[go: up one dir, main page]

JP2012183573A - Immersion nozzle for continuous casting, and its designing method - Google Patents

Immersion nozzle for continuous casting, and its designing method Download PDF

Info

Publication number
JP2012183573A
JP2012183573A JP2011049701A JP2011049701A JP2012183573A JP 2012183573 A JP2012183573 A JP 2012183573A JP 2011049701 A JP2011049701 A JP 2011049701A JP 2011049701 A JP2011049701 A JP 2011049701A JP 2012183573 A JP2012183573 A JP 2012183573A
Authority
JP
Japan
Prior art keywords
nozzle
nozzle body
plate
length
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011049701A
Other languages
Japanese (ja)
Inventor
Hidetoshi Kamio
英俊 神尾
Yukiya Tanaka
幸哉 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2011049701A priority Critical patent/JP2012183573A/en
Publication of JP2012183573A publication Critical patent/JP2012183573A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

【課題】浸漬ノズルにおいて整流板ノズル本体の破壊を防ぐための構造を有した連続鋳造用浸漬ノズルを提供する。
【解決手段】ノズル本体の膨張係数をM1α[×10−6/℃]、ノズル本体の弾性率をM1E[MPa]、ノズル本体の管壁の厚さをTnzl[mm]、整流板の弾性率をM2E[MPa]、ノズル本体の曲げ強さをσ[MPa]、ノズル本体が破壊しない応力強度比指数の最大値をSest/σとするとき、全部分板の固定部間のノズル軸方向の長さ距離Lspan[mm]を、次式(1a)により規定される範囲内の長さとする。0<Lspan≦{−b−(b−4ac)1/2}/2a・・・(1a)、ただし、a=c18/σ、c18=−4.83886×10−5とする。
【選択図】なし
An immersion nozzle for continuous casting having a structure for preventing destruction of a rectifying plate nozzle body in the immersion nozzle.
An expansion coefficient of a nozzle body is M [× 10 −6 / ° C.], an elastic modulus of the nozzle body is M 1E [MPa], a tube wall thickness of the nozzle body is T nzl [mm], and a current plate When the elastic modulus is M 2E [MPa], the bending strength of the nozzle body is σ b [MPa], and the maximum value of the stress intensity ratio index at which the nozzle body does not break is S est / σ b , all the partial plates are fixed. The length distance L span [mm] in the nozzle axis direction between the parts is set to a length within the range defined by the following expression (1a). 0 <L span ≦ {-b- ( b 2 -4ac) 1/2} / 2a ··· (1a), however, the a = c 18 / σ b, c 18 = -4.83886 × 10 -5 To do.
[Selection figure] None

Description

本発明は、鋳型に溶鋼を注入する連続鋳造に使用する浸漬ノズルに関し、特に、溶鋼の鋳型内の溶鋼流を改善するために、ノズル本体の管壁外面に、高さが少なくともノズル本体の浸漬部分の長さより長く、横幅が少なくともノズル本体の管外幅よりも広い板状の耐火物からなる整流板を左右対称に固定した、溶鋼の連続鋳造用浸漬ノズルに関する。   The present invention relates to an immersion nozzle used for continuous casting in which molten steel is poured into a mold, and more particularly, to improve the flow of molten steel in the molten steel mold, the nozzle body has an immersion surface with a height of at least at the outer wall surface of the nozzle body. The present invention relates to a submerged nozzle for continuous casting of molten steel, in which a rectifying plate made of a plate-like refractory that is longer than the length of the portion and whose lateral width is at least wider than the outside width of the nozzle body is fixed symmetrically.

溶鋼の連続鋳造において浸漬ノズルは、溶鋼の鋳型内に浸漬して溶鋼をその鋳型内に注入するのみならず、鋳型内の溶鋼の整流化も重要な役割を担っている。この整流化(溶鋼流の改善)のために、浸漬ノズルの形状や構造には種々の工夫がなされている。整流化のための方法の一つとして、浸漬ノズルのノズル本体の外周に、溶鋼流の方向を強制的に制御するための特異な構造の構造物(整流板)を付設することが試みられている。   In continuous casting of molten steel, the immersion nozzle not only immerses in the molten steel mold and injects the molten steel into the mold, but also plays an important role in rectifying the molten steel in the mold. For this rectification (improvement of molten steel flow), various ideas have been made on the shape and structure of the immersion nozzle. As one of the methods for rectification, an attempt has been made to attach a structure (rectifier plate) with a unique structure for forcibly controlling the direction of the molten steel flow to the outer periphery of the nozzle body of the immersion nozzle. Yes.

例えば、特許文献1には、鋳型内湯面下における浸漬ノズルの外形または浸漬ノズルに取り付けた整流板の外形の水平断面形状を鋳型長手方向の中心線に対して非対称形状としたことを特徴とする連続鋳造方法が示されている。   For example, Patent Document 1 is characterized in that the horizontal cross-sectional shape of the outer shape of the submerged nozzle or the outer shape of the rectifying plate attached to the submerged nozzle is asymmetric with respect to the center line in the mold longitudinal direction. A continuous casting method is shown.

また、特許文献2には、溶湯湯面に旋回流を形成させるための整流板を外周面に取り付けた連続鋳造用浸漬ノズルにおいて、整流板を中空部を設けた箱状構造としたことを特徴とする連続鋳造用浸漬ノズルが示されている。   Moreover, in patent document 2, in the immersion nozzle for continuous casting which attached the baffle plate for forming a swirl flow on the molten metal surface to the outer peripheral surface, the baffle plate was made into the box-shaped structure which provided the hollow part. A continuous casting immersion nozzle is shown.

