JP2012166177A - Metering and mixing apparatus and metering and mixing method for gas-liquid mixed fluid - Google Patents
Metering and mixing apparatus and metering and mixing method for gas-liquid mixed fluid Download PDFInfo
- Publication number
- JP2012166177A JP2012166177A JP2011031427A JP2011031427A JP2012166177A JP 2012166177 A JP2012166177 A JP 2012166177A JP 2011031427 A JP2011031427 A JP 2011031427A JP 2011031427 A JP2011031427 A JP 2011031427A JP 2012166177 A JP2012166177 A JP 2012166177A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- liquid mixed
- mixing
- metering
- mixed fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 120
- 239000007788 liquid Substances 0.000 title claims abstract description 98
- 238000000034 method Methods 0.000 title claims abstract description 15
- 230000035945 sensitivity Effects 0.000 claims abstract description 26
- 238000012790 confirmation Methods 0.000 claims abstract description 25
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 4
- 238000005086 pumping Methods 0.000 claims description 17
- 238000005303 weighing Methods 0.000 claims 1
- 230000006835 compression Effects 0.000 abstract description 6
- 238000007906 compression Methods 0.000 abstract description 6
- 239000003795 chemical substances by application Substances 0.000 description 81
- 239000007789 gas Substances 0.000 description 12
- 239000004848 polyfunctional curative Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 6
- 229920001021 polysulfide Polymers 0.000 description 6
- 239000005077 polysulfide Substances 0.000 description 6
- 150000008117 polysulfides Polymers 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000007599 discharging Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000002075 main ingredient Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Accessories For Mixers (AREA)
Abstract
Description
本発明は、気液混合流体の計量混合装置及び計量混合方法に関するものである。 The present invention relates to a metering and mixing device and a metering and mixing method for a gas-liquid mixed fluid.
塗料や接着剤などには、複数の液体を混合させて使用するものがある。このような複数の液体を混合させる装置として特許文献1に記載のような混合装置が使用されている。特許文献1に記載の混合装置は、別々のタンクに収納された2種類の液体(主剤及び硬化剤)を、ポンプを用いて所定量吐出させて圧送し、無駆動型の混合装置で混合するものである。
Some paints and adhesives are used by mixing a plurality of liquids. As a device for mixing such a plurality of liquids, a mixing device as described in
複数の液体を混合させて使用する場合、使用する液体の種類や組み合わせによって固有の混合比が存在する。従って、複数の液体は該固有の混合比に従って混合される。一般に、混合させて使用する液体は粘性を有する。そのため、混合させて使用する液体は、容積計量形の計量方法やコリオリ流量計などによって計量され、混合比が決定される。 When a plurality of liquids are mixed and used, a specific mixing ratio exists depending on the type and combination of liquids used. Therefore, a plurality of liquids are mixed according to the inherent mixing ratio. In general, the liquid used by mixing has viscosity. Therefore, the liquid to be used after mixing is measured by a volumetric measuring method or a Coriolis flow meter, and the mixing ratio is determined.
混合比を決定した後、各液体は混合部へと圧送されて所定の比率で混合される。液体を圧送する際には、液体に圧力をかける必要があり、使用される液体の粘性が高いほど、液体に付加される圧力は高くなる。 After determining the mixing ratio, each liquid is pumped to the mixing section and mixed at a predetermined ratio. When pumping the liquid, it is necessary to apply pressure to the liquid. The higher the viscosity of the liquid used, the higher the pressure applied to the liquid.
このように混合された材料は、航空機の構成部材のシーラントなどに適用される。航空機の分野では、構造材の軽量化を目的として、液体材料として気液混合流体を用いる場合がある。「気液混合流体」とは、媒質に微小な気体が含有された流体である。 The material thus mixed is applied to a sealant or the like of an aircraft component. In the field of aircraft, a gas-liquid mixed fluid may be used as a liquid material for the purpose of reducing the weight of a structural material. The “gas-liquid mixed fluid” is a fluid in which a minute gas is contained in a medium.
