[go: up one dir, main page]

JP2012120429A - Flux controller for induction motor and flux controller of induction motor - Google Patents

Flux controller for induction motor and flux controller of induction motor Download PDF

Info

Publication number
JP2012120429A
JP2012120429A JP2011260613A JP2011260613A JP2012120429A JP 2012120429 A JP2012120429 A JP 2012120429A JP 2011260613 A JP2011260613 A JP 2011260613A JP 2011260613 A JP2011260613 A JP 2011260613A JP 2012120429 A JP2012120429 A JP 2012120429A
Authority
JP
Japan
Prior art keywords
magnetic flux
command
speed
induction motor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011260613A
Other languages
Japanese (ja)
Other versions
JP5639035B2 (en
Inventor
Chan Ook Hong
贊旭 洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LS Electric Co Ltd
Original Assignee
LSIS Co Ltd
LS Industrial Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LSIS Co Ltd, LS Industrial Systems Co Ltd filed Critical LSIS Co Ltd
Publication of JP2012120429A publication Critical patent/JP2012120429A/en
Application granted granted Critical
Publication of JP5639035B2 publication Critical patent/JP5639035B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/26Rotor flux based control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/141Flux estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain reliability of a flux estimation performance even at low velocity in a flux controller.SOLUTION: A flux controller for an induction motor includes: a velocity controller 404; a torque current controller 406 for outputting a torque voltage command (Vq); a flux controller 408 for outputting a flux current command (id); a flux current controller 410 for receiving the input of the flux current command (id) and outputting a flux voltage command (Vd); a three-phase converter 411 for converting the torque voltage command (Vq) and the flux voltage command (Vd) into a three-phase voltage command to be applied to the induction motor and outputting the voltage command; a flux estimator 415 for outputting a rotating angle (θe) of a rotor of the induction motor, an estimated flux value (λdr) of the rotor and estimated velocity (Wm) of the rotor; and a flux regulator 416 for receiving the input of the torque voltage command (Vq) and the estimated velocity (Wm) and outputting a gain value that regulates a magnitude of the flux command (λm).

Description

本発明は誘導電動機用磁束制御装置に関し、より具体的にはセンサーレスベクター制御を適用した誘導電動機駆動インバータシステムにおいて低速領域における磁束推定性能低下現象を最小化できる磁束制御装置に関する。   The present invention relates to a magnetic flux control apparatus for induction motors, and more particularly to a magnetic flux control apparatus that can minimize a magnetic flux estimation performance deterioration phenomenon in a low speed region in an induction motor drive inverter system to which sensorless vector control is applied.

一般に、速度や位置センサーなしで誘導電動機を可変速駆動する方法として、開ループ(Open loop)制御方式の電圧/周波数(V/f)一定制御方式と、電動機回転子磁束の位置を電圧、電流及び電動機パラメーターを演算して推定するセンサーレスベクター制御方式があり、速度制御性能、負荷変動に対する制御性能は、後者のセンサーレスベクター制御方式が優れており、多く用いられている。   In general, as a method of driving an induction motor at a variable speed without a speed or position sensor, a voltage / frequency (V / f) constant control method of an open loop control method, a position of a motor rotor magnetic flux, a voltage, a current In addition, there is a sensorless vector control method for calculating and estimating motor parameters, and the latter sensorless vector control method is excellent in speed control performance and load fluctuation control performance, and is widely used.

ところが、センサーレスベクター制御方式では、低速区間で電動機を駆動するために必要な電圧の大きさが小さくなるとオフセット(offset)、デッドタイム(dead time)等の影響で電動機に入力される電圧(インバータ出力電圧)の推定に誤差が生じて磁束推定性能が低下し、低速では高速領域に比べて十分な性能が得られない場合が多い。   However, in the sensorless vector control method, when the voltage required to drive the motor in a low speed section becomes small, the voltage (inverter) input to the motor due to the influence of offset, dead time, etc. An error occurs in the estimation of the output voltage), and the magnetic flux estimation performance is lowered. In many cases, sufficient performance cannot be obtained at a low speed as compared with a high speed region.

図1は、速度(位置)センサーがないセンサーレスベクター制御方式で可変速駆動される誘導電動機システムのブロック図を示す。   FIG. 1 shows a block diagram of an induction motor system that is driven at a variable speed by a sensorless vector control method without a speed (position) sensor.

インバータ101は、センサーレス誘導電動機102をユーザが入力した速度指令(Wm)通りに運転するようにしている電圧をセンサーレス誘導電動機102に出力する。 The inverter 101 outputs to the sensorless induction motor 102 a voltage that causes the sensorless induction motor 102 to operate according to the speed command (W * m) input by the user.

減算器103は、外部から入力された速度指令(Wm)とセンサーレス磁束推定機115の出力中の一つの推定速度(Wm)を差し引いて速度誤差を検出する。 The subtractor 103 subtracts the speed command (W * m) input from the outside and one estimated speed (Wm) in the output of the sensorless magnetic flux estimator 115 to detect a speed error.

速度制御装置104は電流指令を出力する装置であり、Kp_sは比例ゲインを、Ki_sは積分ゲインを、sはラプラス演算子を示す。   The speed control device 104 is a device that outputs a current command, where Kp_s represents a proportional gain, Ki_s represents an integral gain, and s represents a Laplace operator.

減算器105は、トルク分電流指令(iq)とトルク分電流(id)を差し引いてトルク分電流誤差を検出する。 The subtractor 105 subtracts the torque component current command (i * q) and the torque component current (id) to detect a torque component current error.

トルク電流制御装置106において、Kp_q符号は比例ゲイン、Ki_qは積分ゲインを示す。   In the torque current control device 106, the Kp_q symbol indicates a proportional gain, and Ki_q indicates an integral gain.

減算器107は、磁束指令(λdr)とセンサーレス磁束推定機115の出力の推定磁束(λdr)を差し引いて磁束誤差を検出する。 The subtracter 107 detects a magnetic flux error by subtracting the magnetic flux command (λ * dr) and the estimated magnetic flux (λdr) output from the sensorless magnetic flux estimator 115.

磁束制御装置108において、Kp_fは比例ゲインを、Ki_fは積分ゲインを示す。   In the magnetic flux controller 108, Kp_f represents a proportional gain, and Ki_f represents an integral gain.

減算器109は、磁束分電流指令(id)と磁束分電流(id)を差し引いて磁束分電流誤差を検出する。 The subtractor 109 subtracts the magnetic flux current command (i * d) and the magnetic flux current (id) to detect a magnetic flux current error.

磁束電流制御装置110において、Kp_dは比例ゲインを、Ki_dは積分ゲインを示す。   In the magnetic flux current control device 110, Kp_d represents a proportional gain, and Ki_d represents an integral gain.

三相変換器111は、センサーレス磁束推定機115から誘導電動機102の回転子磁束の電気的回転角(θe)の入力を受けて、電流制御装置106、110の出力であるトルク分電圧指令(V )と磁束分電圧指令(V )を三相の電圧指令であるV 、V 及びV に変換する。 The three-phase converter 111 receives an input of the electrical rotation angle (θe) of the rotor magnetic flux of the induction motor 102 from the sensorless magnetic flux estimator 115 and receives a torque divided voltage command (output from the current control devices 106 and 110). V * q ) and magnetic flux division voltage command (V * d ) are converted into V * a , V * b and V * c which are three-phase voltage commands.

電圧制御装置112は、電力用半導体素子(IGBT)を含み、三相の電圧指令であるV 、V 及びV の入力を受けて、パルス幅変調(PWM、Pulse Width Modulation)方式によって誘導電動機102に電圧指令V 、V 及びV 値で制御された三相の出力電圧を印加する。 The voltage control device 112 includes a power semiconductor element (IGBT), receives V * a , V * b, and V * c , which are three-phase voltage commands, and receives pulse width modulation (PWM). A three-phase output voltage controlled by voltage command V * a , V * b and V * c values is applied to the induction motor 102 by a method.

