56 and the end plate 55 and between the gas supply unit 56 and the outer cylinder unit 52. It is intervening.

端板55およびゴムスカート58には気体供給部56の内部流路に連通する貫通孔55a、58aを形成しており、端板55の貫通孔55aにはねじ込み管継手59を接続している。ねじ込み管継手59は端板55の貫通孔55aに螺合するニップル59aとコンプレッサー24に接続するソケット59bからなる。   The end plate 55 and the rubber skirt 58 are formed with through holes 55 a and 58 a communicating with the internal flow path of the gas supply unit 56, and a threaded pipe joint 59 is connected to the through hole 55 a of the end plate 55. The threaded pipe joint 59 includes a nipple 59 a that is screwed into the through hole 55 a of the end plate 55 and a socket 59 b that is connected to the compressor 24.

気体供給部56の一端には栓体60を水密に接着固定しており、気体供給部56の内部に挿通したロッド61の一端が栓体60に連結されている。ロッド61は他端がニップル59aからソケット59bの内部に突出しており、この他端に螺合する蝶ナット62を締め付けることで、ロッド61を介して栓体60を抜け止めしている。   A plug 60 is watertightly fixed to one end of the gas supply unit 56, and one end of a rod 61 inserted into the gas supply unit 56 is connected to the plug 60. The other end of the rod 61 protrudes from the nipple 59 a into the socket 59 b, and the plug 60 is prevented from being removed via the rod 61 by tightening a wing nut 62 that is screwed to the other end.

ケーシング51の他方のフランジ部54には噴出部63がボルト等の締結部材(図示省略)によって固定されており、噴出部63はケーシング51のフランジ部54に水密に接合するフランジ部64とレヂューサ65からなり、レヂューサ65は途中に縮径部65aを有し、拡径する先端開口65bが下水管路13の下流側管路に連通している。   A jet part 63 is fixed to the other flange part 54 of the casing 51 by a fastening member (not shown) such as a bolt. The jet part 63 is connected to the flange part 54 of the casing 51 in a watertight manner and a reducer 65. The reducer 65 has a reduced diameter portion 65 a in the middle, and a tip opening 65 b that increases in diameter communicates with the downstream side pipeline of the sewage pipeline 13.

ケーシング51は下水管路13の上流側管路に連通する液体供給口66を有しており、液体供給口66は混気流路57へ接線方向に接続している。液体供給口66は下水管路13を接続するための連結部66aと、混気流路57に接続する接続口66bとを有し、接続口66bに注水角度調整部67を配置している。   The casing 51 has a liquid supply port 66 that communicates with the upstream side pipeline of the sewage pipeline 13, and the liquid supply port 66 is tangentially connected to the air-mixing channel 57. The liquid supply port 66 has a connecting portion 66a for connecting the sewage pipe 13 and a connection port 66b connected to the air-mixing flow channel 57, and a water injection angle adjusting portion 67 is arranged in the connection port 66b.

注水角度調整部67は液体供給口66の接続口66bに挿入する櫛歯状の二本のガイド部材67aと、ガイド部材67aを保持するフランジ部67bからなり、フランジ部67bを連結部66aおよび接続口66bのフランジ部66c、66dの間に介装し、ボルト等の締結部材(図示省略)で固定している。   The water injection angle adjustment unit 67 includes two comb-shaped guide members 67a inserted into the connection port 66b of the liquid supply port 66, and a flange portion 67b that holds the guide member 67a. The flange portion 67b is connected to the connection portion 66a and the connection portion 66a. It is interposed between the flange portions 66c and 66d of the opening 66b, and is fixed by a fastening member (not shown) such as a bolt.

注水角度調整部67はガイド部材67aの傾斜角度が異なるものを複数用意し、それらを取り替えることで旋回流の旋回ピッチを設定変更することができる。
上記の構成において、ポンプ12によって供給する下水を、液体供給口66を通して混気流路57へ供給する。注水角度調整部67から混気流路57へ流入する下水は、ガイド部材67aに案内されて気体供給部56および混気流路57の軸心に対して傾斜するように混気流路57へ流入し、混気流路57を旋回流で流れる。
A plurality of water injection angle adjusting portions 67 having different inclination angles of the guide member 67a are prepared, and the swirling pitch of the swirling flow can be set and changed by replacing them.
In the above configuration, the sewage supplied by the pump 12 is supplied to the air-mixing channel 57 through the liquid supply port 66. The sewage flowing from the water injection angle adjusting unit 67 into the mixed gas flow path 57 is guided by the guide member 67a and flows into the mixed gas flow path 57 so as to be inclined with respect to the axis of the gas supply unit 56 and the mixed gas flow path 57. It flows in the mixed air flow path 57 in a swirling flow.

