[go: up one dir, main page]

JP2012120366A - Permanent magnet motor, magnet for the same, and structure for bonding magnet for the same - Google Patents

Permanent magnet motor, magnet for the same, and structure for bonding magnet for the same Download PDF

Info

Publication number
JP2012120366A
JP2012120366A JP2010269283A JP2010269283A JP2012120366A JP 2012120366 A JP2012120366 A JP 2012120366A JP 2010269283 A JP2010269283 A JP 2010269283A JP 2010269283 A JP2010269283 A JP 2010269283A JP 2012120366 A JP2012120366 A JP 2012120366A
Authority
JP
Japan
Prior art keywords
magnet
rotor
stator
adhesive
radial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010269283A
Other languages
Japanese (ja)
Inventor
Michio Ogawa
道雄 小川
Akiyoshi Sawai
章能 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010269283A priority Critical patent/JP2012120366A/en
Priority to CN2011103374934A priority patent/CN102487223A/en
Publication of JP2012120366A publication Critical patent/JP2012120366A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

【課題】 従来の永久磁石モータの問題点であった、磁石の両端の2辺と被着部材との線近接部における異物噛み込みによる磁石の位置精度への悪影響や、磁石の両端部で発生する接着剤への空気の噛み込みによる接着信頼性への悪影響を解決し、モータ性能信頼性が大幅に向上する永久磁石モータ及びその磁石並びにその磁石接着構造を得る。
【解決手段】 永久磁石モータは、磁石1はシャフト3との接着面における隅部の少なくとも3箇所以上に凸部22を備えた構造を有し、凸部22はシャフト3と点近接し、磁石1は凸部22とシャフト3側の磁石1対向面とシャフト3の表面に囲まれた隙間に形成された接着剤2からなる接着剤層21にて接着固定される。
【選択図】 図1
PROBLEM TO BE SOLVED: To adversely affect the position accuracy of a magnet due to foreign object biting in a line adjacent portion between two sides of both ends of a magnet and an adherent member, which has been a problem of a conventional permanent magnet motor, and occurs at both ends of the magnet The permanent magnet motor, its magnet, and its magnet bonding structure are obtained that solves the adverse effect on the bonding reliability caused by the air biting into the adhesive, and greatly improves the motor performance reliability.
A permanent magnet motor has a structure in which a magnet 1 is provided with convex portions 22 at least at three corners on a bonding surface with a shaft 3, and the convex portions 22 are close to the shaft 3 and are magnets. 1 is bonded and fixed by an adhesive layer 21 made of an adhesive 2 formed in a gap surrounded by the convex portion 22, the magnet 1 facing surface on the shaft 3 side, and the surface of the shaft 3.
[Selection] Figure 1

Description

この発明は、回転型及びリニア型の永久磁石モータとその磁石とその磁石接着構造に関する。 The present invention relates to rotary and linear permanent magnet motors, magnets thereof, and magnet adhesion structures thereof.

従来の回転型及びリニア型の永久磁石モータは、磁石断面におけるシャフト(ロータ)側の動径方向の形状は略円弧状で、かつその曲率をシャフトの曲率よりも大きくすることで、磁石のシャフト側とシャフトの表面に囲まれる領域に隙間が形成され、シャフト軸に沿う磁石の両端の2辺がシャフト(ロータ)及び固定子(ステータ)である被着部材に近接し、磁石と被着部材の間に発生する隙間に接着剤を充填して接着している(例えば、特許文献1、特許文献2参照)。 In conventional rotary and linear permanent magnet motors, the shape of the radial direction of the shaft (rotor) side in the magnet cross section is substantially arc-shaped, and the curvature is made larger than the curvature of the shaft, so that the shaft of the magnet A gap is formed in a region surrounded by the side and the surface of the shaft, and the two sides at both ends of the magnet along the shaft axis are close to the attached member which is the shaft (rotor) and the stator (stator), and the magnet and the attached member The gap generated between the two is filled with an adhesive and bonded (for example, see Patent Document 1 and Patent Document 2).

特許第4267309号公報(第13頁、第8図)Japanese Patent No. 4267309 (page 13, FIG. 8) 特開2010−187536号公報(第8頁、第2図)Japanese Patent Laying-Open No. 2010-187536 (page 8, FIG. 2)

従来の永久磁石モータは、以上のように構成されているので、回転型の永久磁石モータでは、接着剤を磁石もしくはシャフト(ロータ)である被着部材に塗布した後、磁石と被着部材を貼り合わせる場合、磁石の両端の2辺が被着部材に近接していると、被着部材への線接触での磁石近接となるため、被着部材への点接触による磁石近接に比べ線近接部に異物を噛み込み易く、磁石が傾いて接着される等、磁石の位置精度に影響を与え易いといった問題点がある。また、磁石の両端部において、空気が接着剤に噛み込み易く、接着信頼性に影響を与えるといった問題点がある。 Since the conventional permanent magnet motor is configured as described above, in the rotary permanent magnet motor, after the adhesive is applied to the adherent member that is a magnet or a shaft (rotor), the magnet and the adherent member are applied. When bonding, if both sides of the magnet are close to the adherent member, the magnet comes close to the adherent member by line contact. There is a problem that the position accuracy of the magnet is likely to be affected, for example, a foreign object is easily caught in the part, and the magnet is inclined and bonded. Further, at both ends of the magnet, there is a problem in that air is easy to bite into the adhesive and affects the adhesion reliability.

さらに、リニア型の永久磁石モータでは、磁石と固定子(ステータ)である被着部材が同一形状の場合、例えば、磁石と被着部材が共に平行平板の場合、磁石と被着部材の間にはほとんど接着剤を充填する隙間が発生しないため、接着剤の厚みが薄くなり、かつ接着剤の厚みを制御する構造も存在しないため、安定した接着強度を得ることができないといった問題点がある。 Furthermore, in a linear permanent magnet motor, when the adherend member which is a magnet and a stator (stator) has the same shape, for example, when both the magnet and the adherend member are parallel plates, the gap between the magnet and the adherend member However, since there is almost no gap filling the adhesive, the thickness of the adhesive is reduced, and there is no structure for controlling the thickness of the adhesive, so that there is a problem that stable adhesive strength cannot be obtained.

この発明は、上述のような問題を解決するためになされたもので、その目的は、従来の永久磁石モータの製造と同等の生産性を持ちながら、磁石と被着部材の近接部に発生する異物噛み込みによる磁石位置精度の低下や、磁石の両端部で発生する空気の噛み込みによる接着信頼性の低下や、磁石と被着部材が同一形状の場合に発生する接着剤の厚みが薄いことに起因した接着信頼性の低下を抑制する永久磁石モータ及びその磁石接着構造を得るものである。 The present invention has been made to solve the above-described problems, and the object thereof is generated in the vicinity of the magnet and the adherend while having the same productivity as the manufacture of the conventional permanent magnet motor. Decrease in magnet position accuracy due to foreign object biting, decrease in adhesion reliability due to air bite generated at both ends of the magnet, and thin adhesive generated when the magnet and adherend are the same shape The permanent magnet motor which suppresses the fall of the adhesive reliability resulting from this, and its magnet adhesion structure are obtained.