各々の電流センサー113a、113b、113cは、電圧制御装置112の三相出力線に接続されて、誘導電動機102に流れる三相電流であるi、i及びiを検出する。 Each of the current sensors 113a, 113b, 113c is connected to the three-phase output lines of the voltage control unit 112 detects the i a, i b and i c is a three-phase current flowing through the induction motor 102.

二相変換装置114は、誘導電動機102の回転子の磁束角(θe)の入力を受けて、電動機三相電流i、i及びiをトルク分電流(i)、磁束分電流(i)に変換する。 The two-phase converter 114 receives the input of the magnetic flux angle (θe) of the rotor of the induction motor 102, converts the motor three-phase currents i a , i b, and ic into torque current (i q ) and magnetic flux current ( i d ).

センサーレス磁束推定機115は、電流センサー113a、113b、113cから誘導電動機102の三相電流の入力を受けて、トルク電流制御装置106及び磁束電流制御装置110から電圧指令の入力を受けて、回転子磁束の回転角(θe)、回転子磁束の大きさ(λdr)及び電動機回転子速度(Wm)を出力する。   The sensorless magnetic flux estimator 115 receives the input of the three-phase current of the induction motor 102 from the current sensors 113a, 113b, and 113c, receives the input of the voltage command from the torque current control device 106 and the magnetic flux current control device 110, and rotates. The rotation angle (θe) of the rotor magnetic flux, the magnitude (λdr) of the rotor magnetic flux, and the motor rotor speed (Wm) are output.

前記構成の作動をさらに具体的に説明すると、ユーザから誘導電動機102が回転すべき速度指令(Wm)が入力されると、減算器103は、速度指令(Wm)とセンサーレス磁束推定機115から出力された推定速度(Wm)を差し引いて速度誤差を計算し、これを速度制御装置104に入力する。速度制御装置104は、入力された速度誤差から誘導電動機102が速度指令(Wm)通り回転するようにするトルク分電流指令(iq)を計算する。 More specifically, the operation of the above configuration will be described. When a speed command (W * m) at which the induction motor 102 is to be rotated is input from the user, the subtracter 103 determines that the speed command (W * m) and the sensorless magnetic flux The speed error is calculated by subtracting the estimated speed (Wm) output from the estimator 115 and input to the speed control device 104. The speed controller 104 calculates a torque current command (i * q) that causes the induction motor 102 to rotate according to the speed command (W * m) from the input speed error.

減算器105は、速度制御装置104の出力であるトルク分電流指令(iq)と二相変換装置114の出力であるトルク分電流(iq)を差し引いたトルク分電流誤差を計算して、トルク電流制御装置106に入力する。 The subtractor 105 calculates a torque component current error obtained by subtracting the torque component current command (i * q) that is the output of the speed control device 104 and the torque component current (iq) that is the output of the two-phase converter 114. Input to the torque current control device 106.

トルク電流制御装置106は、入力されたトルク分電流誤差から誘導電動機102にトルク分電流(iq)が指令(iq)分流れるようにするトルク分電圧指令(Vq)を計算する。 The torque current control device 106 calculates a torque component voltage command (V * q) that causes the torque component current (iq) to flow to the induction motor 102 by the command (i * q) from the input torque component current error.

減算器107は、磁束指令(λdr)とセンサーレス磁束推定機115から入力された磁束推定値(λdr)を差し引いて磁束誤差を計算する。磁束指令(λdr)値は、予め計算され、インバータ装置101の内部の記憶装置(図示せず)に保存される。式(1)において、V rate及びFreq rateは、各々電動機定格電圧及び定格周波数である。 The subtractor 107 calculates a magnetic flux error by subtracting the magnetic flux command (λ * dr) and the estimated magnetic flux value (λdr) input from the sensorless magnetic flux estimator 115. The magnetic flux command (λ * dr) value is calculated in advance and stored in a storage device (not shown) inside the inverter device 101. In equation (1), V rate and Freq rate are the motor rated voltage and the rated frequency, respectively.

磁束制御装置108は、磁束誤差から誘導電動機102の内部磁束がλdr通り確立されるようにする磁束分電流指令(id)を計算する。減算器109は、磁束分電流指令(id)と二相変換装置114の出力である磁束分電流(id)を差し引いた磁束分電流誤差を計算し、磁束電流制御装置110に伝達する。 The magnetic flux controller 108 calculates a magnetic flux component current command (i * d) that causes the internal magnetic flux of the induction motor 102 to be established as λ * dr from the magnetic flux error. The subtractor 109 calculates a magnetic flux current error obtained by subtracting the magnetic flux current command (i * d) and the magnetic flux current (id), which is the output of the two-phase converter 114, and transmits it to the magnetic flux current controller 110.

磁束電流制御装置110は、磁束分電流誤差から誘導電動機102に磁束分電流が指令(id)分流れるようにする磁束分電圧指令(Vd)を計算する。電流制御装置106、110の出力(vq、vd)は、三相変換装置111を介して三相の電圧指令(V 、V 、V )に変換され、電圧制御装置112に入力される。 The magnetic flux current control device 110 calculates a magnetic flux component voltage command (V * d) that causes the magnetic flux component current to flow to the induction motor 102 by the command (i * d) from the magnetic flux current error. The outputs (v * q, v * d) of the current control devices 106, 110 are converted into three-phase voltage commands (V * a , V * b , V * c ) via the three-phase converter 111, and the voltage Input to the control device 112.

三相変換装置111は、トルク分/磁束分電圧指令(vq、vd)及び誘導電動機102の回転子磁束の回転角(θe)の入力を受けて、式(2)、(3)を演算して、トルク分/磁束分の二相電圧指令を三相電圧指令に変換する。式(2)、(3)において、SIN、COSはsine、cosine三角関数を示す。 The three-phase converter 111 receives the torque / magnetic flux voltage command (v * q, v * d) and the rotation angle (θe) of the rotor magnetic flux of the induction motor 102, and receives the equations (2), (3 ) To convert a two-phase voltage command for torque / magnetic flux into a three-phase voltage command. In equations (2) and (3), SIN and COS represent sine and cosine trigonometric functions.

電圧制御装置112は、誘導電動機102へ三相変換装置111から伝送された電圧(V 、V 、V )が印加されるように、パルス幅変調方式により出力電圧を制御する。誘導電動機102の三相電流(ia、ib、ic)は、三つの電流検出装置113a、113b、113cを介して検出され、二相変換装置114を介してトルク分電流(iq)と磁束分電流(id)に変換される。二相変換装置114は、式(4)、(5)の演算により、電動機の三相電流(ia、ib、ic)を電動機出力トルク(Torque)に比例するトルク分電流(iq)と、これと90度を成して電動機の磁束(Flux)に比例する電流(id)に変換する。ここで、id、iqは、同期座標界における磁束分/トルク分電流を示し、ids、iqsは、停止座標界における磁束分/トルク分電流を示す。 The voltage control device 112 controls the output voltage by a pulse width modulation method so that the voltages (V * a , V * b , V * c ) transmitted from the three-phase conversion device 111 are applied to the induction motor 102. . The three-phase currents (ia, ib, ic) of the induction motor 102 are detected via the three current detection devices 113a, 113b, 113c, and the torque component current (iq) and the magnetic flux component current are detected via the two-phase converter 114. converted to (id). The two-phase converter 114 calculates the torque component current (iq) proportional to the motor output torque (Torque) from the three-phase current (ia, ib, ic) of the motor by the calculations of the equations (4) and (5). Is converted into a current (id) proportional to the magnetic flux (Flux) of the motor. Here, id and iq indicate the magnetic flux / torque current in the synchronous coordinate field, and ids s and iqs s indicate the magnetic flux / torque current in the stop coordinate field.

