[go: up one dir, main page]

JP2012147197A - 通信装置、通信方法、及び通信プログラム - Google Patents

通信装置、通信方法、及び通信プログラム Download PDF

Info

Publication number
JP2012147197A
JP2012147197A JP2011003316A JP2011003316A JP2012147197A JP 2012147197 A JP2012147197 A JP 2012147197A JP 2011003316 A JP2011003316 A JP 2011003316A JP 2011003316 A JP2011003316 A JP 2011003316A JP 2012147197 A JP2012147197 A JP 2012147197A
Authority
JP
Japan
Prior art keywords
packet
communication
information
packets
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011003316A
Other languages
English (en)
Inventor
Osamu Kato
修 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011003316A priority Critical patent/JP2012147197A/ja
Priority to US13/331,461 priority patent/US20120179947A1/en
Priority to PCT/JP2012/050658 priority patent/WO2012096396A1/en
Publication of JP2012147197A publication Critical patent/JP2012147197A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/15Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
    • H03M13/151Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes using error location or error correction polynomials
    • H03M13/1515Reed-Solomon codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/15Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
    • H03M13/151Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes using error location or error correction polynomials
    • H03M13/155Shortening or extension of codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/635Error control coding in combination with rate matching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6502Reduction of hardware complexity or efficient processing
    • H03M13/6505Memory efficient implementations

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

【課題】FEC符号の符号化時に多数の種類の生成多項式を必要とせず、通信路状態に応じて柔軟な誤り訂正を行うことが可能な通信装置を提供する。
【解決手段】本通信装置は、通信路3を介して他の通信装置2との間で通信を行う通信装置1であって、A個の情報パケットからB個の検査パケットを生成するFEC符号化部103と、情報パケットをx個、検査パケットをy個送信する送信処理部104と、通信路3の状態に応じて、送信処理部104により送信される情報パケットと検査パケットとの個数をA≦x+y≦A+Bとなるように決定するFEC符号化率決定部106と、を備える。
【選択図】図3