気液混合流体は、外力によって容積が変化するという特性があり、該変化は、媒質のみの場合と比べて大きい。気液混合流体は、付加される圧力が上がると容積が減少し、付加される圧力が下がると容積が増大する。そのため、気液混合流体を圧送させた場合、容積計量形の計量方法では気液混合流体を正確に計量できない。コリオリ流量計を用いた場合は、高粘度材料の取り扱いや、少量の取り扱いでの使用が難しい。そのため、現状の技術では、気液混合流体を正確に計量し、所定の比率で混合させることが困難である。 The gas-liquid mixed fluid has a characteristic that the volume is changed by an external force, and the change is larger than that of the medium alone. The gas-liquid mixed fluid decreases in volume as the applied pressure increases, and increases in volume as the applied pressure decreases. Therefore, when the gas-liquid mixed fluid is pumped, the gas-liquid mixed fluid cannot be accurately measured by the volumetric measurement method. When using a Coriolis flow meter, it is difficult to handle high-viscosity materials or small quantities. Therefore, with the current technology, it is difficult to accurately measure and mix the gas-liquid mixed fluid at a predetermined ratio.
手作業によって圧力を付加させずに混合させることが考えられるが、品質が安定しない、製造コストが高くなるなどの課題がある。 Although it is conceivable to mix without applying pressure by manual work, there are problems such as unstable quality and high manufacturing costs.
本発明は、このような事情に鑑みてなされたものであって、気液混合流体を正確に計量し、所定の比率で混合できる計量混合装置及びその計量混合方法を提供することを目的とする。 This invention is made in view of such a situation, Comprising: It aims at providing the measurement mixing apparatus which can measure a gas-liquid mixed fluid correctly, and can mix with a predetermined | prescribed ratio, and its measurement mixing method .
上記課題を解決するために、本発明は、媒質に気体が含有されてなる圧縮性感度の異なる圧力領域を有する気液混合流体を、計量して混合するための計量混合装置であって、前記気液混合流体及び他の流体をそれぞれ収容するタンクと、前記気液混合流体及び前記他の流体を、別々の経路を介して圧送する定量吐出ポンプと、前記気液混合流体と他の流体とが合流する合流部と、前記合流部よりも下流側で、前記気液混合流体及び前記他の流体を混合する無駆動型の混合装置と、前記合流部よりも上流側で、前記気液混合流体と前記他の流体との混合比を確認する混合比確認経路と、を備え、前記気液混合流体及び前記他の流体を前記混合装置で混合する動作時における前記合流部、及び、前記気液混合流体及び前記他の流体の混合比を確認する動作時における前記混合比確認経路での圧力が、前記気液混合流体の圧縮性感度が低い方の圧力領域の範囲内となるよう設計された気液混合流体の計量混合装置を提供する。 In order to solve the above problems, the present invention is a metering and mixing device for metering and mixing gas-liquid mixed fluids having pressure regions with different compressibility sensitivities in which gas is contained in a medium, A tank for storing a gas-liquid mixed fluid and another fluid, a metering discharge pump for pumping the gas-liquid mixed fluid and the other fluid through separate paths, the gas-liquid mixed fluid and the other fluid, A non-drive type mixing device that mixes the gas-liquid mixed fluid and the other fluid on the downstream side of the merging portion, and the gas-liquid mixing on the upstream side of the merging portion. A mixing ratio confirmation path for confirming a mixing ratio of the fluid and the other fluid, and the merging portion in the operation of mixing the gas-liquid mixed fluid and the other fluid by the mixing device, and the gas Confirm mixing ratio of liquid mixture fluid and other fluids Pressure at the mixing ratio check path during operation that provides a metering mixing device of the gas-liquid gas-liquid mixed fluid that is designed to compressibility sensitivity of the mixed fluid is in the range of lower pressure region of.
本発明において混合される気液混合流体は、加圧された際に、気液混合流体に含まれる気体の特性に支配されて圧縮される第1圧力領域と、気液混合流体の媒質の特性に支配されて圧縮される第2圧力領域とを有する。第2圧力領域は、第1圧力領域も高い。第1圧力領域及び第2圧力領域において、気液混合流体の変位量は、付加された圧力に略比例する。第2圧力領域の圧縮性感度は、第1圧力領域の圧縮性感度よりも低い。
本発明によれば、混合装置運転時の合流部及び混合比確認経路での圧力を、気液混合流体の圧縮性感度が低い方の圧力領域の範囲内となるように設計されているため、体積変動の少ない状態で混合または混合比の確認を行うことができる。
The gas-liquid mixed fluid mixed in the present invention, when pressurized, is compressed by being controlled by the characteristics of the gas contained in the gas-liquid mixed fluid, and the characteristics of the medium of the gas-liquid mixed fluid And a second pressure region that is compressed by being controlled. The second pressure region is higher than the first pressure region. In the first pressure region and the second pressure region, the displacement amount of the gas-liquid mixed fluid is substantially proportional to the applied pressure. The compressibility sensitivity of the second pressure region is lower than the compressibility sensitivity of the first pressure region.