さらに、近年、単なる板状の整流板を外部、具体的には、ノズル本体の管壁外面に、高さが少なくともノズル本体の浸漬部分の長さよりも長く、横幅が少なくとも当該ノズル本体の管外幅よりも広い板状の耐火物からなる整流板を、左右対称に固定した浸漬ノズルが開発されている。   Further, in recent years, a simple plate-like rectifying plate is formed on the outside, specifically, on the outer surface of the nozzle wall of the nozzle body, the height is at least longer than the length of the immersion portion of the nozzle body, and the lateral width is at least outside the tube of the nozzle body. An immersion nozzle has been developed in which a current plate made of a plate-like refractory wider than a width is fixed symmetrically.

しかしながら、特許文献1,2のような整流板をノズル本体の外周面に取り付けた浸漬ノズルは、その特異な構造に起因する破壊が生じやすい。これらの整流板が破壊すると、整流化の目的を果たせなくなり、浸漬ノズル本体部の破壊も招来し、操業停止その他の重大なトラブルを招来することがある。特許文献1,2にはこの点に関する解決策は示されていない。   However, the immersion nozzle in which the rectifying plate as in Patent Documents 1 and 2 is attached to the outer peripheral surface of the nozzle body is likely to break due to its unique structure. If these rectifying plates are broken, the purpose of rectification cannot be achieved, the immersion nozzle main body portion may be broken, and the operation may be stopped and other serious troubles may be caused. Patent Documents 1 and 2 do not disclose a solution regarding this point.

特開2001−286993号公報JP 2001-286993 A 特開平8−112657号公報JP-A-8-112657

本発明の解決しようとする課題は、ノズル本体の外部に単なる板状の整流板を付設した浸漬ノズルにおいて、上述したようなノズル本体の破壊を防ぐための構造を有した連続鋳造用浸漬ノズル及びその設計方法を提供することにある。   The problem to be solved by the present invention is an immersion nozzle in which a simple plate-like rectifying plate is attached to the outside of the nozzle body, and a continuous casting immersion nozzle having a structure for preventing the destruction of the nozzle body as described above. It is to provide the design method.

本発明者は、連続鋳造用浸漬ノズルのノズル本体と整流板の熱応力解析を行った結果、以下の知見を得た。
(1)ノズル本体の破損は主として熱的応力によること。
(2)熱的応力は、整流板の高さ方向に、ノズル本体との接続部を中心に大きく生じること。
(3)熱的応力は、整流板の縦方向(高さ方向)の長さ、すなわち、整流板をいくつかの部分板を縦方向に組み合わせて構成する場合に、各部分板の縦方向の長さに大きく依存すること。
本発明は、これらの知見に基づいて完成されたものであり、ノズル本体に整流板を付設するに際して、整流板の縦方向(高さ方向)の長さを最適な長さとすることにより、熱間で発生する応力を緩和し、浸漬ノズルの破壊を防止するように構成したものである。
As a result of the thermal stress analysis of the nozzle body and the current plate of the continuous casting immersion nozzle, the present inventor has obtained the following knowledge.
(1) Damage to the nozzle body is mainly due to thermal stress.
(2) Thermal stress is generated largely in the height direction of the current plate, centering on the connection with the nozzle body.
(3) The thermal stress is the length of the current plate in the vertical direction (height direction), that is, when the current plate is configured by combining several partial plates in the vertical direction, Depends greatly on length.
The present invention has been completed on the basis of these findings, and when attaching a rectifying plate to the nozzle body, the length of the rectifying plate in the vertical direction (height direction) is set to an optimal length, It is configured to relieve the stress generated between them and prevent the immersion nozzle from being broken.

すなわち、本発明に係る連続鋳造用浸漬ノズルは、溶鋼の連続鋳造に使用される浸漬ノズルであって、
ノズル軸に沿った方向の長さが少なくとも当該浸漬ノズルのノズル本体の浸漬部分の長さより長く、ノズル軸に垂直な方向の横幅が少なくとも当該ノズル本体の管外幅よりも広い板状の耐火物からなる整流板が、当該ノズル本体の管壁外面に左右対称に固定されており、前記整流板は複数の部分板を縦方向に接続してなり、
当該ノズル本体の膨張係数をM1α[×10−6/℃]、
当該ノズル本体の弾性率をM1E[MPa]、
当該ノズル本体の管壁の厚さをTnzl[mm]、
前記整流板の弾性率をM2E[MPa]、
当該ノズル本体の曲げ強さをσ[MPa]、
前記ノズル本体が破壊しない応力強度比指数の最大値をSest/σ
とするとき、取り付けた全ての部分板について板の固定部間のノズル軸方向の長さ距離Lspan[mm]が、次式(1a)〜(1d)により規定される範囲内の長さであることを特徴とする。
That is, the immersion nozzle for continuous casting according to the present invention is an immersion nozzle used for continuous casting of molten steel,
A plate-like refractory having a length in the direction along the nozzle axis that is at least longer than the length of the immersion portion of the nozzle body of the immersion nozzle and a width in the direction perpendicular to the nozzle axis that is at least wider than the outside width of the nozzle body A rectifying plate is fixed symmetrically to the outer surface of the tube wall of the nozzle body, and the rectifying plate is formed by connecting a plurality of partial plates in the vertical direction,
The expansion coefficient of the nozzle body is M [× 10 −6 / ° C.],
The elastic modulus of the nozzle body is M 1E [MPa],
The thickness of the tube wall of the nozzle body is T nzl [mm],
The elastic modulus of the current plate is M 2E [MPa],
The bending strength of the nozzle body is σ b [MPa],
The maximum value of the stress intensity ratio index at which the nozzle body does not break is expressed as S est / σ b
The length distance L span [mm] in the nozzle axis direction between the fixed portions of the plates for all the attached partial plates is a length within the range defined by the following equations (1a) to (1d). It is characterized by being.