この発明に係る永久磁石モータにおいては、ロータ又はステータと、ロータ又はステータに磁石を接着剤により接着固定した永久磁石モータであって、磁石はロータ又はステータとの接着面における隅部の少なくとも3箇所以上に凸部を備えた構造を有し、凸部はロータ又はステータと点近接し、磁石は凸部とロータ又はステータ側の磁石対向面とロータ又はステータに囲まれた隙間に形成された接着剤からなる接着剤層にて接着固定される。 The permanent magnet motor according to the present invention is a permanent magnet motor in which a magnet is bonded and fixed to the rotor or stator and the rotor or stator with an adhesive, and the magnets are at least three corners on the bonding surface with the rotor or stator. As described above, it has a structure with a convex portion, the convex portion is point-adjacent to the rotor or the stator, and the magnet is bonded to the convex portion, the magnet facing surface on the rotor or stator side, and a gap surrounded by the rotor or the stator. It is bonded and fixed with an adhesive layer made of an agent.

この発明は、磁石と被着部材間に所望の隙間を設けて接着剤により磁石と被着部材を接着固定する構造とすることで、一定の接着剤の厚みを確保し、安定した接着強度を得ることができると共に、磁石の凸部と被着部材間を点近接とすることで、従来の磁石と被着部材間の2辺の線近接と比べて異物や空気の噛み込みを抑制し、磁石位置精度への影響を低減させ、安定した接着強度を得ることができるので、永久磁石モータの性能信頼性が大幅に向上する。 The present invention has a structure in which a desired gap is provided between the magnet and the adherent member and the magnet and the adherent member are bonded and fixed with an adhesive, thereby ensuring a certain thickness of the adhesive and providing a stable adhesive strength. In addition to being able to obtain, by making the point between the convex portion of the magnet and the adherend member, compared to the conventional line proximity of the two sides between the magnet and the adherent member, it suppresses the biting of foreign matter and air, Since the influence on the magnet position accuracy can be reduced and a stable adhesive strength can be obtained, the performance reliability of the permanent magnet motor is greatly improved.

この発明の実施の形態1を示す回転型の永久磁石モータの磁石接着構造図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a magnet adhesion structure diagram of a rotary permanent magnet motor showing Embodiment 1 of the present invention. この発明の実施の形態1を示す永久磁石モータの接着強度の接着層厚依存性を表す図である。It is a figure showing the adhesive layer thickness dependence of the adhesive strength of the permanent magnet motor which shows Embodiment 1 of this invention. この発明の実施の形態1を示す回転型の永久磁石モータの磁石接着構造図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a magnet adhesion structure diagram of a rotary permanent magnet motor showing Embodiment 1 of the present invention. この発明の実施の形態2を示す回転型の永久磁石モータの磁石接着構造図である。It is a magnet adhesion structure figure of the rotary type permanent magnet motor which shows Embodiment 2 of this invention. この発明の実施の形態3を示す回転型の永久磁石モータの磁石接着構造図である。It is a magnet adhesion structure figure of the rotary type permanent magnet motor which shows Embodiment 3 of this invention.

実施の形態1.
図1は、この発明を実施するための実施の形態1における回転型の永久磁石モータの磁石接着構造図である。図1において、1は磁石、2は接着剤、3はロータとしてのシャフトである。21は磁石1とシャフト3の間に囲まれた隙間に形成された接着剤2からなる接着剤層、22は磁石1の底面に存在する凸部であり、この実施の形態1では、凸部22は磁石1の角部に4箇所存在する。磁石1のシャフト3側の表面は、シャフト3の動径方向の曲率よりも大きい曲率を有した凹状の球形状に加工されている。一方、磁石1のシャフト3側の表面と対向する表面は、シャフト3の動径方向に沿う方向に対しては、シャフト3の動径方向の曲率よりも大きい曲率を有した凹状の曲面形状であり、シャフト3の軸方向に沿う方向に対しては、平板形状である、すなわち、略円弧状であるように加工されている。
Embodiment 1 FIG.
FIG. 1 is a magnet adhesion structure diagram of a rotary permanent magnet motor according to Embodiment 1 for carrying out the present invention. In FIG. 1, 1 is a magnet, 2 is an adhesive, and 3 is a shaft as a rotor. Reference numeral 21 denotes an adhesive layer made of the adhesive 2 formed in a gap surrounded by the magnet 1 and the shaft 3, and 22 denotes a convex portion existing on the bottom surface of the magnet 1. There are four locations 22 at the corners of the magnet 1. The surface of the magnet 1 on the shaft 3 side is processed into a concave spherical shape having a curvature larger than the curvature of the shaft 3 in the radial direction. On the other hand, the surface of the magnet 1 facing the surface on the shaft 3 side is a concave curved surface having a curvature larger than the curvature of the shaft 3 in the radial direction with respect to the direction along the radial direction of the shaft 3. There is a flat plate shape in the direction along the axial direction of the shaft 3, that is, it is processed so as to have a substantially arc shape.

接着剤2を用いて磁石1をシャフト3に接着する構造において、磁石1とシャフト3は磁石1の4箇所の凸部22で点近接し、接着剤層21は接着剤2が塗布され、磁石1とシャフト3が接着固定されている。この実施の形態1では、接着剤2を磁石1もしくはシャフト3に塗布した後に、磁石1とシャフト3を貼り合わせ、接着剤層21の接着剤2を硬化させることで接着固定させる。 In the structure in which the magnet 1 is bonded to the shaft 3 using the adhesive 2, the magnet 1 and the shaft 3 are close to each other at the four convex portions 22 of the magnet 1, and the adhesive 2 is applied to the adhesive layer 21. 1 and the shaft 3 are bonded and fixed. In the first embodiment, after the adhesive 2 is applied to the magnet 1 or the shaft 3, the magnet 1 and the shaft 3 are bonded together, and the adhesive 2 of the adhesive layer 21 is cured and fixed.