ここで、ガイド部材67aの傾斜角度が異なる注水角度調整部67を使用すると、旋回流の旋回ピッチが変わり、旋回流が混気流路57を流れる間に気体供給部56の外周面に沿って流れる距離が変化する。   Here, when the water injection angle adjustment unit 67 having a different inclination angle of the guide member 67 a is used, the swirl pitch of the swirl flow changes, and the swirl flow flows along the outer peripheral surface of the gas supply unit 56 while flowing through the mixed gas flow path 57. The distance changes.

ガイド部材67aに案内されて混気流路57へ流入する際に、流入水が気体供給部56および混気流路57の軸心に対して傾斜する角度が90°に近いほどに、気体供給部56の外周面に沿って流れる距離が長くなり、気体供給部56の外周面における旋回角速度が速くなる。   When the guide member 67a is guided to flow into the air-mixing flow path 57, the angle at which the inflowing water is inclined with respect to the axis of the gas supply section 56 and the air-mixing flow path 57 is close to 90 °. The distance that flows along the outer peripheral surface of the gas supply portion increases, and the turning angular velocity on the outer peripheral surface of the gas supply unit 56 increases.

ガイド部材67aに案内されて混気流路57へ流入する際に、流入水が気体供給部56および混気流路57の軸心に対して傾斜する角度が0°に近いほどに、気体供給部56の外周面に沿って流れる距離が短くなり、気体供給部56の外周面における旋回角速度が遅くなる。   When the guide member 67a is guided to flow into the air-mixing flow path 57, the angle at which the inflowing water is inclined with respect to the axis of the gas supply section 56 and the air-mixing flow path 57 is close to 0 °. The distance flowing along the outer peripheral surface of the gas supply portion 56 becomes shorter, and the turning angular velocity on the outer peripheral surface of the gas supply unit 56 becomes slower.

一方、コンプレッサー24から加圧した注入気体を、ねじ込み管継手59を通して気体供給部56へ供給する。下水が混気流路57を旋回流で流れる状態において、注入気体が気体供給部56の微小孔を有する多孔体もしくは多孔質体からなる壁体を通して外周面から混気流路57へ噴出する。   On the other hand, the injected gas pressurized from the compressor 24 is supplied to the gas supply unit 56 through the screw fitting 59. In a state where the sewage flows in the mixed flow path 57 in a swirling flow, the injected gas is jetted from the outer peripheral surface to the mixed flow path 57 through the porous body having the micropores of the gas supply unit 56 or the wall body made of the porous body.

このとき、旋回流が気体供給部56の外周面に沿って流れ、気体供給部56の外周面上に微小な半気泡状に噴出する気体を旋回流が気体供給部56の外周面に沿って剪断することで微細気泡が発生し、発生した微細気泡を旋回流が気体供給部56の外周面から連行することで微細気泡が連続して発生する。   At this time, the swirl flow flows along the outer peripheral surface of the gas supply unit 56, and the swirl flow flows along the outer peripheral surface of the gas supply unit 56 with the gas ejected in the form of minute semi-bubbles on the outer peripheral surface of the gas supply unit 56. The fine bubbles are generated by shearing, and the fine bubbles are continuously generated by the swirling flow entrained from the outer peripheral surface of the gas supply unit 56.

この際に、気体供給部56の外周面における旋回流の旋回角速度が速いほどに微細気泡の粒径が小さくなり、旋回流が気体供給部56の外周面に沿って流れる距離が長くなるほどに連行する気泡量が多くなる。   At this time, as the swirling angular velocity of the swirling flow on the outer peripheral surface of the gas supply unit 56 increases, the particle size of the fine bubbles decreases, and as the distance that the swirling flow flows along the outer peripheral surface of the gas supply unit 56 increases. The amount of bubbles to be increased.

したがって、供給する下水の流速と供給する注入気体量を調整することにより、任意量の注入気体を微細気泡として下水中に混気することができる。本実施の形態ではポンプ12によって下水を混気流路57に供給するので、十分な旋回流の流速を確保することができる。   Accordingly, by adjusting the flow rate of the supplied sewage and the amount of injected gas to be supplied, an arbitrary amount of injected gas can be mixed into the sewage as fine bubbles. In the present embodiment, since the sewage is supplied to the mixed air flow path 57 by the pump 12, a sufficient swirling flow velocity can be ensured.

微細気泡を伴う気液混相の旋回流は混気流路57の一端の開口からケーシング51の外部へ流れ出て噴出部63へ流入する。噴出部63へ流入した気液混相の旋回流は縮径部65aを通り、レヂューサ65において旋回半径を拡径しながら移動し、先端開口65bから下水管路13の下流側管路へ流入する。   The swirling flow of the gas-liquid mixed phase accompanied by the fine bubbles flows out from the opening of one end of the mixed gas flow path 57 to the outside of the casing 51 and flows into the ejection part 63. The swirling flow of the gas-liquid mixed phase that has flowed into the jet part 63 passes through the reduced diameter part 65a, moves while the swirling radius is increased in the reducer 65, and flows into the downstream pipe line of the sewer pipe 13 from the tip opening 65b.

