[go: up one dir, main page]

JP2012148600A - Vehicle air conditioning device - Google Patents

Vehicle air conditioning device Download PDF

Info

Publication number
JP2012148600A
JP2012148600A JP2011007003A JP2011007003A JP2012148600A JP 2012148600 A JP2012148600 A JP 2012148600A JP 2011007003 A JP2011007003 A JP 2011007003A JP 2011007003 A JP2011007003 A JP 2011007003A JP 2012148600 A JP2012148600 A JP 2012148600A
Authority
JP
Japan
Prior art keywords
refrigerant
flow rate
refrigerant flow
outside air
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011007003A
Other languages
Japanese (ja)
Other versions
JP5364733B2 (en
Inventor
Yuichi Matsumoto
雄一 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2011007003A priority Critical patent/JP5364733B2/en
Publication of JP2012148600A publication Critical patent/JP2012148600A/en
Application granted granted Critical
Publication of JP5364733B2 publication Critical patent/JP5364733B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle air conditioning device that operates with high efficiency upon a heating operation.SOLUTION: The air conditioner includes: an HVAC unit (2); a heat pump cycle (4); a refrigerant flow-rate range setting device for setting a refrigerant flow-rate range where a refrigerant temperature is less than the air temperature and a refrigerant flow rate is equal to or less than an allowable refrigerant flow rate, on the basis of the allowable refrigerant flow rate detected by an allowable refrigerant flow-rate estimating device; and a refrigerant flow-rate controller (63) for controlling the refrigerant flow rate within the refrigerant flow-rate range set by the refrigerant flow-rate range setting device, when an inlet refrigerant state value detected by an inlet refrigerant state-value detector (62) is equal to or more than an air refrigerant state value detected by an air refrigerant state-value detector (58).

Description

本発明は車両用空調装置に関し、例えば電気自動車用のヒートポンプサイクルを備えた車両用空調装置に関する。   The present invention relates to a vehicle air conditioner, for example, a vehicle air conditioner provided with a heat pump cycle for an electric vehicle.

この種の車両用空調装置には、例えば電気自動車用のヒートポンプサイクルを備えた空調装置があり、ヒートポンプサイクルの切り換えによって冷暖房運転、除湿運転を行うものが開示されている(例えば特許文献1参照)。
当該ヒートポンプサイクルには、冷媒配管に、第1膨張弁、第1熱交換器、圧縮機、第2熱交換器、第2膨張弁、及び冷媒と外気とを熱交換する室外熱交換器が順次に介挿されるとともに、暖房運転時に第1膨張弁及び第1熱交換器をバイパスする第1バイパス路、冷房運転時に第2膨張弁をバイパスする第2バイパス路とが冷媒流路に接続された構成が考えられる。
As this type of vehicle air conditioner, for example, there is an air conditioner equipped with a heat pump cycle for an electric vehicle, and an apparatus that performs a cooling / heating operation and a dehumidifying operation by switching the heat pump cycle is disclosed (for example, see Patent Document 1). .
In the heat pump cycle, the refrigerant pipe is sequentially provided with a first expansion valve, a first heat exchanger, a compressor, a second heat exchanger, a second expansion valve, and an outdoor heat exchanger that exchanges heat between the refrigerant and the outside air. The first bypass passage that bypasses the first expansion valve and the first heat exchanger during the heating operation and the second bypass passage that bypasses the second expansion valve during the cooling operation are connected to the refrigerant flow path. Configuration is conceivable.

特許第3321907号公報Japanese Patent No. 3321907

上記ヒートポンプサイクルでは、室外熱交換器は冷房運転時には冷媒から外気に放熱させる凝縮器として使用され、暖房運転時には外気から冷媒に吸熱させる蒸発器として使用される。しかし、室外熱交換器を凝縮器として使用する場合と蒸発器として使用する場合とでは、室外熱交換器内における冷媒の状態が異なるため、室外熱交換器の入口側と出口側との冷媒圧力損失が大きく異なることとなる。   In the heat pump cycle, the outdoor heat exchanger is used as a condenser that radiates heat from the refrigerant to the outside air during the cooling operation, and is used as an evaporator that absorbs heat from the outside air to the refrigerant during the heating operation. However, when the outdoor heat exchanger is used as a condenser and when it is used as an evaporator, the refrigerant state in the outdoor heat exchanger is different, so the refrigerant pressure at the inlet side and the outlet side of the outdoor heat exchanger is different. The loss will vary greatly.

具体的には、空調装置の冷房性能を確保するために、室外熱交換器の凝縮器としての機能を優先すると、暖房運転時には、蒸発器として機能する室外熱交換器における圧力損失が大きくなり、空調装置の効率が著しく低下するとの問題が生じる。
そこで、暖房運転時の室外熱交換器における蒸発器の機能補助のために、上記従来技術に記載のような電気ヒータを別途に設けている。
Specifically, if priority is given to the function of the outdoor heat exchanger as a condenser in order to ensure the cooling performance of the air conditioner, the pressure loss in the outdoor heat exchanger that functions as an evaporator increases during heating operation. There arises a problem that the efficiency of the air conditioner is significantly reduced.
Therefore, an electric heater as described in the above prior art is separately provided to assist the function of the evaporator in the outdoor heat exchanger during heating operation.

しかしながら、電気自動車に電気ヒータを設けると、車両の消費電力が大きくなり、車両の航続距離が短くなるおそれがある。
また、冬季の暖房運転時における外気温度は0℃以下となることも珍しくないが、外気から吸熱するためには室外熱交換器内の冷媒温度を外気温度未満まで低下させる必要があり、このような場合には車室内における熱負荷が大きくなるため、暖房運転時には多くの熱量が必要となり、ヒートポンプサイクルにおいて循環させる冷媒流量を増大させる必要がある。
However, if an electric heater is provided in an electric vehicle, the power consumption of the vehicle increases and the cruising distance of the vehicle may be shortened.
In addition, it is not uncommon for the outside air temperature during the heating operation in winter to be 0 ° C. or lower, but in order to absorb heat from the outside air, it is necessary to lower the refrigerant temperature in the outdoor heat exchanger to below the outside air temperature. In such a case, since the heat load in the passenger compartment increases, a large amount of heat is required during the heating operation, and it is necessary to increase the refrigerant flow rate circulated in the heat pump cycle.

更に、外気温度が低い場合には、特に冷媒としてフロン系冷媒を使用すると、外気温度における冷媒の飽和蒸気圧が大気圧や負圧相当まで低下するおそれがある。冷媒圧力が大気圧や負圧になると、ヒートポンプサイクルの冷媒配管内に外部の空気、水分、埃等が侵入するおそれがあるため、一般には大気圧よりも大きい冷媒圧力で装置を運転する。
しかしながら、暖房運転時にヒートポンプサイクルにおいて循環させる冷媒流量を増大しながら、室外熱交換器の出口側における出口冷媒圧力を大気圧よりも大きくなるようにヒートポンプサイクルを制御して運転すると、室外熱交換器の入口側の入口冷媒圧力に対応する飽和温度が外気温度よりも高くなり、室外熱交換器の入口側では冷媒から外気へ対する放熱が発生し、冷媒循環量の増大も相俟って、蒸発器としての室外熱交換器の効率が著しく低下するとの問題が生じる。
Further, when the outside air temperature is low, particularly when a chlorofluorocarbon refrigerant is used as the refrigerant, the saturated vapor pressure of the refrigerant at the outside air temperature may be reduced to an atmospheric pressure or a negative pressure. When the refrigerant pressure becomes atmospheric pressure or negative pressure, external air, moisture, dust, or the like may enter the refrigerant piping of the heat pump cycle. Therefore, the apparatus is generally operated at a refrigerant pressure higher than atmospheric pressure.
However, when the heat pump cycle is controlled and operated so that the outlet refrigerant pressure on the outlet side of the outdoor heat exchanger becomes larger than the atmospheric pressure while increasing the refrigerant flow rate circulated in the heat pump cycle during the heating operation, the outdoor heat exchanger The saturation temperature corresponding to the inlet refrigerant pressure on the inlet side of the refrigerant becomes higher than the outside air temperature, heat is released from the refrigerant to the outside air on the inlet side of the outdoor heat exchanger, and evaporation increases due to an increase in the amount of refrigerant circulation. There arises a problem that the efficiency of the outdoor heat exchanger as a heat exchanger is significantly reduced.

本発明は、上述の点に鑑みてなされたもので、暖房運転時における高効率運転を実現することができる車両用空調装置を提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide a vehicle air conditioner that can realize high-efficiency operation during heating operation.

上記の目的を達成するため、本発明の請求項1記載の車両用空調装置は、空気流路中に配設されている熱交換器により温調された空気を車室内に吹き出すHVACユニットと、冷媒流路に、圧縮機、熱交換器、膨張弁、及び冷媒と外気とを熱交換する室外熱交換器が順次介挿されたヒートポンプサイクルと、外気温度を検出する外気温度検出手段と、室外熱交換器の入口側における入口冷媒状態値を検出する入口冷媒状態検出手段と、外気温度検出手段で検出された外気温度に基づいて外気における外気冷媒状態値を検出する外気冷媒状態検出手段と、外気温度検出手段で検出された外気温度における室外熱交換器での許容圧力損失を推定する許容圧力損失推定手段と、許容圧力損失推定手段で推定した許容圧力損失に基づいて室外熱交換器を流れる許容冷媒流量を推定する許容冷媒流量推定手段と、外気温度検出手段で検出された外気温度、許容冷媒流量推定手段で検出された許容冷媒流量に基づいて冷媒温度が外気温度未満、且つ、冷媒流量が許容冷媒流量以下となる冷媒流量範囲を設定する冷媒流量範囲設定手段と、入口冷媒状態検出手段で検出された入口冷媒状態値が外気冷媒状態検出手段で検出された外気冷媒状態値以上となるときには、冷媒流量範囲設定手段で設定された冷媒流量範囲内で冷媒流量を制御する冷媒流量制御手段とを備えることを特徴としている。   In order to achieve the above object, an air conditioner for a vehicle according to claim 1 of the present invention includes an HVAC unit that blows out temperature-adjusted air into a vehicle compartment by a heat exchanger disposed in an air flow path. A heat pump cycle in which a refrigerant, a heat exchanger, an expansion valve, and an outdoor heat exchanger for exchanging heat between the refrigerant and the outside air are sequentially inserted in the refrigerant flow path; an outside air temperature detecting means for detecting the outside air temperature; An inlet refrigerant state detecting means for detecting an inlet refrigerant state value on the inlet side of the heat exchanger, and an outside air refrigerant state detecting means for detecting an outside air refrigerant state value in the outside air based on the outside air temperature detected by the outside air temperature detecting means; Allowable pressure loss estimating means for estimating allowable pressure loss in the outdoor heat exchanger at the outside air temperature detected by the outside air temperature detecting means, and the outdoor heat exchanger based on the allowable pressure loss estimated by the allowable pressure loss estimating means The refrigerant temperature is less than the outside air temperature based on the allowable refrigerant flow rate estimating means for estimating the flowing allowable refrigerant flow rate, the outside air temperature detected by the outside air temperature detecting means, and the allowable refrigerant flow rate detected by the allowable refrigerant flow rate estimating means, and the refrigerant A refrigerant flow rate range setting unit that sets a refrigerant flow rate range in which the flow rate is equal to or lower than an allowable refrigerant flow rate, and an inlet refrigerant state value detected by the inlet refrigerant state detection unit is greater than or equal to an outdoor refrigerant state value detected by the outdoor refrigerant state detection unit When it becomes, it is provided with the refrigerant | coolant flow control means which controls a refrigerant | coolant flow within the refrigerant | coolant flow range set by the refrigerant | coolant flow range setting means.

請求項2記載の発明は、入口冷媒状態検出手段は、入口冷媒状態値として室外熱交換器の入口側における入口冷媒温度を検出し、外気冷媒状態検出手段は、外気冷媒状態値として外気温度検出手段で検出された外気温度を検出し、冷媒流量制御手段は、入口冷媒温度が外気温度以上となるときには、冷媒流量制御範囲内で冷媒流量を制御することを特徴としている。   According to the second aspect of the present invention, the inlet refrigerant state detecting means detects the inlet refrigerant temperature on the inlet side of the outdoor heat exchanger as the inlet refrigerant state value, and the outside air refrigerant state detecting means detects the outside air temperature as the outside refrigerant state value. An outside air temperature detected by the means is detected, and the refrigerant flow rate control means controls the refrigerant flow rate within a refrigerant flow rate control range when the inlet refrigerant temperature is equal to or higher than the outside air temperature.

請求項3記載の発明は、入口冷媒状態検出手段は、入口冷媒状態値として室外熱交換器の入口側における入口冷媒圧力を検出し、外気冷媒状態検出手段は、外気冷媒状態値として外気温度検出手段で検出された外気温度における冷媒の飽和蒸気圧力を検出し、冷媒流量制御手段は、入口冷媒圧力が飽和蒸気圧力以上となるときには、冷媒流量制御範囲内で冷媒流量を制御することを特徴としている。   According to a third aspect of the present invention, the inlet refrigerant state detecting means detects the inlet refrigerant pressure on the inlet side of the outdoor heat exchanger as the inlet refrigerant state value, and the outside air refrigerant state detecting means detects the outside air temperature as the outside refrigerant state value. The refrigerant saturated vapor pressure at the outside air temperature detected by the means is detected, and the refrigerant flow control means controls the refrigerant flow rate within the refrigerant flow control range when the inlet refrigerant pressure is equal to or higher than the saturated vapor pressure. Yes.

請求項4記載の発明は、圧縮機の吸入側における吸入冷媒温度及び吸入冷媒圧力を検出する吸入冷媒状態検出手段と、吸入冷媒状態検出手段で検出された吸入冷媒温度及び吸入冷媒圧力に基づいて圧縮機の吸入側における吸入冷媒密度を推定する吸入冷媒密度推定手段と、圧縮機の回転数を検出する回転数検出手段と、吸入冷媒状態検出手段で検出された吸入冷媒密度、回転数検出手段で検出された回転数に基づいて冷媒流路を循環する冷媒流量を推定する冷媒流量推定手段と、冷媒流量推定手段で推定された冷媒流量に基づいて室外熱交換器における冷媒圧力損失を推定する冷媒圧力損失推定手段と、外気温度検出手段で検出された外気温度、冷媒流量推定手段で推定された冷媒流量に基づいて室外熱交換器の出口側における出口冷媒圧力を検出する出口冷媒圧力検出手段と、入口冷媒状態検出手段は、冷媒圧力損失推定手段で推定された冷媒圧力損失と出口冷媒圧力検出手段で検出された出口冷媒圧力との和を推定された入口冷媒圧力として検出することを特徴としている。   The invention according to claim 4 is based on the suction refrigerant state detection means for detecting the suction refrigerant temperature and the suction refrigerant pressure on the suction side of the compressor, and the suction refrigerant temperature and the suction refrigerant pressure detected by the suction refrigerant state detection means. Intake refrigerant density estimation means for estimating the intake refrigerant density on the suction side of the compressor, rotation speed detection means for detecting the rotation speed of the compressor, intake refrigerant density and rotation speed detection means detected by the intake refrigerant state detection means The refrigerant flow rate estimating means for estimating the refrigerant flow rate circulating through the refrigerant flow path based on the number of revolutions detected in the step, and the refrigerant pressure loss in the outdoor heat exchanger based on the refrigerant flow rate estimated by the refrigerant flow rate estimating means The outlet refrigerant pressure at the outlet side of the outdoor heat exchanger based on the refrigerant pressure loss estimation means, the outside air temperature detected by the outside air temperature detection means, and the refrigerant flow rate estimated by the refrigerant flow rate estimation means The outlet refrigerant pressure detecting means for detecting and the inlet refrigerant state detecting means are the inlet refrigerant whose sum of the refrigerant pressure loss estimated by the refrigerant pressure loss estimating means and the outlet refrigerant pressure detected by the outlet refrigerant pressure detecting means is estimated. It is characterized by detecting as pressure.

請求項5記載の発明は、圧縮機の吸入側における吸入冷媒圧力を検出する吸入冷媒圧力検出手段を備え、冷媒流量制御手段は、吸入冷媒圧力検出手段で検出された吸入冷媒圧力が大気圧より大となるように冷媒流量を制御することを特徴としている。
請求項6記載の発明は、冷媒流量制御手段は、膨張弁の開度を制御することにより冷媒流量を制御する膨張弁開度制御を行うことを特徴としている。
The invention according to claim 5 includes an intake refrigerant pressure detecting means for detecting an intake refrigerant pressure on the intake side of the compressor, and the refrigerant flow rate control means is configured such that the intake refrigerant pressure detected by the intake refrigerant pressure detecting means is greater than the atmospheric pressure. The refrigerant flow rate is controlled to be large.
The invention according to claim 6 is characterized in that the refrigerant flow rate control means performs expansion valve opening degree control for controlling the refrigerant flow rate by controlling the opening degree of the expansion valve.

請求項7記載の発明は、冷媒流量制御手段は、圧縮機の吐出容量を制御することにより冷媒流量を制御する圧縮機吐出容量制御を行うことを特徴としている。   The invention according to claim 7 is characterized in that the refrigerant flow rate control means performs compressor discharge capacity control for controlling the refrigerant flow rate by controlling the discharge capacity of the compressor.

請求項1記載の車両用空調装置によれば、室外熱交換器の入口冷媒状態値が外気冷媒状態検出手段で検出された外気冷媒状態値以上となるときには、冷媒流量範囲設定手段で設定された冷媒流量範囲内で冷媒流量を制御する冷媒流量制御手段を備える。これにより、車両用空調装置の暖房運転時において、常に冷媒温度が外気温度未満、且つ、冷媒流量が許容冷媒流量以下となる冷媒流量範囲内でヒートポンプサイクルを運転することが可能となるため、暖房運転時であっても室外熱交換器における圧力損失を小さくすることができ、暖房運転時における車両用空調装置の高効率運転を実現することができる。   According to the vehicle air conditioner of the first aspect, when the inlet refrigerant state value of the outdoor heat exchanger is equal to or greater than the outside air refrigerant state value detected by the outside air refrigerant state detecting means, the refrigerant flow rate range setting means is set. Refrigerant flow rate control means for controlling the refrigerant flow rate within the refrigerant flow rate range is provided. As a result, during the heating operation of the vehicle air conditioner, it becomes possible to operate the heat pump cycle within the refrigerant flow rate range in which the refrigerant temperature is always lower than the outside air temperature and the refrigerant flow rate is equal to or lower than the allowable refrigerant flow rate. Even during operation, pressure loss in the outdoor heat exchanger can be reduced, and high efficiency operation of the vehicle air conditioner during heating operation can be realized.

請求項2記載の発明によれば、具体的には、冷媒流量制御手段は、入口冷媒温度が外気温度以上となるときには、冷媒流量制御範囲内で冷媒流量を制御する。
請求項3記載の発明によれば、具体的には、入口冷媒圧力が飽和蒸気圧力以上となるときには、冷媒流量制御範囲内で冷媒流量を制御する。
More specifically, the refrigerant flow rate control means controls the refrigerant flow rate within the refrigerant flow rate control range when the inlet refrigerant temperature is equal to or higher than the outside air temperature.
Specifically, when the inlet refrigerant pressure is equal to or higher than the saturated vapor pressure, the refrigerant flow rate is controlled within the refrigerant flow rate control range.

請求項4記載の発明によれば、入口冷媒状態検出手段は、冷媒圧力損失推定手段で推定された冷媒圧力損失と出口冷媒圧力検出手段で検出された出口冷媒圧力との和を推定された入口冷媒圧力として検出することにより、入口冷媒状態を検出するためのセンサを設けなくとも、冷媒流量制御手段による冷媒流量制御の要否を判定することができるため、より一層簡単な構成で車両用空調装置の高効率運転を実現することができる。   According to the fourth aspect of the present invention, the inlet refrigerant state detecting means is configured to estimate the sum of the refrigerant pressure loss estimated by the refrigerant pressure loss estimating means and the outlet refrigerant pressure detected by the outlet refrigerant pressure detecting means. By detecting the refrigerant pressure, it is possible to determine whether or not the refrigerant flow control by the refrigerant flow control means is necessary without providing a sensor for detecting the inlet refrigerant state. High efficiency operation of the device can be realized.

請求項5記載の発明によれば、冷媒流量制御手段は、吸入冷媒圧力検出手段で検出された吸入冷媒圧力が大気圧より大となるように冷媒流量を制御することにより、ヒートポンプサイクルの負圧運転を防止することができるため、ヒートポンプサイクルの冷媒流路内への空気、水分、埃等の侵入を確実に防止することができ、車両用空調装置の高効率運転を確実に実現することができる。   According to the fifth aspect of the present invention, the refrigerant flow rate control means controls the refrigerant flow rate so that the suction refrigerant pressure detected by the suction refrigerant pressure detection means is greater than the atmospheric pressure, so that the negative pressure of the heat pump cycle is reached. Since it is possible to prevent operation, it is possible to reliably prevent the entry of air, moisture, dust, etc. into the refrigerant flow path of the heat pump cycle, and to ensure high-efficiency operation of the vehicle air conditioner. it can.

請求項6記載の発明によれば、具体的には、冷媒流量制御手段は、膨張弁の開度を制御することにより冷媒流量を制御する膨張弁開度制御を行う。
請求項7記載の発明によれば、具体的には、冷媒流量制御手段は、圧縮機の吐出容量を制御することにより冷媒流量を制御する圧縮機吐出容量制御を行う。
Specifically, the refrigerant flow rate control means performs expansion valve opening degree control for controlling the refrigerant flow rate by controlling the opening degree of the expansion valve.
Specifically, the refrigerant flow rate control means performs compressor discharge capacity control for controlling the refrigerant flow rate by controlling the discharge capacity of the compressor.

本発明の第1実施形態に係る車両用空調装置の暖房運転時における状態を示した構成図である。It is the block diagram which showed the state at the time of the heating operation of the vehicle air conditioner which concerns on 1st Embodiment of this invention. 図1の車両用空調装置の冷房運転時における状態を示した構成図である。It is the block diagram which showed the state at the time of air_conditionaing | cooling operation of the vehicle air conditioner of FIG. 図1の制御ユニットにおいて実行される冷媒流量制御の制御ルーチンを示すフローチャートである。It is a flowchart which shows the control routine of the refrigerant | coolant flow control performed in the control unit of FIG. 外気温度と室外熱交換器における許容圧力損失との関係を示した図である。It is the figure which showed the relationship between outside temperature and the allowable pressure loss in an outdoor heat exchanger. 室外熱交換器における許容冷媒流量と許容圧力損失との関係を示した図である。It is the figure which showed the relationship between the allowable refrigerant | coolant flow volume and allowable pressure loss in an outdoor heat exchanger. 室外熱交換器における冷媒流量と入口冷媒温度との関係を示した図である。It is the figure which showed the relationship between the refrigerant | coolant flow volume in an outdoor heat exchanger, and an inlet refrigerant temperature. 本発明の第2実施形態に係る車両用空調装置の暖房運転時における状態を示した構成図である。It is the block diagram which showed the state at the time of the heating operation of the vehicle air conditioner which concerns on 2nd Embodiment of this invention. 図7の車両用空調装置の冷房運転時における状態を示した構成図である。It is the block diagram which showed the state at the time of air_conditionaing | cooling operation of the vehicle air conditioner of FIG. 図8の制御ユニットにおいて実行される冷媒流量制御の制御ルーチンを示すフローチャートである。It is a flowchart which shows the control routine of the refrigerant | coolant flow control performed in the control unit of FIG.

[第1実施形態]
以下に本発明の第1実施形態に係る車両用空調装置1について図1〜図6を参照して説明する。
図1は車両用空調装置1の暖房運転時における状態を示した構成図であり、図2は車両用空調装置1の冷房運転時における状態を示した構成図である。
車両用空調装置1は、例えば電気自動車の車室内に配設され、車室内空気(内気)または車外空気(外気)を取り込んで温調し、それを車室内に吹き出すHVACユニット(Heating Ventilation and Air Conditioning Unit)2と、車室外に配設され、フロン系冷媒を介してHVACユニット2との熱交換を行うヒートポンプサイクル4と、車室外に配設され、車両駆動用の電気モータ6を冷却する冷却回路8とから構成されている。
[First embodiment]
A vehicle air conditioner 1 according to a first embodiment of the present invention will be described below with reference to FIGS.
FIG. 1 is a configuration diagram illustrating a state of the vehicle air conditioner 1 during a heating operation, and FIG. 2 is a configuration diagram illustrating a state of the vehicle air conditioner 1 during a cooling operation.
The vehicle air conditioner 1 is disposed, for example, in a vehicle interior of an electric vehicle, takes in vehicle interior air (inside air) or vehicle exterior air (outside air), regulates the temperature, and blows it out into the vehicle interior (Heating Ventilation and Air). (Conditioning Unit) 2 and a heat pump cycle 4 that is disposed outside the passenger compartment and exchanges heat with the HVAC unit 2 via a chlorofluorocarbon refrigerant, and is disposed outside the passenger compartment and cools the electric motor 6 for driving the vehicle. And a cooling circuit 8.

HVACユニット2は、空気流路10を形成するハウジング12と、空気流路10の上流側に形成され、ハウジング12内に内気を取り込む内気取り込み口14、及びハウジング12内に外気を取り込む外気取り込み口16、各取り込み口14,16を開閉して切り換える内外気切換ダンパ18と、空気流路10の上流側に接続され、取り込んだ内気または外気を送風するブロア20と、空気流路10における送風方向に順次配設された第1熱交換器22、エアミックスダンパ24、及び第2熱交換器(熱交換器)26と、空気流路10の下流側に形成され、第1熱交換器22、エアミックスダンパ24、及び第2熱交換器26により温調された空気を車室内に吹き出すデフ吹き出し口28、フェース吹き出し口30、及びフット吹き出し口32と、各吹き出し口28,30,32をそれぞれ開閉するデフダンパ34、フェースダンパ36、及びフットダンパ38と、を備えている。   The HVAC unit 2 is formed on the upstream side of the air flow path 10 with the housing 12 forming the air flow path 10, and the internal air intake port 14 that takes in the internal air into the housing 12 and the external air intake port that takes in the external air into the housing 12. 16, an inside / outside air switching damper 18 that opens and closes the intake ports 14, 16, a blower 20 that is connected to the upstream side of the air flow path 10 and blows in the taken inside air or outside air, and a blowing direction in the air flow path 10. The first heat exchanger 22, the air mix damper 24, the second heat exchanger (heat exchanger) 26, and the first heat exchanger 22, A differential air outlet 28, a face air outlet 30, and a foot air outlet that blow out the temperature-controlled air by the air mix damper 24 and the second heat exchanger 26 into the vehicle interior. 2, DEF damper 34 for opening and closing the outlet 28, 30, 32, respectively, and a face damper 36, and foot damper 38.

ヒートポンプサイクル4は、フロン系冷媒である例えばR1234yfが循環する冷媒配管(冷媒流路)40に、冷媒を断熱膨張させる第1膨張弁42、HVACユニット2に設けられている上記第1熱交換器22、冷媒を圧縮する電動圧縮機(圧縮機)44、HVACユニット2に設けられている上記第2熱交換器26、冷媒を断熱膨張させる第2膨張弁(膨張弁)46、及び、車室外に配置され、車両前面からの車両の走行風を受けて冷媒と外気とを熱交換する室外熱交換器48が順次介挿された閉サイクルの冷媒回路によって構成されている。冷媒配管40には、暖房運転時には第1膨張弁42及び第1熱交換器22をバイパスする第1バイパス配管50と、冷房運転時には第2膨張弁46をバイパスする第2バイパス配管52とが接続されている。第1バイパス配管50、第2バイパス配管52にはそれぞれ第1電磁弁54、第2電磁弁56が介挿されている。   The heat pump cycle 4 includes a first expansion valve 42 for adiabatically expanding the refrigerant in a refrigerant pipe (refrigerant flow path) 40 through which, for example, R1234yf, which is a fluorocarbon refrigerant, circulates, and the first heat exchanger provided in the HVAC unit 2. 22, an electric compressor (compressor) 44 for compressing the refrigerant, the second heat exchanger 26 provided in the HVAC unit 2, a second expansion valve (expansion valve) 46 for adiabatically expanding the refrigerant, and the outside of the passenger compartment It is configured by a closed cycle refrigerant circuit in which an outdoor heat exchanger 48 that receives the traveling wind of the vehicle from the front of the vehicle and exchanges heat between the refrigerant and the outside air is sequentially inserted. Connected to the refrigerant pipe 40 are a first bypass pipe 50 that bypasses the first expansion valve 42 and the first heat exchanger 22 during heating operation, and a second bypass pipe 52 that bypasses the second expansion valve 46 during cooling operation. Has been. A first solenoid valve 54 and a second solenoid valve 56 are inserted in the first bypass pipe 50 and the second bypass pipe 52, respectively.

車室外には、外気温度を検出する外気温度センサ(外気温度検出手段、外気冷媒状態検出手段)58が設けられ、室外熱交換器48の入口側の冷媒配管40には、室外熱交換器48の入口冷媒温度(入口冷媒状態値)を検出する入口冷媒温度センサ(入口冷媒状態検出手段)60が設けられ、圧縮機44の吸入側の冷媒配管40には、圧縮機44の吸入冷媒圧力を検出する吸入冷媒圧力センサ(吸入冷媒圧力検出手段)62が設けられている。そして、上記各電磁弁54,56、各膨張弁42,46、各センサ58,60,62、及び圧縮機44は制御ユニット(冷媒流量制御手段)63に電気的に接続されている。   Outside the passenger compartment, an outside air temperature sensor (outside air temperature detection means, outside air refrigerant state detection means) 58 for detecting the outside air temperature is provided, and the outdoor heat exchanger 48 is connected to the refrigerant pipe 40 on the inlet side of the outdoor heat exchanger 48. An inlet refrigerant temperature sensor (inlet refrigerant state detection means) 60 for detecting the inlet refrigerant temperature (inlet refrigerant state value) of the compressor 44 is provided, and the refrigerant pipe 40 on the suction side of the compressor 44 is supplied with the intake refrigerant pressure of the compressor 44. An intake refrigerant pressure sensor (intake refrigerant pressure detection means) 62 for detection is provided. The electromagnetic valves 54 and 56, the expansion valves 42 and 46, the sensors 58, 60 and 62, and the compressor 44 are electrically connected to a control unit (refrigerant flow control means) 63.

一方、冷却水回路8は、冷却水が循環する冷却水配管64にモータ6を冷却するラジエータ66が介挿された閉サイクル回路によって構成され、ラジエータ66に送風するためのファン68を備えている。
以下に上記の構成を有する車両用空調装置1の動作について説明する。
On the other hand, the cooling water circuit 8 is configured by a closed cycle circuit in which a radiator 66 for cooling the motor 6 is inserted in a cooling water pipe 64 through which the cooling water circulates, and includes a fan 68 for sending air to the radiator 66. .
Below, operation | movement of the vehicle air conditioner 1 which has said structure is demonstrated.

(通常の暖房運転時)
図1に示す暖房運転時には、第1電磁弁54は開弁されて第1膨張弁42及び第1熱交換器22はバイパスされ、第2電磁弁56は閉弁され、冷媒は冷媒配管40を図1の実線矢印で示されるように循環し、ヒートポンプサイクル4をヒートポンプ運転される。一方、HVACユニット2では、第1熱交換器22がバイパスされていることによりここでは冷媒と空気との熱交換は行われないが、エアミックスダンパ24が開放されていることにより、空気流路10では矢印で示されるように第2熱交換器26に空気が流入し、第2熱交換器26では冷媒と空気との熱交換が行われる。
(During normal heating operation)
In the heating operation shown in FIG. 1, the first electromagnetic valve 54 is opened, the first expansion valve 42 and the first heat exchanger 22 are bypassed, the second electromagnetic valve 56 is closed, and the refrigerant passes through the refrigerant pipe 40. Circulation is performed as indicated by the solid line arrows in FIG. 1, and the heat pump cycle 4 is operated as a heat pump. On the other hand, in the HVAC unit 2, heat exchange between the refrigerant and air is not performed here because the first heat exchanger 22 is bypassed, but the air flow path is opened because the air mix damper 24 is opened. 10, air flows into the second heat exchanger 26 as indicated by an arrow, and the second heat exchanger 26 performs heat exchange between the refrigerant and the air.

ヒートポンプサイクル4では、先ず圧縮機44で圧縮された高温高圧のガス冷媒が第2熱交換器26に流入し、各取り込み口14,16から空気流路10に取り込まれた空気との熱交換により冷却されて凝縮液化される。このとき、第2熱交換器26において加熱された空気は各吹き出し口28,30,32から吹き出され、車室内の暖房に供される。   In the heat pump cycle 4, first, the high-temperature and high-pressure gas refrigerant compressed by the compressor 44 flows into the second heat exchanger 26, and exchanges heat with air taken into the air flow path 10 from the intake ports 14 and 16. It is cooled and condensed. At this time, the air heated in the 2nd heat exchanger 26 blows off from each blower outlet 28,30,32, and uses for the heating of a vehicle interior.

第2熱交換器26で凝縮された冷媒は、第2膨張弁46で断熱膨張、減圧された後、気液二相冷媒となって室外熱交換器48に流入する。この気液二相冷媒は、室外熱交換器48において、ファン68により送風される外気、または/及び、車両が受ける走行風による外気から吸熱して蒸発ガス化された後、第1電磁弁54を経て圧縮機44に吸入され、再び圧縮される。   The refrigerant condensed in the second heat exchanger 26 is adiabatically expanded and depressurized by the second expansion valve 46, and then becomes a gas-liquid two-phase refrigerant and flows into the outdoor heat exchanger 48. In the outdoor heat exchanger 48, the gas-liquid two-phase refrigerant absorbs heat from the outside air blown by the fan 68 and / or the outside air received by the running wind of the vehicle, and is evaporated and gasified. Then, it is sucked into the compressor 44 and compressed again.

(冷房運転時)
図2に示す冷房運転時には、第1電磁弁54は閉弁され、第2電磁弁56は開弁されて第2膨張弁46はバイパスされ、冷媒は冷媒配管40を図2の実線矢印で示されるように循環する。一方、HVACユニット2では、エアミックスダンパ24が閉鎖されていることにより、空気流路10では矢印で示されるように第2熱交換器26に空気の流入が阻止され、第2熱交換器26を流れる冷媒と空気流路10を流れる空気との熱交換は行われない。また、第1電磁弁54は閉弁されていることにより、空気流路10では矢印で示されるように第1熱交換器22に空気が流入し、第1熱交換器22を流れる冷媒と空気流路10を流れる空気との熱交換が行われる。
(During cooling operation)
In the cooling operation shown in FIG. 2, the first solenoid valve 54 is closed, the second solenoid valve 56 is opened, the second expansion valve 46 is bypassed, and the refrigerant is shown by the solid line arrow in FIG. Circulate like On the other hand, in the HVAC unit 2, since the air mix damper 24 is closed, the air flow path 10 prevents air from flowing into the second heat exchanger 26 as indicated by the arrows, and the second heat exchanger 26. Heat exchange between the refrigerant flowing through and the air flowing through the air flow path 10 is not performed. Further, since the first electromagnetic valve 54 is closed, air flows into the first heat exchanger 22 as indicated by arrows in the air flow path 10, and the refrigerant and air flowing through the first heat exchanger 22. Heat exchange with the air flowing through the flow path 10 is performed.

ヒートポンプサイクル4では、先ず圧縮機44で圧縮された高温高圧のガス冷媒が第2熱交換器26に流入するが、エアミックスダンパ24の閉鎖により空気との熱交換は行われず、そのまま第2電磁弁56を通過するだけで室外熱交換器48に流入する。この高温高圧のガス冷媒は、外気に放熱し、第1膨張弁42に流入して断熱膨張、減圧された後、第1熱交換器22に流入する。第1熱交換器22に流入した冷媒は各取り込み口14,16から空気流路10に取り込まれた空気との熱交換により加熱されて蒸発ガス化される。このとき、第1熱交換器22において冷却された空気は各吹き出し口28,30,32から吹き出され、車室内の冷房に供される。そして、第1熱交換器22を経た冷媒は圧縮機44に吸入され、再び圧縮される。   In the heat pump cycle 4, the high-temperature and high-pressure gas refrigerant first compressed by the compressor 44 flows into the second heat exchanger 26, but heat exchange with the air is not performed due to the closing of the air mix damper 24, and the second electromagnetic as it is Just passing through the valve 56 flows into the outdoor heat exchanger 48. The high-temperature and high-pressure gas refrigerant dissipates heat to the outside air, flows into the first expansion valve 42, undergoes adiabatic expansion and pressure reduction, and then flows into the first heat exchanger 22. The refrigerant flowing into the first heat exchanger 22 is heated and vaporized into gas by heat exchange with the air taken into the air flow path 10 from the intake ports 14 and 16. At this time, the air cooled in the first heat exchanger 22 is blown out from the respective outlets 28, 30, and 32, and is provided for cooling in the passenger compartment. Then, the refrigerant that has passed through the first heat exchanger 22 is sucked into the compressor 44 and compressed again.

(外気温度が0℃以下の暖房運転時)
この場合には、所定の冷媒流量制御範囲A内で冷媒流量を制御する冷媒流量制御(冷媒流量制御手段)を行う。
以下、図3のフローチャートを参照して、制御ユニット63において実行される上記冷媒流量制御の制御ルーチンについて説明する。
先ず、本制御が開始されるとS1(Sはステップを表し、以下同様とする。)に移行し、S1では、各センサ58,60,62のセンサ値の読み込みを行い、S2に移行する。
(During heating operation where the outside air temperature is 0 ° C or less)
In this case, refrigerant flow control (refrigerant flow control means) for controlling the refrigerant flow rate within a predetermined refrigerant flow control range A is performed.
Hereinafter, the control routine of the refrigerant flow rate control executed in the control unit 63 will be described with reference to the flowchart of FIG.
First, when this control is started, the process proceeds to S1 (S represents a step, the same shall apply hereinafter). In S1, the sensor values of the sensors 58, 60, 62 are read, and the process proceeds to S2.

S2では、入口冷媒温度センサ60で検出された入口冷媒温度Teiが外気温度センサで検出された外気温度To以上であるか否かを判定し、判定結果が(No)で入口冷媒温度Teiが外気温度センサで検出された外気温度To以上でないと判定された場合にはS1に戻って上記通常の暖房運転を行う。一方、判定結果が(Yes)で入口冷媒温度Teiが外気温度センサで検出された外気温度To以上であると判定された場合にはS3に移行する。   In S2, it is determined whether or not the inlet refrigerant temperature Tei detected by the inlet refrigerant temperature sensor 60 is equal to or higher than the outside air temperature To detected by the outside air temperature sensor, and the determination result is (No) and the inlet refrigerant temperature Tei is outside air. When it is determined that the temperature is not equal to or higher than the outside air temperature To detected by the temperature sensor, the process returns to S1 and the normal heating operation is performed. On the other hand, when the determination result is (Yes) and it is determined that the inlet refrigerant temperature Tei is equal to or higher than the outside air temperature To detected by the outside air temperature sensor, the process proceeds to S3.

S3では、吸入冷媒圧力センサ62で検出された吸入冷媒圧力Pcsが大気圧よりも大きくなるように目標吸入冷媒圧力Pcstを0MPaGよりも大きく設定して圧縮機44を制御し、S4に移行する。
S4では、第2膨張弁46の開度を制御する膨張弁開度制御、或いは/及び、圧縮機44の吐出容量を制御する圧縮機吐出容量制御を行い、吸入冷媒圧力Pcs>0MPaGで、且つ冷媒流量Fが所定の冷媒流量範囲Aで制御されるように冷媒流量を制御した後、再びS1に戻り、以下所定の周期でS1〜S4のステップを繰り返し実行する。
In S3, the target intake refrigerant pressure Pcst is set to be larger than 0 MPaG so that the intake refrigerant pressure Pcs detected by the intake refrigerant pressure sensor 62 becomes larger than the atmospheric pressure, the compressor 44 is controlled, and the process proceeds to S4.
In S4, the expansion valve opening control for controlling the opening of the second expansion valve 46 and / or the compressor discharge capacity control for controlling the discharge capacity of the compressor 44 are performed, and the suction refrigerant pressure Pcs> 0 MPaG and After the refrigerant flow rate is controlled so that the refrigerant flow rate F is controlled within a predetermined refrigerant flow rate range A, the process returns to S1 again, and thereafter, steps S1 to S4 are repeatedly executed at a predetermined cycle.

ここで、冷媒流量範囲Aは制御ユニット63に格納された図4〜図6に基づくマップを参照して決定される。図4は、外気温度センサ58で検出された外気温度Toと室外熱交換器48における許容圧力損失ΔPeaとの関係を示し、図5は、室外熱交換器48における許容冷媒流量Feaと許容圧力損失ΔPeaとの関係を示し、図6は、室外熱交換器48における冷媒流量Fと入口冷媒温度Teiとの関係を示している。   Here, the refrigerant flow rate range A is determined with reference to the maps based on FIGS. 4 to 6 stored in the control unit 63. FIG. 4 shows the relationship between the outdoor temperature To detected by the outdoor temperature sensor 58 and the allowable pressure loss ΔPea in the outdoor heat exchanger 48, and FIG. 5 shows the allowable refrigerant flow rate Fea and the allowable pressure loss in the outdoor heat exchanger 48. FIG. 6 shows the relationship between the refrigerant flow rate F and the inlet refrigerant temperature Tei in the outdoor heat exchanger 48.

先ず、図4では、外気温度センサ58で検出された外気温度Toにおける室外熱交換器48での許容圧力損失ΔPeaを推定する(許容圧力損失推定手段)。次に、図5では、図4で推定した許容圧力損失ΔPeaに基づいて室外熱交換器48を流れる冷媒の許容冷媒流量Feaを推定する(許容冷媒流量推定手段)。次に、図6では、外気温度センサ58で検出された外気温度Toと、図5で推定された許容冷媒流量Feaに基づいて入口冷媒温度Teiが外気温度To未満、且つ、冷媒流量Fが許容冷媒流量Fea以下となる冷媒流量範囲Aを設定する(冷媒流量範囲設定手段)。そして、このように設定された冷媒流量範囲A内において上記冷媒流量制御が行われる。   First, in FIG. 4, the allowable pressure loss ΔPea in the outdoor heat exchanger 48 at the outdoor temperature To detected by the outdoor temperature sensor 58 is estimated (allowable pressure loss estimation means). Next, in FIG. 5, the allowable refrigerant flow rate Fea of the refrigerant flowing through the outdoor heat exchanger 48 is estimated based on the allowable pressure loss ΔPea estimated in FIG. 4 (allowable refrigerant flow rate estimating means). Next, in FIG. 6, the inlet refrigerant temperature Tei is less than the outside air temperature To and the refrigerant flow rate F is allowed based on the outside air temperature To detected by the outside air temperature sensor 58 and the allowable refrigerant flow rate Fea estimated in FIG. A refrigerant flow rate range A that is equal to or lower than the refrigerant flow rate Fea is set (refrigerant flow rate range setting means). And the said refrigerant | coolant flow control is performed in the refrigerant | coolant flow range A set in this way.

以上のように本実施形態では、上記冷媒流量制御を行うことにより、凝縮器として機能するように設計された熱交換器であっても、車両用空調装置の暖房運転時において、入口冷媒温度Teiが外気温度To未満、且つ、冷媒流量Fが許容冷媒流量Fea以下となる冷媒流量範囲A内でヒートポンプサイクル4を運転することが可能となるため、暖房運転時であっても室外熱交換器48における圧力損失ΔPeを小さくすることができ、暖房運転時における車両用空調装置1の高効率運転を実現することができる。   As described above, in the present embodiment, even if the heat exchanger is designed to function as a condenser by performing the above refrigerant flow rate control, the inlet refrigerant temperature Tei during the heating operation of the vehicle air conditioner. Is less than the outside air temperature To and the heat pump cycle 4 can be operated within the refrigerant flow rate range A in which the refrigerant flow rate F is equal to or less than the allowable refrigerant flow rate Fea. Therefore, the outdoor heat exchanger 48 even during heating operation. The pressure loss ΔPe at can be reduced, and high efficiency operation of the vehicle air conditioner 1 during heating operation can be realized.

また、上記冷媒流量制御では、S4において、吸入冷媒圧力センサ62で検出された吸入冷媒圧力Pcsが大気圧よりも大きくなるように目標吸入冷媒圧力Pcstを0MPaGよりも大きく設定して圧縮機44を制御することにより、ヒートポンプサイクル4の負圧運転を防止することができるため、ヒートポンプサイクル4の冷媒配管40内への空気、水分、埃等の侵入を確実に防止することができ、車両用空調装置1の高効率運転を確実に実現することができる。   In the refrigerant flow rate control, in S4, the target intake refrigerant pressure Pcst is set to be greater than 0 MPaG so that the intake refrigerant pressure Pcs detected by the intake refrigerant pressure sensor 62 is greater than the atmospheric pressure, and the compressor 44 is activated. By controlling, negative pressure operation of the heat pump cycle 4 can be prevented, so that intrusion of air, moisture, dust and the like into the refrigerant pipe 40 of the heat pump cycle 4 can be surely prevented, and vehicle air conditioning The highly efficient operation of the device 1 can be realized with certainty.

[第2実施形態]
以下に本発明の第2実施形態に係る車両用空調装置70について図7〜図9を参照して説明する。
図7は車両用空調装置70の暖房運転時における構成を示した図であり、図8は車両用空調装置70の冷房運転時における構成を示した図である。
[Second Embodiment]
A vehicle air conditioner 70 according to a second embodiment of the present invention will be described below with reference to FIGS.
FIG. 7 is a diagram showing a configuration during heating operation of the vehicle air conditioner 70, and FIG. 8 is a diagram showing a configuration during cooling operation of the vehicle air conditioner 70.

車両用空調装置70は、第1実施形態の入口冷媒温度センサ60を備えておらず、また、第1実施形態の吸入冷媒圧力センサ62は圧縮機44の吸入側における冷媒圧力及び冷媒温度を検出可能な吸入冷媒温度圧力センサ(吸入冷媒状態検出手段)72に変更され、更に、圧縮機44の回転数Ncを検出する回転数センサ(回転数検出手段)74を備えている。その他の第1実施形態と同様の構成については同符号を付して説明を省略する。   The vehicle air conditioner 70 does not include the inlet refrigerant temperature sensor 60 of the first embodiment, and the intake refrigerant pressure sensor 62 of the first embodiment detects the refrigerant pressure and refrigerant temperature on the intake side of the compressor 44. It is changed to a possible intake refrigerant temperature / pressure sensor (intake refrigerant state detection means) 72, and further includes a rotation speed sensor (revolution speed detection means) 74 for detecting the rotation speed Nc of the compressor 44. The other components similar to those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.

(外気温度が0℃以下の暖房運転時)
この場合には、第1実施形態の場合と同様に冷媒流量制御範囲A内で冷媒流量を制御する冷媒流量制御(冷媒流量制御手段)を行う。
以下、図9のフローチャートを参照して、制御ユニット63において実行される第2実施形態の冷媒流量制御の制御ルーチンについて説明する。
先ず、本制御が開始されるとS11に移行し、S11では、各センサ58,72のセンサ値の読み込みを行い、S12に移行する。
(During heating operation where the outside air temperature is 0 ° C or less)
In this case, similarly to the case of the first embodiment, refrigerant flow control (refrigerant flow control means) for controlling the refrigerant flow rate in the refrigerant flow control range A is performed.
Hereinafter, the control routine of the refrigerant flow rate control of the second embodiment executed in the control unit 63 will be described with reference to the flowchart of FIG. 9.
First, when this control is started, the process proceeds to S11. In S11, the sensor values of the sensors 58 and 72 are read, and the process proceeds to S12.

S12では、吸入冷媒温度圧力センサ72で検出された吸入冷媒温度Tcs及び吸入冷媒圧力Pcsに基づいて圧縮機44の吸入側における吸入冷媒密度Dcsを演算により算出した後(吸入冷媒密度推定手段)、S13に移行する。
S13では、回転数センサ74で圧縮機44の回転数Ncを計測した後、S14に移行する。
In S12, after calculating the intake refrigerant density Dcs on the intake side of the compressor 44 based on the intake refrigerant temperature Tcs and the intake refrigerant pressure Pcs detected by the intake refrigerant temperature and pressure sensor 72 (intake refrigerant density estimating means), The process proceeds to S13.
In S13, after the rotation speed sensor 74 measures the rotation speed Nc of the compressor 44, the process proceeds to S14.

S14では、S12で算出された吸入冷媒密度Dcs、S13で計測された回転数Ncに基づいて冷媒配管を循環する冷媒流量Fを演算により算出した後(冷媒流量推定手段)、S15に移行する。
S15では、図5に基づくマップを参照し、S14で推定された冷媒流量Fに基づいて室外熱交換器48における冷媒圧力損失ΔPeを推定した後(冷媒圧力損失推定手段)、S16に移行する。
In S14, after calculating the refrigerant flow rate F circulating through the refrigerant piping based on the suction refrigerant density Dcs calculated in S12 and the rotation speed Nc measured in S13 (refrigerant flow rate estimating means), the process proceeds to S15.
In S15, referring to the map based on FIG. 5, after estimating the refrigerant pressure loss ΔPe in the outdoor heat exchanger 48 based on the refrigerant flow rate F estimated in S14 (refrigerant pressure loss estimating means), the process proceeds to S16.

S16では、図6に基づくマップを参照し、S11で読み込まれた外気温度To、S14で推定された冷媒流量F、室外熱交換器48の出口側における出口冷媒圧力Peeは吸入冷媒圧力センサ72で検出した圧力値と同値とみなし(出口冷媒圧力検出手段)、更に、S15で推定された冷媒圧力損失ΔPeeと吸入冷媒圧力センサ72で検知した圧力値との和を入口冷媒圧力Peiとして推定する(入口冷媒状態検出手段)。   In S16, referring to the map based on FIG. 6, the outside air temperature To read in S11, the refrigerant flow rate F estimated in S14, and the outlet refrigerant pressure Pee on the outlet side of the outdoor heat exchanger 48 are obtained by the intake refrigerant pressure sensor 72. The detected pressure value is regarded as the same value (outlet refrigerant pressure detecting means), and the sum of the refrigerant pressure loss ΔPee estimated in S15 and the pressure value detected by the intake refrigerant pressure sensor 72 is estimated as the inlet refrigerant pressure Pei ( Inlet refrigerant state detection means).

そして、S12で読み込まれた外気温度Toにおける冷媒の冷媒飽和蒸気圧力Poを演算により算出し、入口冷媒圧力Peiが冷媒飽和蒸気圧力Po以上であるか否かを判定し、判定結果が(No)で入口冷媒圧力Peiが冷媒飽和蒸気圧力Po以上でないと判定された場合にはS11に戻り、判定結果が(Yes)で入口冷媒圧力Peiが冷媒飽和蒸気圧力Po以上であると判定された場合にはS17に移行する。   And the refrigerant | coolant saturated vapor pressure Po of the refrigerant | coolant in the outside temperature To read by S12 is calculated by calculation, it is determined whether the inlet refrigerant pressure Pei is more than the refrigerant | coolant saturated vapor pressure Po, and the determination result is (No) If it is determined that the inlet refrigerant pressure Pei is not equal to or higher than the refrigerant saturated vapor pressure Po, the process returns to S11. Shifts to S17.

S17では、吸入冷媒圧力センサ62で検出された吸入冷媒圧力Pcsが大気圧よりも大きくなるように目標吸入冷媒圧力Pcstを0MPaGよりも大きく設定し、S18に移行する。
S18では、第2膨張弁46の開度を制御する膨張弁開度制御、或いは/及び、圧縮機44の吐出容量を制御する圧縮機吐出容量制御を行い、吸入冷媒圧力Pcs>0MPaGで、且つ冷媒流量Fが図6の冷媒流量範囲Aで制御されるように冷媒流量を制御した後、再びS11に戻り、以下所定の周期でS11〜S18のステップを繰り返し実行する。
In S17, the target intake refrigerant pressure Pcst is set to be greater than 0 MPaG so that the intake refrigerant pressure Pcs detected by the intake refrigerant pressure sensor 62 is greater than the atmospheric pressure, and the process proceeds to S18.
In S18, the expansion valve opening control for controlling the opening of the second expansion valve 46 and / or the compressor discharge capacity control for controlling the discharge capacity of the compressor 44 are performed, and the suction refrigerant pressure Pcs> 0 MPaG, and After the refrigerant flow rate is controlled so that the refrigerant flow rate F is controlled in the refrigerant flow rate range A of FIG. 6, the process returns to S11 again, and thereafter, steps S11 to S18 are repeatedly executed at a predetermined cycle.

以上のように本実施形態では、第1実施形態の場合と同様に、凝縮器として機能するように設計された熱交換器であっても、上記冷媒流量制御を行うことにより暖房運転時であっても室外熱交換器48における圧力損失ΔPeを小さくすることができ、また、ヒートポンプサイクル4の冷媒配管40内への空気、水分、埃等の侵入を確実に防止することができ、暖房運転時における車両用空調装置1の高効率運転を実現することができる。   As described above, in the present embodiment, as in the case of the first embodiment, even if the heat exchanger is designed to function as a condenser, the above-described refrigerant flow rate control is performed during the heating operation. However, the pressure loss ΔPe in the outdoor heat exchanger 48 can be reduced, and air, moisture, dust and the like can be reliably prevented from entering the refrigerant pipe 40 of the heat pump cycle 4 during heating operation. High-efficiency operation of the vehicle air conditioner 1 can be realized.

特に本実施形態の場合には、S15で推定された冷媒圧力損失ΔPeとS16で推定された出口冷媒圧力Peeとの和を入口冷媒圧力Peiとして推定し、入口冷媒圧力Peiが冷媒飽和蒸気圧力Po以上であると判定された場合に上記冷媒流量制御を実施することにより、入口冷媒圧力Peiを検出するためのセンサを設けなくとも、冷媒流量制御の要否を判定することができるため、より一層簡単な構成で車両用空調装置1の高効率運転を実現することができる。   Particularly in the case of the present embodiment, the sum of the refrigerant pressure loss ΔPe estimated in S15 and the outlet refrigerant pressure Pee estimated in S16 is estimated as the inlet refrigerant pressure Pei, and the inlet refrigerant pressure Pei is the refrigerant saturated vapor pressure Po. When it is determined that the refrigerant flow rate is determined as described above, it is possible to determine whether or not the refrigerant flow rate control is necessary without providing a sensor for detecting the inlet refrigerant pressure Pei by performing the refrigerant flow rate control. A highly efficient operation of the vehicle air conditioner 1 can be realized with a simple configuration.

以上で本発明の実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
例えば、図4〜図6の関係図は室外熱交換器48の仕様によって勾配が変化するものであり、これらの図に限定されない。
また、本発明は電気自動車に適用するのが最も好適であるが、エンジンの廃熱がさほど多くない、ハイブリッド自動車やディーゼルエンジンを搭載してディーゼル車にも好適である。
Although the description of the embodiment of the present invention has been completed above, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, the relationship diagrams of FIGS. 4 to 6 are those in which the gradient changes depending on the specifications of the outdoor heat exchanger 48, and are not limited to these diagrams.
The present invention is most preferably applied to an electric vehicle. However, the present invention is also suitable for a diesel vehicle equipped with a hybrid vehicle or a diesel engine in which the waste heat of the engine is not so much.

1,70 車両用空調装置
2 HVACユニット
4 ヒートポンプサイクル
10 空気流路
26 第2熱交換器(熱交換器)
40 冷媒配管(冷媒流路)
44 電動圧縮機(圧縮機)
46 第2膨張弁(膨張弁)
48 室外熱交換器
58 外気温度センサ(外気温度検出手段、外気冷媒状態検出手段)
60 入口冷媒温度センサ(入口冷媒状態検出手段)
62 吸入冷媒圧力センサ(吸入冷媒圧力検出手段)
63 制御ユニット(冷媒流量制御手段)
72 吸入冷媒温度圧力センサ(吸入冷媒状態検出手段)
74 回転数センサ(回転数検出手段)
1,70 Vehicle air conditioner 2 HVAC unit 4 Heat pump cycle 10 Air flow path 26 Second heat exchanger (heat exchanger)
40 Refrigerant piping (refrigerant flow path)
44 Electric compressor (compressor)
46 Second expansion valve (expansion valve)
48 outdoor heat exchanger 58 outside air temperature sensor (outside air temperature detecting means, outside air refrigerant state detecting means)
60 Inlet refrigerant temperature sensor (inlet refrigerant state detection means)
62 Suction refrigerant pressure sensor (suction refrigerant pressure detection means)
63 Control unit (refrigerant flow control means)
72 Intake refrigerant temperature / pressure sensor (intake refrigerant state detection means)
74 Rotational speed sensor (Rotational speed detection means)

Claims (7)

空気流路中に配設されている熱交換器により温調された空気を車室内に吹き出すHVACユニットと、
冷媒流路に、圧縮機、前記熱交換器、膨張弁、及び冷媒と外気とを熱交換する室外熱交換器が順次介挿されたヒートポンプサイクルと、
外気温度を検出する外気温度検出手段と、
前記室外熱交換器の入口側における入口冷媒状態値を検出する入口冷媒状態検出手段と、
前記外気温度検出手段で検出された外気温度に基づいて外気における外気冷媒状態値を検出する外気冷媒状態検出手段と、
前記外気温度検出手段で検出された外気温度における前記室外熱交換器での許容圧力損失を推定する許容圧力損失推定手段と、
前記許容圧力損失推定手段で推定した許容圧力損失に基づいて前記室外熱交換器を流れる許容冷媒流量を推定する許容冷媒流量推定手段と、
前記外気温度検出手段で検出された外気温度、前記許容冷媒流量推定手段で検出された許容冷媒流量に基づいて冷媒温度が前記外気温度未満、且つ、冷媒流量が前記許容冷媒流量以下となる冷媒流量範囲を設定する冷媒流量範囲設定手段と、
前記入口冷媒状態検出手段で検出された入口冷媒状態値が前記外気冷媒状態検出手段で検出された外気冷媒状態値以上となるときには、前記冷媒流量範囲設定手段で設定された冷媒流量範囲内で冷媒流量を制御する冷媒流量制御手段と
を備えることを特徴とする車両用空調装置。
An HVAC unit that blows out temperature-adjusted air into the passenger compartment by a heat exchanger disposed in the air flow path;
A heat pump cycle in which a refrigerant, a heat exchanger, an expansion valve, and an outdoor heat exchanger for exchanging heat between the refrigerant and outside air are sequentially inserted in the refrigerant flow path;
Outside temperature detecting means for detecting outside temperature;
An inlet refrigerant state detecting means for detecting an inlet refrigerant state value on the inlet side of the outdoor heat exchanger;
An outside air refrigerant state detecting means for detecting an outside air refrigerant state value in the outside air based on the outside air temperature detected by the outside air temperature detecting means;
An allowable pressure loss estimating means for estimating an allowable pressure loss in the outdoor heat exchanger at the outside air temperature detected by the outside air temperature detecting means;
Allowable refrigerant flow rate estimating means for estimating an allowable refrigerant flow rate flowing through the outdoor heat exchanger based on the allowable pressure loss estimated by the allowable pressure loss estimation means;
A refrigerant flow rate at which the refrigerant temperature is less than the outside air temperature and the refrigerant flow rate is equal to or less than the allowable refrigerant flow rate based on the outside air temperature detected by the outside air temperature detection unit and the allowable refrigerant flow rate detected by the allowable refrigerant flow rate estimation unit Refrigerant flow range setting means for setting the range;
When the inlet refrigerant state value detected by the inlet refrigerant state detector is equal to or greater than the outside refrigerant state value detected by the outside refrigerant state detector, the refrigerant is within the refrigerant flow range set by the refrigerant flow range setting unit. A vehicle air conditioner comprising a refrigerant flow rate control means for controlling the flow rate.
前記入口冷媒状態検出手段は、前記入口冷媒状態値として前記室外熱交換器の入口側における入口冷媒温度を検出し、
前記外気冷媒状態検出手段は、前記外気冷媒状態値として前記外気温度検出手段で検出された外気温度を検出し、
前記冷媒流量制御手段は、前記入口冷媒温度が前記外気温度以上となるときには、前記冷媒流量制御範囲内で冷媒流量を制御することを特徴とする請求項1に記載の車両用空調装置。
The inlet refrigerant state detection means detects an inlet refrigerant temperature on the inlet side of the outdoor heat exchanger as the inlet refrigerant state value,
The outside air refrigerant state detecting means detects the outside air temperature detected by the outside air temperature detecting means as the outside air refrigerant state value,
The vehicle air conditioner according to claim 1, wherein the refrigerant flow rate control unit controls the refrigerant flow rate within the refrigerant flow rate control range when the inlet refrigerant temperature is equal to or higher than the outside air temperature.
前記入口冷媒状態検出手段は、前記入口冷媒状態値として前記室外熱交換器の入口側における入口冷媒圧力を検出し、
前記外気冷媒状態検出手段は、前記外気冷媒状態値として前記外気温度検出手段で検出された外気温度における冷媒の飽和蒸気圧力を検出し、
前記冷媒流量制御手段は、前記入口冷媒圧力が前記飽和蒸気圧力以上となるときには、前記冷媒流量制御範囲内で冷媒流量を制御することを特徴とする請求項1に記載の車両用空調装置。
The inlet refrigerant state detection means detects an inlet refrigerant pressure on the inlet side of the outdoor heat exchanger as the inlet refrigerant state value,
The outside air refrigerant state detecting means detects a saturated vapor pressure of the refrigerant at the outside air temperature detected by the outside air temperature detecting means as the outside air refrigerant state value,
2. The vehicle air conditioner according to claim 1, wherein the refrigerant flow rate control unit controls the refrigerant flow rate within the refrigerant flow rate control range when the inlet refrigerant pressure becomes equal to or higher than the saturated vapor pressure.
前記圧縮機の吸入側における吸入冷媒温度及び吸入冷媒圧力を検出する吸入冷媒状態検出手段と、
前記吸入冷媒状態検出手段で検出された吸入冷媒温度及び吸入冷媒圧力に基づいて前記圧縮機の吸入側における吸入冷媒密度を推定する吸入冷媒密度推定手段と、
前記圧縮機の回転数を検出する回転数検出手段と、
前記吸入冷媒状態検出手段で検出された吸入冷媒密度、前記回転数検出手段で検出された回転数に基づいて前記冷媒流路を循環する冷媒流量を推定する冷媒流量推定手段と、
前記冷媒流量推定手段で推定された冷媒流量に基づいて前記室外熱交換器における冷媒圧力損失を推定する冷媒圧力損失推定手段と、
前記外気温度検出手段で検出された外気温度、前記冷媒流量推定手段で推定された冷媒流量に基づいて前記室外熱交換器の出口側における出口冷媒圧力を検出する出口冷媒圧力検出手段とを備え、
前記入口冷媒状態検出手段は、前記冷媒圧力損失推定手段で推定された冷媒圧力損失と前記出口冷媒圧力検出手段で検出された出口冷媒圧力との和を推定された前記入口冷媒圧力として検出することを特徴とする請求項3に記載の車両用空調装置。
Intake refrigerant state detection means for detecting the intake refrigerant temperature and the intake refrigerant pressure on the intake side of the compressor;
Suction refrigerant density estimation means for estimating the suction refrigerant density on the suction side of the compressor based on the suction refrigerant temperature and the suction refrigerant pressure detected by the suction refrigerant state detection means;
A rotational speed detection means for detecting the rotational speed of the compressor;
Refrigerant flow estimation means for estimating the refrigerant flow rate circulating through the refrigerant flow path based on the suction refrigerant density detected by the suction refrigerant state detection means and the rotation speed detected by the rotation speed detection means;
Refrigerant pressure loss estimation means for estimating refrigerant pressure loss in the outdoor heat exchanger based on the refrigerant flow rate estimated by the refrigerant flow rate estimation means;
An outlet refrigerant pressure detecting means for detecting an outlet refrigerant pressure on the outlet side of the outdoor heat exchanger based on the outside air temperature detected by the outside air temperature detecting means and the refrigerant flow rate estimated by the refrigerant flow rate estimating means,
The inlet refrigerant state detection means detects the sum of the refrigerant pressure loss estimated by the refrigerant pressure loss estimation means and the outlet refrigerant pressure detected by the outlet refrigerant pressure detection means as the estimated inlet refrigerant pressure. The vehicle air conditioner according to claim 3.
前記圧縮機の吸入側における吸入冷媒圧力を検出する吸入冷媒圧力検出手段を備え、
前記冷媒流量制御手段は、前記吸入冷媒圧力検出手段で検出された吸入冷媒圧力が大気圧より大となるように冷媒流量を制御することを特徴とする請求項1〜4の何れかに記載の車両用空調装置。
An intake refrigerant pressure detecting means for detecting an intake refrigerant pressure on the intake side of the compressor;
5. The refrigerant flow rate control unit controls the refrigerant flow rate so that the suction refrigerant pressure detected by the suction refrigerant pressure detection unit becomes larger than the atmospheric pressure. 6. Vehicle air conditioner.
前記冷媒流量制御手段は、前記膨張弁の開度を制御することにより冷媒流量を制御する膨張弁開度制御を行うことを特徴とする請求項1〜5の何れかに記載の車両用空調装置。   The vehicle air conditioner according to any one of claims 1 to 5, wherein the refrigerant flow rate control unit performs expansion valve opening degree control for controlling a refrigerant flow rate by controlling an opening degree of the expansion valve. . 前記冷媒流量制御手段は、前記圧縮機の吐出容量を制御することにより冷媒流量を制御する圧縮機吐出容量制御を行うことを特徴とする請求項1〜6の何れかに記載の車両用空調装置。   The vehicle air conditioner according to any one of claims 1 to 6, wherein the refrigerant flow rate control unit performs compressor discharge capacity control for controlling a refrigerant flow rate by controlling a discharge capacity of the compressor. .
JP2011007003A 2011-01-17 2011-01-17 Air conditioner for vehicles Active JP5364733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011007003A JP5364733B2 (en) 2011-01-17 2011-01-17 Air conditioner for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011007003A JP5364733B2 (en) 2011-01-17 2011-01-17 Air conditioner for vehicles

Publications (2)

Publication Number Publication Date
JP2012148600A true JP2012148600A (en) 2012-08-09
JP5364733B2 JP5364733B2 (en) 2013-12-11

Family

ID=46791332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011007003A Active JP5364733B2 (en) 2011-01-17 2011-01-17 Air conditioner for vehicles

Country Status (1)

Country Link
JP (1) JP5364733B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062675A (en) * 2012-09-20 2014-04-10 Denso Corp Refrigeration cycle control device
JP2017137703A (en) * 2016-02-04 2017-08-10 ケミカルグラウト株式会社 Ground freezing method
JP7698747B2 (en) 2021-10-29 2025-06-25 浙江吉利控股集団有限公司 Vehicle heating control method, device, equipment, medium and program product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08132859A (en) * 1994-11-07 1996-05-28 Matsushita Electric Ind Co Ltd Heat pump cooling and heating dehumidification controller for electric vehicles
JP2000343934A (en) * 1999-06-08 2000-12-12 Mitsubishi Heavy Ind Ltd Heat pump type vehicle air conditioner
JP2003035458A (en) * 2001-07-23 2003-02-07 Denso Corp Refrigerating cycle equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08132859A (en) * 1994-11-07 1996-05-28 Matsushita Electric Ind Co Ltd Heat pump cooling and heating dehumidification controller for electric vehicles
JP2000343934A (en) * 1999-06-08 2000-12-12 Mitsubishi Heavy Ind Ltd Heat pump type vehicle air conditioner
JP2003035458A (en) * 2001-07-23 2003-02-07 Denso Corp Refrigerating cycle equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062675A (en) * 2012-09-20 2014-04-10 Denso Corp Refrigeration cycle control device
JP2017137703A (en) * 2016-02-04 2017-08-10 ケミカルグラウト株式会社 Ground freezing method
JP7698747B2 (en) 2021-10-29 2025-06-25 浙江吉利控股集団有限公司 Vehicle heating control method, device, equipment, medium and program product

Also Published As

Publication number Publication date
JP5364733B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
EP3534090B1 (en) Heat pump cycle apparatus
CN103287239B (en) vehicular heat pump system and control method thereof
JP5297154B2 (en) Vehicle air conditioning system and operation control method thereof
JP6065637B2 (en) Cooling system
US10611213B2 (en) Vehicular air-conditioning device having a dehumidifying and heating mode
CN112424006B (en) Air conditioner for vehicle
JP6633303B2 (en) Vehicle air conditioner
WO2011086683A1 (en) Vehicle air-conditioning system and driving control method therefor
CN108602414A (en) Air conditioning system for vehicle and its control method
US10926609B2 (en) Vehicle air conditioning device
JP6708170B2 (en) Vehicle air conditioner
KR20130100715A (en) Control method of heat pump system for vehicle and its system
CN115461236A (en) Air conditioner for vehicle
JP7280770B2 (en) Vehicle air conditioner
JP2023107643A (en) vehicle air conditioner
JP6995192B2 (en) Vehicle air conditioning system
JP2006199247A (en) Air conditioner for vehicles
JP5364733B2 (en) Air conditioner for vehicles
JP2023107644A (en) Air conditioner for vehicle
JP6822193B2 (en) Pressure drop suppression device
JP2012201215A (en) Heat exchange system
WO2023027027A1 (en) Vehicle air-conditioning device
JP6544287B2 (en) Air conditioner
JP2021154849A (en) Vehicle air conditioner
KR101481698B1 (en) Heat pump system for vehicle and its control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Ref document number: 5364733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350