図1において、A−A’とB−B’とC−C’は、磁石1をシャフト3の動径方向に沿って切断したときの断面方向を表し、D−D’とE−E’とF−F’は、磁石1をシャフト3の軸方向に沿って切断したときの断面方向を表す。A−A’断面とC−C’断面は、磁石1の凸部22の断面が存在する断面となるため、シャフト3に凸部22が近接している状態の断面となるが、B−B’断面は磁石1の中央部の断面となるため、磁石1の両端部とシャフト3の間には接着剤層21が存在する断面となる。同様に、D−D’断面とF−F’断面は、磁石1の凸部22の断面が存在する断面となるため、シャフト3に凸部22が近接している状態の断面となるが、E−E’断面は磁石1の中央部の断面となるため、磁石1の両端部とシャフト3の間には接着剤層21が存在する断面となる。 In FIG. 1, AA ′, BB ′, and CC ′ represent cross-sectional directions when the magnet 1 is cut along the radial direction of the shaft 3, and DD ′ and EE ′. And FF ′ represent cross-sectional directions when the magnet 1 is cut along the axial direction of the shaft 3. The AA ′ cross section and the CC ′ cross section are cross sections in which the cross section of the convex portion 22 of the magnet 1 is present, and thus are cross sections in a state where the convex portion 22 is close to the shaft 3, but BB 'Because the cross section is the cross section of the central portion of the magnet 1, it is a cross section in which the adhesive layer 21 exists between the both ends of the magnet 1 and the shaft 3. Similarly, the DD ′ cross section and the FF ′ cross section are cross sections in which the cross section of the convex portion 22 of the magnet 1 exists, and thus are cross sections in a state where the convex portion 22 is close to the shaft 3. Since the EE ′ cross section is a cross section of the central portion of the magnet 1, it is a cross section in which the adhesive layer 21 exists between both end portions of the magnet 1 and the shaft 3.

図2は、この発明の実施の形態1を示す永久磁石モータの接着強度の接着層厚依存性を表す図である。図2において、縦軸は接着強度、横軸は接着層の接着厚さである。図2に示すように、接着強度は接着厚さに対して急峻に増大し、極大値を示した後、徐々に低下する曲線になるため、接着の際には最適な接着厚さを選択する必要がある。 FIG. 2 is a diagram showing the adhesive layer thickness dependency of the adhesive strength of the permanent magnet motor according to the first embodiment of the present invention. In FIG. 2, the vertical axis represents the adhesive strength, and the horizontal axis represents the adhesive thickness of the adhesive layer. As shown in FIG. 2, the adhesive strength increases sharply with respect to the adhesive thickness, and after reaching a maximum value, it becomes a gradually decreasing curve. Therefore, an optimal adhesive thickness is selected when bonding. There is a need.

磁石の位置決め精度の観点から、点近接する3箇所以上の磁石1の凸部22とシャフト3の近接部は接着強度を得る必要は無く、たとえ接着しても最大の接着強度の50%未満の強度で済む距離25μm以下であることが望ましく、それ以外の接着剤2の接着剤層21は、接着強度の最適化の観点から、最大の接着強度の50%以上の強度が確保できる50〜200μmの接着厚さとなることが望ましい。また、点近接する凸部22の1箇所当たりの面積ついて、凸部22の接着面積が大きいと、その分接着強度に寄与しない面積が増え、強度が低下する。一般に、接着面積は磁石面積の50%以上確保できれば良いとされており、凸部22の1箇所当たりの接着面積が磁石接着総面積の10%以下であれば、たとえ4箇所の凸部22での点近接においても60%以上の面積を確保できるため、凸部22の1箇所当たりの接着面積は、磁石接着総面積の10%以下とすることが望ましい。 From the standpoint of magnet positioning accuracy, it is not necessary to obtain adhesive strength between the convex portions 22 of the magnet 1 at three or more points close to each other and the adjacent portion of the shaft 3, and even if bonded, it is less than 50% of the maximum bonding strength. It is desirable that the distance with which the strength is sufficient is 25 μm or less, and the adhesive layer 21 of the other adhesive 2 can secure a strength of 50% or more of the maximum adhesive strength from the viewpoint of optimization of the adhesive strength. It is desirable to have an adhesion thickness of. Further, regarding the area per one point of the convex portions 22 that are close to each other, if the adhesive area of the convex portions 22 is large, the area that does not contribute to the adhesive strength increases accordingly, and the strength decreases. In general, it is said that the adhesion area should be 50% or more of the magnet area, and if the adhesion area per part of the convex part 22 is 10% or less of the total area of the magnet adhesion, even with four convex parts 22 Since an area of 60% or more can be secured even in the vicinity of the point, it is desirable that the adhesion area per one portion of the convex portion 22 is 10% or less of the total magnet adhesion area.

この実施の形態1における回転型の永久磁石モータにおいては、着磁済み磁石の接着においても一定の接着厚さを確保できるため、安定した接着強度を得ることができる。また、従来の永久磁石モータのような磁石1の両端がシャフト3と線近接している場合と異なり、磁石1の4箇所の凸部22とシャフト3の間を点近接とすることで異物の噛み込みを抑制し、異物と磁石1もしくはシャフト3の近接部が干渉して磁石1の位置精度に影響を与えるといった可能性を抑制する。さらに、磁石1の凸部22での接着面への空気の噛み込みを抑制することで、嫌気性接着剤使用時の接着剤の硬化不良の発生や実効接着面積の減少による接着の信頼性低下を防止することができる。 In the rotary permanent magnet motor according to the first embodiment, a constant adhesion thickness can be secured even in the adhesion of magnetized magnets, so that stable adhesion strength can be obtained. Further, unlike the case where both ends of the magnet 1 are in line proximity with the shaft 3 as in the conventional permanent magnet motor, the point between the four convex portions 22 of the magnet 1 and the shaft 3 is made point proximity. The biting is suppressed, and the possibility that the foreign matter and the proximity portion of the magnet 1 or the shaft 3 interfere with each other to affect the positional accuracy of the magnet 1 is suppressed. Further, by suppressing the air from entering the bonding surface at the convex portion 22 of the magnet 1, the reliability of the bonding is reduced due to the occurrence of poor curing of the adhesive when using an anaerobic adhesive or the reduction of the effective bonding area. Can be prevented.

また、磁石1の4箇所の凸部22とシャフト3の間に異物が噛み込んだ場合でも、この実施の形態1のような点近接の場合では、磁石1をシャフト3に押え付ける際に、異物が凸部22とシャフト3の間に留まる場合は少なく、押え付けた際に異物がずれる確率の方が高く、かつ異物がずれる方向は凸部22を中心として全方向に渡ってほぼ均等である。従って、押え付けたことにより異物が磁石1とシャフト3の間のさらに内部にずれてしまう確率は略25%であると言える。 Further, even when a foreign object is caught between the four convex portions 22 of the magnet 1 and the shaft 3, in the case of point proximity as in the first embodiment, when pressing the magnet 1 against the shaft 3, There are few cases where the foreign matter stays between the convex portion 22 and the shaft 3, the probability that the foreign matter is displaced when pressed is higher, and the direction in which the foreign matter is displaced is substantially uniform in all directions with the convex portion 22 as the center. is there. Accordingly, it can be said that the probability that the foreign matter is further displaced between the magnet 1 and the shaft 3 due to the pressing is approximately 25%.