また、微細気泡発生装置14は、図8に示す構成とすることも可能である。ここでは、微細気泡発生装置14のケーシング71は、気体供給口72aを備えた外套72と、外套72の両側の端部73、74のうちで一方の端部73に水密に接合し、ボルト等の締結部材71aによって取り付けた端板75とからなる。   Moreover, the microbubble generator 14 can also be configured as shown in FIG. Here, the casing 71 of the fine bubble generating device 14 is watertightly joined to one end 73 of the outer sleeve 72 having the gas supply port 72a and the end portions 73, 74 on both sides of the outer sleeve 72, and bolts or the like. The end plate 75 is attached by the fastening member 71a.

ケーシング71の外套72の内部には気体供給部76を配置しており、気体供給部76は内周面が円筒状をなし、下水が旋回流で流れる混気流路77を形成している。気体供給部76は微小孔を有する多孔体もしくは多孔質体からなり、本実施の形態ではセラミックス製の多孔壁体からなる。   A gas supply unit 76 is disposed inside the outer casing 72 of the casing 71. The gas supply unit 76 has a cylindrical inner peripheral surface and forms an air-mixing channel 77 through which sewage flows in a swirling flow. The gas supply unit 76 is made of a porous body or a porous body having micropores, and in the present embodiment, is made of a ceramic porous wall.

混気流路77はケーシング71の軸心方向の一端で開口し、他端がゴムリング78で水密に閉栓されている。ゴムリング78は気体供給部76の端部と端板75との間に介装されている。   The air-mixing flow path 77 is opened at one end of the casing 71 in the axial direction, and the other end is sealed watertight by a rubber ring 78. The rubber ring 78 is interposed between the end of the gas supply unit 76 and the end plate 75.

端板75には気体供給部76の混気流路77に連通する貫通孔75aを形成しており、端板75の貫通孔75aに液体供給部79を接続している。
液体供給部79は通水装置24の連絡管29の上流側管路に連通する液体供給口80と、内周面が円筒状をなして混気流路77へ連通する液体流路81とを有している。
The end plate 75 is formed with a through hole 75 a communicating with the air-mixing flow path 77 of the gas supply unit 76, and the liquid supply unit 79 is connected to the through hole 75 a of the end plate 75.
The liquid supply unit 79 includes a liquid supply port 80 that communicates with the upstream line of the communication tube 29 of the water communication device 24, and a liquid channel 81 that has an inner peripheral surface that is cylindrical and communicates with the air-mixing channel 77. is doing.

液体供給口80は下水管路13の上流側管路に接続するための連結部80aと、液体流路81へ接線方向に接続する接続口80bとを有しており、接続口80bに注水角度調整部82を配置している。   The liquid supply port 80 has a connecting portion 80a for connecting to the upstream side pipeline of the sewage pipeline 13, and a connection port 80b for connecting to the liquid channel 81 in a tangential direction. An adjustment unit 82 is arranged.

注水角度調整部82は液体供給口80の接続口80bに挿入する櫛歯状の二本のガイド部材82aと、ガイド部材82aを保持するフランジ部82bからなり、フランジ部82bを連結部80aおよび接続口80bの間に介装し、ボルト等の締結部材(図示省略)で固定している。注水角度調整部82はガイド部材82aの傾斜角度が異なるものを複数用意し、それらを取り替えることで旋回流の旋回ピッチを設定変更することができる。   The water injection angle adjustment unit 82 includes two comb-shaped guide members 82a inserted into the connection port 80b of the liquid supply port 80 and a flange unit 82b that holds the guide member 82a. The flange unit 82b is connected to the connection unit 80a and the connection unit 80a. It is interposed between the mouths 80b and fixed with fastening members (not shown) such as bolts. A plurality of water injection angle adjusting units 82 having different inclination angles of the guide member 82a are prepared, and the swirling pitch of the swirling flow can be set and changed by replacing them.

ケーシング71の他方の端部74には噴出部83がボルト等の締結部材71bによって固定されており、噴出部83はケーシング71の端部74に水密に接合するフランジ部84とレヂューサ85からなり、レヂューサ85は小径部85aから先端開口85bへ向けて拡径し、先端開口85bが下水管路13の下流側管路に連通している。   An ejection portion 83 is fixed to the other end portion 74 of the casing 71 by a fastening member 71b such as a bolt. The ejection portion 83 includes a flange portion 84 and a reducer 85 which are joined to the end portion 74 of the casing 71 in a watertight manner. The reducer 85 increases in diameter from the small diameter portion 85 a toward the tip opening 85 b, and the tip opening 85 b communicates with the downstream pipe line of the sewer pipe 13.