Figure 2012183573
Figure 2012183573

また、本発明に係る連続鋳造用浸漬ノズルの設計方法は、溶鋼の連続鋳造に使用される浸漬ノズルであって、ノズル軸に沿った方向の長さが少なくとも当該浸漬ノズルのノズル本体の浸漬部分の長さより長く、ノズル軸に垂直な方向の横幅が少なくとも当該ノズル本体の管外幅よりも広い板状の耐火物からなる整流板が、当該ノズル本体の管壁外面に左右対称に固定され、前記整流板は複数の部分板を縦方向に接続してなる連続鋳造用浸漬ノズルの設計方法であって、
当該ノズル本体の膨張係数をM1α[×10−6/℃]、
当該ノズル本体の弾性率をM1E[MPa]、
当該ノズル本体の管壁の厚さをTnzl[mm]、
前記整流板の弾性率をM2E[MPa]、
当該ノズル本体の曲げ強さをσ[N/mm]、
前記整流板が破壊しない応力強度比指数の最大値をSest/σ
とするとき、取り付けた全ての部分板について板の固定部間のノズル軸方向の長さLspan[mm]を、上式(1a)〜(1d)により規定される範囲内の長さとすることを特徴とする。
Further, the method for designing a submerged nozzle for continuous casting according to the present invention is a submerged nozzle used for continuous casting of molten steel, wherein the length in the direction along the nozzle axis is at least a submerged portion of the nozzle body of the submerged nozzle. A rectifying plate made of a plate-like refractory that is longer than the length of the nozzle body and has a width in the direction perpendicular to the nozzle axis that is at least wider than the outer width of the nozzle body is fixed symmetrically to the outer surface of the nozzle wall of the nozzle body, The rectifying plate is a design method of a continuous casting immersion nozzle formed by connecting a plurality of partial plates in the vertical direction,
The expansion coefficient of the nozzle body is M [× 10 −6 / ° C.],
The elastic modulus of the nozzle body is M 1E [MPa],
The thickness of the tube wall of the nozzle body is T nzl [mm],
The elastic modulus of the current plate is M 2E [MPa],
The bending strength of the nozzle body is σ b [N / mm],
The maximum value of the stress intensity ratio index at which the current plate does not break is expressed as S est / σ b
For all attached partial plates, the length L span [mm] in the nozzle axis direction between the fixed portions of the plates is set to a length within the range defined by the above formulas (1a) to (1d). It is characterized by.

本発明に係る連続鋳造用浸漬ノズルは、上記のような構成とすることにより、連続鋳造での使用時において整流板の破壊を防ぐことが可能となる。   When the immersion nozzle for continuous casting according to the present invention is configured as described above, it is possible to prevent the current plate from being broken during use in continuous casting.

本発明に係る連続鋳造用浸漬ノズルの全体構成を表す図である。It is a figure showing the whole structure of the immersion nozzle for continuous casting which concerns on this invention. 図1に示したZG及びAGの部分板を切り出してモデル化した図である。It is the figure which cut and modeled the partial board of ZG and AG shown in FIG. 図2(a)の解析切片についての寸法パラメータを示した図である。It is the figure which showed the dimension parameter about the analysis section | slice of Fig.2 (a). 連続鋳造用浸漬ノズルの各パラメータの感度を計算した結果である。It is the result of calculating the sensitivity of each parameter of the immersion nozzle for continuous casting.

まず、本発明に係る連続鋳造用浸漬ノズルについて、その構成の導出に至るまでの過程について説明する。   First, the process up to the derivation of the configuration of the continuous casting immersion nozzle according to the present invention will be described.

図1は、本発明に係る連続鋳造用浸漬ノズルの全体構成を表す図である。図1(a),(b)は縦断面図、図1(c)は横断面図である。図1(a),(b)は、ぞれぞれ、図1(c)に示したA−A線,B−B線で切った場合の断面図であり、図1(c)は、図1(a)のC−C線で切った場合の断面図である。   FIG. 1 is a diagram illustrating the overall configuration of a continuous casting immersion nozzle according to the present invention. 1A and 1B are longitudinal sectional views, and FIG. 1C is a transverse sectional view. 1 (a) and 1 (b) are cross-sectional views taken along the lines AA and BB shown in FIG. 1 (c), respectively, and FIG. It is sectional drawing at the time of cutting along the CC line of Fig.1 (a).

図1において、連続鋳造用浸漬ノズル1は、ノズル本体2と2枚の整流板3,3とから構成されている。ノズル本体2は、略円筒状の形状を有し、基端(上側)から先端(下側)にかけて、外径が段階的に細くなっている。ノズル本体2は、基端部2a、スラグイン部2b、先端部2c、及び内筒部2dから構成されている。先端部2cには、斜め下側方に向かって、互いに反対方向を向いた2つの吐出口4,4が形成されている。内筒部2dは、基端部2aの中間から先端部2cの中間にかけて管内に挿設されている。また、筒状のノズル本体2の中心軸がノズル軸5である。   In FIG. 1, the continuous casting immersion nozzle 1 is composed of a nozzle body 2 and two rectifying plates 3 and 3. The nozzle body 2 has a substantially cylindrical shape, and the outer diameter is gradually reduced from the base end (upper side) to the front end (lower side). The nozzle body 2 includes a base end portion 2a, a slag in portion 2b, a tip end portion 2c, and an inner cylinder portion 2d. Two discharge ports 4 and 4 are formed in the distal end portion 2c so as to face diagonally downward and opposite to each other. The inner cylinder portion 2d is inserted into the pipe from the middle of the base end portion 2a to the middle of the distal end portion 2c. The central axis of the cylindrical nozzle body 2 is the nozzle axis 5.