一方、従来の線近接の場合でも磁石1をシャフト3に押え付けたことにより異物がずれる場合もあるが、線近接の場合、異物がずれる方向は、異物が噛み込んでいる線を中心に、磁石1とシャフト3の間のさらに内部に移動してしまう方向か、それとも外に移動してしまう方向の2方向しかない。従って、線近接の場合、押え付けたことにより異物が磁石1とシャフト3の間のさらに内部にずれてしまう確率は略50%であると言え、この点からも、この実施の形態1で説明した点近接の方が、従来の線近接よりも異物が噛み込みにくいという効果がある。 On the other hand, even in the case of conventional line proximity, the foreign matter may be displaced by pressing the magnet 1 against the shaft 3, but in the case of line proximity, the direction in which the foreign matter is displaced is centered on the line in which the foreign matter is biting, There are only two directions between the magnet 1 and the shaft 3 that move further inside or move outward. Therefore, in the case of close proximity to the line, it can be said that the probability that the foreign matter is further displaced to the inside between the magnet 1 and the shaft 3 by pressing is about 50%. From this point as well, the first embodiment will be described. The effect of the point proximity is that the foreign matter is less likely to bite than the conventional line proximity.

このように、この実施の形態1における回転型の永久磁石モータを採用することで、従来の回転型の永久磁石モータの課題を解決することができ、回転型の永久磁石モータの性能信頼性が大幅に向上する。 As described above, by employing the rotary permanent magnet motor according to the first embodiment, the problems of the conventional rotary permanent magnet motor can be solved, and the performance reliability of the rotary permanent magnet motor is improved. Greatly improved.

なお、図1では、磁石1のシャフト3側の表面は中央部が凹状の球形状に加工されている磁石1を示したが、図3に示すように、磁石1のシャフト3側の表面がシャフト3の動径方向と動径方向と直交する軸方向の2方向に対して、シャフト3の動径方向の曲率よりも大きい曲率を有する凹状の曲面形状に加工されている場合についても、同様の効果が得られる。 In FIG. 1, the surface of the magnet 1 on the shaft 3 side is the magnet 1 processed into a spherical shape with a concave central portion, but as shown in FIG. 3, the surface of the magnet 1 on the shaft 3 side is The same applies to the case where the curved surface is processed into a concave curved surface having a curvature larger than the curvature in the radial direction of the shaft 3 with respect to the radial direction of the shaft 3 and the two axial directions orthogonal to the radial direction. The effect is obtained.

実施の形態2.
図4は、この発明を実施するための実施の形態2における回転型の永久磁石モータの磁石接着構造図である。図4において、5は突起構造部である磁石突起部、23は磁石突起部5がシャフト3の表面と点近接する突起底面部である。この実施の形態2は、図4に示すように、磁石1の角部4箇所に磁石突起部5を設け、この磁石突起部5の突起底面部23がシャフト3との近接部となり、接着剤2を磁石1もしくはシャフト3に塗布した後に、磁石1とシャフト3を貼り合わせ、接着剤2を硬化させることで得られる磁石接着構造である。磁石1の形状は、実施の形態1で説明した形状と同様である。磁石突起部5の材料は、磁石材料や金属材料である。
Embodiment 2. FIG.
FIG. 4 is a magnet adhesion structure diagram of a rotary permanent magnet motor according to Embodiment 2 for carrying out the present invention. In FIG. 4, reference numeral 5 denotes a magnet projection that is a projection structure, and reference numeral 23 denotes a projection bottom surface portion where the magnet projection 5 is close to the surface of the shaft 3. In the second embodiment, as shown in FIG. 4, magnet projections 5 are provided at four corners of the magnet 1, and the projection bottom surface portion 23 of the magnet projection 5 serves as a proximity portion to the shaft 3, and the adhesive 2 is applied to the magnet 1 or the shaft 3, and then the magnet 1 and the shaft 3 are bonded together to cure the adhesive 2. The shape of the magnet 1 is the same as the shape described in the first embodiment. The material of the magnet protrusion 5 is a magnet material or a metal material.

実施の形態1と同様に、図4において、A−A’とB−B’とC−C’は、磁石1をシャフト3の動径方向に沿って切断したときの断面方向を表し、D−D’とE−E’とF−F’は、磁石1をシャフト3の軸方向に沿って切断したときの断面方向を表す。A−A’断面とC−C’断面は、磁石突起部5の断面が存在する断面となるため、シャフト3に磁石突起部5が近接している状態の断面となるが、B−B’断面は磁石1の中央部の断面となるため、磁石1の両端部とシャフト3の間には接着剤層21が存在する断面となる。同様に、D−D’断面とF−F’断面は、磁石突起部5の断面が存在する断面となるため、シャフト3に磁石突起部5が近接している状態の断面となるが、E−E’断面は磁石1の中央部の断面となるため、磁石1の両端部とシャフト3の間には接着剤層21が存在する断面となる。 As in the first embodiment, in FIG. 4, AA ′, BB ′, and CC ′ represent cross-sectional directions when the magnet 1 is cut along the radial direction of the shaft 3, and D −D ′, EE ′, and FF ′ represent cross-sectional directions when the magnet 1 is cut along the axial direction of the shaft 3. The AA ′ cross section and the CC ′ cross section are cross sections in which the cross section of the magnet projection 5 exists, and thus the cross section in a state where the magnet projection 5 is close to the shaft 3, but BB ′. Since the cross section is a cross section of the central portion of the magnet 1, the cross section is such that the adhesive layer 21 exists between both end portions of the magnet 1 and the shaft 3. Similarly, the DD ′ cross section and the FF ′ cross section are cross sections in which the cross section of the magnet projection portion 5 exists, and thus the cross section in a state where the magnet projection portion 5 is close to the shaft 3. The −E ′ cross section is a cross section of the center portion of the magnet 1, and therefore, a cross section in which the adhesive layer 21 exists between both end portions of the magnet 1 and the shaft 3.

接着強度は、実施の形態1で説明したように、接着厚さに依存するため、最適な接着厚さを選択する必要がある。実施の形態1と同様に、磁石の位置決め精度の観点から、3箇所以上の磁石1の磁石突起部5は、突起底面部23とシャフト3の近接部が距離25μm以下、かつ、接着剤層21は接着強度の最適化の観点から50〜200μmの接着厚さとなることが望ましい。また、突起底面部23の1箇所あたりの面積は、実施の形態1と同様に、磁石接着総面積の10%以下とすることが望ましい。 Since the adhesive strength depends on the adhesive thickness as described in the first embodiment, it is necessary to select an optimal adhesive thickness. As in the first embodiment, from the viewpoint of magnet positioning accuracy, the magnet protrusions 5 of the magnet 1 at three or more locations have a distance of 25 μm or less between the protrusion bottom surface portion 23 and the adjacent portion of the shaft 3, and the adhesive layer 21. From the viewpoint of optimizing the adhesive strength, the adhesive thickness is desirably 50 to 200 μm. Further, it is desirable that the area per one portion of the protrusion bottom surface portion 23 is 10% or less of the total area of magnet adhesion, as in the first embodiment.

この実施の形態2においては、磁石突起部5により、接着剤2の接着剤層21で一定の接着剤2の厚みを確保することができるため、最適な接着厚さの面積を増やすことができ、着磁済み磁石の接着においても一定の接着厚さを確保でき、安定した接着強度が得られ、接着信頼性を向上させることができる。また、実施の形態1と同様に、突起底面部23とシャフト3の間を点近接とすることで異物の噛み込みを抑制し、異物と磁石1もしくはシャフト3の近接部が干渉して磁石1の位置精度に影響を与えるといった可能性を抑制する。また、磁石両端部での接着面への空気の噛み込みを抑制することで、嫌気性接着剤使用時の接着剤の硬化不良の発生や実効接着面積の減少による接着の信頼性低下を防止することができる。 In the second embodiment, since the magnet protrusion 5 can ensure a certain thickness of the adhesive 2 with the adhesive layer 21 of the adhesive 2, the area of the optimum adhesive thickness can be increased. In the bonding of magnetized magnets, a certain bonding thickness can be secured, a stable bonding strength can be obtained, and the bonding reliability can be improved. Similarly to the first embodiment, the point between the projection bottom surface portion 23 and the shaft 3 is made close to the point, so that the foreign matter is prevented from being caught, and the foreign matter and the magnet 1 or the adjacent portion of the shaft 3 interfere with each other. The possibility of affecting the position accuracy of is suppressed. In addition, by suppressing the air from entering the bonding surface at both ends of the magnet, it prevents the adhesive from being hardened when anaerobic adhesive is used and the reliability of the adhesive from being lowered due to the reduction in effective bonding area. be able to.

さらに、実施の形態1のような断面が複雑な湾曲構造を持つ磁石でなくとも、この実施の形態2の磁石突起部5を付与することで、例えば、断面が長尺の矩形形状の磁石においても同等の接着硬化が得られる。 Furthermore, even if the magnet is not a magnet having a curved structure with a complicated cross section as in the first embodiment, by providing the magnet protrusion 5 of the second embodiment, for example, in a rectangular magnet having a long cross section, The same adhesive cure can be obtained.

このように、この実施の形態2における回転型の永久磁石モータを採用することで、従来の回転型の永久磁石モータの課題を解決することができ、回転型の永久磁石モータの性能信頼性が大幅に向上する。 As described above, by employing the rotary permanent magnet motor according to the second embodiment, the problems of the conventional rotary permanent magnet motor can be solved, and the performance reliability of the rotary permanent magnet motor can be improved. Greatly improved.

実施の形態3.
図5は、この発明を実施するための実施の形態3における回転型の永久磁石モータの磁石接着構造図である。図5に示すように、磁石1にシャフト3の動径方向に沿うように多角形状加工を施し、この多角形状加工を施した磁石1の4箇所の角部に実施の形態2のような磁石突起部5を持たせている。多角形状加工を施した磁石1に磁石突起部5を持たせる場合は、それに用いる材料は磁石材料や金属材料である。この実施の形態3は、磁石1に設けられた磁石突起部5がシャフト3との点近接部となり、接着剤2を磁石1もしくはシャフト3に塗布した後に、磁石1とシャフト3を貼り合わせ、接着剤2を硬化させることで得られる磁石接着構造である。
Embodiment 3 FIG.
FIG. 5 is a magnet adhesion structure diagram of a rotary permanent magnet motor according to Embodiment 3 for carrying out the present invention. As shown in FIG. 5, the magnet 1 is subjected to polygonal processing so as to follow the radial direction of the shaft 3, and the magnet as in the second embodiment is formed at four corners of the magnet 1 subjected to this polygonal processing. The protrusion 5 is provided. When the magnet 1 subjected to the polygonal processing is provided with the magnet protrusion 5, the material used for the magnet 1 is a magnet material or a metal material. In this third embodiment, the magnet protrusion 5 provided on the magnet 1 becomes a point proximity portion with the shaft 3, and after the adhesive 2 is applied to the magnet 1 or the shaft 3, the magnet 1 and the shaft 3 are bonded together. This is a magnet adhesion structure obtained by curing the adhesive 2.

実施の形態1と同様に、図5において、A−A’とB−B’とC−C’は、磁石1をシャフト3の動径方向に沿って切断したときの断面方向を表し、D−D’とE−E’とF−F’は、磁石1をシャフト3の軸方向に沿って切断したときの断面方向を表す。A−A’断面とC−C’断面は、磁石突起部5の断面が存在する断面となるため、シャフト3に磁石突起部5が近接している状態の断面となるが、B−B’断面は磁石1の中央部の断面となるため、磁石1の両端部とシャフト3の間には接着剤層21が存在する断面となる。同様に、D−D’断面とF−F’断面は、磁石突起部5の断面が存在する断面となるため、シャフト3に磁石突起部5が近接している状態の断面となるが、E−E’断面は磁石1の中央部の断面となるため、磁石1の両端部とシャフト3の間には接着剤層21が存在する断面となる。 As in the first embodiment, in FIG. 5, AA ′, BB ′, and CC ′ represent cross-sectional directions when the magnet 1 is cut along the radial direction of the shaft 3, and D −D ′, EE ′, and FF ′ represent cross-sectional directions when the magnet 1 is cut along the axial direction of the shaft 3. The AA ′ cross section and the CC ′ cross section are cross sections in which the cross section of the magnet projection 5 exists, and thus the cross section in a state where the magnet projection 5 is close to the shaft 3, but BB ′. Since the cross section is a cross section of the central portion of the magnet 1, the cross section is such that the adhesive layer 21 exists between both end portions of the magnet 1 and the shaft 3. Similarly, the DD ′ cross section and the FF ′ cross section are cross sections in which the cross section of the magnet projection portion 5 exists, and thus the cross section in a state where the magnet projection portion 5 is close to the shaft 3. The −E ′ cross section is a cross section of the center portion of the magnet 1, and therefore, a cross section in which the adhesive layer 21 exists between both end portions of the magnet 1 and the shaft 3.

この実施の形態3では、実施の形態1と同様に、磁石の位置決め精度の観点から、3箇所以上の磁石1の磁石突起部5は、突起底面部23とシャフト3の近接部が距離25μm以下、かつ、接着剤層21は接着強度の最適化の観点から50〜200μmの接着厚さとなることが望ましい。また、突起底面部23の1箇所あたりの面積は、実施の形態1と同様に、磁石接着総面積の10%以下とすることが望ましい。 In this third embodiment, as in the first embodiment, from the viewpoint of magnet positioning accuracy, the magnet protrusions 5 of the magnet 1 at three or more locations have a distance of 25 μm or less between the protrusion bottom surface portion 23 and the adjacent portion of the shaft 3. And it is desirable that the adhesive layer 21 has an adhesive thickness of 50 to 200 μm from the viewpoint of optimizing the adhesive strength. Further, it is desirable that the area per one portion of the protrusion bottom surface portion 23 is 10% or less of the total area of magnet adhesion, as in the first embodiment.

この実施の形態3においては、磁石接着面に多角形状加工を施すことで、磁石1の実効接着面積を増やし、着磁済み磁石の接着においても一定の接着厚さを確保し、安定した接着強度が得られ、接着強度を向上させることができる。実施の形態1や実施の形態2と同様に、突起底面部23とシャフト3の間を点近接とすることで異物の噛み込みを抑制し、異物と磁石1もしくはシャフト3の近接部が干渉して磁石1の位置精度に影響を与えるといった可能性を抑制する。また、磁石両端部での接着面への空気の噛み込みを抑制することで、嫌気性接着剤使用時の接着剤の硬化不良の発生や実効接着面積の減少による接着の信頼性低下を防止することができる。 In the third embodiment, the magnet bonding surface is subjected to polygonal processing to increase the effective bonding area of the magnet 1 and to secure a certain bonding thickness even in the bonding of the magnetized magnet, and stable bonding strength. Can be obtained and the adhesive strength can be improved. Similar to the first and second embodiments, the point between the projection bottom surface portion 23 and the shaft 3 is made close to the point, so that the entry of foreign matter is suppressed, and the foreign matter and the proximity portion of the magnet 1 or the shaft 3 interfere with each other. Thus, the possibility of affecting the position accuracy of the magnet 1 is suppressed. In addition, by suppressing the air from entering the bonding surface at both ends of the magnet, it prevents the adhesive from being hardened when anaerobic adhesive is used and the reliability of the adhesive from being lowered due to the reduction in effective bonding area. be able to.

このように、この実施の形態3における回転型の永久磁石モータを採用することで、従来の回転型の永久磁石モータの課題を解決することができ、回転型の永久磁石モータの性能信頼性が大幅に向上する。 Thus, by adopting the rotary permanent magnet motor according to the third embodiment, the problems of the conventional rotary permanent magnet motor can be solved, and the performance reliability of the rotary permanent magnet motor is improved. Greatly improved.

なお、実施の形態2や実施の形態3に示した磁石突起部5の材料は、磁石材料や金属材料であったが、樹脂材料であっても良い。この場合、樹脂材料の線膨張係数は、接着剤2と近いことが望ましく、接着剤2の材料と同一であっても良い。このように、磁石突起部5を接着剤2と同様な線膨張係数を持つ樹脂材料とすることで、耐熱衝撃性を向上させることができる。 In addition, although the material of the magnet projection part 5 shown in Embodiment 2 or Embodiment 3 was a magnet material or a metal material, it may be a resin material. In this case, the linear expansion coefficient of the resin material is desirably close to that of the adhesive 2 and may be the same as the material of the adhesive 2. Thus, the thermal shock resistance can be improved by using the magnet protrusion 5 as a resin material having the same linear expansion coefficient as that of the adhesive 2.

また、実施の形態1から実施の形態3では、回転型の永久磁石モータの磁石とシャフト(ロータ)を接着する場合について説明したが、この発明の永久磁石モータの磁石接着構造をリニア型の永久磁石モータの磁石と固定子(ステータ)を接着する場合に適用しても同様の効果が得られる。 In the first to third embodiments, the case where the magnet of the rotary permanent magnet motor and the shaft (rotor) are bonded has been described. However, the magnet bonding structure of the permanent magnet motor according to the present invention is a linear permanent magnet. The same effect can be obtained even when the magnet of the magnet motor and the stator (stator) are bonded.

1 磁石、2 接着剤、3 シャフト、5 磁石突起部、21 接着剤層、22 凸部、23 突起底面部。 1 magnet, 2 adhesive, 3 shaft, 5 magnet projection, 21 adhesive layer, 22 projection, 23 projection bottom.

Claims (18)

ロータ又はステータと、該ロータ又はステータに接着剤により磁石を接着固定した永久磁石モータであって、
前記磁石は前記ロータ又はステータとの接着面における隅部の少なくとも3箇所以上に凸部を備えた構造を有し、前記凸部は前記ロータ又はステータと点近接し、前記磁石は前記凸部と前記ロータ又はステータ側の前記磁石対向面と前記ロータ又はステータの表面に囲まれた隙間に形成された前記接着剤からなる接着剤層にて接着固定されたことを特徴とする永久磁石モータ。
A rotor or stator, and a permanent magnet motor in which a magnet is bonded and fixed to the rotor or stator by an adhesive,
The magnet has a structure including convex portions at at least three corners on the bonding surface with the rotor or stator, the convex portions are point-adjacent to the rotor or stator, and the magnet includes the convex portions. A permanent magnet motor characterized by being bonded and fixed by an adhesive layer made of the adhesive formed in a gap surrounded by the magnet facing surface on the rotor or stator side and the surface of the rotor or stator.
前記凸部は突起構造部で構成され、該突起構造部は前記ロータ又はステータの表面と少なくとも3箇所で点近接したことを特徴とする請求項1に記載の永久磁石モータ。 2. The permanent magnet motor according to claim 1, wherein the projecting portion is constituted by a projecting structure portion, and the projecting structure portion is close to the surface of the rotor or the stator at at least three points. ロータ又はステータと、該ロータ又はステータに接着剤により磁石を接着固定した永久磁石モータであって、
前記磁石は前記ロータ又はステータとの接着面における隅部の少なくとも3箇所以上に、樹脂材料から成る突起構造部を介して前記ロータ又はステータと点近接し、前記磁石は前記突起構造部と前記ロータ又はステータ側の前記磁石対向面と前記ロータ又はステータの表面に囲まれた隙間に形成された前記接着剤からなる接着剤層にて接着固定されたことを特徴とする永久磁石モータ。
A rotor or stator, and a permanent magnet motor in which a magnet is bonded and fixed to the rotor or stator by an adhesive,
The magnet is point-adjacent to the rotor or stator at least at three or more corners on the bonding surface with the rotor or stator via a protrusion structure portion made of a resin material, and the magnet is adjacent to the protrusion structure portion and the rotor. Alternatively, the permanent magnet motor is fixed by an adhesive layer made of the adhesive formed in a gap surrounded by the magnet facing surface on the stator side and the surface of the rotor or stator.
前記磁石断面における前記ロータ又はステータ側の形状は、前記ロータ又はステータの動径方向の曲率よりも大きい曲率を有する中央部が凹状の球形状であることを特徴とする請求項1乃至請求項3のいずれかに記載の永久磁石モータ。 The shape on the rotor or stator side in the magnet cross section is a spherical shape in which a central portion having a curvature larger than the curvature in the radial direction of the rotor or stator is concave. The permanent magnet motor according to any one of the above. 前記磁石断面における前記ロータ又はステータ側の形状は、前記ロータ又はステータの動径方向と動径方向と直交する軸方向の2方向に対して、前記ロータ又はステータの動径方向の曲率よりも大きい曲率を有する中央部が凹状の曲面形状であることを特徴とする請求項1乃至請求項3のいずれかに記載の永久磁石モータ。 The shape on the rotor or stator side in the magnet cross section is larger than the curvature in the radial direction of the rotor or stator with respect to two directions of the radial direction of the rotor or stator and the axial direction orthogonal to the radial direction. The permanent magnet motor according to any one of claims 1 to 3, wherein a central portion having a curvature is a concave curved surface. 前記磁石断面における前記ロータ又はステータ側の形状は、前記ロータ又はステータの動径方向に沿った中央部が凹状の多角形状であることを特徴とする請求項1乃至請求項3のいずれかに記載の永久磁石モータ。 The shape of the rotor or stator side in the magnet cross section is a polygonal shape having a concave central portion along the radial direction of the rotor or stator. Permanent magnet motor. 被着部材との接着面における隅部の少なくとも3箇所以上に前記被着部材と点近接する凸部を備えた磁石であって、前記凸部と前記被着部材側の前記磁石対向面と前記被着部材の表面に囲まれた隙間に形成された接着剤からなる接着剤層にて接着可能であることを特徴とする磁石。 A magnet provided with a convex portion that is close to the adherend member at at least three corners on the adhesion surface with the adherend member, the convex portion and the magnet facing surface on the adherend member side and the magnet A magnet capable of being bonded by an adhesive layer made of an adhesive formed in a gap surrounded by a surface of an adherend. 前記凸部は突起構造部で構成され、該突起構造部は前記被着部材の表面と少なくとも3箇所で点近接したことを特徴とする請求項7に記載の磁石。 The magnet according to claim 7, wherein the projecting portion is constituted by a projecting structure portion, and the projecting structure portion is close to the surface of the adherend member at at least three points. 被着部材との接着面における隅部の少なくとも3箇所以上に前記被着部材と点近接する樹脂材料から成る突起構造部を備えた磁石であって、前記突起構造部と前記被着部材側の前記磁石対向面と前記被着部材の表面に囲まれた隙間に形成された接着剤からなる接着剤層にて接着可能であることを特徴とする磁石。 A magnet provided with a protruding structure portion made of a resin material that is in close proximity to the adhered member at at least three corners on the adhesion surface with the adhered member, the magnet being provided on the protruding structure side and the adhered member side. A magnet capable of being bonded by an adhesive layer made of an adhesive formed in a gap surrounded by the magnet facing surface and the surface of the adherend member. 前記磁石断面における前記被着部材側の形状は、前記被着部材の動径方向の曲率よりも大きい曲率を有する中央部が凹状の球形状であることを特徴とする請求項7乃至請求項9のいずれかに記載の磁石。 The shape on the side of the adherent member in the magnet cross section is a spherical shape in which a central portion having a curvature larger than a curvature in a radial direction of the adherent member is a concave spherical shape. The magnet in any one of. 前記磁石断面における前記被着部材側の形状は、前記被着部材の動径方向と動径方向と直交する軸方向の2方向に対して、前記被着部材の動径方向の曲率よりも大きい曲率を有する中央部が凹状の曲面形状であることを特徴とする請求項7乃至請求項9のいずれかに記載の磁石。 The shape on the adherend member side in the magnet cross section is larger than the curvature in the radial direction of the adherend member with respect to two directions of the radial direction of the adherend member and the axial direction orthogonal to the radial direction. The magnet according to any one of claims 7 to 9, wherein a central portion having a curvature has a concave curved surface shape. 前記磁石断面における前記被着部材側の形状は、前記被着部材の動径方向に沿った中央部が凹状の多角形状であることを特徴とする請求項7乃至請求項9のいずれかに記載の磁石。 The shape on the adherend member side in the magnet cross section is a polygonal shape having a concave central portion along the radial direction of the adherend member. Magnet. 被着部材に接着剤により磁石を接着固定した磁石接着構造であって、
前記磁石は前記被着部材との接着面における隅部の少なくとも3箇所以上に凸部を備えた構造を有し、前記凸部は前記被着部材と点近接し、前記磁石は前記凸部と前記被着部材側の前記磁石対向面と前記被着部材の表面に囲まれた隙間に形成された前記接着剤からなる接着剤層にて接着固定されたことを特徴とする磁石接着構造。
A magnet adhesion structure in which a magnet is adhered and fixed to an adherent member with an adhesive,
The magnet has a structure provided with convex portions at at least three corners on the adhesion surface with the adherend member, the convex portions are in point proximity to the adherend member, and the magnet includes the convex portions. A magnet adhesion structure characterized by being bonded and fixed by an adhesive layer made of the adhesive formed in a gap surrounded by the magnet facing surface on the adherend member side and the surface of the adherend member.
前記凸部は突起構造部で構成され、該突起構造部は前記被着部材の表面と少なくとも3箇所で点近接したことを特徴とする請求項13に記載の磁石接着構造。 The magnet adhesion structure according to claim 13, wherein the convex portion is constituted by a projecting structure portion, and the projecting structure portion is close to the surface of the adherend member at at least three points. 被着部材に接着剤により磁石を接着固定した磁石接着構造であって、
前記磁石は前記被着部材との接着面における隅部の少なくとも3箇所以上に、樹脂材料から成る突起構造部を介して前記被着部材と点近接し、前記磁石は前記突起構造部と前記被着部材側の前記磁石対向面と前記被着部材の表面に囲まれた隙間に形成された前記接着剤からなる接着剤層にて接着固定されたことを特徴とする磁石接着構造。
A magnet adhesion structure in which a magnet is adhered and fixed to an adherent member with an adhesive,
The magnet is point-adjacent to the adherend member at least at three or more corners on the bonding surface with the adherend member via a protrusion structure portion made of a resin material, and the magnet is connected to the protrusion structure portion and the adherend member. A magnet adhesion structure characterized by being bonded and fixed by an adhesive layer made of the adhesive formed in a gap surrounded by the magnet facing surface on the attachment member side and the surface of the adherend member.
前記磁石断面における前記被着部材側の形状は、前記被着部材の動径方向の曲率よりも大きい曲率を有する中央部が凹状の球形状であることを特徴とする請求項13乃至請求項15のいずれかに記載の磁石接着構造。 The shape on the side of the adherent member in the magnet cross section is a spherical shape with a concave central portion having a curvature larger than the curvature of the adherend member in the radial direction. The magnet adhesion structure in any one of. 前記磁石断面における前記被着部材側の形状は、前記被着部材の動径方向と動径方向と直交する軸方向の2方向に対して、前記被着部材の動径方向の曲率よりも大きい曲率を有する中央部が凹状の曲面形状であることを特徴とする請求項13乃至請求項15のいずれかに記載の磁石接着構造。 The shape on the adherend member side in the magnet cross section is larger than the curvature in the radial direction of the adherend member with respect to two directions of the radial direction of the adherend member and the axial direction orthogonal to the radial direction. The magnet bonding structure according to any one of claims 13 to 15, wherein a central portion having a curvature is a concave curved surface shape. 前記磁石断面における前記被着部材側の形状は、前記被着部材の動径方向に沿った中央部が凹状の多角形状であることを特徴とする請求項13乃至請求項15のいずれかに記載の磁石接着構造。 The shape on the side of the adherend member in the magnet cross section is a polygonal shape having a concave central portion along the radial direction of the adherend member. Magnet adhesion structure.
JP2010269283A 2010-12-02 2010-12-02 Permanent magnet motor, magnet for the same, and structure for bonding magnet for the same Pending JP2012120366A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010269283A JP2012120366A (en) 2010-12-02 2010-12-02 Permanent magnet motor, magnet for the same, and structure for bonding magnet for the same
CN2011103374934A CN102487223A (en) 2010-12-02 2011-10-28 Permanent magnet motor, magnet body, and magnet body bonding structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010269283A JP2012120366A (en) 2010-12-02 2010-12-02 Permanent magnet motor, magnet for the same, and structure for bonding magnet for the same

Publications (1)

Publication Number Publication Date
JP2012120366A true JP2012120366A (en) 2012-06-21

Family

ID=46152686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010269283A Pending JP2012120366A (en) 2010-12-02 2010-12-02 Permanent magnet motor, magnet for the same, and structure for bonding magnet for the same

Country Status (2)

Country Link
JP (1) JP2012120366A (en)
CN (1) CN102487223A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107425628A (en) * 2016-05-26 2017-12-01 包头金山磁材有限公司 A kind of magneto magnet and production method for reducing eddy-current heating

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112564436A (en) * 2020-11-26 2021-03-26 浙江英洛华磁业有限公司 Method of manufacturing a rotor assembly
CN119340060A (en) * 2024-12-20 2025-01-21 包头市英思特稀磁新材料股份有限公司 A structure and method for controlling the thickness of the adhesive layer of a Halbach magnetic component

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137602A (en) * 1989-10-23 1991-06-12 Matsushita Electron Corp Color filter for solid-state image pickup element
JP2004187411A (en) * 2002-12-03 2004-07-02 Toyoda Mach Works Ltd Bonded structure
JP2007037322A (en) * 2005-07-28 2007-02-08 Oriental Motor Co Ltd Permanent-magnet rotor
JP2007104819A (en) * 2005-10-05 2007-04-19 Nissan Motor Co Ltd Rotating electric machine
JP2008181908A (en) * 2007-01-23 2008-08-07 Rohm Co Ltd Semiconductor device and lead frame therefor
JP2008236895A (en) * 2007-03-20 2008-10-02 Matsushita Electric Ind Co Ltd Surface magnet type rotor and manufacturing method thereof
JP2010259231A (en) * 2009-04-24 2010-11-11 Nissan Motor Co Ltd Permanent magnet for field pole, method for manufacturing the same, and permanent magnet type rotating electrical machine provided with permanent magnet for field pole

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137602A (en) * 1989-10-23 1991-06-12 Matsushita Electron Corp Color filter for solid-state image pickup element
JP2004187411A (en) * 2002-12-03 2004-07-02 Toyoda Mach Works Ltd Bonded structure
JP2007037322A (en) * 2005-07-28 2007-02-08 Oriental Motor Co Ltd Permanent-magnet rotor
JP2007104819A (en) * 2005-10-05 2007-04-19 Nissan Motor Co Ltd Rotating electric machine
JP2008181908A (en) * 2007-01-23 2008-08-07 Rohm Co Ltd Semiconductor device and lead frame therefor
JP2008236895A (en) * 2007-03-20 2008-10-02 Matsushita Electric Ind Co Ltd Surface magnet type rotor and manufacturing method thereof
JP2010259231A (en) * 2009-04-24 2010-11-11 Nissan Motor Co Ltd Permanent magnet for field pole, method for manufacturing the same, and permanent magnet type rotating electrical machine provided with permanent magnet for field pole

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107425628A (en) * 2016-05-26 2017-12-01 包头金山磁材有限公司 A kind of magneto magnet and production method for reducing eddy-current heating

Also Published As

Publication number Publication date
CN102487223A (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP5428218B2 (en) Rotor structure of permanent magnet type rotating electrical machine
CN101473511B (en) Stator and motor
CN104106199B (en) Electric rotating machine
US10855123B2 (en) Rotating electrical machine and producing method of rotating electrical machine
CN105027391A (en) Permanent magnet embedded type electric motor and manufacturing method thereof
JP4793677B2 (en) Permanent magnet motor
JP5716377B2 (en) Rotating electric machine
WO2014119066A1 (en) Resolver stator and resolver
JP2012120366A (en) Permanent magnet motor, magnet for the same, and structure for bonding magnet for the same
JP5281133B2 (en) Permanent magnet rotor
JP2007060889A (en) Permanent magnet type motor
JP5872108B2 (en) Mover and linear motor
CN107542684A (en) Ceiling fan
JP5893947B2 (en) Brushless motor and blower
JP2014197948A (en) Permanent magnet motor
KR101243491B1 (en) Rotor for Motor
JP5659770B2 (en) Rotating electric machine core and method of manufacturing rotating electric machine core
JP6416417B2 (en) Rotating electric machine stator, rotating electric machine, and method of manufacturing rotating electric machine stator
JP2006288200A (en) Method for manufacturing permanent magnet rotor and motor
US12034335B2 (en) Stator and motor
CN107294238A (en) Axial induction motor, fan and rotor thereof
JP2010011626A (en) Rotor for electric motor
JP6265879B2 (en) Damper and stepping motor using the same
JP2013031242A (en) Rotor of axial gap motor, and manufacturing method of the same
EP1601227A2 (en) Loudspeaker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130319