センサーレス磁束推定機115は、誘導電動機102の三相電流(ia、ib、ic)とトルク電流制御装置106の出力(Vq)、磁束電流制御装置110の出力(Vd)の入力を受けて、誘導電動機102の回転子磁束の回転角(θe)、回転子磁束の大きさ(λdr)及び電動機回転子速度(Wm)を出力する。センサーレス磁束推定機115は、図2のように内部的に磁束推定部202、回転角及び速度推定部203の2つの装置で構成されている。 The sensorless magnetic flux estimator 115 inputs the three-phase current (ia, ib, ic) of the induction motor 102, the output (V * q) of the torque current control device 106, and the output (V * d) of the magnetic flux current control device 110. In response, the rotor magnetic flux rotation angle (θe), rotor magnetic flux magnitude (λdr), and motor rotor speed (Wm) of the induction motor 102 are output. As shown in FIG. 2, the sensorless magnetic flux estimator 115 includes two devices, a magnetic flux estimator 202 and a rotation angle and speed estimator 203.

誘導電動機固定子回路方程式を利用すると、次の式(8)、(9)のようにd軸(磁束軸)、q軸(トルク軸)固定子磁束推定値を算出することができる。式(8)、(9)において、rは、誘導電動機固定子抵抗であり、式において用いられた文字上段の記号「∧」は測定された実際値ではなく計算された推定値を示す。通常、式(8)、(9)の電圧として用いられる電圧値は、実測値ではなく式(6)で算出した指令値を用いる。 By using the induction motor stator circuit equation, it is possible to calculate the d-axis (flux axis) and q-axis (torque axis) stator flux estimation values as in the following formulas (8) and (9). In equations (8) and (9), r s is the induction motor stator resistance, and the upper symbol “∧” used in the equations indicates a calculated estimated value rather than a measured actual value. Usually, the command value calculated by the equation (6) is used as the voltage value used as the voltage of the equations (8) and (9), not the actually measured value.

式(8)、(9)から得られた固定子磁束から誘導電動機の固定子及び回転子との間の関係を利用して式(10)、(11)のように回転子磁束を計算できる。式(10)、(11)において、σLsは固定子漏れインダクタンスであり、式(12)のように与えられる。式(12)において、Lsは誘導電動機の固定子インダクタンス、Lrは回転子インダクタンス、Lmは相互インダクタンスである。   Using the relationship between the stator and the rotor of the induction motor from the stator magnetic flux obtained from the equations (8) and (9), the rotor magnetic flux can be calculated as in the equations (10) and (11). . In Expressions (10) and (11), σLs is a stator leakage inductance, and is given by Expression (12). In Expression (12), Ls is a stator inductance of the induction motor, Lr is a rotor inductance, and Lm is a mutual inductance.

式(11)、(12)によって算出された回転子磁束は、回転角及び速度推定部203に供給され、式(13)のように回転子磁束の回転角(θe)を計算する。式(13)において、tan−1は三角関数tangentの逆関数である。センサーレス制御器種類に応じて、式(13)の値をそのまま適用することもでき、式(13)の値を元に位相固定ループ(PLL、Phase Locked Loop)等の追加的な演算が加えられることもある。 The rotor magnetic flux calculated by the equations (11) and (12) is supplied to the rotation angle and speed estimation unit 203, and the rotation angle (θe) of the rotor magnetic flux is calculated as in equation (13). In equation (13), tan −1 is an inverse function of the trigonometric function tangent. Depending on the type of sensorless controller, the value of equation (13) can be applied as it is, and additional operations such as a phase locked loop (PLL, Phase Locked Loop) are added based on the value of equation (13). Sometimes.

磁束推定部201の出力の一つである回転子磁束の大きさ(λdr)は、式(11)、(12)から算出された停止座標界回転子磁束と、式(13)の回転角から次の式(14)のように計算される。   The magnitude (λdr) of the rotor magnetic flux, which is one of the outputs of the magnetic flux estimation unit 201, is calculated from the stop coordinate field rotor magnetic flux calculated from the equations (11) and (12) and the rotation angle of the equation (13). It is calculated as the following equation (14).

回転角及び速度推定部203では、回転角及び速度推定のために式(13)を計算し、式(13)で算出された磁束の電気的回転角を次の式(15)を介して電動機極数を持って機械的回転角に変換する。式(15)において、Pは誘導電動機極数である。また、式(16)の演算を介して現在回転子の電気的回転角度を演算する。回転子速度も位相固定ループと同様な演算を解してより精度よく演算できる。式(16)において、sはラプラス演算子である。   The rotation angle and speed estimation unit 203 calculates Equation (13) for estimating the rotation angle and velocity, and calculates the electric rotation angle of the magnetic flux calculated by Equation (13) through the following Equation (15). Convert to mechanical rotation angle with number of poles. In Expression (15), P is the number of induction motor poles. Also, the electrical rotation angle of the current rotor is calculated through the calculation of equation (16). The rotor speed can be calculated more accurately by solving the same calculation as that of the phase locked loop. In Expression (16), s is a Laplace operator.

式(13)〜(15)の磁束及び回転角推定部の結果値が計算されるためには、式(8)、(9)の固定子磁束を計算すべきであるが、この過程において積分演算が必要となる。ところが式(8)、(9)に用いられる電圧、電流値にオフセット(Offset)が含まれている場合、積分器が発散されて実用に使用できない恐れがある。一般に、このような発散問題を解決するために、直流(周波数0)成分の影響を取り除くために、次の式(17)、(18)のように積分演算後、ハイパスフィルタ(High Pass Filter)を適用している。式(16)、(17)において、Tはハイパスフィルタの時定数である。   In order to calculate the magnetic flux of the equations (13) to (15) and the result value of the rotation angle estimation unit, the stator magnetic flux of the equations (8) and (9) should be calculated. Calculation is required. However, if the voltage and current values used in equations (8) and (9) include an offset (Offset), the integrator may diverge and cannot be used practically. In general, in order to solve such a divergence problem, in order to remove the influence of a direct current (frequency 0) component, a high-pass filter (High Pass Filter) is obtained after integration calculation as in the following formulas (17) and (18). Has been applied. In Expressions (16) and (17), T is a time constant of the high pass filter.

図3は、回転角及び速度推定部203の構成を示しており、回転角演算部302及び速度演算部303で構成される。回転角演算部302は、磁束推定部202から式(17)、(18)で計算される停止座標界回転子磁束の入力を受けて、式(13)の逆三角関数演算を介して磁束の回転角(θe)を計算する。   FIG. 3 shows a configuration of the rotation angle and speed estimation unit 203, which includes a rotation angle calculation unit 302 and a speed calculation unit 303. The rotation angle calculation unit 302 receives the stop coordinate field rotator magnetic flux calculated by the equations (17) and (18) from the magnetic flux estimation unit 202, and calculates the magnetic flux through the inverse trigonometric function calculation of the equation (13). The rotation angle (θe) is calculated.

速度演算部303は、磁束の回転角(θe)を機械的回転角に変換及び微分して回転子の機械的回転速度(Wm)を計算するようになる。速度演算部303において、Pは電動機極数(pole)を示し、別の記憶装置(図示せず)に保存される。   The speed calculation unit 303 calculates the mechanical rotation speed (Wm) of the rotor by converting and differentiating the rotation angle (θe) of the magnetic flux into a mechanical rotation angle. In the speed calculation unit 303, P indicates the number of motor poles (pole), and is stored in another storage device (not shown).

センサーレスベクター制御で誘導電動機を駆動する場合、式(8)、(9)で用いた方式のように電動機逆起電力(固定子電圧−抵抗×電流)項を積分して電動機磁束を計算する方法が多く用いられる。インバータから誘導電動機に出力される電圧は、電動機回転速度と比例して高速では高い電圧、低速では低い電圧を要する。インバータ制御には電流センサー(図1の113a、113b、113c)等の各種アナログ素子が用いられるが、この過程において、計算/測定される電圧、電流にオフセット(Offset)が含まれることが多い。   When the induction motor is driven by sensorless vector control, the motor magnetic flux is calculated by integrating the motor back electromotive force (stator voltage−resistance × current) term as in the method used in equations (8) and (9). Many methods are used. The voltage output from the inverter to the induction motor requires a high voltage at high speed and a low voltage at low speed in proportion to the motor rotation speed. Various analog elements such as current sensors (113a, 113b, and 113c in FIG. 1) are used for the inverter control. In this process, an offset is often included in the calculated / measured voltage and current.