Description

本発明は、通信装置、通信方法、及びプログラムに関する。
従来の電子機器では、外部の通信装置との間で行われるデジタル通信処理、デジタル通信により得られたデータや記憶装置に記憶されたデータに施される信号処理において、データの信頼性を確保するために、誤り検出や誤り訂正が一般的に行われる。誤り検出では、データに誤りが発生しているか否かを識別することができる。また、誤り訂正では、データに誤りが発生しているか否かを識別し、さらに誤りのあるデータを訂正することができる。
誤り検出又は誤り訂正では、k単位長(kビット等)の符号を、n=m+k単位長の符号語に変換するブロック符号と呼ばれる種類のものがある。これを(n、k)符号などと記載する。符号語は、最小ハミング距離がd>1、つまり互いに少なくともd単位異なっている。この冗長性を利用して、誤り検出や誤り訂正が成される。
誤り検出では、符号語あたりd−1単位の誤りを検出することができ、誤り訂正では、符号語あたり[(d−1)/2]単位の誤りを訂正することができる([]は床関数)。
誤り訂正に用いられる符号の1つとして、前方誤り訂正符号(以下、「FEC(Forward Error Correction)符号」ともいう)があり、その1つとして、リード・ソロモン符号(以下、「RS符号」という)が知られている。RS符号は、生成と復号が複雑であるので、処理にある程度の時間を要する反面、誤り訂正能力が高く、地上デジタル放送、衛星通信、ADSL、CD、DCD、QRコード等の誤り訂正に応用されている。また、RS符号では、符号後をシンボルの集まりで表し、各シンボル単位で誤り検出と誤り訂正とを行う。そして、RS符号は、1つのシンボル内のビットにどれだけ誤りを含んでいても、全体として1シンボルの誤りと認識されるので、連続して起こるビット誤りであるバースト誤りに強いという特性がある。RS符号の符号語は、例えばRS(n、k)符号又は単にRS(n、k)と表される。
また、誤り訂正のうち、誤り位置があらかじめ特定されている場合の誤り訂正を、特に消失訂正という。消失訂正では、符号語あたりd単位の消失を訂正することができる。
消失訂正を行う装置の例として、誤り訂正符号の付加による伝送遅延の増加や冗長度の局所的変化や演算量の増加を招くことなく、誤り訂正演算を各ピクチャに独立して実施することが可能な映像送信装置が知られている(例えば、特許文献1参照)。この映像送信装置は、誤り訂正符号の情報シンボル数と検査シンボル数とを決定し、これに基づいて、可変数の送信シンボルを生成するものである。また、この送信シンボルを受信する映像受信装置は、複数の誤り訂正符号の中から1つを選択して誤り訂正符号化を行った映像送信装置の処理に合わせ、送信された情報シンボル数と検査シンボル数とに基づいて、誤り訂正復号処理を行うことができる。
特開2005−347927号公報
しかしながら、特許文献1の技術では、映像送信装置が、情報シンボル数及び検査シンボル数を柔軟に設定するために、生成多項式G(x)を多数用意する必要があり、メモリの消費量が増大していた。
本発明は、上記事情に鑑みてなされたものであって、メモリの消費量を低減することが可能な通信装置、通信方法、及び通信プログラムを提供することを目的とする。
本発明の通信装置は、通信路を介して他の通信装置との間で通信を行う通信装置であって、A個の情報パケットからB個の検査パケットを生成する符号化部と、前記情報パケットをx個、前記検査パケットをy個送信するパケット送信部と、前記通信路の状態に応じて、前記パケット送信部により送信される前記情報パケットと前記検査パケットとの個数をA≦x+y≦A+Bとなるように決定する決定部と、を備える。
この通信装置によれば、生成多項式G(x)を多数用意する必要がなく、メモリの消費量を低減することが可能である。
また、本発明の通信装置は、前記決定部が、x=A、0≦y≦Bとなるように決定する。
この通信装置によれば、送信時の情報パケットの個数を減らさずに、検査パケットの個数を柔軟に決定することができる。
また、本発明の通信装置は、前記通信路の割当可能帯域を推定する帯域推定部を備え、前記決定部が、前記帯域推定部により推定された前記通信路の割当可能帯域に基づいて、送信される前記情報パケットと前記検査パケットとの個数を決定する。
この通信装置によれば、通信路の割当可能帯域を考慮して送信パケットの符号化率を柔軟に設定することができる。
また、本発明の通信装置は、前記通信路の回線品質を推定する回線品質推定部を備え、前記決定部が、前記回線品質推定部により推定された前記通信路の回線品質に基づいて、送信される前記情報パケットと前記検査パケットとの個数を決定する。
この通信装置によれば、通信路の回線品質を考慮して送信パケットの符号化率を柔軟に設定することができる。
また、本発明の通信装置は、前記パケット送信部により他の通信装置へパケット送信したときの前記通信路の回線品質を示す回線品質情報を、前記他の通信装置から前記通信路を介して受信する回線品質情報受信部を備え、前記決定部が、前記回線品質情報受信部により受信された回線品質情報に基づいて、送信される前記情報パケットと前記検査パケットとの個数を決定する。
この通信装置によれば、過去に他の通信装置へパケット送信した際の通信路の回線品質を考慮するので、送信パケットの符号化率をより柔軟に設定することができる。
また、本発明の通信装置は、通信路を介して他の通信装置との間で通信を行う通信装置であって、情報パケットと検査パケットとを受信するパケット受信部と、前記パケット受信部により受信された前記情報パケットと前記検査パケットとのパケットの数をカウントするパケット数カウント部と、前記パケット数カウント部によりカウントされたパケット数が前記検査パケット生成時に使用された情報パケット数以上である場合、前記パケット受信部により受信された前記情報パケットに対して消失訂正を行う復号化部と、を備える。
この通信装置によれば、受信されたパケット数によらず、柔軟な誤り訂正を行うことが可能である。
また、本発明の通信装置は、前記復号化部が、前記パケット受信部により受信される前記情報パケットと前記検査パケットとのパケット数が、前記検査パケット生成時に使用された情報パケット数と同じになったとき、消失訂正を行う。
この通信装置によれば、受信されたパケット数が、最大のパケット数である生成時の情報パケット数であると仮定することで、消失訂正を確実に行うことができる。
また、本発明の通信装置は、前記復号化部が、前記パケット受信部により受信された前記情報パケットと前記検査パケットとに後続する次の情報パケットと次の検査パケットとを受信した場合、前記パケット数カウント部によりカウントされた前記情報パケットと前記検査パケットとのパケット数に応じた消失訂正を行う。
この通信装置によれば、受信されたFEC符号のシンボル数に応じて消失訂正を行うので、最も適した生成多項式を選択することができ、最適な演算量で演算処理を行うことができる。
また、本発明の通信方法は、通信路を介して他の通信装置との間で通信を行うための通信方法であって、A個の情報パケットからB個の検査パケットを生成するステップと、前記通信路の状態に応じて、送信する前記情報パケットx個と前記検査パケットy個とをA≦x+y≦A+Bとなるように決定するステップと、前記決定された個数の前記情報パケットと前記検査パケットとを送信するステップと、を有する。
この通信方法によれば、生成多項式G(x)を多数用意する必要がなく、メモリの消費量を低減することが可能である。
また、本発明の通信方法は、通信路を介して他の通信装置との間で通信を行うための通信方法であって、情報パケットと検査パケットを受信するステップと、前記受信されたパケットに含まれる前記情報パケットと前記検査パケットとのパケットの数をカウントするステップと、前記カウントされたパケット数が前記検査パケット生成時に使用された情報パケット数以上である場合、前記受信された前記情報パケットに対して消失訂正を行うステップと、を有する。
この通信方法によれば、受信されたパケット数によらず、柔軟な誤り訂正を行うことが可能である。
また、本発明の通信プログラムは、上記通信方法(送信方法)の各ステップをコンピュータに実行させるためのプログラムである。
この通信プログラムによれば、生成多項式G(x)を多数用意する必要がなく、メモリの消費量を低減することが可能である。
また、本発明の通信プログラムは、上記通信方法(受信方法)の各ステップをコンピュータに実行させるためのプログラムである。
この通信プログラムによれば、受信されたパケット数によらず、柔軟な誤り訂正を行うことが可能である。
本発明によれば、メモリの消費量を低減することが可能である。
本発明の第1の実施形態における通信システムの構成例を示す図 本発明の第1の実施形態におけるRS符号の構成例を示す図 本発明の第1の実施形態におけるFEC符号化を説明するための図 本発明の第1の実施形態における送信パケットのFEC符号化率と通信路に送信されるシンボルとの関係の一例を示す図 本発明の第1の実施形態におけるFEC符号化を説明するための図 本発明の第1の実施形態におけるFEC復号化部が第1FEC復号化処理を行うときの動作例を示すフローチャート 本発明の第1の実施形態におけるFEC復号化部が第2FEC復号化処理を行うときの動作例を示すフローチャート 本発明の第2の実施形態における通信システムの構成例を示すブロック図 本発明の第3の実施形態の通信システムの構成例を示すブロック図
以下、本発明の実施形態について、図面を用いて説明する。
本実施形態の通信装置としては、有線LAN、同軸ケーブル、電力線等の有線を介して通信を行う通信装置、セルラー通信、無線LANやBluetooth(登録商標)等の無線を介して通信を行う通信装置、などが考えられる。
また、本実施形態の通信装置は、パケット伝送に適しており、通信路に送信されるパケット量をなるべく少量化するという制約条件がある通信路を用いたパケット伝送に非常に適している。パケット伝送を行う通信装置には、テレビ会議システム、監視カメラ映像伝送システム、映像データのダウンロード/アップロードを行うシステム、遠隔授業システム、などがある。また、無線通信路のような、パケットエラー率が比較的高い通信路を用いて通信を行う通信装置に、非常に適している。