溶鋼の連続鋳造時において、基端部2aから先端部2cに向けてノズル本体2の筒内を流下する溶鋼は、吐出口4,4から溶鋼溜内に注入される。このとき、連続鋳造用浸漬ノズル1は、先端部2cが溶鋼溜内に完全に浸漬され、溶鋼溜の湯面はスラグイン部2bの中程となる。基端部2a、先端部2c、及び内筒部2dは、通常、アルミナ−黒鉛質耐火物やスピネル−黒鉛質耐火物により構成される。一方、スラグイン部2bは、溶鋼溜の湯面付近に存在するモールドパウダー層と接触し、消耗しやすいため、ジルコニア−黒鉛質耐火物により構成されている。   During the continuous casting of the molten steel, the molten steel flowing down in the cylinder of the nozzle body 2 from the base end portion 2a toward the tip end portion 2c is injected into the molten steel reservoir from the discharge ports 4 and 4. At this time, as for the continuous casting immersion nozzle 1, the front-end | tip part 2c is completely immersed in a molten steel reservoir, and the molten metal surface of a molten steel reservoir becomes the middle of the slag in part 2b. The base end portion 2a, the tip end portion 2c, and the inner cylinder portion 2d are usually made of an alumina-graphite refractory or a spinel-graphite refractory. On the other hand, the slag-in part 2b is made of zirconia-graphitic refractory because it is in contact with the mold powder layer existing near the molten steel surface of the molten steel reservoir and is easily consumed.

整流板3,3は、ノズル軸5に沿った方向の長さが少なくとも連続鋳造用浸漬ノズル1の溶鋼溜内に浸漬される部分(先端部2cからスラグイン部2bの中程にかけての部分)の長さより長く、ノズル軸5と垂直な方向(水平方向)の幅が少なくとも連続鋳造用浸漬ノズル1の管外幅よりも広い、矩形板状の耐火物からなる。各整流板3,3は、それぞれ、連続鋳造用浸漬ノズル1を挟んで、連続鋳造用浸漬ノズル1の管壁外面に左右対称に固定されており、その板面は吐出口4,4の中心軸6,6に対して平行である。尚、各整流板3,3は、複数の部分板を縦方向に接続することにより、部分板の複合体として構成されている。この、整流板3を構成する部分板の縦方向(ノズル軸方向)の長さをLspan[mm]とする。 The rectifying plates 3 and 3 have a length in the direction along the nozzle shaft 5 that is at least a portion that is immersed in the molten steel reservoir of the continuous casting immersion nozzle 1 (portion from the tip portion 2c to the middle of the slag-in portion 2b). It consists of a refractory material in the form of a rectangular plate that is longer than the length and has a width in a direction perpendicular to the nozzle shaft 5 (horizontal direction) that is at least wider than the outside width of the continuous casting immersion nozzle 1. The rectifying plates 3 and 3 are respectively fixed symmetrically to the outer surface of the tube wall of the continuous casting immersion nozzle 1 with the continuous casting immersion nozzle 1 interposed therebetween, and the plate surfaces are the centers of the discharge ports 4 and 4. Parallel to the axes 6 and 6. Each of the rectifying plates 3 and 3 is configured as a composite of partial plates by connecting a plurality of partial plates in the vertical direction. The length in the vertical direction (nozzle axis direction) of the partial plate constituting the rectifying plate 3 is L span [mm].

図2は、図1に示したZG及びAGの部分板を切り出してモデル化した図である。図2(a)はZG部分、図2(b)はAG部分の部分板を取り出したものである。連続鋳造用浸漬ノズル1の対称性を考慮して、ノズル本体2の管周の1/4を切り取りモデル化している。また、本発明では、整流板3の高さ方向の固定ボス間の距離Lspanを決定するために、有限要素法による熱応力解析を行うため、図2の各部分のモデルを多数のメッシュに分割している。以下では、これらの取り出した部分を、以下では「解析切片」と呼ぶ。 FIG. 2 is a diagram in which the ZG and AG partial plates shown in FIG. 1 are cut out and modeled. 2A shows the ZG portion, and FIG. 2B shows the partial plate of the AG portion taken out. In consideration of the symmetry of the continuous casting immersion nozzle 1, 1/4 of the pipe circumference of the nozzle body 2 is cut and modeled. In the present invention, in order to determine the distance L span between the fixed bosses in the height direction of the rectifying plate 3, thermal stress analysis is performed by the finite element method. It is divided. Hereinafter, these extracted portions are referred to as “analysis sections” below.

図2において、スラグイン部2b及び先端部2cの外壁面にはボス2eが設けられており、整流板3に開口形成されたボス穴を、それぞれのボス2eに嵌め込むことにより、整流板3がスラグイン部2b又は先端部2cに固定されている。   In FIG. 2, bosses 2e are provided on the outer wall surfaces of the slag-in part 2b and the tip part 2c. By fitting the boss holes formed in the rectifying plate 3 into the bosses 2e, the rectifying plate 3 is It is fixed to the slag-in part 2b or the tip part 2c.

図3は、図2(a)の解析切片についての寸法パラメータを示した図である。尚、図2(b)の解析切片の寸法パラメータについてもこれと同様に定義される。   FIG. 3 is a diagram showing dimensional parameters for the analytical intercept in FIG. It should be noted that the dimension parameter of the analysis section in FIG.

図3において、Tita[mm]は整流板3の厚さ、Lstraight[mm]は整流板3とノズル本体2とが接触している部分の幅(図1(c)も参照)、Tnzl[mm]はノズル本体の管壁の厚さ、Lspan[mm]は上下のボス2e,2e間の間隔を表す。 3, (see FIG. 1 (c) also) T ita [mm] is the thickness of the current plate 3, L straight [mm] is the width of the portion where the rectifier plate 3 and the nozzle body 2 is in contact, T nzl [mm] represents the thickness of the tube wall of the nozzle body, and L span [mm] represents the distance between the upper and lower bosses 2e, 2e.