逆起電力が大きい高速領域では、インバータ出力電圧の大きさがオフセットの大きさに比べて十分に大きいため、式(8)、(9)の積分演算を行う上で問題はないが、逆起電力が小さく、インバータ出力電圧の大きさが小さいオフセット電圧に比べて十分に大きくない低速領域では、式(8)、(9)の演算がオフセットの影響を受けるようになり、結果として積分演算は発散するようになる。このため、式(8)、(9)の積分演算は、実用に用いられずオフセット(周波数0)の影響を最小限に抑えるために式(17)、(18)のようにハイパスフィルタを積分演算と共に用いることが多い。ハイパスフィルタを用いる場合、場合電圧、電流のオフセット問題は解決されるが、式(17)、(18)の演算はハイパズフィルタの時定数によって大きく影響を受けるが、電動機回転速度に比べてフィルタ時定数が十分大きくなければ必要とする磁束推定性能が得られない。従って、ハイパスフィルタの時定数は、電動機の主運転領域とフィルタの位相誤差特性を考慮して適宜選択されなければならない。しかし、このような方式は周波数が非常に低い領域ではフィルタ時定数もそれほど小さくならなければならず、これによる位相遅延等のハイパスフィルタの特性によって、良い磁束推定性能を根本的に期待し難い。   In the high-speed region where the back electromotive force is large, the magnitude of the inverter output voltage is sufficiently larger than the magnitude of the offset, so there is no problem in performing the integral calculation of equations (8) and (9). In the low speed region where the power is low and the magnitude of the inverter output voltage is not sufficiently large compared to the small offset voltage, the calculations of equations (8) and (9) are affected by the offset, and as a result, the integral calculation is It begins to diverge. For this reason, the integration operations of the equations (8) and (9) are not used practically and the high-pass filter is integrated as in the equations (17) and (18) in order to minimize the influence of the offset (frequency 0). Often used with arithmetic. When the high-pass filter is used, the voltage and current offset problems are solved, but the calculations of equations (17) and (18) are greatly affected by the time constant of the hyperpass filter, but the filter is compared with the motor rotation speed. If the time constant is not sufficiently large, the required magnetic flux estimation performance cannot be obtained. Therefore, the time constant of the high-pass filter must be appropriately selected in consideration of the main operating region of the motor and the phase error characteristic of the filter. However, in such a system, the filter time constant must be so small in a very low frequency region, and it is difficult to fundamentally expect good magnetic flux estimation performance due to the characteristics of the high-pass filter such as phase delay.

また、通常のセンサーレスベクター制御時電動機に入力される実電圧ではない制御器の指令電圧を持って磁束推定を実施するが、電圧の大きさが小さくなる低速領域では、デッドタイム(Dead time)による電圧誤差が磁束推定に影響を与えてしまい、磁束演算に用いられる指令電圧と電動機に実際に入力される電圧間に誤差が生じ、その分磁束推定に誤差として働く問題が生じる。   In addition, the magnetic flux estimation is performed with the controller command voltage that is not the actual voltage input to the motor during normal sensorless vector control. However, in the low speed region where the magnitude of the voltage is small, the dead time (Dead time) The voltage error due to the above affects the magnetic flux estimation, and an error occurs between the command voltage used for the magnetic flux calculation and the voltage actually input to the electric motor.

本発明は、前記問題を解決するために案出され、速度(位置)センサーを備えない誘導電動機を可変速駆動するインバータ−電動機駆動システムに取り付けられる電動機磁束制御装置に関し、本発明の目的は、電圧の大きさが小さい低速区間でもセンサーレス磁束推定性能を維持できる磁束制御装置を提供することである。   The present invention relates to an electric motor magnetic flux control device that is devised to solve the above-mentioned problem and is attached to an inverter-motor driving system for variable speed driving an induction motor that does not include a speed (position) sensor. It is an object of the present invention to provide a magnetic flux control device capable of maintaining sensorless magnetic flux estimation performance even in a low speed section where the magnitude of the voltage is small.

本発明に係る誘導電動機用磁束制御装置は、センサーレスベクター制御方式の誘導電動機用磁束制御装置として、速度指令(Wm)と推定速度(Wm)との間の速度誤差の入力を受けて、トルク分電流指令(iq)を出力する速度制御装置(404)、前記トルク分電流指令(iq)の入力を受けて、トルク分電圧指令(Vq)として出力するトルク電流制御装置(406)、磁束指令(λm)と推定磁束値(λdr)との間の磁束誤差の入力を受けて、磁束分電流指令(id)を出力する磁束制御装置(408)、前記磁束分電流指令(id)の入力を受けて、磁束分電圧指令(Vd)として出力する磁束電流制御装置(410)、前記トルク分電圧指令(Vq)及び磁束分電圧指令(Vd)を、誘導電動機に印加される三相の電圧指令に変換して出力する三相変換器411、前記誘導電動機の三相の電流、前記トルク分指令(Vq)及び前記磁束分電圧指令(Vd)の入力を受けて、前記誘導電動機の回転子の回転角(θe)、前記回転子の推定磁束値(λdr)及び前記回転子の推定速度(Wm)を出力する磁束推定機(415)、及び前記トルク分電圧指令(Vq)及び前記推定速度(Wm)の入力を受けて、前記磁束指令(λm)の大きさを調整するゲイン値を出力する磁束調整装置(416)を含み、前記磁束調整装置(416)は、前記回転子の回転速度が低い場合、前記磁束指令(λm)の大きさを大きくする誘導電動機用磁束制御装置を提供する。従って、トルク分指令電圧の大きさが、一定値以下に低下しないため、低速でも磁束推定性能の信頼性を維持できるメリットがある。 The magnetic flux control apparatus for induction motors according to the present invention, as a sensorless vector control type magnetic flux control apparatus for induction motors, receives an input of a speed error between a speed command (W * m) and an estimated speed (Wm). , the torque current command (i * q) speed controller for outputting (404) receives an input of the torque current command (i * q), the torque current output as a torque component voltage command (V * q) A control device (406), a magnetic flux control device (408) for receiving a magnetic flux error between the magnetic flux command (λ * m) and the estimated magnetic flux value (λdr) and outputting a magnetic flux component current command (i * d) , A magnetic flux current control device (410) that receives the magnetic flux component current command (i * d) and outputs it as a magnetic flux voltage command (V * d), the torque voltage command (V * q), and the magnetic flux component voltage direct the (V * d), applied to the induction motor Three-phase converter 411 and outputs the converted voltage command of the three phases, the three-phase currents of the induction motor, the input of the torque component command (V * q) and the magnetic flux component voltage command (V * d) In response, a magnetic flux estimator (415) for outputting a rotation angle (θe) of the rotor of the induction motor, an estimated magnetic flux value (λdr) of the rotor and an estimated speed (Wm) of the rotor, and the torque component A magnetic flux adjusting device (416) for receiving a voltage command (V * q) and the estimated speed (Wm) and outputting a gain value for adjusting the magnitude of the magnetic flux command (λ * m); The adjustment device (416) provides a magnetic flux control device for an induction motor that increases the magnitude of the magnetic flux command (λ * m) when the rotational speed of the rotor is low. Accordingly, since the magnitude of the torque command voltage does not decrease below a certain value, there is an advantage that the reliability of the magnetic flux estimation performance can be maintained even at a low speed.

また、本発明に係る誘導電動機用磁束制御装置は、前記磁束調整装置(416)のゲイン値の入力を受けて、前記磁束指令(λm)に乗じて出力する乗算器(417)をさらに含む誘導電動機用磁束制御装置を提供する。 The induction motor magnetic flux control device according to the present invention further includes a multiplier (417) that receives the gain value of the magnetic flux adjusting device (416), multiplies the magnetic flux command (λ * m), and outputs the resultant. A magnetic flux control device for an induction motor is provided.