According to the present invention, the pressure at the merge portion and the mixing ratio confirmation path during operation of the mixing device is designed to be within the range of the pressure region where the compressibility sensitivity of the gas-liquid mixed fluid is low, The mixing or the mixing ratio can be confirmed in a state where the volume fluctuation is small.
上記発明の一態様において、前記定量吐出ポンプの入口の圧力を前記気液混合流体の圧縮性感度が低い方の圧力領域の範囲内となるよう設計されることが好ましい。 In one aspect of the invention, it is preferable that the pressure at the inlet of the metering discharge pump is designed to be within the range of the pressure region where the compressibility sensitivity of the gas-liquid mixed fluid is lower.
定量吐出ポンプの入口の圧力を当該圧力領域の範囲内とすることで、定量ポンプ内も気液混合流体の圧縮性感度が低い方の圧力領域の範囲内とすることが可能となる。それによって、気液混合流体をより正確に計量できるようになる。 By setting the pressure at the inlet of the metering discharge pump within the range of the pressure region, the metering pump can also be within the range of the pressure region where the compressibility sensitivity of the gas-liquid mixed fluid is lower. Thereby, the gas-liquid mixed fluid can be measured more accurately.
上記発明の一態様において、前記混合装置の下流側、及び、前記混合比確認経路に、圧損要素を設けることが好ましい。 In one aspect of the invention, it is preferable to provide a pressure loss element on the downstream side of the mixing device and on the mixing ratio confirmation path.
当該箇所に圧損要素を設けることで、定量吐出ポンプ出口から圧損要素までの間の圧力を高めることができる。それによって、混合時における合流部、及び、混合比確認時における混合比確認経路での圧力を、気液混合流体の圧縮性感度が低い方の圧力領域の範囲内とすることが可能となる。 By providing the pressure loss element at the location, the pressure from the metering discharge pump outlet to the pressure loss element can be increased. As a result, the pressure at the junction at the time of mixing and the pressure at the mixing ratio confirmation path at the time of confirmation of the mixing ratio can be within the range of the pressure region where the compressibility sensitivity of the gas-liquid mixed fluid is lower.
上記発明の一態様において、前記タンクと前記定量吐出ポンプとの間に、圧送ポンプを設けることが好ましい。 1 aspect of the said invention WHEREIN: It is preferable to provide a pumping pump between the said tank and the said fixed delivery pump.
当該箇所に圧送ポンプを設けることで、定量吐出ポンプを所定の圧力で作動させることができる。すなわち、定量ポンプ内を気液混合流体の圧縮性感度が低い方の圧力領域の範囲内とすることが可能となる。それによって、気液混合流体をより正確に計量できるようになる。 By providing a pressure feed pump at the location, the fixed discharge pump can be operated at a predetermined pressure. That is, it becomes possible to make the inside of the metering pump be in the range of the pressure region where the compressibility sensitivity of the gas-liquid mixed fluid is lower. Thereby, the gas-liquid mixed fluid can be measured more accurately.
本発明は、媒質に気体が含有されてなる圧縮性感度の異なる圧力領域を有する気液混合流体を、計量して混合する計量混合方法であって、タンクに収容された前記気液混合流体及び他の流体を、定量吐出ポンプによって別々の経路を介して圧送し、合流部で合流させる前に、混合比確認経路に導いてそれぞれ計量して混合比を決定する混合比決定工程と、タンクに収容された前記気液混合流体及び他の流体を、定量吐出ポンプによって別々の経路を介して圧送し、合流部で合流させた後、無駆動型の混合装置で混合させる混合工程と、を備え、前記混合比決定工程中における混合比確認経路での圧力、及び前記混合工程中における前記合流部での圧力を、前記気液混合流体の圧縮性感度が低い方の圧力領域の範囲内とする気液混合流体の計量混合方法を提供する。 The present invention is a metering and mixing method for metering and mixing gas-liquid mixed fluids having pressure regions with different compressibility sensitivities in which gas is contained in a medium, wherein the gas-liquid mixed fluid contained in a tank and The other fluid is pumped through a separate path by a metering discharge pump, and before being joined at the junction, it is led to a blend ratio confirmation path and weighed separately to determine the blend ratio, and to the tank A mixed step of pumping the gas-liquid mixed fluid and other fluids accommodated by a fixed discharge pump through separate paths, joining them at a junction, and then mixing them by a non-drive type mixing device. The pressure in the mixing ratio confirmation path in the mixing ratio determining step and the pressure in the merging portion in the mixing step are within the range of the pressure region where the compressibility sensitivity of the gas-liquid mixed fluid is lower. Gas-liquid mixed fluid measurement To provide a focus method.
上記発明によれば、混合装置運転時の合流部及び混合比確認経路での圧力を、気液混合流体の圧縮性感度が低い方の圧力領域の範囲内とすることで、体積変動の少ない状態で混合または混合比の確認を行うことができる。 According to the above invention, the pressure in the joining portion and the mixing ratio confirmation path during operation of the mixing device is within the range of the pressure region where the compressibility sensitivity of the gas-liquid mixed fluid is low, so that the volume fluctuation is small. The mixing or the mixing ratio can be confirmed with.
上記発明の一態様において、前記混合比決定工程及び混合工程において、前記定量吐出ポンプの入口の圧力を前記気液混合流体の圧縮性感度が低い方の圧力領域の範囲内とすることが好ましい。 In one aspect of the invention described above, in the mixing ratio determining step and the mixing step, it is preferable that the pressure at the inlet of the metering discharge pump is within the range of the pressure region where the compressibility sensitivity of the gas-liquid mixed fluid is lower.
定量吐出ポンプの入口の圧力を当該圧力領域の範囲内とすることで、定量ポンプ内も気液混合流体の圧縮性感度が低い方の圧力領域の範囲内とすることが可能となる。それによって、気液混合流体をより正確に計量できるようになる。 By setting the pressure at the inlet of the metering discharge pump within the range of the pressure region, the metering pump can also be within the range of the pressure region where the compressibility sensitivity of the gas-liquid mixed fluid is lower. Thereby, the gas-liquid mixed fluid can be measured more accurately.
本発明によれば、合流部および混合比確認経路の圧力を所定の範囲内とすることで、体積変動の少ない状態で気液混合流体を計量及び混合することができる。それによって、合流部で合流する気液混合流体と、混合比確認経路で計量される気液混合流体との体積が略等しくなるため、確認された混合比を、実際に混合される気液混合流体と他の流体との混合比に反映させることのできる計量混合装置となる。 According to the present invention, the gas-liquid mixed fluid can be measured and mixed in a state in which the volume fluctuation is small by setting the pressures of the merging portion and the mixing ratio confirmation path within a predetermined range. As a result, the volume of the gas-liquid mixed fluid that merges at the merging portion and the gas-liquid mixed fluid that is measured in the mixing ratio confirmation path are substantially equal. The metering and mixing device can be reflected in the mixing ratio of the fluid and the other fluid.
以下、本発明の実施形態に係る混合吐出装置について、図1を用いて説明する。
図1は、実施形態に係る混合吐出装置100のフロー図である。
Hereinafter, a mixed discharge device according to an embodiment of the present invention will be described with reference to FIG.
FIG. 1 is a flowchart of the mixed discharge device 100 according to the embodiment.
混合吐出装置100は、主剤タンク1、硬化剤タンク2、主剤定量吐出ポンプ3、硬化剤定量吐出ポンプ4、合流部5、混合装置6、混合比確認経路7,8、及び重量計9を備えている。
The mixing and discharging device 100 includes a
主剤タンク1には、主剤が収容されている。主剤は、気液混合流体とされ、媒質に微小な気体が分散して含有されている。媒質は、ポリサルファイド系、シリコン系、及びウレタン系などの樹脂材料とされる。気体は、空気、酸素、窒素及び二酸化炭素などとされる。例えば、気液混合流体として、PPG社製のPR−1776M B−2のような樹脂材料に発泡剤もしくはマイクロビーズなどを添加して微小な気体を包含させて調製された流体が用いられる。なお、気液混合流体には、意図せず媒質に気体が包含された流体も含まれる。
The
図2に、PR−1776M B−2の主剤、硬化剤それぞれを加圧した場合の圧縮変位量を示す。主剤は意図した微小な気体が包含された、気液混合流体である。硬化剤は、意図せず媒質に気体が包含された流体である。各気液混合流体を、それぞれシリンダ(直径:30mm)に、高さ10mmで充填し、一方向から圧力(0.1MPa〜15MPa)を付加し、圧縮量を計測した(図3)。 In FIG. 2, the compression displacement amount at the time of pressurizing each main ingredient and hardening | curing agent of PR-1776MB-2 is shown. The main agent is a gas-liquid mixed fluid containing the intended minute gas. A curing agent is a fluid in which a gas is unintentionally included in a medium. Each gas-liquid mixed fluid was filled in a cylinder (diameter: 30 mm) at a height of 10 mm, pressure (0.1 MPa to 15 MPa) was applied from one direction, and the amount of compression was measured (FIG. 3).
図2によれば、各気液混合流体は、加圧力の上昇にともなって変位量も増加した。気液混合流体の加圧力に対する変位量の変化の傾き、すなわち、気液混合流体の圧縮性感度は、第1圧力領域(0.1MPa〜2MPa)と第2圧力領域(2MPa〜15MPa)とで異なっていた。第1圧力領域において、気液混合流体は、加圧力に対し略比例して変位した。第2圧力領域においても、気液混合流体は、加圧力に対して略比例して変位したが、その傾きは、第1圧力領域よりも大きかった。上記結果から、第2圧力領域の範囲内、本実施例では2MPa以上の圧力を付加した気液混合流体の体積変動は小さくなることが確認された。 According to FIG. 2, the amount of displacement of each gas-liquid mixed fluid also increased as the applied pressure increased. The inclination of the change of the displacement amount with respect to the pressure of the gas-liquid mixed fluid, that is, the compressibility sensitivity of the gas-liquid mixed fluid is in the first pressure region (0.1 MPa to 2 MPa) and the second pressure region (2 MPa to 15 MPa). It was different. In the first pressure region, the gas-liquid mixed fluid was displaced approximately in proportion to the applied pressure. Even in the second pressure region, the gas-liquid mixed fluid was displaced in proportion to the applied pressure, but the inclination thereof was larger than that in the first pressure region. From the above results, it was confirmed that the volume fluctuation of the gas-liquid mixed fluid to which a pressure of 2 MPa or more was applied in the present example within the range of the second pressure region was reduced.
空気を含有したポリサルファイドの圧縮変形量をシミュレートした。シミュレートは、空気を12体積%含有したポリサルファイドを、シリンダ(直径:30mm)に、高さ10mmで充填し、一方向から圧力(0.1MPa〜100MPa)を付加したものとして実施した。結果を表1に示す。空気の体積は、状態方程式(温度一定)から算出した。 The amount of compressive deformation of polysulfide containing air was simulated. The simulation was performed assuming that polysulfide containing 12% by volume of air was filled in a cylinder (diameter: 30 mm) at a height of 10 mm and pressure (0.1 MPa to 100 MPa) was applied from one direction. The results are shown in Table 1. The volume of air was calculated from the equation of state (constant temperature).
表1によれば、空気を含有したポリサルファイドの圧縮変形の推移は、図2の結果と同様の傾向を示した。空気を含有したポリサルファイドの圧縮変形量は、2MPaよりも低い圧力領域では空気の特性に支配されており、2MPa以上の圧力領域ではポリサルファイドの特性に支配されていた。
状態方程式(温度一定)に従えば、加圧力を0.1MPaから2MPaへ増加させることで、空気の体積は95%減少する。
上記結果によれば、気液混合流体を第2圧力領域の範囲内で加圧することで、包含される気体の体積変動を飽和状態とすることができる。
According to Table 1, the transition of the compressive deformation of the polysulfide containing air showed the same tendency as the result of FIG. The amount of compressive deformation of polysulfide containing air was governed by air characteristics in a pressure region lower than 2 MPa, and was governed by polysulfide properties in a pressure region of 2 MPa or more.
According to the state equation (constant temperature), the volume of air is reduced by 95% by increasing the pressure from 0.1 MPa to 2 MPa.
According to the said result, the volume fluctuation | variation of the gas included can be saturated by pressurizing the gas-liquid mixed fluid within the range of the second pressure region.
硬化剤タンク2には、硬化剤(他の流体)が収容されている。硬化剤は、主剤へ添加することで硬化反応が生じる流体であれば良く、使用される主剤に応じて適宜選択される。
The curing
主剤タンク1には、主剤定量吐出ポンプ3が接続されている。主剤定量吐出ポンプ3には、主剤を吐出する吐出口が備えられ、吐出口には主剤を圧送するための主剤圧送経路10が接続されている。
主剤タンク1と主剤定量吐出ポンプ3との間には、圧送ポンプ11が設けられていることが好ましい。
A main agent fixed
It is preferable that a
硬化剤タンク2には、硬化剤定量吐出ポンプ4が接続されている。硬化剤定量吐出ポンプ4には、硬化剤を吐出する吐出口が備えられ、吐出口には硬化剤を圧送するための硬化剤圧送経路12が接続されている。
硬化剤タンク2と硬化剤定量吐出ポンプ4との間には、圧送ポンプ13が設けられていることが好ましい。
A curing agent
It is preferable that a
主剤定量吐出ポンプ3及び硬化剤定量吐出ポンプ4は、連結リンク14に連結されている。連結リンク14は、一端部15が軸支され、他端が動力であるエアモータ16で駆動される。主剤定量吐出ポンプ3及び硬化剤定量吐出ポンプ4は、連結リンク14の他端を駆動させることで、主剤タンク1及び硬化剤タンク2からそれぞれ主剤及び硬化剤を定量吐出することができる。主剤定量吐出ポンプ3及び硬化剤定量吐出ポンプ4は、連結リンク14に連結する際の軸支点からの距離を変えることで、吐出量を調整することができる。例えば、軸支点からの距離を短くすれば、吐出量も減少する。
The main agent fixed
主剤圧送経路10及び硬化剤圧送経路12は、合流部5で合流される。合流部5には、逆止弁17が設けられている。図1では、逆止弁17が合流点Aの硬化剤圧送経路側に設けられているが、逆止弁17を設ける位置はこれに限定されず、合流点Aの主剤圧送経路10側、または合流点Aの両経路10,12側などに設けられていても良い。
The main
合流部5の下流側には、無駆動型の混合装置6が接続されている。無駆動型の混合装置6としては、スタティックミキサーが挙げられる。スタティックミキサーは、駆動部のない静止型混合器(ラインミキサー)であり、ミキサー内にエレメントを備えている。ミキサー内に入った流体は、エレメントにより順次撹拌混合される。
A non-drive type mixing device 6 is connected to the downstream side of the merging
混合装置6よりも下流側には、吐出口18が設けられ、大気開放されている。混合装置6と吐出口18の間には、圧損要素19が設けられている。圧損要素19は、絞り弁などの流量調整弁とされる。
A
混合比確認経路7,8は、合流部5よりも上流側で、主剤圧送経路10及び硬化剤圧送経路12にそれぞれ接続されている。接続部分には、主剤及び硬化剤の流れを主剤圧送経路10及び硬化剤圧送経路12から混合比確認経路へと切り替え可能にバルブ20,21,22,23が設けられている。混合比確認経路7,8の途中には、それぞれ圧損要素24,25が設けられている。圧損要素24,25は、絞り弁などの流量調整弁とされる。
混合比確認経路7,8の圧損要素24,25よりも下流側の端部は、吐出口26,27となっており、大気開放されている。
The mixing
Ends on the downstream side of the
次に、計量混合装置100を用いた気液混合流体の計量混合方法について説明する。本実施形態に係る気液混合流体の計量混合方法は、混合比決定工程と、混合工程と、を備えている。 Next, a method for metering and mixing a gas-liquid mixed fluid using the metering and mixing apparatus 100 will be described. The method for metering and mixing a gas-liquid mixed fluid according to the present embodiment includes a mixing ratio determining step and a mixing step.
(混合比決定工程)
バルブ22,23を閉め、バルブ20,21を開放する。
エアモータ23に空気を供給し、連結リンク14の他端を往復運動させることで、主剤定量吐出ポンプ3及び硬化剤定量吐出ポンプ4によって、主剤タンク1及び硬化剤タンク2に収容された主剤及び硬化剤を吐出させ、それぞれ主剤圧送経路10,12へと圧送する。
(Mixing ratio determination process)
By supplying air to the
各タンク1,2と各定量吐出ポンプ3,4との間に圧送ポンプ11,13を設ける場合は、主剤タンク1及び硬化剤タンク2に収容された主剤及び硬化剤は、該圧送ポンプ11,13によって、所定圧力に昇圧されて定量吐出ポンプ3,4に供給される。所定圧力は、主剤の圧縮性感度が低い方の圧力領域の範囲内とする。主剤としてPR−1776M B−2を用いる場合、主剤及び硬化剤は、2MPa以上の圧力で定量吐出ポンプ3,4に供給されると良い。
When the pressure pumps 11 and 13 are provided between the
圧送された主剤及び硬化剤は、それぞれ混合比確認経路7,8に導かれる。混合比確認経路7,8には圧損要素24,25が設けられているため、混合比確認経路7,8の圧力は、主剤の圧縮性感度が低い方の圧力領域(第2圧力領域)の範囲内とすることができる。
The main agent and the curing agent thus pumped are guided to the mixing
圧損要素24,25を経由した主剤及び硬化剤は、吐出口26,27から吐出され、重量計9にてそれぞれ重量を計量される。該計量結果に基づき、主剤及び硬化剤が所定の比率となるように、定量吐出ポンプ3,4の連結リンクへの連結位置を調整する。
The main agent and the curing agent that have passed through the
(混合工程)
バルブ20,21を閉め、バルブ22,23を開放する。
混合比決定工程と同様に、主剤及び硬化剤をそれぞれ主剤圧送経路10,12へと圧送する。
(Mixing process)
Similarly to the mixing ratio determination step, the main agent and the curing agent are pumped to the main
圧送された主剤及び硬化剤は、合流部5で合流される。混合装置よりも下流側には圧損要素19が設けられているため、合流部5での圧力は、主剤の圧縮性感度が低い方の圧力領域(第2圧力領域)の範囲内とすることができる。
The main agent and the curing agent fed together are merged at the merging
合流した主剤及び硬化剤は、混合装置にて混合され、圧損要素19を介して吐出口18から吐出される。
吐出された混合材料は、カートリッジに充填された後、ガンに装着されて、航空機のシーラントなどに適用される。
The joined main agent and curing agent are mixed by the mixing device and discharged from the
The discharged mixed material is filled in a cartridge, mounted on a gun, and applied to an aircraft sealant or the like.
上記構成の計量混合装置100によれば、主剤及び硬化剤は、圧縮された状態で計量、及び混合されるが、体積変動が少ない状態であるため、混合比の計量を精度良く行うことができるとともに、確認した混合比が反映された比率で混合することが可能となる。 According to the metering and mixing apparatus 100 having the above configuration, the main agent and the curing agent are weighed and mixed in a compressed state, but since the volume fluctuation is small, the mixing ratio can be accurately measured. At the same time, it is possible to mix at a ratio reflecting the confirmed mixing ratio.
1 主剤タンク
2 硬化剤タンク
3 主剤定量吐出ポンプ
4 硬化剤定量吐出ポンプ
5 合流部
6 混合装置
7,8 混合比確認経路
9 重量計
10 主剤圧送経路
11,13 圧送ポンプ
12 硬化剤圧送経路
14 連結リング
15 一端部(連結リング)
16 エアモータ
17 逆止弁
18,26,27 吐出口
19,24,25 圧損要素
20,21,22,23,31 バルブ
28,29 圧力計
30 レギュレータ
DESCRIPTION OF
16
Claims (6)
前記気液混合流体及び他の流体をそれぞれ収容するタンクと、
前記気液混合流体及び前記他の流体を、別々の経路を介して圧送する定量吐出ポンプと、
前記気液混合流体と他の流体とが合流する合流部と、
前記合流部よりも下流側で、前記気液混合流体及び前記他の流体を混合する無駆動型の混合装置と、
前記合流部よりも上流側で、前記気液混合流体と前記他の流体との混合比を確認する混合比確認経路と、
を備え、
前記気液混合流体及び前記他の流体を前記混合装置で混合する動作時における前記合流部、及び、前記気液混合流体及び前記他の流体の混合比を確認する動作時における前記混合比確認経路での圧力が、前記気液混合流体の圧縮性感度が低い方の圧力領域の範囲内となるよう設計された気液混合流体の計量混合装置。 A metering and mixing device for metering and mixing gas-liquid mixed fluids having pressure regions with different compressibility sensitivities in which gas is contained in a medium,
Tanks respectively containing the gas-liquid mixed fluid and other fluids;
A metering discharge pump for pumping the gas-liquid mixed fluid and the other fluid through separate paths;
A merging portion where the gas-liquid mixed fluid and another fluid merge;
A non-driving type mixing device that mixes the gas-liquid mixed fluid and the other fluid downstream from the merging portion;
A mixing ratio confirmation path for confirming a mixing ratio of the gas-liquid mixed fluid and the other fluid on the upstream side of the merging portion;
With
The merging portion during the operation of mixing the gas-liquid mixed fluid and the other fluid with the mixing device, and the mixing ratio confirmation path during the operation of confirming the mixing ratio of the gas-liquid mixed fluid and the other fluid The gas-liquid mixed fluid metering and mixing device is designed so that the pressure at the pressure is within the range of the pressure region where the compressibility sensitivity of the gas-liquid mixed fluid is lower.
タンクに収容された前記気液混合流体及び他の流体を、定量吐出ポンプによって別々の経路を介して圧送し、合流部で合流させる前に、混合比確認経路に導いてそれぞれ計量して混合比を決定する混合比決定工程と、
タンクに収容された前記気液混合流体及び他の流体を、定量吐出ポンプによって別々の経路を介して圧送し、合流部で合流させた後、無駆動型の混合装置で混合させる混合工程と、
を備え、
前記混合比決定工程中における混合比確認経路での圧力、及び前記混合工程中における前記合流部での圧力を、前記気液混合流体の圧縮性感度が低い方の圧力領域の範囲内とする気液混合流体の計量混合方法。 A metering and mixing method for metering and mixing gas-liquid mixed fluids having pressure regions with different compressive sensitivities in which gas is contained in a medium,
The gas-liquid mixed fluid and other fluids stored in the tank are pumped through separate paths by a metering discharge pump, and before being merged at the merging section, they are led to a mixing ratio confirmation path and weighed to measure the mixing ratio. Determining the mixing ratio;
The gas-liquid mixed fluid stored in the tank and other fluids are mixed by a non-drive type mixing device after being pumped through a separate path by a metering discharge pump, merged at a merging portion, and
With
The gas in the mixing ratio determining step and the pressure in the merging portion in the mixing step are within the range of the pressure region where the compressibility sensitivity of the gas-liquid mixed fluid is lower. A method for metering and mixing liquid mixed fluids.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011031427A JP2012166177A (en) | 2011-02-16 | 2011-02-16 | Metering and mixing apparatus and metering and mixing method for gas-liquid mixed fluid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011031427A JP2012166177A (en) | 2011-02-16 | 2011-02-16 | Metering and mixing apparatus and metering and mixing method for gas-liquid mixed fluid |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012166177A true JP2012166177A (en) | 2012-09-06 |
Family
ID=46970877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011031427A Withdrawn JP2012166177A (en) | 2011-02-16 | 2011-02-16 | Metering and mixing apparatus and metering and mixing method for gas-liquid mixed fluid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012166177A (en) |
-
2011
- 2011-02-16 JP JP2011031427A patent/JP2012166177A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6220747B1 (en) | Proportional pump system for viscous fluids | |
JP5518949B2 (en) | Mass flow control system | |
JP4966308B2 (en) | Control system for combining materials, method for combining materials and control system therefor | |
US10105666B2 (en) | Method for dispensing a fluid medium | |
US10162370B2 (en) | Plural component proportioning system and method | |
US9010367B2 (en) | Electronic proportioner using continuous metering and correction | |
KR20170069254A (en) | Low pressure fluctuation flow control apparatus and method | |
CN1407912A (en) | Electronic multi-component proportional regulator | |
KR20130120449A (en) | Dual pump fluid proportioner with adjustable motor position | |
JP2009082917A (en) | Pump assembly for measuring two components | |
WO2016125900A1 (en) | Method and device for mixing gas into high-viscosity material | |
WO2018025890A1 (en) | Apparatus and method for mixing paste material and gas | |
US20090068034A1 (en) | Pumping system with precise ratio output | |
US10783678B2 (en) | System and method for blending of bulk dry materials in oil well cementing | |
US20210213641A1 (en) | Apparatus for producing foamed building materials | |
US20190337189A1 (en) | Device and method for foaming a viscous material | |
US12145111B2 (en) | Method for foaming adhesive and related system | |
JP2009202921A (en) | Fuel mixing apparatus | |
JP2012148244A (en) | Mixing and discharging device | |
JP4725169B2 (en) | Method and apparatus for mixing bubbles in high viscosity material | |
JP2012166177A (en) | Metering and mixing apparatus and metering and mixing method for gas-liquid mixed fluid | |
CN111013425B (en) | mixing device | |
RU2716647C2 (en) | Method for compensation of losses due to leaks and transporting system for displacement of certain volume of liquid | |
JP7595029B2 (en) | Gas supply system, mechanical foaming system and method for supplying gas | |
US20010046181A1 (en) | Multiple component mixing and dispensing system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140513 |