尚、計算の簡単化のため、ノズル本体2の基端部2a、スラグイン部2b、先端部2cの膨張係数、弾性率、及び熱伝導率は同一であると仮定し、それぞれ、膨張係数をM1α[×10−6/℃]、弾性率をM1E[MPa]、熱伝導率をM1λ[W/m・K]と記す。また、整流板3の膨張係数、弾性率、及び熱伝導率を、それぞれ、M2α[×10−6/℃]、M2E[MPa]、M2λ[W/m・K]と記す。また、整流板3の曲げ強さをσ[N/mm]、整流板3に加わる熱応力の最大値をSest[N/mm]、応力強度比指数をSest/σと記す。 For simplification of calculation, it is assumed that the expansion coefficient, elastic modulus, and thermal conductivity of the base end part 2a, the slag in part 2b, and the front end part 2c of the nozzle body 2 are the same, and the expansion coefficient is set to M. [× 10 −6 / ° C.], the elastic modulus is denoted as M 1E [MPa], and the thermal conductivity is denoted as M [W / m · K]. The expansion coefficient, elastic modulus, and thermal conductivity of the rectifying plate 3 are denoted as M [× 10 −6 / ° C.], M 2E [MPa], and M [W / m · K], respectively. Further, the bending strength of the rectifying plate 3 is denoted as σ b [N / mm], the maximum value of the thermal stress applied to the rectifying plate 3 is denoted as S est [N / mm], and the stress intensity ratio index is denoted as S est / σ b .

まず、上述の各パラメータのうち、熱間での整流板3の破壊に大きく影響するパラメータを抽出する。そこで、まず、各パラメータの代表的な値を中心値に決め、それぞれのパラメータを中心値から±5%の範囲で変動させたときに、熱間において整流板3に発生する熱応力がどの程度変化するかを評価した。図4にその計算結果を示す。注目する各パラメータPの中心値をP、+5%変動した値をP+5、−5%変動した値をP−5とし、パラメータPに対して有限要素法による熱応力解析を行った結果得られる整流板3に加わる熱応力の最大値をSest(P)[MPa]とする。このとき、パラメータPに対する感度Seを、Se=(Sest(P+5)−Sest(P−5))/Sest(P)により定義する。図4は、こうして求められた各パラメータの感度を示したものである。感度Seの絶対値が大きいパラメータが、熱間での整流板3の破壊に大きく影響するパラメータ(有効なパラメータ)であると考えられる。この結果から、有効なパラメータとして、ノズル本体2の膨張係数M1α、ノズル本体2の弾性率M1E、ノズル本体2の管壁の厚さTnzl、整流板3の弾性率M2E、及び上下のボス間距離Lspanが抽出された。 First, out of the above-mentioned parameters, parameters that greatly affect the destruction of the rectifying plate 3 in the hot state are extracted. Therefore, first, a representative value of each parameter is determined as a central value, and when each parameter is varied within a range of ± 5% from the central value, how much thermal stress is generated in the rectifying plate 3 during the heat. We evaluated whether it changed. FIG. 4 shows the calculation result. The center value of each parameter P of interest is P 0 , the value fluctuated + 5% is P +5 , the value fluctuated -5% is P −5, and the result of thermal stress analysis by the finite element method for the parameter P is obtained. The maximum value of the thermal stress applied to the rectifying plate 3 is S est (P) [MPa]. At this time, the sensitivity Se for the parameter P is defined as Se = (S est (P +5 ) −S est (P −5 )) / S est (P 0 ). FIG. 4 shows the sensitivity of each parameter obtained in this way. A parameter having a large absolute value of the sensitivity Se is considered to be a parameter (an effective parameter) that greatly affects the destruction of the current plate 3 in the hot state. From this result, as effective parameters, the expansion coefficient M 1α of the nozzle body 2, the elastic modulus M 1E of the nozzle body 2, the tube wall thickness T nzl of the nozzle body 2, the elastic modulus M 2E of the rectifying plate 3, and the upper and lower The distance between the bosses L span was extracted.

次に、抽出した5つのパラメータのそれぞれに対して、表1に示したように、パラメータの最小値と最大値を決め、この最大・最小値間で各パラメータを変化させながら有限要素法による熱応力解析を行い、整流板3に加わる熱応力の最大値をSestを求めた。尚、各パラメータの変動は、ラテン超方格法(LHS)を用いた区分モンテカルロ法によって行った。パラメータの最小値と最大値は、実際の設計時においてとり得る値がすべてカバーできるように設定した。 Next, as shown in Table 1, for each of the five extracted parameters, the minimum value and maximum value of the parameter are determined, and each parameter is changed between the maximum and minimum values. Stress analysis was performed, and S est was obtained as the maximum value of the thermal stress applied to the rectifying plate 3. In addition, the change of each parameter was performed by the division | segmentation Monte Carlo method using the Latin supersquare method (LHS). The minimum and maximum parameter values were set to cover all possible values in actual design.

熱応力解析は、初期温度を25℃とし、ノズル内面には溶鋼を想定して、接触温度1550℃、熱伝達率1160W/mkの条件を、ノズル外周面には周囲への抜熱を想定して、接触温度25℃、熱伝達率11.6W/mkの条件を付与して実施し、ノズル本体に発生する最大応力を計算により求めた。 The thermal stress analysis assumes that the initial temperature is 25 ° C, molten steel is assumed on the nozzle inner surface, the contact temperature is 1550 ° C, the heat transfer rate is 1160W / m 2 k, and the nozzle outer peripheral surface is exposed to the surrounding heat. Assuming that the conditions were a contact temperature of 25 ° C. and a heat transfer coefficient of 11.6 W / m 2 k, the maximum stress generated in the nozzle body was calculated.