また、本発明に係る誘導電動機用磁束制御装置は、前記磁束調整装置(416)は前記トルク分電圧指令(Vq)と設定された最低磁束分指令電圧(Vmin)との差の入力を受けてゲインを調整する磁束調整制御器(503)、前記推定速度(Wm)が設定された速度以下であるか否かを判断する比較器(506)及び前記比較器(506)で設定された速度以下であると判断された場合、前記ゲイン値を出力する選択器(507)を含む誘導電動機用磁束制御装置を提供する。 In the induction motor magnetic flux control device according to the present invention, the magnetic flux adjusting device (416) inputs the difference between the torque voltage command (V * q) and the set minimum magnetic flux command voltage (Vmin). In response, the magnetic flux adjustment controller (503) for adjusting the gain, the comparator (506) for determining whether or not the estimated speed (Wm) is equal to or lower than the set speed, and the comparator (506) are set. When it is determined that the speed is equal to or lower than the speed, a magnetic flux control apparatus for an induction motor including a selector (507) that outputs the gain value is provided.

また、本発明に係る誘導電動機用磁束制御装置は、前記磁束調整装置(416)は前記磁束調整制御器(503)からのゲインを設定範囲に制限して、前記ゲイン値として出力する制限器(504)をさらに含む誘導電動機用磁束制御装置を提供する。   Further, in the magnetic flux control apparatus for induction motor according to the present invention, the magnetic flux adjusting device (416) limits the gain from the magnetic flux adjustment controller (503) to a set range and outputs it as the gain value. 504) is further provided.

また、本発明に係る誘導電動機用磁束制御装置は、前記設定範囲は下限が100%、上限が200%である誘導電動機用磁束制御装置を提供する。   Moreover, the magnetic flux control apparatus for induction motors according to the present invention provides the magnetic flux control apparatus for induction motors, wherein the setting range has a lower limit of 100% and an upper limit of 200%.

また、本発明に係る誘導電動機用磁束制御装置は、前記最低磁束分指令電圧(Vmin)は前記誘導電動機の定格電圧の10%に設定された誘導電動機用磁束制御装置を提供する。   The induction motor magnetic flux control apparatus according to the present invention provides the induction motor magnetic flux control apparatus in which the minimum magnetic flux component command voltage (Vmin) is set to 10% of the rated voltage of the induction motor.

また、本発明に係る誘導電動機用磁束制御装置は、前記選択器(507)は前記比較器(506)で設定された速度以上に判断された場合、前記磁束指令(λm)値に影響を与えないゲイン値を出力する誘導電動機用磁束制御装置を提供する。 In addition, the magnetic flux control apparatus for induction motor according to the present invention affects the value of the magnetic flux command (λ * m) when the selector (507) is judged to be higher than the speed set by the comparator (506). Provided is a magnetic flux control apparatus for an induction motor that outputs a gain value that does not give a gain.

一方、本発明に係る誘導電動機用磁束制御装置は、速度指令と推定速度との間の速度誤差及び磁束指令と推定磁束との間の磁束誤差を持って誘導電動機を制御するトルク分電圧指令と磁束分電圧指令を生成する誘導電動機の磁束制御装置として、前記推定速度が設定値以下の場合、前記磁束指令に乗じて大きさを大きくできるゲイン値を出力する磁束調整装置を含む誘導電動機の磁束制御装置を提供する。従って、磁束推定性能を速度に関係なく維持できるメリットがある。   On the other hand, the magnetic flux control device for an induction motor according to the present invention includes a torque voltage dividing command for controlling the induction motor having a speed error between the speed command and the estimated speed and a magnetic flux error between the magnetic flux command and the estimated magnetic flux. As a magnetic flux control device for an induction motor that generates a magnetic flux division voltage command, the magnetic flux of the induction motor includes a magnetic flux adjustment device that outputs a gain value that can be increased by multiplying the magnetic flux command when the estimated speed is equal to or less than a set value. A control device is provided. Therefore, there is an advantage that the magnetic flux estimation performance can be maintained regardless of the speed.

本発明は速度及び位置センサーを備えない誘導電動機を可変速駆動するインバータ−電動機駆動システムに取り付けられる電動機磁束制御装置に関し、トルク分指令電圧を一定値以下に低下しないようにすることによって、低速区間でも電動機に印加される電圧の大きさが一定値以下に低下することを防止し、電圧の大きさが小さいためセンサーレス磁束推定に誤差が生じる低速区間でもセンサーレス磁束推定性能を維持することができる。   The present invention relates to an electric motor magnetic flux control device attached to an inverter-motor drive system for variable speed driving an induction motor that does not include a speed and position sensor. However, it is possible to prevent the voltage applied to the motor from dropping below a certain value and maintain the sensorless flux estimation performance even in the low speed section where there is an error in sensorless flux estimation due to the small voltage. it can.

従来技術のセンサーレスベクター制御方式の誘導電動機用磁束制御装置を示したブロック図である。It is the block diagram which showed the magnetic flux control apparatus for induction motors of a prior art sensorless vector control system. 従来技術のセンサーレス磁束推定機を示したブロック図である。It is the block diagram which showed the sensorless magnetic flux estimation machine of the prior art. 従来技術のセンサーレス磁束推定機の回転角及び速度推定部を示したブロック図である。It is the block diagram which showed the rotation angle and speed estimation part of the sensorless magnetic flux estimation machine of a prior art. 本発明に係る磁束調整装置が組み込まれた誘導電動機用磁束制御装置を示したブロック図である。It is the block diagram which showed the magnetic flux control apparatus for induction motors in which the magnetic flux adjustment apparatus which concerns on this invention was integrated. 本発明に係る磁束制御装置の磁束調整装置を示したブロック図である。It is the block diagram which showed the magnetic flux adjustment apparatus of the magnetic flux control apparatus which concerns on this invention.

以下、本発明に係る磁束制御装置を図面に基づいて詳細に説明する。   Hereinafter, a magnetic flux control device according to the present invention will be described in detail with reference to the drawings.

図4は、本発明の磁束制御装置が適用された速度及び位置センサーがないセンサーレスベクター制御方式で可変速駆動される誘導電動機システムの構成を示したブロック図である。   FIG. 4 is a block diagram showing a configuration of an induction motor system that is driven at a variable speed by a sensorless vector control method without a speed and position sensor to which the magnetic flux control device of the present invention is applied.

本発明の概念に従って、インバータ401には低速区間で磁束推定性能を維持させられる磁束調整装置416が配置される。磁束調整装置416は、センサーレス磁束推定装置415から現在の電動機速度(Wm)及び磁束電流制御装置406からのトルク分電圧指令(Vq)の入力を受けて、磁束誤差を計算する減算器407に入力される磁束指令の大きさを調整できるゲインを乗算器417に出力する。 In accordance with the concept of the present invention, the inverter 401 is provided with a magnetic flux adjusting device 416 capable of maintaining the magnetic flux estimation performance in the low speed section. The magnetic flux adjustment device 416 receives the current motor speed (Wm) from the sensorless magnetic flux estimation device 415 and the torque voltage command (V * q) from the magnetic flux current control device 406, and calculates a magnetic flux error. A gain that can adjust the magnitude of the magnetic flux command input to 407 is output to multiplier 417.

乗算器417は、磁束調整装置416から入力されたゲインを磁束指令(λdr)に乗じて最終的磁束指令になるようにする。 The multiplier 417 multiplies the magnetic flux command (λ * dr) by the gain input from the magnetic flux adjusting device 416 to obtain a final magnetic flux command.

図4において、減算器403からセンサーレス磁束推定装置415までの動作は、従来技術の説明と同様であるため、重なる説明は省略し、磁束調整装置416の動作を中心に説明する。   In FIG. 4, the operation from the subtractor 403 to the sensorless magnetic flux estimation device 415 is the same as in the description of the prior art. Therefore, the overlapping description is omitted and the operation of the magnetic flux adjustment device 416 will be mainly described.