上記の構成において、ポンプ12により下水を、液体供給部79の液体供給口80を通して液体流路81へ供給する。注水角度調整部82から液体流路81へ流入する下水は、ガイド部材82aに案内されて液体流路81の軸心に対して傾斜するように液体流路81へ流入し、液体流路81および混気流路77を旋回流で流れる。   In the above configuration, sewage is supplied to the liquid flow path 81 through the liquid supply port 80 of the liquid supply unit 79 by the pump 12. The sewage flowing into the liquid channel 81 from the water injection angle adjusting unit 82 is guided by the guide member 82 a and flows into the liquid channel 81 so as to be inclined with respect to the axis of the liquid channel 81. It flows in the mixed air flow path 77 in a swirling flow.

ここで、ガイド部材82aの傾斜角度が異なる注水角度調整部82を使用すると、旋回流の旋回ピッチが変わり、旋回流が混気流路77を流れる間に気体供給部76の内周面に沿って流れる距離が変化する。   Here, when the water injection angle adjustment unit 82 having a different inclination angle of the guide member 82 a is used, the swirl pitch of the swirl flow changes, and the swirl flow flows along the inner circumferential surface of the gas supply unit 76 while flowing through the mixed gas flow path 77. The flowing distance changes.

ガイド部材82aに案内されて液体流路81へ流入する際に、流入水が液体流路81の軸心に対して傾斜する角度が90°に近いほどに、気体供給部76の内周面に沿って流れる距離が長くなり、気体供給部76の内周面における旋回角速度が速くなる。   When flowing into the liquid flow path 81 by being guided by the guide member 82a, the angle at which the inflowing water is inclined with respect to the axial center of the liquid flow path 81 is closer to 90 ° on the inner peripheral surface of the gas supply unit 76. The distance which flows along becomes long, and the turning angular velocity in the internal peripheral surface of the gas supply part 76 becomes quick.

ガイド部材82aに案内されて液体流路81へ流入する際に、流入水が液体流路81の軸心に対して傾斜する角度が0°に近いほどに、気体供給部76の内周面に沿って流れる距離が短くなり、気体供給部76の外周面における旋回角速度が遅くなる。   When flowing into the liquid channel 81 by being guided by the guide member 82a, the angle at which the inflowing water is inclined with respect to the axis of the liquid channel 81 is closer to 0 °, so that The distance which flows along becomes short, and the turning angular velocity in the outer peripheral surface of the gas supply part 76 becomes slow.

一方、ブロア23から加圧した注入気体を、気体供給口72aを通して気体供給部76へ供給する。下水が混気流路77を旋回流で流れる状態において、注入気体は気体供給部76の微小孔を有する多孔体もしくは多孔質体からなる壁体を通して内周面から混気流路77へ噴出する。   On the other hand, the injection gas pressurized from the blower 23 is supplied to the gas supply part 76 through the gas supply port 72a. In a state where the sewage flows in the mixed flow path 77 in a swirling flow, the injected gas is jetted from the inner peripheral surface to the mixed flow path 77 through the porous body having the micropores of the gas supply section 76 or the wall body made of the porous body.

このとき、旋回流が気体供給部76の内周面に沿って流れ、気体供給部76の内周面上に微小な半気泡状に噴出する気体を旋回流が気体供給部76の内周面に沿って剪断することで微細気泡が発生し、発生した微細気泡を旋回流が気体供給部76の内周面から連行することで微細気泡が連続して発生する。   At this time, the swirling flow flows along the inner peripheral surface of the gas supply unit 76, and the swirling flow is the inner peripheral surface of the gas supply unit 76, which is ejected in a minute semi-bubble shape on the inner peripheral surface of the gas supply unit 76. The microbubbles are generated by shearing along the line, and the microbubbles are continuously generated by the swirling flow entrained from the inner peripheral surface of the gas supply unit 76.

この際に、気体供給部76の内周面における旋回流の旋回角速度が速いほどに微細気泡の粒径が小さくなり、旋回流が気体供給部76の内周面に沿って流れる距離が長くなるほどに連行する気泡量が多くなる。   At this time, the higher the swirling angular velocity of the swirling flow on the inner peripheral surface of the gas supply unit 76, the smaller the particle size of the fine bubbles, and the longer the distance the swirling flow flows along the inner peripheral surface of the gas supplying unit 76. The amount of bubbles entrained in increases.

したがって、供給する下水の流速と供給する注入気体量を調整することにより、任意量の注入気体を微細気泡として下水中に混気することができる。本実施の形態ではポンプ12によって下水を混気流路77に供給するので、十分な旋回流の流速を確保することができる。   Accordingly, by adjusting the flow rate of the supplied sewage and the amount of injected gas to be supplied, an arbitrary amount of injected gas can be mixed into the sewage as fine bubbles. In this embodiment, since the sewage is supplied to the mixed air flow path 77 by the pump 12, a sufficient swirling flow velocity can be secured.