なお,パラメータ数については,ステップワイズ法その他の検証を併せて行ったが,本発明に採用した20個が最適であるとの結果を得た。   In addition, about the number of parameters, although the stepwise method and other verification were performed together, the result that the 20 parameters adopted in the present invention were optimum was obtained.

Figure 2012183573
Figure 2012183573

この区分モンテカルロ法によって得られるパラメータP=(M1α,M1E,M2E,Lspan,Tnzl)と最大熱応力Sest(P)との関係から、重回帰分析によって最大熱応力Sest(P)をパラメータ(M1α,M1E,M2E,Lspan,Tnzl)の2次式で近似した。次式(2)は、この重回帰分析によって得られた、パラメータ(M1α,M1E,M2E,Lspan,Tnzl)に対する最大熱応力Sest(P)の応答曲面を表す近似式である。 From the relationship between the parameter P = (M , M 1E , M 2E , L span , T nzl ) obtained by this piecewise Monte Carlo method and the maximum thermal stress S est (P), the maximum thermal stress S est ( P) was approximated by a quadratic expression of parameters (M , M 1E , M 2E , L span , T nzl ). The following equation (2) is an approximate expression representing the response surface of the maximum thermal stress S est (P) with respect to the parameters (M , M 1E , M 2E , L span , T nzl ) obtained by this multiple regression analysis. is there.

Figure 2012183573
Figure 2012183573

式(1)の両辺を整流板3の曲げ強さσで割ると、応力強度比指数Sest/σの式が得られる。そこで、この応力強度比指数Sest/σの式をパラメータLspanの2次方程式と考えて、パラメータLspanについて式(1)を解く。これにより、部分板の長さLspanは、次式(3a)又は式(3b)によって表される。ここで、係数a,b,cは、前述の式(1b)〜(1d)で表される。 Dividing both sides of the equation (1) by the bending strength σ b of the rectifying plate 3, the equation of the stress intensity ratio index S est / σ b is obtained. Therefore, the expression for the stress intensity ratio index S est / σ b believe quadratic equation parameters L span, solving equation (1) the parameters L span. Thereby, the length L span of the partial plate is expressed by the following formula (3a) or formula (3b). Here, the coefficients a, b, and c are expressed by the aforementioned equations (1b) to (1d).

Figure 2012183573
Figure 2012183573

最大熱応力Sestを7.5〜22.5MPa(材料の曲げ強さを5〜15 MPa、後述の応力強度比指数Sest/σを1.5として、評価すべき応力の範囲を見積もったもの。)の範囲で振るとともに、表1のパラメータ範囲において各パラメータ(M1α,M1E,M2E,Tnzl)を振って、式(3a),(3b)により部分板の長さLspanを算出した結果、式(3b)は常に500mm以上となった。一方、表1に示したように、ボス間距離Lspanの範囲は40〜356.66mmとしているため、式(3b)の解は適当ではない。そこで、式(3a)を採用した。部分板の長さLspanが長くなるほど最大熱応力Sestは大きくなるため、整流板3が破壊する応力強度比指数Sest/σが決まれば、部分板の固定部間の距離Lspanの最大値(非破壊限界値)は、この応力強度比指数Sest/σを式(3a)に代入することによって求めることができる。従って、熱応力による破壊が生じない部分板の固定部間の距離Lspanの範囲は、式(1a)によって規定されることが分かる。 The maximum thermal stress S est is 7.5 to 22.5 MPa (bending strength of the material is 5 to 15 MPa, stress intensity ratio index S est / σ b described later is 1.5, and the range of stress to be evaluated is estimated). The result of calculating the length L span of the partial plate according to the formulas (3a) and (3b) by shaking each range (M , M 1E , M 2E , T nzl ) in the parameter range shown in Table 1 The formula (3b) was always 500 mm or more. On the other hand, as shown in Table 1, since the range of the boss distance L span is 40 to 356.66 mm, the solution of the equation (3b) is not appropriate. Therefore, the formula (3a) was adopted. Since the maximum thermal stress S est increases as the length L span of the partial plate increases, if the stress intensity ratio index S est / σ b at which the rectifying plate 3 breaks is determined, the distance L span between the fixed portions of the partial plate The maximum value (non-destructive limit value) can be obtained by substituting this stress intensity ratio index S est / σ b into the equation (3a). Therefore, it can be seen that the range of the distance L span between the fixed portions of the partial plate that does not break due to thermal stress is defined by the equation (1a).

次に、応力強度比指数Sest/σについて説明する。応力強度比指数Sest/σは、部分板に加わる最大熱応力Sestを、部分板の曲げ強さσで除したものであり、部分板の材質に依存せず、ほぼ共通の値となると考えられる。そこで、この最大熱応力Sestを破壊が生じない部分板の固定部間の距離Lspanの範囲を規定するパラメータとして採用する。 Next, the stress intensity ratio index S est / σ b will be described. The stress intensity ratio index S est / σ b is obtained by dividing the maximum thermal stress S est applied to the partial plate by the bending strength σ b of the partial plate, and does not depend on the material of the partial plate and is almost a common value. It is thought that it becomes. Therefore, this maximum thermal stress S est is employed as a parameter that defines the range of the distance L span between the fixed portions of the partial plate where no fracture occurs.