本発明に係るセンサーレス磁束推定装置415を既存構造と同様であるため、磁束推定装置415は、逆起電力積分+ハイパスフィルタ方式の特徴である低速区間での磁束推定性能制限はそのまま有している。   Since the sensorless magnetic flux estimation apparatus 415 according to the present invention is the same as the existing structure, the magnetic flux estimation apparatus 415 has the magnetic flux estimation performance limitation in the low speed section, which is a feature of the back electromotive force integration + high-pass filter system as it is. Yes.

本発明に係る磁束調整装置416は、既存センサーレス磁束推定装置が有する性能制限を最小限に抑えるために低速領域では磁束指令の大きさを調整することを特徴とする。   The magnetic flux adjusting device 416 according to the present invention is characterized by adjusting the magnitude of the magnetic flux command in the low speed region in order to minimize the performance limitation of the existing sensorless magnetic flux estimating device.

前記式(17)において、固定子抵抗項目を無視して、これをラプラス変換すると次の式(19)の電圧−磁束間の関係が得られる。   In the above equation (17), if the stator resistance item is ignored and this is Laplace transformed, the relationship between voltage and magnetic flux of the following equation (19) is obtained.

通常、誘導電動機は、定格速度以下で磁束を一定に制御することが一般的であるため、磁束を一定に維持するためには、式(19)でsはラプラス演算子で、s=jw(w:各周波数)を代入してみると、高速では大きい電圧が、低速では小さい電圧が必要であることが分かる。   In general, since an induction motor generally controls a magnetic flux to be constant at a rated speed or less, in order to maintain the magnetic flux constant, s is a Laplace operator in Equation (19), and s = jw ( Substituting w: each frequency shows that a high voltage is necessary at high speed and a small voltage is necessary at low speed.

現在一定磁束制御でセンサーレス磁束推定時電圧の大きさが小さい低速区間で推定演算に誤差が生じるが、仮に低速区間で磁束の大きさを意図的に大きくすると前記式(19)のように電動機に入力される電圧も大きくなり、センサーレス演算時に使われる電圧も大きくなる。電圧の大きさを大きくするほどオフセットやデッドタイムの影響を少なく受けて、その分センサーレス磁束推定に有利となる。   An error occurs in the estimation calculation in the low speed section where the voltage at the time of sensorless magnetic flux estimation is small under constant magnetic flux control. However, if the magnitude of the magnetic flux is intentionally increased in the low speed section, the motor The voltage that is input to the sensor also increases, and the voltage used for sensorless computation also increases. The larger the voltage, the less affected by the offset and dead time, which is advantageous for sensorless magnetic flux estimation.

図5は、磁束調整装置416の構成を示したブロック図である。   FIG. 5 is a block diagram showing the configuration of the magnetic flux adjusting device 416.

磁束調整装置416は上述したように低速領域で磁束を大きくして、電動機に印加される電圧の大きさを大きい値に維持するために、トルク分指令電圧の大きさが一定値以下に低下しないように維持することを目標とする。   As described above, the magnetic flux adjusting device 416 increases the magnetic flux in the low speed region and maintains the magnitude of the voltage applied to the motor at a large value, so that the torque command voltage does not decrease below a certain value. The goal is to maintain.

トルク分磁束指令電圧を使う理由は、定常状態でトルク分指令電圧の大きさは、固定子抵抗値を無視する場合、次の式(20)のように近似でき、運転中に生じる負荷変動(q軸電流変動)に関係なく回転速度に比例する物理量に使用可能であるためである。   The reason for using the magnetic flux command voltage for torque is that the magnitude of the torque command voltage in the steady state can be approximated by the following equation (20) when the stator resistance value is ignored, and the load fluctuation (during operation) ( This is because it can be used for a physical quantity proportional to the rotation speed regardless of (q-axis current fluctuation).

減算器502は、最低磁束分指令電圧(Vmin)と磁束分電流制御器410の出力を差し引いて、これを磁束調整制御器503に入力する。   The subtractor 502 subtracts the minimum magnetic flux component command voltage (Vmin) and the output of the magnetic flux component current controller 410 and inputs this to the magnetic flux adjustment controller 503.

最低磁束分指令電圧(Vmin)は、オフセット影響から脱し、センサーレス磁束推定に必要な逆起電力積分演算をスムーズにできる最小トルク分電圧で定格電圧の10%を初期値とし、実験積を決めて別の保存装置(図示せず)に保存しておく。   The minimum magnetic flux component command voltage (Vmin) is the minimum torque component voltage that can eliminate the offset effect and smooth the back electromotive force integral calculation required for sensorless magnetic flux estimation. The initial value is 10% of the rated voltage and the experimental product is determined. Stored in another storage device (not shown).

磁束調整制御器503は、トルク分指令電圧(Vq)の大きさが基準値の最低磁束分指令電圧(Vmin)より小さい場合、乗算器417を介して磁束指令(λdr)に乗じられるゲインを大きくし、その結果、指令磁束レベルを大きくしてトルク分指令電圧を一定にする。Kp_mは比例ゲイン、Ki_mは積分ゲイン、sはラプラス演算子である。 The magnetic flux adjustment controller 503 multiplies the magnetic flux command (λ * dr) via the multiplier 417 when the magnitude of the torque command voltage (V * q) is smaller than the reference minimum magnetic flux command voltage (Vmin). As a result, the command magnetic flux level is increased and the command voltage for torque is made constant. Kp_m is a proportional gain, Ki_m is an integral gain, and s is a Laplace operator.

一方、制限器504は、磁束調整制御器503の動作が磁束を増加させる、つまり、電圧を大きくする側にだけ動作して、下限を100%に設定しておき、上限は200%以内に設定する。本発明の磁束調整装置は、低速でのセンサーレス性能向上が目標であるため、高速区間ではあえてこれを動作させる必要はない。   On the other hand, the limiter 504 operates only on the side where the magnetic flux adjustment controller 503 increases the magnetic flux, that is, increases the voltage, the lower limit is set to 100%, and the upper limit is set to be within 200%. To do. Since the magnetic flux adjusting apparatus of the present invention is aimed at improving the sensorless performance at low speed, it is not necessary to operate it in the high speed section.

比較器506では、現在速度が一定速度以上/以下を比較して、速度値に応じて、選択器(Selector)507の状態を変化させる。選択器507は、比較器506の値に反応して、速度が所定値以下の場合には、磁束調整制御器503の出力が乗算器417を介して磁束指令(λdr)に乗じられるように選択器507の出力が「A」入力と連結されるようにし、速度が所定値以上の場合には、磁束調整制御器503の動作を無視するように選択器507の出力が「B」入力と連結されるようにする。 The comparator 506 compares the current speed with a certain speed above / below, and changes the state of the selector 507 according to the speed value. The selector 507 responds to the value of the comparator 506 so that the output of the magnetic flux adjustment controller 503 is multiplied by the magnetic flux command (λ * dr) via the multiplier 417 when the speed is equal to or lower than the predetermined value. The output of the selector 507 is connected to the “A” input, and when the speed is equal to or higher than the predetermined value, the output of the selector 507 is input to the “B” input so that the operation of the magnetic flux adjustment controller 503 is ignored. To be concatenated with.

保存装置508は、比較器506が電動機速度を所定値以上であると判断する場合、磁束調整制御器503の出力が磁束指令(λdr)値に影響を与えない値(100%)を予め保存しておく。 When the comparator 506 determines that the motor speed is equal to or higher than the predetermined value, the storage device 508 previously sets a value (100%) that does not affect the magnetic flux command (λ * dr) value by the output of the magnetic flux adjustment controller 503. Save it.

本発明の特徴である磁束調整装置416の動作によって同期座標界トルク分電圧指令(Vq)が一定値以上に維持されるが、センサーレス磁束演算に使われるものは、同期座標界基準電圧ではなく停止座標界基準電圧であることに留意しなければならない。 The synchronous coordinate field torque voltage division command (V * q) is maintained at a certain value or more by the operation of the magnetic flux adjusting device 416, which is a feature of the present invention. Note that it is the stop coordinate field reference voltage, not.