(誤り訂正、消失訂正の具体的な演算)
本実施形態の通信装置は、誤り訂正、特に消失訂正を行う。各実施形態について説明する前に、まずは誤り訂正、消失訂正の具体的な演算の方法について説明する。
ここでは、通信装置の1つである送信装置から通信装置の1つである受信装置へデータを送信することを想定し、RS(15,7)つまりk=7、m=8、n=15とする。また、1シンボルを8ビットとする。RS(15,7)のデータには、実際に送るべき情報データD〜Dと、検査を行うためのパリティデータP〜Pと、が含まれる。
まず、送信装置及び受信装置は、以下の8次の生成多項式G(x)を用意し、保持しておく。
Figure 2012147197
送信装置は、情報データD〜Dに基づいて、以下の式が成り立つようにパリティデータP〜Pを決定する。
Figure 2012147197
次に、D=W14、D=W13、・・・、D=W、P=W、P=W、・・・、P=W、とする。W〜W14は送信シンボルである。(数式2)の式から、W(x)を以下のように定義すると、W(x)は、G(x)で割り切れる。
Figure 2012147197
したがって、W(x)=G(x)・A(x)+B(x)と表すと、B(x)=0となる。(数式3)の式の両辺に、x=α、x=α、x=α、・・・、x=αを代入すると、以下の式を導くことができる。
Figure 2012147197
このように、送信装置が送信する送信シンボル(W〜W14)には、満足すべき方程式が存在する(送信装置の制約条件)。
一方、受信装置は、受信シンボル(R〜R14)を送信装置から受信する。送信シンボルと受信シンボルとの間には、以下のような関係がある。
Figure 2012147197
つまり、
Figure 2012147197
は、通信路上の各送信シンボルに重畳されたエラーシンボルを示している。
ここで、
Figure 2012147197
と定義すると、(数式6)は、以下のように表せる。
W(x)+E(x)=R(x)
(数式7)の式の両辺、x=α、x=α、x=α、・・・、x=αを代入すると、シンドロームSiを用いて、以下の式を導くことができる。
Figure 2012147197
すなわち、受信装置は、通信路上で送信シンボルに重畳されたエラーシンボル(E(x))に基づいて、8個のシンドロームを一意に決定することができる。
また、(数式7)及び(数式8)より、E(x)に、x=α、x=α、x=α、・・・、x=αを代入すると、以下の結果となる。
Figure 2012147197
各エラーシンボルEのうち、E≠0(非零)であるEの個数をPとし、i=L(0)、L(1)、・・・L(P−1)とすると、(数式9)より、以下の式が成り立つ。なお、アスタリスク「*」は乗算を示す。
Figure 2012147197
RS(15,7)の場合には、P=0〜8の場合、つまり最大エラーシンボル数が8個の場合まで消失訂正を行うことが可能である。一方、P≧9の場合、つまりエラーシンボル数が9個以上の場合には、消失訂正を行うことはできない。
例えば、エラー(誤り)がi=5、8、13の位置で発生しているとすると、以下の式が成り立つ。
Figure 2012147197
受信装置は、受信シンボルによりシンドロームS、S、Sの値を認識することができ、αの値についても生成多項式G(x)の定義式から認識することができる。したがって、エラーが発生している位置である消失シンボル位置(iの値)を認識することができれば、各エラーシンボルE、E、E13の値を算出することができ、消失訂正を行うことができる。
(第1の実施形態)
図1は、本発明の第1の実施形態における通信システムの構成例を示す図である。図1に示す通信システムでは、通信装置1と通信装置2とが通信路3を介して接続されている。
通信路3は、電力線や有線LANなどの有線回線、セルラー通信、無線LANなどの無線回線などの通信回線を広く含む。また、基地局、コアネットワーク、インターネットなどを含むものも考えられる。また、通信路3は、通信装置1から通信装置2に向かう方向(第1方向)にデータが伝送される第1通信路3Aと、通信装置2から通信装置1に向かう方向(第2方向)にデータが伝送される第2通信路3Bと、を含む。
通信装置1は、映像符号化部101、パケット生成部102、FEC符号化部103、送信処理部104、帯域推定部105、FEC符号化率決定部106、回線品質推定部107、受信処理部108、FEC復号化部109、パケット解析部110、映像復号化部111、を有して構成される。
映像符号化部101は、外部装置から受信した映像信号や図示しないメモリから出力した映像信号を符号化し、映像符号を生成する。映像符号は情報シンボルの一例である。ここでは、映像信号の符号化方式として既知の方式を用いる。なお、映像信号の符号化を可変レートで行う場合には、一定時間に生成される情報パケットの数は可変となる。
パケット生成部102は、映像符号としての情報シンボルを含むパケット(情報パケット)を生成する(後述の図3参照)。また、パケット解析部110により解析された第2通信路3Bの品質分析結果を示す情報としての第2回線品質情報を含むパケット(制御パケット)も生成する。パケット生成部102により生成されたパケットの量は、第1パケット量情報として帯域推定部105に送られる。
FEC符号化部103は、パケット生成部102からの情報パケットを構成する情報シンボルをFECにより符号化(FEC符号化)し、固定長のFEC符号を生成する。FEC符号化を行う際には、先に説明した(数式1)〜(数式4)を考慮する。FEC符号は、情報シンボルと検査シンボルとからなり、RS符号などがある。FEC符号化の詳細については後述する。以降、FEC符号化部103により符号化されたパケットを生成パケットとも呼ぶ(後述の図3参照)。
送信処理部104は、FEC符号化率決定部106により決定された送信パケットのFEC符号化率Rに基づいて、生成パケットの全部又は一部を第1通信路3Aへ送信する。具体的には、送信パケットのFEC符号化率Rに応じて検査シンボルの送信を制限し、FEC符号に含まれる情報シンボルと検査シンボルの少なくとも一部とを含むパケットを送信パケットとして送信する。以降、送信処理部104により送信されるパケットを送信パケットとも呼ぶ(後述の図3参照)。なお、送信処理部104は、送信側において複数の生成多項式を持っている場合でも、送信パケットのFEC符号化率Rの情報を、第1通信路3Aには送信する必要がない。つまり、通信装置2は、通信装置1の送信パケットのFEC符号化率、送信パケットに含まれるFEC符号の検査シンボル数を把握しない状態であっても、受信側においてどの生成多項式を送信側で使用しているか分かれば、本実施形態では誤り訂正処理が可能である。そのため、本実施形態では、FEC符号化率と検査シンボル数は送信されておらず、さらに送信側の生成多項式が1種類である場合には、どの生成多項式を用いたかも受信側に送信する必要がない。なお、FEC符号化率と検査シンボル数は必要に応じて送信してもよい。
帯域推定部105は、パケット生成部102からの第1パケット量情報とパケット解析部110からの第1帯域推定情報とに基づいて、通信装置1に割当可能な第1通信路3Aの通信帯域(スループット、伝送速度等)を推定する。第1帯域推定情報は、TCPプロトコルにより得られるRTT(Round Trip Time:往復遅延時間)等の帯域推定の元となる情報である。
FEC符号化率決定部106は、帯域推定部105により推定された通信装置1への割当可能帯域と、回線品質推定部107により推定された第1通信路3Aの回線品質と、の少なくとも一方に基づいて、送信パケットのFEC符号化率Rを決定する。つまり、FEC符号化率決定部106は、FEC符号化率決定部106は、第1通信路3Aの状態に応じて、送信パケットのFEC符号化率Rを決定する。送信パケットのFEC符号化率Rとは、送信処理部104によって送信される情報パケット数及び検査パケット数の合計(総パケット数)に対する情報パケット数の割合を示すものである。生成パケットのFEC符号化率は固定であり、送信パケットのFEC符号化率Rは可変である。
例えば、帯域推定部105により推定された第1通信路3Aの割当可能帯域が大きい程、また、回線品質推定部107により推定された第1通信路3Aの回線品質が良好である程、送信パケットのFEC符号化率Rは大きな値に決定される。一方、帯域推定部105により推定された第1通信路3Aの割当可能帯域が小さい程、また、回線品質推定部107により推定された第1通信路3Aの回線品質が劣悪である程、送信パケットのFEC符号化率Rは小さな値に決定される。
回線品質推定部107は、パケット解析部110からの第1回線品質情報に基づいて、第1通信路3Aの回線品質を推定する。第1回線品質情報は、第1通信路3Aを介して通信装置2へパケット送信したときの第1通信路3Aの回線品質を示す情報であり、第1通信路3A上を伝送されたパケットのパケットエラー率や伝送速度などの情報を含む。第1回線品質情報は、現在の第1通信路3Aの回線品質推定の元となる情報である。
受信処理部108は、第2通信路3Bからのパケットを受信する。以降、受信処理部108により受信されたパケットを受信パケットとも呼ぶ。受信パケットには、FEC符号が含まれる。受信パケットは、通信装置2からのパケットを受信する場合には、通信路において回線エラーが重畳しないような理想的な場合には通信装置2の送信パケットと同じである。
FEC復号化部109は、受信パケットをFECにより復号化(FEC復号化)する。FEC復号化を行う際には、先に説明した(数式5)〜(数式11)を考慮する。FEC復号化の詳細については後述する。以降、FEC復号化部109によりFEC復号化されたパケットを復号化パケットとも呼ぶ。また、FEC復号化部109は、受信パケットに含まれる同一のFEC符号のシンボルの数(情報シンボルと検査シンボルとの総数)のカウントも行う。
ここで、同一のFEC符号とは、例えばRS(15,7)で符号化が行われた場合には、実際に通信路に送信されたシンボル数が7〜15のいくつであったとしても、その送信シンボルは、同一のRS(15,7)に含まれるシンボルであるという意味である。
パケット解析部110は、復号化パケットを解析する。具体的には、復号化パケットのパケットエラー率や伝送速度など、第2通信路3Bの品質推定の元となる情報を抽出する。抽出された情報は、第2回線品質情報としてパケット生成部102に送られる。また、パケット解析部110は、復号化パケットに含まれる第1回線品質情報を抽出する。抽出された第1回線品質情報は、第1回線品質推定部107に送られる。また、パケット解析部110は、TCPプロトコルにより得られるRTT等の帯域推定の元となる情報を抽出する。抽出された情報は第1帯域推定情報として帯域推定部105へ送られる。
映像復号化部111は、パケット解析部110からの情報パケットに含まれる情報シンボルとしての映像符号を復号化し、映像信号を得る。ここでは、映像信号の復号化方式として既知の方式を用いる。
通信装置2は、受信処理部201、FEC復号化部202、パケット解析部203、映像復号化部204、回線品質推定部205、FEC符号化率決定部206、帯域推定部207、映像符号化部208、パケット生成部209、FEC符号化部210、送信処理部211、を有して構成される。
受信処理部201は、受信処理部108の構成及び機能と同様であり、第1通信路3Aからのパケットを受信する。以降、受信処理部201により受信されたパケットを受信パケットとも呼ぶ。
FEC復号化部202は、FEC復号化部109の構成及び機能と同様であり、受信パケットをFEC復号化する。以降、FEC復号化部202によりFEC復号化されたパケットを復号化パケットとも呼ぶ。また、FEC復号化部202は、受信パケットに含まれる同一のFEC符号のシンボルの数のカウントも行う。
パケット解析部203は、パケット解析部110の構成及び機能と同様であり、復号化パケットを解析する。具体的には、復号化パケットのパケットエラー率や伝送速度など、第1通信路3Aの品質推定の元となる情報を抽出する。抽出された情報は、第1回線品質情報としてパケット生成部209に送られる。また、パケット解析部203は、復号化パケットに含まれる第2回線品質情報を抽出する。抽出された第2回線品質情報は、回線品質推定部205に送られる。また、パケット解析部203は、TCPプロトコルにより得られるRTT等の帯域推定の元となる情報を抽出する。抽出された情報は第2帯域推定情報として帯域推定部207へ送られる。
映像復号化部204は、映像復号化部111の構成及び機能と同様であり、パケット解析部203からの情報パケットに含まれる情報シンボルとしての映像符号を復号化し、映像信号を得る。
回線品質推定部205は、回線品質推定部107の構成及び機能と同様であり、パケット解析部203からの第2回線品質情報に基づいて、第2通信路3Bの回線品質を推定する。第2回線品質情報は、第2通信路3Bを介して通信装置1へパケット送信したときの第2通信路3Bの回線品質を示す情報であり、第2通信路3B上を伝送されたパケットのパケットエラー率や伝送速度などの情報を含む。第2回線品質情報は、現在の第2通信路3Bの回線品質推定の元となる情報である。
FEC符号化率決定部206は、FEC符号化率決定部106の構成及び機能と同様であり、帯域推定部207により推定された通信装置2への割当可能帯域と、回線品質推定部205により推定された第2通信路3Bの回線品質と、の少なくとも一方に基づいて、送信パケットのFEC符号化率Rを決定する。
帯域推定部207は、帯域推定部105の構成及び機能と同様であり、パケット生成部209からの第2パケット量情報とパケット解析部203からの第2帯域推定情報とに基づいて、通信装置2に割当可能な第2通信路3Bの通信帯域(スループット、伝送速度等)を推定する。
映像符号化部208は、映像符号化部101の構成及び機能と同様であり、外部装置から受信した映像信号や図示しないメモリから出力した映像信号を符号化し、映像符号を生成する。
パケット生成部209は、パケット生成部102の構成及び機能と同様であり、映像符号としての情報シンボルを含むパケット(情報パケット)を生成する。また、パケット解析部203からの第1回線品質情報を含むパケット(制御パケット)も生成する。パケット生成部209により生成されたパケットの量は、第2パケット量情報として帯域推定部207に送られる。
FEC符号化部210は、FEC符号化部103の構成及び機能と同様であり、パケット生成部209からの情報パケットを構成する情報シンボルをFEC符号化し、固定長のFEC符号を生成する。以降、FEC符号化部210により符号化されたパケットを生成パケットとも呼ぶ。
送信処理部211は、送信処理部104の構成及び機能と同様であり、FEC符号化率決定部206により決定された送信パケットのFEC符号化率Rに基づいて、生成パケットの全部又は一部を第2通信路3Bへ送信する。以降、送信処理部211により送信されるパケットを送信パケットとも呼ぶ。なお、送信処理部211は、送信パケットのFEC符号化率Rの情報を、第2通信路3Bには送信しない。
以下の説明では、通信装置1の動作と通信装置2の動作とは同じであるので、送信に関する動作については通信装置1の動作を例として、受信に関する動作については通信装置2の動作を例として、説明する。また、FEC符号としてRS符号を用いることを想定する。
また、生成パケットのFECの生成多項式は、メモリの消費量を低減するために、なるべく少数の種類に限定する。例えば、RS(15,7)符号の1種類のみを用いるようにしたり、RS(15,7)符号とRS(31,15)符号の2種類のみを用いるようにしたりすることが望ましい。本実施形態では、情報シンボル数が7個、検査シンボル数が8個のRS(15,7)符号の1種類のみを用いることを想定する。つまり、図2に示すようなRS符号を用いることを想定する。
次に、FEC符号化について詳細に説明する。
図3は、FEC符号化を説明するための図である。
映像符号化部101は、映像信号を符号化し、パケット生成部102は、符号化された映像信号を情報パケットに変換する。ここでは、図3の1pktは1パケット分の情報パケットを示しており、例えば情報シンボル1000シンボル(8000ビット)分に相当する。ここでは7パケット分の情報パケットで区切られている。また、8ビットが1シンボル分に相当するものとする。なお、本実施形態では、1パケットのデータサイズが大きいため、1パケットを分割して1シンボル単位でRS符号化を行っているが、分割せずに1パケット単位でRS符号化を行うことも可能である。
続いて、FEC符号化部103は、RS(15,7)となるように、情報パケット7パケットにつき、検査パケットを8パケット分付加することで、FEC符号化する。ここでは、15パケット分のパケット(情報パケット7パケット分と検査パケット8パケット分)で区切られており、15パケットは1000個のRS(15,7)符号に相当する。
このように、FEC符号化部103は、通信装置1に割当可能な第1通信路3Aの通信帯域や第1通信路3Aの回線品質にかかわらず、常に、第1パケット〜第7パケットの情報パケットと、第8パケット〜第15パケットの検査パケットと、を生成する。本実施形態では、RS符号の情報シンボル数k、検査シンボル数mが固定であるので、FEC符号化部103により生成されるパケット数は一定となる。
続いて、送信処理部104は、送信パケットのFEC符号化率Rに応じて、送信パケットを送信する。図3では、送信パケットのFEC符号化率RがR=7/15の場合、R=7/12の場合、R=7/9の場合を例示している。R=7/15の場合には、情報パケットが7パケット、検査パケットが8パケット、全15パケットが送信パケットとして第1通信路3Aに送信される。R=7/12の場合には、情報パケットが7パケット、検査パケットが5パケット、全12パケットが送信パケットとして第1通信路3Aに送信される。R=7/9の場合には、情報パケットが7パケット、検査パケットが2パケット、全9パケットが送信パケットとして第1通信路3Aに送信される。
なお、送信パケットのFEC符号化率Rは、図4に示すように、R=7/15〜7/7の間で変化する。つまり、RS符号をRS(m+k、k)として一般化して表すと、送信パケットのFEC符号化率Rは、R=k/(m+k)〜1の範囲で複数パターンつまりm+1種類の値をとり得ることとなる。図4は送信パケットのFEC符号化率Rと通信路3に送信されるシンボルの順を示す図である。
図4に示すように、送信処理部104はFEC符号化部103から出力された順に出力することにより、後から出力される検査パケットを破棄するのみでできるため、簡単に符号化率Rを変化させることができる。
ところで、図3における上段の情報パケット7パケット分、中段の生成パケット15パケット分、下段の送信パケット15、12、9パケット分が、時間軸上で同スケールで示されているが、これは各パケットの伝送速度が異なることを示している。つまり、通信装置1が送信する送信パケット数が多い場合には、第1通信路3Aの帯域使用率が高くなり、通信装置1が送信するパケット数が少ない場合には、第1通信路3Aの帯域使用率が低くなる。したがって、通信装置1が送信するパケット数が少ない程、第1通信路3Aに接続された他の通信装置に割当可能な通信帯域が増大し、ネットワークリソースを有効に活用することができる。
また、上記とは異なり、各パケットの伝送速度を同じにしてもよい。伝送速度を同一にした場合には、通信装置1が送信するパケット数が多い場合には、第1通信路3Aの帯域を長時間使用することになり、通信装置1が送信するパケット数が少ない場合には、第1通信路3Aの帯域を短時間使用するだけで済む。したがって、通信装置1が送信するパケット数が少ない程、第1通信路3Aに接続された他の通信装置に割当可能な通信帯域が増大し、ネットワークリソースを有効に活用することができる。
このようなFEC符号化によれば、1つ又はなるべく少ない種類のRS符号によって生成パケットを生成することができる。すなわち、生成パケットを生成するときに用いる生成多項式G(x)を1つ又はなるべく少なく済み、また、どの誤り訂正符号を施したのかに関する制御情報を送信側から受信側に伝達する必要がない等の演算の煩雑化を回避することができる。また、実際に通信路3上に送信される送信パケットをFEC符号化率Rに基づいて決定するので、通信路3の帯域の空き状態や回線品質等の通信環境に応じて、送信パケットのパケット数(検査パケットのパケット数)を柔軟に設定することができる。
つまり、1つの生成多項式でG(x)で複数のFEC符号化率Rを決定することができるため、多数の生成多項式G(x)を用意することなくFEC符号化率Rを可変とする通信システムを実現することができる。
次に、FEC復号化について詳細に説明する。
FEC復号化では、受信パケットに対して誤り訂正が行われ、誤り訂正に成功した場合には、元のデータである通信装置1により送信された送信パケットが復元される。本実施形態では、誤り訂正として主に消失訂正を行う。以下、主に消失訂正について説明する。
通信装置2のFEC復号化部202は、パケット消失(パケットが受信側に届くがエラーが発生しているパケットエラー及びパケットが受信側に届かないパケット損失の双方を含む)に対して、消失訂正により消失パケットを復元する。また、消失訂正では、多数個のRS符号で共通に実行される特定の演算については、最初の1つのRS符号に対してのみ行い、残りのRS符号に対しては共通の演算を省略する。
例えば、1パケットが1000個のシンボルにより構成されるRS符号のうち、1つのシンボルにおいてエラーが生じた場合には、そのシンボルが存在するパケットの他の999個のシンボルについても常にエラーとして検出する。つまり、例えば第5パケットの中のあるシンボルにおいてエラーが発生した場合には、第5パケット全体がエラーとして検出され、第5パケットの1000個のシンボルはすべてエラーと検出されることになる。したがって、1つのRS符号のエラーシンボル位置(消失位置)を検出すれば、残りの999個のRS符号についても消失位置と判断することで、999回反復される特定の演算処理(逆行列計算)については、省略することができる。
先に示した(数式10)において、RS(15,7)の場合にはパケットの消失が8個のときに、最左括弧の行列が8×8行列となり、演算量が最も多くなる。パケット通信では、上記のように同パケットが連帯してエラーとして逐次検出されるので、(数式10)の最左括弧の行列式の演算結果つまり、消失訂正を行う場合に必要な最左括弧の行列式の逆行列の演算結果は常に同一となる。したがって、最初のRS符号についてこの演算を行えば、以降のRS符号の同演算については同じ逆行列を用いることができるため演算処理を省略することができる。
また、パケット通信では、連続するRS符号の最初のRS符号については消失位置が不明である場合には通常の誤り訂正を行い、以降のRS符号については消失位置が特定できるので消失訂正を行うようにしてもよい。
図5は、FEC復号化を説明するための図である。図5に示すように、通信装置1により送信された送信パケットのFEC符号化率Rは、7/15〜7/7の間で変化する。このとき、第1通信路3Aに送信されるパケット(シンボル)のうち、情報パケット(情報シンボル)の数は7で変化しない。検査パケット(検査シンボル)の数が0〜8で変化する。
なお、受信側に必要なデータは情報パケットであるため、本実施形態においては、上述の通り、検査パケットの数を変化させているが、情報パケットも可変にして、情報パケットと検査パケットとの総和が情報パケットの数以上、つまり、パケットの数を7〜15の間で変化させてもよい。
また、送信パケットの送信時からパケット損失が確定しているパケットの数、つまり第1通信路3Aに送信されないパケット(シンボル)の数は、送信パケットのFEC符号化率R=7/15のときに最小で0個、R=7/7のときに最大で8個となる。したがって、第1通信路3Aに送信されてパケットエラーが発生することを許容可能なパケット数(シンボル数)は、R=7/7のときに最小で0個、R=7/15のときに最大で8個となる。
FEC復号化部202は、受信パケットのFEC復号化を、後述する第1FEC復号化処理又は第2FEC復号化処理のいずれかにより行う。
第1FEC復号化処理では、受信処理部201により正常に受信できた受信パケットに含まれる同一のRS符号のシンボル(受信シンボル)の総数が同RS符号の情報シンボル数(ここでは7個)と同数となった時点で、RS(15,7)のエラーシンボル数P=8である消失訂正を開始する。受信シンボルの総数が情報シンボル数に満たなかった場合には、FEC復号化部202は、受信シンボルを復号不可であると判定する。
第2FEC復号化処理では、受信処理部201により受信した現RS符号の受信シンボルに後続する次RS符号の受信シンボルを受信した時点で、現RS符号の受信シンボルが受信された数に応じて、RS(15,7)のエラーシンボル数P=0〜8である消失訂正のいずれかの消失訂正を開始する。例えば、現RS符号の受信シンボルが受信された数が10個であれば、RS(15,7)のエラーシンボル数がP=5である消失訂正を行う。受信された現RS符号の受信パケットの総数が同RS符号の情報シンボル数に満たなかった場合には、FEC復号化部202は、受信シンボルを復号不可であると判定する。
図6は、FEC復号化部202が第1FEC復号化処理を行うときの動作例を示すフローチャートである。
まず、FEC復号化部202は、受信処理部201により受信された第1通信路3Aからの正常に受信できた受信パケットに含まれる所定のRS符号のシンボル数Q(受信シンボル数Q)をカウントする(ステップS101)。FEC復号化部202は、受信シンボル数Qが同RS符号の情報シンボル数(ここでは7個)に達したか否かを判定する(ステップS102)。受信シンボル数Qが7個に達したと判定された場合には、FEC復号化部202は、通信装置1のFEC符号化部103が受信パケットに対応する生成パケットを生成したときのシンボル数(ここでは15個)と同一であると仮定し、RS(15,7)のエラーシンボル数がP=8である消失訂正を行う(ステップS103)。そして、FEC復号化部202は、消失訂正により正しく復元された情報パケットD〜Dをパケット解析部203へ送る(ステップS104)。
一方、受信シンボル数Qが7個に達しなかった場合には、FEC復号化部202は、受信処理部201により次RS符号の受信シンボルが受信されて所定期間(例えばパケットの受信周期の2周期分の時間)経過したか、又は、現RS符号の受信シンボルの受信開始から所定期間が経過したか、を判定する(ステップS105)。次RS符号の受信シンボルが受信されて所定期間が経過しておらず、かつ、現RS符号の受信シンボルの受信開始から所定期間が経過していない場合には、FEC復号化部202は、受信処理部201によるパケットの受信を継続させ、次のシンボルが届くまで待機し(ステップS106)、ステップS102に戻る。一方、次RS符号のシンボルが受信されて所定期間が経過した、又は、現RS符号の受信シンボルの受信開始から所定期間が経過した場合には、FEC復号化部202は、消失訂正を行わずに、FEC復号化が不可である旨の情報を、情報パケットD〜Dとともにパケット解析部203へ送る(ステップS107)。
このような第1FEC復号化処理によれば、消失訂正を1種類(ここではRS(15,7)の消失シンボル数がP=8である消失訂正のみ)に限定することができ、これによりプログラムや信号処理回路を簡素化することが可能である。また、所定数の受信シンボルの到着を検出すると直ぐに消失訂正を開始するので、消失訂正を開始するタイミングが平均的に早まり、平均処理遅延時間を低減させることが可能である。
図7は、FEC復号化部202が第2FEC復号化処理を行うときの動作例を示すフローチャートである。
まず、FEC復号化部202は、受信処理部201により受信された第1通信路3Aからの正常に受信できた受信シンボル数Qをカウントする(ステップS201)。続いて、FEC復号化部202は、受信処理部201により受信シンボル数Qが送信されたすべてのパケット数(ここでは15個)になったか、次RS符号のシンボルが受信されて所定期間が経過したか、又は、現RS符号の受信シンボルの受信開始から所定期間が経過したか、を判定する(ステップS202)。受信シンボル数Q=15ではなく、次RS符号のシンボルが受信されて所定期間が経過しておらず、かつ、現RS符号の受信シンボルの受信開始から所定期間が経過していない場合には、後続のシンボルを待機すべく、ステップS201に戻る。
一方、受信シンボル数Q=15になった、次RS符号の受信シンボルが受信されて所定期間が経過した、又は、現RS符号の受信シンボルの受信開始から所定期間が経過した場合には、FEC復号化部202は、この時点での現RS符号の受信シンボル数Qが同符号の情報シンボル数(ここでは7個)以上であるか否かを判定する(ステップS203)。現RS符号の受信シンボル数Qが7個以上である場合には、FEC復号化部202は、現RS符号の受信シンボル数Qに応じて、RS(15,7)のエラーシンボル数P=(15−Q)である消失訂正を行う(ステップS204)。例えば、現RS符号の受信シンボル数Qが15個であった場合、RS(15,7)のエラーシンボル数P=0である消失訂正を行い、現RS符号の受信シンボル数Qが7個であった場合、RS(15,7)のエラーシンボル数P=8である消失訂正を行う。そして、FEC復号化部202は、消失訂正により正しく復元された情報シンボルD0〜D6をパケット解析部203へ送る(ステップS205)。
一方、現受信パケットの数Qが7個未満である場合には、FEC復号化部202は、パケット消失を復元できないので消失訂正を行わずに、FEC復号化が不可である旨の情報を、情報パケットD〜Dとともにパケット解析部203へ送る(ステップS206)。
このような第2FEC復号化処理によれば、消失パケット数に応じた演算量のRS符号の消失訂正を行うことができる。すなわち、消失パケット数に応じて、消失訂正に用いる(数式10)で示したP行P列の行列がエラーシンボル数Pの値によって異なるので、(数式10)で示したエラーシンボルを求める演算量が大きく異なってくる。つまり、エラーシンボル数の数が小さくなればなるほど、消失訂正に用いる行列式の演算量が少なくなる。したがって、第2FEC復号化処理によれば、消失訂正そのものに要する時間を平均的に短縮化することができる。