整流板3が破壊しない応力強度比指数の最大値は、有限要素法による最大熱応力Sestの計算結果と、連続鋳造用浸漬ノズル1に対する注湯試験の結果を照合することにより決定する。表2〜表4に、近似式(3b)により推定される最大熱応力と注湯試験の結果との比較を示す。尚、表2〜表4において、各数値の単位は、前述の説明において既に示した通りである。 The maximum value of the stress intensity ratio index that the rectifying plate 3 does not break is determined by collating the calculation result of the maximum thermal stress S est by the finite element method with the result of the pouring test for the continuous casting immersion nozzle 1. Tables 2 to 4 show a comparison between the maximum thermal stress estimated by the approximate expression (3b) and the result of the pouring test. In Tables 2 to 4, the unit of each numerical value is as already shown in the above description.

Figure 2012183573
Figure 2012183573

Figure 2012183573
Figure 2012183573

Figure 2012183573
Figure 2012183573

表2〜表4において、下段の「実験」の表は、パラメータ(M1α,M1E,M2E,Tnzl)及び整流板3の曲げ強さをσを決めたときの最大熱応力Sest及び応力強度比指数Sest/σの計算値と、それと同一条件に於ける注湯試験結果との比較を示している。注湯試験結果の「○」は整流板3及びノズル本体2に破壊が生じなかったことを示し、「×」は整流板3又はノズル本体2に破壊が生じたことを示す。表2〜表4の結果から、整流板3及びノズル本体2に破壊が生じない応力強度比指数Sest/σの最大値は、Sest/σ=1.5であることが分かる。 In Tables 2 to 4, the table of “Experiment” at the bottom indicates the maximum thermal stress S when the parameter (M , M 1E , M 2E , T nzl ) and the bending strength of the rectifying plate 3 are determined as σ b. The comparison of the calculated value of est and stress intensity ratio index Sest / (sigma) b , and the pouring test result in the same conditions is shown. “◯” in the pouring test result indicates that the current plate 3 and the nozzle body 2 were not broken, and “X” indicates that the current plate 3 or the nozzle body 2 was broken. From the results of Tables 2 to 4, it can be seen that the maximum value of the stress intensity ratio index S est / σ b at which the current plate 3 and the nozzle body 2 do not break is S est / σ b = 1.5.

表2〜表4の上段の「計算」の表は、Sest/σ=1.5として、パラメータ(M1α,M1E,M2E,Tnzl)及び整流板3の曲げ強さをσを決めたときの破壊が生じない部分板の固定部間の距離Lspanの推定値を式(3b)によって求めた結果である。これらの結果から、Sest/σ=1.5として式(3b)により求まる部分板の固定ボス間の最大長さLspanの推定値は、注湯試験結果とよく一致していることが確認された。 The upper table of “Calculation” in Tables 2 to 4 shows that S est / σ b = 1.5, the parameters (M , M 1E , M 2E , T nzl ) and the bending strength of the rectifying plate 3 are σ It is the result of having calculated | required the estimated value of the distance L span between the fixed parts of the partial board which does not produce a destruction when b is determined by Formula (3b). From these results, it is found that the estimated value of the maximum length L span between the fixed bosses of the partial plate obtained by Equation (3b) with S est / σ b = 1.5 is in good agreement with the result of the pouring test. confirmed.

以上の結果から、部分板の1枚あたりのノズル軸方向の固定部間の距離Lspanを、式(1a)で表される範囲とすることによって、整流板3及びノズル本体2の熱応力による破壊を防止することが可能となる。 From the above results, by setting the distance L span between the fixed portions in the nozzle axis direction per piece of the partial plate within the range represented by the formula (1a), it is caused by the thermal stress of the rectifying plate 3 and the nozzle body 2. It becomes possible to prevent destruction.

1 連続鋳造用浸漬ノズル
2 ノズル本体
2a 基端部
2b スラグイン部
2c 先端部
2d 内筒部
2e ボス
3 整流板
4 吐出口
5 ノズル軸
6 吐出口の中心軸
DESCRIPTION OF SYMBOLS 1 Submerged casting nozzle 2 Nozzle body 2a Base end part 2b Slag in part 2c End part 2d Inner cylinder part 2e Boss 3 Current plate 4 Discharge port 5 Nozzle shaft 6 Center axis of discharge port

Claims (2)

溶鋼の連続鋳造に使用される浸漬ノズルであって、
ノズル軸に沿った方向の長さが少なくとも当該浸漬ノズルのノズル本体の浸漬部分の長さより長く、ノズル軸に垂直な方向の横幅が少なくとも当該ノズル本体の管外幅よりも広い板状の耐火物からなる整流板が、当該ノズル本体の管壁外面に左右対称に固定されており、前記整流板は複数の部分板を縦方向に接続してなり、
当該ノズル本体の膨張係数をM1α[×10−6/℃]、
当該ノズル本体の弾性率をM1E[MPa]、
当該ノズル本体の管壁の厚さをTnzl[mm]、
前記整流板の弾性率をM2E[MPa]、
当該ノズル本体の曲げ強さをσ[MPa]、
前記整流板が破壊しない応力強度比指数の最大値をSest/σ
とするとき、取り付けた全ての部分板について板の固定部間のノズル軸方向の長さLspan[mm]が、次式(1a)〜(1d)により規定される範囲内の長さであることを特徴とする連続鋳造用浸漬ノズル。
Figure 2012183573
An immersion nozzle used for continuous casting of molten steel,
A plate-like refractory having a length in the direction along the nozzle axis that is at least longer than the length of the immersion portion of the nozzle body of the immersion nozzle and a width in the direction perpendicular to the nozzle axis that is at least wider than the outside width of the nozzle body A rectifying plate is fixed symmetrically to the outer surface of the tube wall of the nozzle body, and the rectifying plate is formed by connecting a plurality of partial plates in the vertical direction,
The expansion coefficient of the nozzle body is M [× 10 −6 / ° C.],
The elastic modulus of the nozzle body is M 1E [MPa],
The thickness of the tube wall of the nozzle body is T nzl [mm],
The elastic modulus of the current plate is M 2E [MPa],
The bending strength of the nozzle body is σ b [MPa],
The maximum value of the stress intensity ratio index at which the current plate does not break is expressed as S est / σ b
In this case, the length L span [mm] in the nozzle axis direction between the fixed portions of the plates for all the attached partial plates is a length within the range defined by the following equations (1a) to (1d). An immersion nozzle for continuous casting characterized by the above.
Figure 2012183573
溶鋼の連続鋳造に使用される浸漬ノズルであって、ノズル軸に沿った方向の長さが少なくとも当該浸漬ノズルのノズル本体の浸漬部分の長さより長く、ノズル軸に垂直な方向の横幅が少なくとも当該ノズル本体の管外幅よりも広い板状の耐火物からなる整流板が、当該ノズル本体の管壁外面に左右対称に固定され、前記整流板は複数の部分板を縦方向に接続してなる連続鋳造用浸漬ノズルの設計方法であって、
当該ノズル本体の膨張係数をM1α[×10−6/℃]、
当該ノズル本体の弾性率をM1E[MPa]、
当該ノズル本体の管壁の厚さをTnzl[mm]、
前記整流板の弾性率をM2E[MPa]、
当該ノズル本体の曲げ強さをσ[MPa]、
前記整流板が破壊しない応力強度比指数の最大値をSest/σ
とするとき、取り付けた全ての部分板について板の固定部間のノズル軸方向の長さLspan[mm]を、請求項1に記載の式(1a)〜(1d)により規定される範囲内の長さとすることを特徴とする連続鋳造用浸漬ノズルの設計方法。
An immersion nozzle used for continuous casting of molten steel, wherein the length in the direction along the nozzle axis is at least longer than the length of the immersion portion of the nozzle body of the immersion nozzle, and the lateral width in the direction perpendicular to the nozzle axis is at least A rectifying plate made of a plate-like refractory wider than the outer tube width of the nozzle body is fixed symmetrically to the outer surface of the tube wall of the nozzle body, and the rectifying plate is formed by connecting a plurality of partial plates in the vertical direction. A method for designing an immersion nozzle for continuous casting,
The expansion coefficient of the nozzle body is M [× 10 −6 / ° C.],
The elastic modulus of the nozzle body is M 1E [MPa],
The thickness of the tube wall of the nozzle body is T nzl [mm],
The elastic modulus of the current plate is M 2E [MPa],
The bending strength of the nozzle body is σ b [MPa],
The maximum value of the stress intensity ratio index at which the current plate does not break is expressed as S est / σ b
In this case, the length L span [mm] in the nozzle axis direction between the fixed portions of the plates for all the attached partial plates is within the range defined by the equations (1a) to (1d) according to claim 1. A method for designing an immersion nozzle for continuous casting, characterized in that the length is as follows.
JP2011049701A 2011-03-07 2011-03-07 Immersion nozzle for continuous casting, and its designing method Withdrawn JP2012183573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011049701A JP2012183573A (en) 2011-03-07 2011-03-07 Immersion nozzle for continuous casting, and its designing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011049701A JP2012183573A (en) 2011-03-07 2011-03-07 Immersion nozzle for continuous casting, and its designing method

Publications (1)

Publication Number Publication Date
JP2012183573A true JP2012183573A (en) 2012-09-27

Family

ID=47014141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011049701A Withdrawn JP2012183573A (en) 2011-03-07 2011-03-07 Immersion nozzle for continuous casting, and its designing method

Country Status (1)

Country Link
JP (1) JP2012183573A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111526678A (en) * 2020-04-28 2020-08-11 维沃移动通信(重庆)有限公司 Electronic equipment's casing and electronic equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111526678A (en) * 2020-04-28 2020-08-11 维沃移动通信(重庆)有限公司 Electronic equipment's casing and electronic equipment

Similar Documents

Publication Publication Date Title
CN104395015B (en) Casting mold and the continuous casing of steel continuously
JP2007016735A5 (en)
JP6356989B2 (en) Heat exchanger
RU2014110706A (en) FIRE-RESISTANT ELEMENT CONTAINING ITS NODE AND METALLURGICAL RESERVOIR FOR MOVING THE MELTED METAL
JP2012183573A (en) Immersion nozzle for continuous casting, and its designing method
JP6003850B2 (en) Manufacturing method of continuous casting mold and continuous casting method of steel
JP5180876B2 (en) Continuous casting mold
JP2015051443A (en) Continuous casting mold and continuous casting method for steel
JP6787359B2 (en) Continuous steel casting method
CN109396407A (en) A kind of high life tundish cover
CN109475930B (en) Continuous casting mold and method for continuous casting of steel
JP5882176B2 (en) Cylinder liner and manufacturing method thereof
CN209753957U (en) Wide-faced copper plate of continuous casting crystallizer and continuous casting crystallizer with the copper plate
JP2012210647A (en) Immersion nozzle for continuous casting and continuous casting method using the same
JP5433339B2 (en) Immersion tube for vacuum degassing furnace
JP6428721B2 (en) Continuous casting mold and steel continuous casting method
JP5463189B2 (en) Method for repairing continuous casting mold and repaired continuous casting mold
JP5440933B2 (en) Immersion nozzle and continuous casting method using the same
JP2010168600A (en) Dipping tube
JP5566972B2 (en) Continuous casting mold
JP5525925B2 (en) Continuous casting mold
CN203148234U (en) Welded-type bottom ring of mine-smelting furnace
CN209110342U (en) A kind of high intensity piercing mandrel plug
JP2020062653A (en) Long nozzle for continuous casting
CN203556799U (en) Liquid storage type riser knock-off core

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513