前記式(6)のようにvq値が一定値以上に維持される場合、式(17)、(18)のセンサーレス磁束推定演算に用いられる停止座標界基準電圧の大きさも共に増加し、電圧が小さい低速領域での磁束推定の不完全な点を補うことが可能となる。 When the v * q value is maintained at a certain value or more as in the equation (6), the magnitude of the stop coordinate field reference voltage used for the sensorless magnetic flux estimation calculation of the equations (17) and (18) also increases. This makes it possible to compensate for an incomplete point of magnetic flux estimation in a low-speed region where the voltage is small.

以上、本発明を実施形態及び添付図に基づいて詳細に説明した。しかし、前記実施形態及び図によって本発明に係る範囲が制限されることなく、本発明に係る範囲は後述する特許請求範囲に記載された内容だけで制限される。   The present invention has been described in detail above based on the embodiment and the accompanying drawings. However, the scope according to the present invention is not limited by the embodiment and the drawings, and the scope according to the present invention is limited only by the contents described in the claims to be described later.

401・・・インバータ
402・・・誘導電動機
403・・・減算器
404・・・速度制御装置
405・・・減算器
406・・・トルク電流制御装置
407・・・減算器
408・・・磁束制御装置
409・・・減算器
410・・・磁束電流制御装置
411・・・三相変換器
412・・・電圧制御装置
413・・・電流センサー
414・・・二相転換機
415・・・センサーレス磁束推定装置
416・・・磁束調整装置
401 ... Inverter 402 ... Induction motor 403 ... Subtractor 404 ... Speed controller 405 ... Subtractor 406 ... Torque current controller 407 ... Subtractor 408 ... Magnetic flux control Device 409 ... Subtractor 410 ... Magnetic flux current control device 411 ... Three-phase converter 412 ... Voltage control device 413 ... Current sensor 414 ... Two-phase converter 415 ... Sensorless Magnetic flux estimation device 416 ... Magnetic flux adjustment device

Claims (8)

センサーレスベクター制御方式の誘導電動機用磁束制御装置として、
速度指令(Wm)と推定速度(Wm)との間の速度誤差の入力を受けて、トルク分電流指令(iq)を出力する速度制御装置(404)、
前記トルク分電流指令(iq)の入力を受けて、トルク分電圧指令(Vq)に出力するトルク電流制御装置(406)、
磁束指令(λm)と推定磁束値(λdr)との間の磁束誤差の入力を受けて、磁束分電流指令(id)を出力する磁束制御装置(408)、
前記磁束分電流指令(id)の入力を受けて、磁束分電圧指令(Vd)に出力する磁束電流制御装置(410)、
前記トルク分電圧指令(Vq)及び磁束分電圧指令(Vd)を、誘導電動機に印加される三相の電圧指令に変換して出力する三相変換器(411)、
前記誘導電動機の三相の電流、前記トルク分電圧指令(Vq)及び前記磁束分電圧指令(Vd)の入力を受けて、前記誘導電動機の回転子の回転角(θe)、前記回転子の推定磁束値(λdr)及び前記回転子の推定速度(Wm)を出力する磁束推定機(415)、及び
前記トルク分電圧指令(Vq)及び前記推定速度(Wm)の入力を受けて、前記磁束指令(λm)の大きさを調整するゲイン値を出力する磁束調整装置(416)を含み、
前記磁束調整装置(416)は、前記回転子の回転速度が低い場合、前記磁束指令(λm)の大きさを大きくすることを特徴とする、誘導電動機用磁束制御装置。
As a magnetic flux control device for induction motors with sensorless vector control,
A speed control device (404) for receiving a speed error between the speed command (W * m) and the estimated speed (Wm) and outputting a torque current command (i * q);
The torque current command (i * q) receives input of the torque current control device (406) for outputting the torque portion voltage command (V * q),
A magnetic flux controller (408) for receiving a magnetic flux error between the magnetic flux command (λ * m) and the estimated magnetic flux value (λdr) and outputting a magnetic flux current command (i * d);
A magnetic flux current control device (410) that receives the magnetic flux component current command (i * d) and outputs it to the magnetic flux voltage command (V * d);
A three-phase converter (411) for converting the torque divided voltage command (V * q) and the magnetic flux divided voltage command (V * d) into a three-phase voltage command applied to the induction motor, and outputting the voltage command;
Upon receiving the three-phase current of the induction motor, the torque voltage command (V * q) and the magnetic flux voltage command (V * d), the rotation angle (θe) of the rotor of the induction motor, A magnetic flux estimator (415) for outputting the estimated magnetic flux value (λdr) of the rotor and the estimated speed (Wm) of the rotor, and the input of the torque voltage command (V * q) and the estimated speed (Wm) And a magnetic flux adjusting device (416) for outputting a gain value for adjusting the magnitude of the magnetic flux command (λ * m),
The magnetic flux control device for an induction motor, wherein the magnetic flux adjusting device (416) increases the magnitude of the magnetic flux command (λ * m) when the rotational speed of the rotor is low.
前記磁束調整装置(416)のゲイン値の入力を受けて、前記磁束指令(λm)に乗じて出力する乗算器(417)をさらに含むことを特徴とする、請求項1に記載の誘導電動機用磁束制御装置. The induction device according to claim 1, further comprising a multiplier (417) that receives an input of a gain value of the magnetic flux adjusting device (416) and multiplies the magnetic flux command (λ * m) and outputs the result. Magnetic flux control device for electric motors. 前記磁束調整装置(416)は、前記トルク分電圧指令(Vq)と設定された最低磁束分指令電圧(Vmin)との差の入力を受けて、ゲインを調整する磁束調整制御器(503)、前記推定速度(Wm)が設定された速度以下であるか否かを判断する比較器(506)及び前記比較器(506)で設定された速度以下であると判断された場合、前記ゲイン値を出力する選択器(507)を含むことを特徴とする、請求項1または2に記載の誘導電動機用磁束制御装置。 The magnetic flux adjusting device (416) receives a difference between the torque component voltage command (V * q) and the set minimum magnetic flux component command voltage (Vmin), and adjusts the gain of the magnetic flux adjustment controller (503). ), The comparator (506) for determining whether or not the estimated speed (Wm) is less than or equal to a set speed, and if it is determined that the estimated speed (Wm) is less than or equal to the speed set by the comparator (506), the gain The magnetic flux control apparatus for an induction motor according to claim 1, further comprising a selector (507) that outputs a value. 前記磁束調整装置(416)は、前記磁束調整制御器(503)からのゲインを設定範囲に制限して、前記ゲイン値で出力する制限器(504)をさらに含むことを特徴とする、請求項3に記載の誘導電動機用磁束制御装置。   The magnetic flux adjusting device (416) further includes a limiter (504) that limits the gain from the magnetic flux adjustment controller (503) to a set range and outputs the gain value. 3. The magnetic flux control device for an induction motor according to 3. 前記設定範囲は、下限が100%、上限が200%であることを特徴とする、請求項4に記載の誘導電動機用磁束制御装置。   The magnetic flux control apparatus for an induction motor according to claim 4, wherein the setting range has a lower limit of 100% and an upper limit of 200%. 前記最低磁束分指令電圧(Vmin)は、前記誘導電動機の定格電圧の10%に設定されたことを特徴とする、請求項3〜5のうちいずれか一つに記載の誘導電動機用磁束制御装置。   The induction motor flux control device according to any one of claims 3 to 5, wherein the minimum magnetic flux component command voltage (Vmin) is set to 10% of a rated voltage of the induction motor. . 前記選択器507は、前記比較器(506)で設定された速度以上であると判断された場合、前記磁束指令(λm)値に影響を与えないゲイン値を出力することを特徴とする、請求項3〜6のうちいずれか一つに記載の誘導電動機用磁束制御装置。 The selector 507 outputs a gain value that does not affect the magnetic flux command (λ * m) value when it is determined that the speed is equal to or higher than the speed set by the comparator (506). The magnetic flux control apparatus for an induction motor according to any one of claims 3 to 6. 速度指令と推定速度との間の速度誤差、及び磁束指令と推定磁束との間の磁束誤差を持って、誘導電動機を制御するトルク分電圧指令と磁束分電圧指令を生成する誘導電動機の磁束制御装置であって、
前記推定速度が設定値以下の場合、前記磁束指令に乗じて大きさを大きくできるゲイン値を出力する磁束調整装置を含むことを特徴とする、誘導電動機の磁束制御装置。
Magnetic flux control of an induction motor that generates a torque voltage command and a magnetic flux voltage command that controls the induction motor with a speed error between the speed command and the estimated speed and a magnetic flux error between the magnetic flux command and the estimated magnetic flux A device,
A magnetic flux control device for an induction motor, comprising: a magnetic flux adjusting device that outputs a gain value that can be increased by multiplying the magnetic flux command when the estimated speed is equal to or less than a set value.
JP2011260613A 2010-11-30 2011-11-29 Magnetic flux control device for induction motor, magnetic flux control device for induction motor Expired - Fee Related JP5639035B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0120433 2010-11-30
KR1020100120433A KR101376389B1 (en) 2010-11-30 2010-11-30 Flux controller for induction motor