微細気泡を伴う気液混相の旋回流は混気流路77の一端の開口からケーシング71の外部へ流れ出て噴出部83へ流入する。噴出部83へ流入した気液混相の旋回流は小径部85aを通り、レヂューサ85において旋回半径を拡径しながら移動し、先端開口85bから下水管路13の下流側管路へ流れ出る。   The swirling flow of the gas-liquid mixed phase accompanied by fine bubbles flows out of the casing 71 through the opening at one end of the mixed gas flow channel 77 and flows into the ejection part 83. The swirling flow of the gas-liquid mixed phase that has flowed into the ejection portion 83 passes through the small-diameter portion 85a, moves while the swirling radius is increased in the reducer 85, and flows out from the tip opening 85b to the downstream side conduit of the sewer pipe 13.

本発明の実施の形態における浄化処理装置を示す模式図The schematic diagram which shows the purification processing apparatus in embodiment of this invention 同浄化処理装置の微細気泡発生装置を示す断面図Sectional drawing which shows the fine bubble generator of the purification processing apparatus 本発明の他の実施の形態における微細気泡発生装置を示す断面図Sectional drawing which shows the microbubble generator in other embodiment of this invention 本発明の他の実施の形態における微細気泡発生装置を示す一部破断断面図The partially broken sectional view which shows the fine bubble generator in other embodiment of this invention 同気泡発生装置の噴出部を示す断面図Sectional drawing which shows the ejection part of the bubble generator 同気泡発生装置の要部を示す断面図Sectional drawing which shows the principal part of the bubble generator 同気泡発生装置の要部を示す断面図Sectional drawing which shows the principal part of the bubble generator 本発明の他の実施の形態における微細気泡発生装置を示す一部破断断面図The partially broken sectional view which shows the fine bubble generator in other embodiment of this invention 各平均気泡径における注入気体の飽和に要する時間と溶存酸素濃度の関係を示すグラフ図Graph showing the relationship between the time required for saturation of the injected gas and the dissolved oxygen concentration at each average bubble size 従来の浄化処理装置を示す模式図Schematic diagram showing a conventional purification device

符号の説明Explanation of symbols

11 マンホール
12 ポンプ
13 下水管路
14 微細気泡発生装置
21 ケーシング
22 気体供給部
23 混気流路
24 コンプレッサー
51 ケーシング
52 外筒部
53、54 フランジ部
55 端板
55a 貫通孔、
56 気体供給部
57 混気流路
58 ゴムスカート
58a 貫通孔
59 ねじ込み管継手
59a ニップル
59b ソケット
60 栓体
61 ロッド
62 蝶ナット
63 噴出部
64 フランジ部
65 レヂューサ
65a 縮径部
65b 先端開口
66 液体供給口
66a 連結部
66b 接続口
66c、66d フランジ部
67 注水角度調整部
67a ガイド部材
67b フランジ部
71 ケーシング
72 外套
72a 気体供給口
73、74 端部
75 端板
75a 貫通孔
76 気体供給部
77 混気流路
78 ゴムリング
79 液体供給部
80 液体供給口
81 液体流路
80a 連結部
80b 接続口
82 注水角度調整部
82a ガイド部材
82b フランジ部
83 噴出部
84 フランジ部
85 レヂューサ
85a 縮径部
85b 先端開口
DESCRIPTION OF SYMBOLS 11 Manhole 12 Pump 13 Sewage pipe 14 Fine bubble generator 21 Casing 22 Gas supply part 23 Mixed air flow path 24 Compressor 51 Casing 52 Outer cylinder part 53, 54 Flange part 55 End plate 55a Through-hole,
56 Gas supply part 57 Mixed air flow path 58 Rubber skirt 58a Through hole 59 Screwed fitting 59a Nipple 59b Socket 60 Plug body 61 Rod 62 Wing nut 63 Jetting part 64 Flange part 65 Reducer 65a Reduced diameter part 65b End opening 66 Liquid supply port 66a Connecting part 66b Connection port 66c, 66d Flange part 67 Water injection angle adjustment part 67a Guide member 67b Flange part 71 Casing 72 Outer sleeve 72a Gas supply port 73, 74 End part 75 End plate 75a Through hole 76 Gas supply part 77 Mixed air flow path 78 Rubber Ring 79 Liquid supply part 80 Liquid supply port 81 Liquid flow path 80a Connection part 80b Connection port 82 Water injection angle adjustment part 82a Guide member 82b Flange part 83 Ejection part 84 Flange part 85 Reducer 85a Reduced diameter part 85b End opening

Claims (9)

ポンプによって下水を圧送する下水圧送管路系において、ポンプに接続する下水管路中、もしくはポンプを設置したマンホール内に滞留する下水中に酸素もしくはオゾンを含む気体を注入するものであって、前記気体が気泡径の分布において0.1μm〜200μmの範囲にピークを有することを特徴とする下水圧送管路系の浄化処理方法。 In a sewage pumping pipeline system for pumping sewage by a pump, a gas containing oxygen or ozone is injected into a sewage pipeline connected to the pump or sewage staying in a manhole where the pump is installed, A purification method for a sewage pressure-feed line system, characterized in that the gas has a peak in the range of 0.1 μm to 200 μm in the bubble diameter distribution. マンホールにポンプを設置し、上流側の下水管路からマンホールに流れ込んだ下水をポンプによって下流側の下水管路へ送り出す下水圧送管路系において、下水管路を流れる下水に微細気泡を混気する微細気泡発生装置を備えたことを特徴とする下水圧送管路系の浄化処理装置。 A pump is installed in the manhole, and in the sewage pressure feed line system that sends the sewage flowing from the upstream sewage pipe into the manhole to the downstream sewage pipe, fine bubbles are mixed in the sewage flowing through the sewage pipe. A purification apparatus for a sewage pressure feed line system comprising a fine bubble generator. 微細気泡の気泡径が0.1μm〜200μmであることを特徴とする請求項2記載の下水圧送管路系の浄化処理装置。 The purification treatment apparatus for a sewage pressure feeding pipeline system according to claim 2, wherein the bubble diameter of the fine bubbles is 0.1 µm to 200 µm. 微細気泡発生装置は、内周面が筒状をなすケーシングの内部に、外周面が筒状をなす気体供給部を配置し、ケーシングの内周面と気体供給部の外周面の間に下水が流れる混気流路を形成してなり、混気流路が一端で下水管路の上流側管路に連通し、他端で下水管路の下流側管路に連通し、酸素もしくはオゾンを含む気体の気体供給源に連通する気体供給部が微小孔を有する多孔体もしくは多孔質体からなることを特徴とする請求項2又は3記載の下水圧送管路系の浄化処理装置。 In the fine bubble generator, a gas supply unit having an outer peripheral surface in a cylindrical shape is arranged inside a casing having an inner peripheral surface in a cylindrical shape, and sewage is disposed between the inner peripheral surface of the casing and the outer peripheral surface of the gas supply unit. The mixed gas flow channel is formed, and the mixed gas flow channel communicates at one end with the upstream pipeline of the sewage pipeline, and communicates with the downstream pipeline of the sewage pipeline at the other end of the gas containing oxygen or ozone. 4. A purification apparatus for a sewage pressure feeding line system according to claim 2 or 3, wherein the gas supply section communicating with the gas supply source is made of a porous body or a porous body having micropores. 混気流路において下水が旋回して流れることを特徴とする請求項4記載の下水圧送管路系の浄化処理装置。 The purification treatment apparatus for a sewage pressure feed line system according to claim 4, wherein the sewage flows while swirling in the mixed air flow path. 気体供給部は外周面が円筒状をなし、ケーシングは内周面が円筒状をなして下水管路の上流側管路に連通する液体供給口を有し、液体供給口が混気流路へ接線方向に接続することを特徴とする請求項4又は5記載の下水圧送管路系の浄化処理装置。 The gas supply section has a cylindrical outer peripheral surface, and the casing has a liquid supply port communicating with the upstream pipe line of the sewer pipe with the inner peripheral surface cylindrical, and the liquid supply port is tangential to the mixed gas flow path 6. A purification apparatus for a sewage pressure feed line system according to claim 4 or 5, wherein the purification treatment apparatus is connected in a direction. 微細気泡発生装置は、酸素もしくはオゾンを含む気体の気体供給源に連通するケーシングの内部に内周面が筒状をなす気体供給部を配置し、気体供給部の内部に下水が流れる混気流路を形成してなり、混気流路が一端で下水管路の上流側管路に連通し、他端で下水管路の下流側管路に連通し、気体供給部が微小孔を有する多孔体もしくは多孔質体からなることを特徴とする請求項2又は3記載の下水圧送管路系の浄化処理装置。 The micro-bubble generator has a gas supply part in which an inner peripheral surface forms a cylindrical shape inside a casing communicating with a gas supply source of gas containing oxygen or ozone, and a mixed gas flow path in which sewage flows inside the gas supply part A porous body in which the air supply channel communicates at one end with the upstream pipeline of the sewage pipeline, and communicates with the downstream pipeline of the sewage pipeline at the other end. 4. A purification apparatus for a sewage pumping line system according to claim 2 or 3, wherein the purification apparatus is made of a porous material. 混気流路において液体が旋回して流れることを特徴とする請求項7記載の下水圧送管路系の浄化処理装置。 8. A purification apparatus for a sewage pressure feeding line system according to claim 7, wherein the liquid swirls and flows in the mixed air flow path. 気体供給部は内周面が円筒状をなし、混気流路が一端で液体供給部に連通し、液体供給部は下水管路の上流側管路に連通する液体供給口と、内周面が円筒状をなして混気流路へ連通する液体流路とを有し、液体供給口が液体流路へ接線方向に接続することを特徴とする請求項7又は8記載の下水圧送管路系の浄化処理装置。 The gas supply unit has a cylindrical inner peripheral surface, the air-mixing channel communicates with the liquid supply unit at one end, the liquid supply unit has a liquid supply port that communicates with the upstream side pipeline of the sewer pipe, and the inner peripheral surface has 9. A sewage pressure transmission line system according to claim 7, wherein the liquid supply port has a cylindrical shape and communicates with the air-mixing flow path, and the liquid supply port is connected to the liquid flow path in a tangential direction. Purification device.
JP2006108143A 2006-04-11 2006-04-11 Method and apparatus for purification treatment of sewage pressure feed line system Pending JP2007278003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006108143A JP2007278003A (en) 2006-04-11 2006-04-11 Method and apparatus for purification treatment of sewage pressure feed line system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006108143A JP2007278003A (en) 2006-04-11 2006-04-11 Method and apparatus for purification treatment of sewage pressure feed line system

Publications (1)

Publication Number Publication Date
JP2007278003A true JP2007278003A (en) 2007-10-25

Family

ID=38679710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006108143A Pending JP2007278003A (en) 2006-04-11 2006-04-11 Method and apparatus for purification treatment of sewage pressure feed line system

Country Status (1)

Country Link
JP (1) JP2007278003A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066636A1 (en) * 2007-11-19 2009-05-28 Kurita Water Industries Ltd. Method and apparatus for treating organic-containing water
JP2013068025A (en) * 2011-09-26 2013-04-18 Nippon Hume Corp Method for suppressing sewage pressure-feed duct from becoming anaerobic
CN103269984A (en) * 2011-02-10 2013-08-28 小川弘 Sewage treatment system in sewerage system
CN106436882A (en) * 2016-08-12 2017-02-22 安徽合力股份有限公司合肥铸锻厂 Automatic water pumping system for electric furnace pit
JP2017529237A (en) * 2014-09-15 2017-10-05 サンゲア アクチエボラグSangair AB Apparatus and method for contacting blood with ozone
JP2017196563A (en) * 2016-04-27 2017-11-02 西松建設株式会社 Purification treatment device of contaminated water
JP2017213478A (en) * 2016-05-30 2017-12-07 西松建設株式会社 Clarification apparatus and clarification method of voc-contaminated water
JP2018015726A (en) * 2016-07-28 2018-02-01 トヨタ紡織株式会社 Microbubble generator, and cooling water recycling system including the same
CN108343105A (en) * 2018-02-09 2018-07-31 安溪秋研茶业有限公司 The method for cleaning of tealeaves cesspool
CN108343104A (en) * 2018-02-09 2018-07-31 永春县庆旺食品有限公司 Food cesspool automatic cleaning apparatus
JPWO2017209025A1 (en) * 2016-05-31 2018-12-06 エスコ 株式会社 Gas distribution pipe, gas discharge device, liquid quality adjusting device, adjustment liquid manufacturing method and adjustment liquid
JP2019030847A (en) * 2017-08-09 2019-02-28 西松建設株式会社 Aeration treatment method for contaminated water and aeration treatment device for contaminated water
CN109610625A (en) * 2018-12-19 2019-04-12 安徽施恩机械科技有限公司 A kind of self-cleaning anti-siltation pedestal pumping plant of annular
CN110605039A (en) * 2019-04-19 2019-12-24 郑州轻院产业技术研究院有限公司 Bi-component adhesive mixer
JP2021118994A (en) * 2020-01-30 2021-08-12 日本タングステン株式会社 Micro bubble generator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551808A (en) * 1978-06-10 1980-01-09 Miura Eng Internatl Kk Dissolving method for oxygen in water
JPH01310726A (en) * 1989-04-28 1989-12-14 Ise Kagaku Kogyo Kk Fluid dispersion mixing device
JPH10183738A (en) * 1996-12-24 1998-07-14 Kubota Corp Sewage pressure pipe
JP2005028240A (en) * 2003-07-09 2005-02-03 Chugai Ro Co Ltd Apparatus for suppressing hydrogen sulfide in sewer and using method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551808A (en) * 1978-06-10 1980-01-09 Miura Eng Internatl Kk Dissolving method for oxygen in water
JPH01310726A (en) * 1989-04-28 1989-12-14 Ise Kagaku Kogyo Kk Fluid dispersion mixing device
JPH10183738A (en) * 1996-12-24 1998-07-14 Kubota Corp Sewage pressure pipe
JP2005028240A (en) * 2003-07-09 2005-02-03 Chugai Ro Co Ltd Apparatus for suppressing hydrogen sulfide in sewer and using method therefor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066636A1 (en) * 2007-11-19 2009-05-28 Kurita Water Industries Ltd. Method and apparatus for treating organic-containing water
CN103269984A (en) * 2011-02-10 2013-08-28 小川弘 Sewage treatment system in sewerage system
JPWO2012108035A1 (en) * 2011-02-10 2014-07-03 小川 弘 Sewage treatment system in sewer
JP2013068025A (en) * 2011-09-26 2013-04-18 Nippon Hume Corp Method for suppressing sewage pressure-feed duct from becoming anaerobic
JP7391067B2 (en) 2014-09-15 2023-12-04 サンゲア アクチエボラグ Apparatus and method for contacting blood with ozone
US11426505B2 (en) 2014-09-15 2022-08-30 Sangair Ab Apparatus and method for contacting blood with ozone
JP2017529237A (en) * 2014-09-15 2017-10-05 サンゲア アクチエボラグSangair AB Apparatus and method for contacting blood with ozone
JP2021176566A (en) * 2014-09-15 2021-11-11 サンゲア アクチエボラグSangair AB Device and method for bringing blood into contact with ozone
JP2017196563A (en) * 2016-04-27 2017-11-02 西松建設株式会社 Purification treatment device of contaminated water
JP2017213478A (en) * 2016-05-30 2017-12-07 西松建設株式会社 Clarification apparatus and clarification method of voc-contaminated water
JPWO2017209025A1 (en) * 2016-05-31 2018-12-06 エスコ 株式会社 Gas distribution pipe, gas discharge device, liquid quality adjusting device, adjustment liquid manufacturing method and adjustment liquid
JP2018015726A (en) * 2016-07-28 2018-02-01 トヨタ紡織株式会社 Microbubble generator, and cooling water recycling system including the same
WO2018021254A1 (en) * 2016-07-28 2018-02-01 トヨタ紡織株式会社 Microbubble generator and cooling water circulation system equipped with same
CN109152991A (en) * 2016-07-28 2019-01-04 丰田纺织株式会社 Micro bubble generating device and cooling water recirculation system with the micro bubble generating device
CN106436882A (en) * 2016-08-12 2017-02-22 安徽合力股份有限公司合肥铸锻厂 Automatic water pumping system for electric furnace pit
JP2019030847A (en) * 2017-08-09 2019-02-28 西松建設株式会社 Aeration treatment method for contaminated water and aeration treatment device for contaminated water
CN108343105A (en) * 2018-02-09 2018-07-31 安溪秋研茶业有限公司 The method for cleaning of tealeaves cesspool
CN108343104A (en) * 2018-02-09 2018-07-31 永春县庆旺食品有限公司 Food cesspool automatic cleaning apparatus
CN109610625A (en) * 2018-12-19 2019-04-12 安徽施恩机械科技有限公司 A kind of self-cleaning anti-siltation pedestal pumping plant of annular
CN110605039A (en) * 2019-04-19 2019-12-24 郑州轻院产业技术研究院有限公司 Bi-component adhesive mixer
JP2021118994A (en) * 2020-01-30 2021-08-12 日本タングステン株式会社 Micro bubble generator
JP7133575B2 (en) 2020-01-30 2022-09-08 日本タングステン株式会社 microbubble generator

Similar Documents

Publication Publication Date Title
JP2007278003A (en) Method and apparatus for purification treatment of sewage pressure feed line system
WO2010107077A1 (en) Microbubble generator, activated sludge aeration system, and ballast water sterilizing system
JPH084731B2 (en) Gas-liquid mixing device
JP2010075838A (en) Bubble generation nozzle
CN202968244U (en) Jet aerator
KR101757766B1 (en) High efficiency ballast water treatment system using co2 and ozone micro-bubbles and treatment method thereof
EP1670574B1 (en) Method and apparatus for mixing of two fluids
JP2002059186A (en) Water-jet type fine bubble generator
CN202465400U (en) Diffusion tube of submersible aeration machine
JP2007268390A (en) Bubble generator
JP3733377B2 (en) Nozzle for mixing
JP2001276589A (en) Aerator
JP3747261B2 (en) Dispersion method of gas-liquid mixed fluid and dispersion device used in the method
JP2008100225A (en) Gas-liquid mixing device
JP2008093607A (en) Organic wastewater treatment apparatus and organic wastewater treatment method
KR102270079B1 (en) Micro-Bubble Generator
JP7505739B2 (en) Hydrogen microbubble generating device and hydrogen microbubble generating unit
JPH04322731A (en) Method and device for dissolution of gas
US11628411B1 (en) System, method, and apparatus to oxygenate water
JP2001259395A (en) Aerator
JP2000061489A (en) Aeration device
JPH10230150A (en) Aerator
JP2001252546A (en) Device for generating fine bubble and method for generating fine bubble using the same
KR102292125B1 (en) Wastewater Treatment System
CN209602189U (en) A high-efficiency sewage treatment injector

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201