このような本実施形態の通信システムによれば、1つの生成多項式G(x)から複数の符号化率を得ることができるので、FEC符号の符号化時に生成多項式G(x)を最小限用意すればよく、通信路状態に応じて柔軟な消失訂正を行うことが可能である。また、なるべく送信パケットのFEC符号化率Rを最大限に大きくすることで、通信路3に送信されるパケットの量を最小限に留めることができる。
つまり、A個の情報パケットからB個の検査パケットを生成し、情報パケットx個と生成パケットy個とを通信路の状態に応じて、A≦x+y≦A+Bとなるように送信することにより、複数の符号化率を使用することができる。
さらに、本実施形態の通信システムによれば、RS符号を用いることで、伝送されるパケット数が多いパケット伝送であっても、消失訂正時の演算量を低減させることができる。例えば、図3のように1000個のRS符号で構成されたパケットを受信する場合には、第1のRS符号については省略なく演算することが必要であるが、第2以降のRS符号については、第1のRS符号と共通の演算は省略することができる。
(第2の実施形態)
通信装置のFEC方式(FEC符号化/FEC復号化の方式)として、適用する通信路の特徴に応じて様々な種類のFEC方式が市場に存在する。したがって、従来の通信装置と本実施形態の通信装置とが通信路3を介して通信を行うこともあるが、これらの通信装置間ではFEC方式が異なるので、FEC符号化/FEC復号化を適切に行うことができない。そこで、本実施形態では、異なるFEC方式(FEC方式1とFEC方式2)の通信装置間での通信を可能とすべく、通信路3上に、FEC方式1を終端し、新たにFEC方式2を施して、通信相手側に送出する通信管理装置が配置される。
図8は本発明の第2の実施形態における通信システムの構成例を示すブロック図である。図8に示す通信システムは、通信装置4、通信装置5、通信管理装置6、を有して構成される。通信装置4と通信装置5とは通信路3を介して接続され、通信路3上に通信管理装置6が配置される。なお、本実施形態においては通信管理装置は多地点間通信を管理する通信管理装置(MCU:Multipoint Control Unit)とする。
通信装置4は、第1の実施形態の通信装置1又は通信装置2であり、通信装置5は、従来の通信装置である。通信管理装置6は、MCU復号化部61(61A、61B、61C、・・・)、MCU符号化部62(62A、62B、62C、・・・)、を備える。なお、通信装置4が従来の通信装置であり、通信装置5が第1の実施形態の通信装置1又は通信装置2であってもよい。
MCU復号化部61は、通信路3からの受信パケットをFEC復号化する。MCU復号化部61の構成及び機能は、通信装置4が第1の実施形態の通信装置1又は通信装置2である場合には、FEC復号化部109、202の構成及び機能と同様である。また、MCU復号化部61のFEC復号化の方式は、通信装置4のFEC符号化の方式と対応するものである。
MCU符号化部62は、通信路3へ送信するための送信パケットを生成すべく、MCU復号化部61によりFEC復号化されたパケットをFEC符号化する。MCU符号化部62の構成及び機能は、通信装置5が第1の実施形態の通信装置1又は通信装置2である場合には、FEC符号化部103、210の構成及び機能と同様である。また、MCU符号化部62のFEC符号化の方式は、通信装置5のFEC復号化の方式と対応するものである。なお、MCU復号化部61のFEC復号化の方式とMCU符号化部62のFEC符号化の方式とは、対応するものではなく、異なるものである。
このように、本実施形態の通信システムでは、システム内の各通信装置4、5に応じたFEC符号化及びFEC復号化を行う通信管理装置6を備えることで、異なる種類(異なるメーカ、異なるFEC方式、等)の通信装置間のアプリケーション層の通信を、ネットワーク内部の処理機能(クラウド・コンピューティング)により実現している。すなわち、通信装置4、5と通信管理装置6との間で、FEC符号化及びFEC復号化の処理を完結するようにすることで、異種類の通信装置間での映像伝送等の通信を行うことが可能である。
(第3の実施形態)
本実施形態では、FEC符号化及びFEC復号化をソフトウェアモジュールで実現する。これにより、パケットエラー率の高い通信路3(例えばHSPA(High Speed Packet Access)、LTE(Long Term Evolution)のようなセルラー規格による通信路)であっても、映像データのダウンロード又はアップロードを行うときの通信品質を向上させることができる。
図9は、本発明の第3の実施形態の通信システムの構成例を示すブロック図である。図9に示す通信システムは、PC7、映像データサーバ8、を有して構成される。PC7及び映像データサーバ8は、通信路3を介して接続される。
PC7は、映像データの編集、検索、閲覧、映像データサーバ8からのダウンロード、映像データサーバ8へのアップロード、等の処理を行う。PC7は、映像データ記憶部71、プログラム記憶部72、プログラム実行部73、を備える。映像データ記憶部71は、符号化された映像データである映像符号化データ(映像符号)を記憶する。プログラム実行部73は、プログラム記憶部72に記憶されたプログラムを実行する。
プログラム記憶部72は、映像符号化データに対してFEC符号化を施すためのFEC符号化プログラム、通信路3からの映像データに対してFEC復号化を施すためのFEC復号化プログラム、の少なくとも一方を記憶する。FEC符号化プログラムは、コンピュータに、第1の実施形態の各構成部102〜110、つまり、パケット生成部102、FEC符号化部103、送信処理部104、帯域推定部105、FEC符号化率決定部106、回線品質推定部107、受信処理部108、FEC復号化部109、パケット解析部110、の各機能を実現させるためのプログラムである。FEC復号化プログラムは、コンピュータに、第1の実施形態の各構成部201〜202、つまり、受信処理部201、FEC復号化部202、の各機能を実現させるためのプログラムである。
なお、FEC符号化プログラム及びFEC復号化プログラムは、例えば外部サーバからダウンロードすることで取得してもよいし、外部記憶装置から取得してもよいし、あるいはあらかじめ通信装置に組み込まれていてもよい。
映像データサーバ8は、映像データの蓄積、抽出、PC7等の各クライアント端末へのダウンロード、各クライアント端末からのアップロード、等の処理を行う。映像データサーバ8は、映像データ蓄積部81、プログラム記憶部82、プログラム実行部83、を備える。映像データ蓄積部81は、映像データ又は映像符号化データを蓄積する。プログラム実行部83は、プログラム記憶部82に記憶されたプログラムを実行する。
プログラム記憶部82は、FEC符号化された映像符号化データに対してFEC復号化を施すためのFEC復号化プログラム、映像データ蓄積部81により蓄積された映像データが符号化された映像符号化データに対してFEC符号化を施すためのFEC符号化プログラム、の少なくとも一方を記憶する。FEC復号化プログラム及びFEC符号化プログラムの内容は、PC7のプログラム記憶部72が記憶するプログラムと同じである。
通信路3は、例えばLTEによる通信を行うための通信路(LTE通信路)である。通信路3には、LTEモジュール3C及びLTE基地局3Dが配置される。LTEモジュール3Cは、各クライアント端末と映像データサーバ8との間でのLTE通信を実現するためのハードウェアモジュール又はソフトウェアモジュールである。LTE基地局3Dは、各クライアント端末及び映像データサーバ8との間で通信を行うための送受信機及びアンテナを有する。
このように、本実施形態の通信システムでは、FEC符号化プログラム及びFEC復号化プログラムというソフトウェアモジュールを用いることで、通信に伴う映像データの品質劣化を低減させつつ、通信時間の短縮化を図ることができる。すなわち、従来、パケットエラーがなくなるまで実行されていたTCPプロトコル等による再送制御を何度も行う必要がなくなる。よって、パケットエラー率の高い通信路3であっても、再送制御の回数を最小限に低減させることができ、映像データのアップロード又はダウンロードに要する時間を低減させることができる。したがって、映像データサーバ8の映像データ蓄積部81は高画質の映像データを蓄積することができ、PC7は図示しないディスプレイにより高画質の映像データを表示させることができる。また、UDPプロトコルのように再送制御を行わないプロトコルであっても、高品質に映像データを伝送することが可能である。
なお、PC7及び映像データサーバ8は、FEC符号化プログラム又はFEC復号化プログラムを用いるか否かを、図示しない操作部等により選択できるようにしてもよい。
さらに、PC7は、映像データをダウンロードする代わりに、映像データをストリーミング再生するようにしてもよい。
なお、上記の各実施形態では、一例として映像信号の送受信を行う通信装置を示したが、映像信号以外のデータを送受信するものにも適用可能である。このようにソフトウェアモジュールの追加で誤り訂正能力を通信装置に付与することができまる。
本発明は、FEC符号の符号化時に多数の生成多項式を必要とせず、通信路状態に応じて柔軟な誤り訂正を行うことが可能な通信装置、通信プログラム等に有用である。
1、2、4、5 通信装置
101、208 映像符号化部
102、209 パケット生成部
103、210 FEC符号化部
104、211 送信処理部
105、207 帯域推定部
106、206 FEC符号化率決定部
107、205 回線品質推定部
108、201 受信処理部
109、202 FEC復号化部
110、203 パケット解析部
111、204 映像復号化部
3 通信路
3A 第1通信路
3B 第2通信路
3C LTEモジュール
3D LTE基地局
6 通信管理装置(MCU)
61 MCU復号化部
62 MCU符号化部
7 PC
71 映像データ記憶部
72 プログラム記憶部
73 プログラム実行部
8 映像データサーバ
81 映像データ蓄積部
82 プログラム記憶部
83 プログラム実行部

Claims (12)

  1. 通信路を介して他の通信装置との間で通信を行う通信装置であって、
    A個の情報パケットからB個の検査パケットを生成する符号化部と、
    前記情報パケットをx個、前記検査パケットをy個送信するパケット送信部と、
    前記通信路の状態に応じて、前記パケット送信部により送信される前記情報パケットと前記検査パケットとの個数をA≦x+y≦A+Bとなるように決定する決定部と、
    を備える通信装置。
  2. 請求項1に記載の通信装置であって、
    前記決定部は、x=A、0≦y≦Bとなるように決定する通信装置。
  3. 請求項1または2に記載の通信装置であって、更に、
    前記通信路の割当可能帯域を推定する帯域推定部を備え、
    前記決定部は、前記帯域推定部により推定された前記通信路の割当可能帯域に基づいて、送信される前記情報パケットと前記検査パケットとの個数を決定する通信装置。
  4. 請求項1ないし3のいずれか1項に記載の通信装置であって、更に、
    前記通信路の回線品質を推定する回線品質推定部を備え、
    前記決定部は、前記回線品質推定部により推定された前記通信路の回線品質に基づいて、送信される前記情報パケットと前記検査パケットとの個数を決定する通信装置。
  5. 請求項4に記載の通信装置であって、更に、
    前記パケット送信部により他の通信装置へパケット送信したときの前記通信路の回線品質を示す回線品質情報を、前記他の通信装置から前記通信路を介して受信する回線品質情報受信部を備え、
    前記決定部は、前記回線品質情報受信部により受信された回線品質情報に基づいて、送信される前記情報パケットと前記検査パケットとの個数を決定する通信装置。
  6. 通信路を介して他の通信装置との間で通信を行う通信装置であって、
    情報パケットと検査パケットとを受信するパケット受信部と、
    前記パケット受信部により受信された前記情報パケットと前記検査パケットとのパケットの数をカウントするパケット数カウント部と、
    前記パケット数カウント部によりカウントされたパケット数が前記検査パケット生成時に使用された情報パケット数以上である場合、前記パケット受信部により受信された前記情報パケットに対して消失訂正を行う復号化部と、
    を備える通信装置。
  7. 請求項6に記載の通信装置であって、更に、
    前記復号化部は、前記パケット受信部により受信される前記情報パケットと前記検査パケットとのパケット数が、前記検査パケット生成時に使用された情報パケット数と同じになったとき、消失訂正を行う通信装置。
  8. 請求項6に記載の通信装置であって、
    前記復号化部は、前記パケット受信部により受信された前記情報パケットと前記検査パケットとに後続する次の情報パケットと次の検査パケットとを受信した場合、前記パケット数カウント部によりカウントされた前記情報パケットと前記検査パケットとのパケット数に応じた消失訂正を行う通信装置。
  9. 通信路を介して他の通信装置との間で通信を行うための通信方法であって、
    A個の情報パケットからB個の検査パケットを生成するステップと、
    前記通信路の状態に応じて、送信する前記情報パケットx個と前記検査パケットy個とをA≦x+y≦A+Bとなるように決定するステップと、
    前記決定された個数の前記情報パケットと前記検査パケットとを送信するステップと、
    を有する通信方法。
  10. 通信路を介して他の通信装置との間で通信を行うための通信方法であって、
    情報パケットと検査パケットを受信するステップと、
    前記受信されたパケットに含まれる前記情報パケットと前記検査パケットとのパケットの数をカウントするステップと、
    前記カウントされたパケット数が前記検査パケット生成時に使用された情報パケット数以上である場合、前記受信された前記情報パケットに対して消失訂正を行うステップと、
    を有する通信方法。
  11. 請求項9に記載の通信方法の各ステップをコンピュータに実行させるための通信プログラム。
  12. 請求項10に記載の通信方法の各ステップをコンピュータに実行させるための通信プログラム。
JP2011003316A 2011-01-11 2011-01-11 通信装置、通信方法、及び通信プログラム Pending JP2012147197A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011003316A JP2012147197A (ja) 2011-01-11 2011-01-11 通信装置、通信方法、及び通信プログラム
US13/331,461 US20120179947A1 (en) 2011-01-11 2011-12-20 Communication apparatus, communication method and storage medium for flexible error correction
PCT/JP2012/050658 WO2012096396A1 (en) 2011-01-11 2012-01-10 Communication apparatus, communication method and storage medium for flexible error correction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011003316A JP2012147197A (ja) 2011-01-11 2011-01-11 通信装置、通信方法、及び通信プログラム

Publications (1)

Publication Number Publication Date
JP2012147197A true JP2012147197A (ja) 2012-08-02

Family

ID=45531514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011003316A Pending JP2012147197A (ja) 2011-01-11 2011-01-11 通信装置、通信方法、及び通信プログラム

Country Status (3)

Country Link
US (1) US20120179947A1 (ja)
JP (1) JP2012147197A (ja)
WO (1) WO2012096396A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080481A1 (ja) * 2011-12-01 2013-06-06 パナソニック株式会社 通信装置、通信方法、及び通信プログラム
WO2014123016A1 (ja) * 2013-02-08 2014-08-14 ソニー株式会社 データ処理装置、及びデータ処理方法
WO2014123017A1 (ja) * 2013-02-08 2014-08-14 ソニー株式会社 データ処理装置、及びデータ処理方法
WO2014123018A1 (ja) * 2013-02-08 2014-08-14 ソニー株式会社 データ処理装置、及びデータ処理方法
WO2014123015A1 (ja) * 2013-02-08 2014-08-14 ソニー株式会社 データ処理装置、及びデータ処理方法
WO2014123014A1 (ja) * 2013-02-08 2014-08-14 ソニー株式会社 データ処理装置、及びデータ処理方法
JP2017175495A (ja) * 2016-03-25 2017-09-28 日本電気株式会社 送信装置、受信装置、通信システム、方法およびプログラム
JP2021505081A (ja) * 2017-11-30 2021-02-15 華為技術有限公司Huawei Technologies Co.,Ltd. ビデオ伝送方法、ビデオ伝送装置、およびビデオ伝送システム、ならびにコンピュータ可読記憶媒体

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11978552B2 (en) 2012-03-02 2024-05-07 Md Health Rx Solutions, Llc Medical services kiosk
US10396945B2 (en) 2014-11-07 2019-08-27 Nokia Technologies Oy Packet number representation for multicast channel block error rate reporting
US9913167B2 (en) 2015-02-02 2018-03-06 Accelerated Media Technologies, Inc. Systems and methods for assigning bit rate
CN108512555B (zh) * 2018-03-13 2021-09-24 中国工程物理研究院电子工程研究所 一种系统rs码阶数及本原多项式的识别方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005198191A (ja) * 2004-01-09 2005-07-21 Fujitsu Ltd 伝送装置、伝送制御プログラム、及び伝送方法
JP2009055603A (ja) * 2007-07-30 2009-03-12 Panasonic Corp 符号化装置及び復号化装置
WO2010073570A1 (ja) * 2008-12-26 2010-07-01 パナソニック株式会社 符号化方法、符号化器及び復号器
JP2010245954A (ja) * 2009-04-08 2010-10-28 Canon Inc 送信装置及び送信方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600663A (en) * 1994-11-16 1997-02-04 Lucent Technologies Inc. Adaptive forward error correction system
CN1500325A (zh) * 2001-02-14 2004-05-26 北方电讯网络有限公司 采用删截重传的自动请求重传系统
WO2003028269A2 (en) * 2001-09-26 2003-04-03 Nokia Corporation An adaptive coding scheme for ofdm wlans with a priori channel state information at the transmitter
JP4559126B2 (ja) 2004-06-01 2010-10-06 日本電信電話株式会社 映像送信方法、映像送信装置、映像送信用プログラム及びそのプログラムを記録したコンピュータ読み取り可能な記録媒体
US20070242744A1 (en) * 2004-07-02 2007-10-18 Board Of Trustees Of Michigan State University System and Method of Packet Recovery Using Partial Recovery Codes
CN102007718A (zh) * 2008-04-22 2011-04-06 夏普株式会社 通信装置、通信系统、接收方法及程序
JP2011003316A (ja) 2009-06-16 2011-01-06 Ntp:Kk 極端紫外光発生装置、光脱離質量分析装置、極端紫外分光測光装置および極端紫外光発生方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005198191A (ja) * 2004-01-09 2005-07-21 Fujitsu Ltd 伝送装置、伝送制御プログラム、及び伝送方法
JP2009055603A (ja) * 2007-07-30 2009-03-12 Panasonic Corp 符号化装置及び復号化装置
WO2010073570A1 (ja) * 2008-12-26 2010-07-01 パナソニック株式会社 符号化方法、符号化器及び復号器
JP2010245954A (ja) * 2009-04-08 2010-10-28 Canon Inc 送信装置及び送信方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080481A1 (ja) * 2011-12-01 2013-06-06 パナソニック株式会社 通信装置、通信方法、及び通信プログラム
US9319074B2 (en) 2011-12-01 2016-04-19 Panasonic Intellectual Property Management Co., Ltd. Communication device, communication method, and communication program
WO2014123018A1 (ja) * 2013-02-08 2014-08-14 ソニー株式会社 データ処理装置、及びデータ処理方法
WO2014123017A1 (ja) * 2013-02-08 2014-08-14 ソニー株式会社 データ処理装置、及びデータ処理方法
WO2014123015A1 (ja) * 2013-02-08 2014-08-14 ソニー株式会社 データ処理装置、及びデータ処理方法
WO2014123014A1 (ja) * 2013-02-08 2014-08-14 ソニー株式会社 データ処理装置、及びデータ処理方法
WO2014123016A1 (ja) * 2013-02-08 2014-08-14 ソニー株式会社 データ処理装置、及びデータ処理方法
US10530389B2 (en) 2013-02-08 2020-01-07 Saturn Licensing Llc Data processing apparatus and data processing method
US10804934B2 (en) 2013-02-08 2020-10-13 Saturn Licensing Llc Data processing apparatus and data processing method
US11177832B2 (en) 2013-02-08 2021-11-16 Saturn Licensing Llc Data processing apparatus and data processing method
US11218170B2 (en) 2013-02-08 2022-01-04 Saturn Licensing Llc Data processing apparatus and data processing method
JP2017175495A (ja) * 2016-03-25 2017-09-28 日本電気株式会社 送信装置、受信装置、通信システム、方法およびプログラム
JP2021505081A (ja) * 2017-11-30 2021-02-15 華為技術有限公司Huawei Technologies Co.,Ltd. ビデオ伝送方法、ビデオ伝送装置、およびビデオ伝送システム、ならびにコンピュータ可読記憶媒体
JP7030984B2 (ja) 2017-11-30 2022-03-07 華為技術有限公司 ビデオ伝送方法、ビデオ伝送装置、およびビデオ伝送システム、ならびにコンピュータ可読記憶媒体

Also Published As

Publication number Publication date
WO2012096396A4 (en) 2012-09-27
US20120179947A1 (en) 2012-07-12
WO2012096396A1 (en) 2012-07-19

Similar Documents

Publication Publication Date Title
JP2012147197A (ja) 通信装置、通信方法、及び通信プログラム
CN109075799B (zh) 极化Polar码的编译码方法及装置
EP2103026B1 (en) A method to support forward error correction for real-time audio and video data over internet protocol networks
US9094163B2 (en) Assessment and correction of transmitted data
CA2645829A1 (en) System and method of correcting video data errors
US8261162B2 (en) Decoding device, decoding method, and media data delivery system
US9166735B2 (en) Correction data
US8397140B2 (en) Error correction coding for recovering multiple packets in a group view of limited bandwidth
CN113541856A (zh) 数据恢复方法及装置
JP2001119426A (ja) 誤り制御方法及びその方法を使用する通信システム
JP2007043550A (ja) 通信方法および通信システム
KR20150045346A (ko) 이동 통신 시스템에서 멀티미디어 데이터 송수신 방법 및 장치
CN102239658B (zh) 按需差错控制
US8671333B2 (en) Adaptive encoding and decoding for error protected packet-based frames
EP2264930B1 (en) Distributed code generation method and device
EP2784965B1 (en) Data communication method and apparatus using forward error correction
JP5600774B1 (ja) データ伝送装置及び方法
Cabrera et al. Taking the trash back in: practical joint channel and network coding for improving ieee 802.11 networks
US9276606B2 (en) Correction data
JP6343855B2 (ja) Mac層のレベルにおいてデータ伝送のリソースを最適化する方法、及びその方法を実施する装置
RU2450466C1 (ru) Способ передачи информации по каналам связи и система для его осуществления
US9319074B2 (en) Communication device, communication method, and communication program
CN109217982A (zh) 传输数据的方法、装置、发送设备和接收设备
WO2024165143A1 (en) Hybrid automatic repeat request with pre-configured redundancy versions
Pascual Biosca et al. Optimal interleaving for robust wireless JPEG 2000 images and video transmission

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140109

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150602