Publications (2)

Publication Number Publication Date
JP2012120429A true JP2012120429A (en) 2012-06-21
JP5639035B2 JP5639035B2 (en) 2014-12-10

Family

ID=46152724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011260613A Expired - Fee Related JP5639035B2 (en) 2010-11-30 2011-11-29 Magnetic flux control device for induction motor, magnetic flux control device for induction motor

Country Status (3)

Country Link
JP (1) JP5639035B2 (en)
KR (1) KR101376389B1 (en)
CN (1) CN102487264B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015107048A (en) * 2013-11-29 2015-06-08 エルエス産電株式会社Lsis Co., Ltd. Induction motor controller
JP2015130739A (en) * 2014-01-07 2015-07-16 ファナック株式会社 Motor controller capable of switching presence or absence of flux control application
EP3107203A1 (en) 2015-06-18 2016-12-21 Kabushiki Kaisha Yaskawa Denki Motor controller, flux command generator, and method for generating flux command

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101759371B1 (en) 2013-04-04 2017-07-18 엘에스산전 주식회사 Sensorless vector control apparatus for induction motor
US9344026B2 (en) * 2013-07-23 2016-05-17 Atieva, Inc. Induction motor flux and torque control
US10521519B2 (en) * 2013-07-23 2019-12-31 Atieva, Inc. Induction motor flux and torque control with rotor flux estimation
KR101840509B1 (en) * 2014-04-29 2018-03-20 엘에스산전 주식회사 Rotation angle estimation module for sensorless vector control of PMSM
FR3020730B1 (en) * 2014-04-30 2018-01-26 Renault S.A.S METHOD FOR ESTIMATING THE ELECTRICAL ANGLE OF AN ASYNCHRONOUS ELECTRIC MACHINE FOR A MOTOR VEHICLE
KR101996838B1 (en) 2015-05-26 2019-07-08 엘에스산전 주식회사 System of controlling induction motor
KR101845412B1 (en) * 2016-10-12 2018-04-04 경북대학교 산학협력단 Flux Observer of Induction Motor and Estimating Method Thereof
US10840841B2 (en) * 2018-09-27 2020-11-17 Tmeic Corporation Control device for power conversion device, control method, and motor drive system
US10658963B2 (en) * 2018-10-10 2020-05-19 GM Global Technology Operations LLC Flux observer-based control strategy for an induction motor
KR102547077B1 (en) * 2020-12-14 2023-06-22 엘에스일렉트릭(주) Apparatus and method for controlling motor
CN113839597B (en) * 2021-09-08 2024-04-09 西安陕鼓动力股份有限公司 Motor starting and synchronous operation method powered by different power supplies
KR102643513B1 (en) * 2022-04-19 2024-03-04 단국대학교 산학협력단 Apparatus for Hybrid Type Induction Motor Drive Control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089697A (en) * 1994-06-22 1996-01-12 Fuji Electric Co Ltd Induction motor vector controller
JPH11187700A (en) * 1997-12-24 1999-07-09 Fuji Electric Co Ltd Induction motor control device
JP2005130601A (en) * 2003-10-23 2005-05-19 Toyo Electric Mfg Co Ltd Induction machine controller
JP2005278327A (en) * 2004-03-25 2005-10-06 Mitsubishi Electric Corp Speed sensorless vector control device
JP2007006664A (en) * 2005-06-27 2007-01-11 Mitsubishi Electric Corp Control unit of ac rotary machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312499A (en) * 1999-04-27 2000-11-07 Meidensha Corp Vector controller for induction motor
KR100400594B1 (en) * 2001-04-24 2003-10-08 엘지산전 주식회사 Apparatus for speed presumption of induction motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089697A (en) * 1994-06-22 1996-01-12 Fuji Electric Co Ltd Induction motor vector controller
JPH11187700A (en) * 1997-12-24 1999-07-09 Fuji Electric Co Ltd Induction motor control device
JP2005130601A (en) * 2003-10-23 2005-05-19 Toyo Electric Mfg Co Ltd Induction machine controller
JP2005278327A (en) * 2004-03-25 2005-10-06 Mitsubishi Electric Corp Speed sensorless vector control device
JP2007006664A (en) * 2005-06-27 2007-01-11 Mitsubishi Electric Corp Control unit of ac rotary machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015107048A (en) * 2013-11-29 2015-06-08 エルエス産電株式会社Lsis Co., Ltd. Induction motor controller
US9379658B2 (en) 2013-11-29 2016-06-28 Lsis Co., Ltd. Apparatus for controlling induction motor
JP2015130739A (en) * 2014-01-07 2015-07-16 ファナック株式会社 Motor controller capable of switching presence or absence of flux control application
EP3107203A1 (en) 2015-06-18 2016-12-21 Kabushiki Kaisha Yaskawa Denki Motor controller, flux command generator, and method for generating flux command
US10199971B2 (en) 2015-06-18 2019-02-05 Kabushiki Kaisha Yaskawa Denki Motor controller, flux command generator, and method for generating flux command

Also Published As

Publication number Publication date
KR101376389B1 (en) 2014-03-20
JP5639035B2 (en) 2014-12-10
KR20120058905A (en) 2012-06-08
CN102487264B (en) 2014-07-09
CN102487264A (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP5639035B2 (en) Magnetic flux control device for induction motor, magnetic flux control device for induction motor
US8988027B2 (en) Motor control apparatus and motor control method
US9742333B2 (en) Motor control device
US7679308B2 (en) Motor control device
JP5761243B2 (en) Motor control device and magnetic pole position estimation method
JP4989075B2 (en) Electric motor drive control device and electric motor drive system
KR101046802B1 (en) Control device of AC rotor and electric constant measurement method of AC rotor using this controller
JP5281339B2 (en) Synchronous motor drive system and control device used therefor
JPWO2016121237A1 (en) Inverter control device and motor drive system
JP4797074B2 (en) Vector control device for permanent magnet motor, vector control system for permanent magnet motor, and screw compressor
CN104779872B (en) The control device and control method of synchronous motor
JP2015012770A (en) Motor control device and generator control device
US11837982B2 (en) Rotary machine control device
JP5648310B2 (en) Synchronous motor control device and synchronous motor control method
Sanita et al. Modelling and simulation of four quadrant operation of three phase brushless DC motor with hysteresis current controller
JP5363129B2 (en) Inverter control device
JP4535082B2 (en) Sensorless control device and control method for synchronous generator
CN110140290B (en) Control device for synchronous motor
JP7251424B2 (en) INVERTER DEVICE AND INVERTER DEVICE CONTROL METHOD
JP2019068515A (en) Motor controller
JP5798513B2 (en) Method and apparatus for detecting initial magnetic pole position of permanent magnet synchronous motor, and control apparatus for permanent magnet synchronous motor
JP5996485B2 (en) Motor drive control device
JP7226211B2 (en) INVERTER DEVICE AND INVERTER DEVICE CONTROL METHOD
JP2017221001A (en) Control apparatus for synchronous motor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140801

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141023

R150 Certificate of patent or registration of utility model

Ref document number: 5639035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees