JP2012108252A - Liquid crystal display element and manufacturing method for the same - Google Patents
Liquid crystal display element and manufacturing method for the same Download PDFInfo
- Publication number
- JP2012108252A JP2012108252A JP2010255945A JP2010255945A JP2012108252A JP 2012108252 A JP2012108252 A JP 2012108252A JP 2010255945 A JP2010255945 A JP 2010255945A JP 2010255945 A JP2010255945 A JP 2010255945A JP 2012108252 A JP2012108252 A JP 2012108252A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- substrate
- display element
- crystal display
- alignment film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133707—Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/13378—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
- G02F1/133784—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by rubbing
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
- G02F1/139—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
- G02F1/141—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1334—Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133773—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers the alignment material or treatment being different for the two opposite substrates
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Physics (AREA)
- Liquid Crystal (AREA)
Abstract
【課題】高コントラストの高分子強誘電性液晶を用いた液晶表示素子及びその製造方法を得る。
【解決手段】互いに対向する第1基板および第2基板と、前記第1基板および第2基板の各対向面にそれぞれ形成され、ラビング法によって配向処理された第1配向膜および第2配向膜と、前記第1配向膜が形成された前記第1基板と前記第2配向膜が形成された前記第2基板との間に、高分子強誘電性液晶を含む液晶材料が封入されて形成された液晶層とを備え、第1基板と第2基板のラビング方向は平行でない。第1基板と第2基板に対し、それぞれのラビング軸は液晶の捩れの逆方向に持たせ、線対称である。
【選択図】図1A liquid crystal display element using a high-contrast polymer ferroelectric liquid crystal and a method for manufacturing the same are obtained.
A first substrate and a second substrate facing each other, and a first alignment film and a second alignment film formed on each facing surface of the first substrate and the second substrate, respectively, and subjected to an alignment treatment by a rubbing method, The liquid crystal material including a polymer ferroelectric liquid crystal is sealed between the first substrate on which the first alignment film is formed and the second substrate on which the second alignment film is formed. And a rubbing direction of the first substrate and the second substrate is not parallel. With respect to the first substrate and the second substrate, the respective rubbing axes are provided in opposite directions of the twist of the liquid crystal and are line symmetric.
[Selection] Figure 1
Description
この発明は、液晶材料として高分子強誘電性液晶を用いた液晶表示素子およびその製造方法に関する。 The present invention relates to a liquid crystal display element using a polymer ferroelectric liquid crystal as a liquid crystal material and a method for manufacturing the same.
近年、軽量、薄型および低消費電力の映像表示素子として、液晶表示素子が実用化され、広く普及している。実用化された一般的な液晶表示素子の殆ど全ては、ネマティック液晶を用いた液晶表示素子と言っても過言ではない。 In recent years, liquid crystal display elements have been put into practical use and widely used as light-weight, thin, and low-power-consumption video display elements. It is no exaggeration to say that almost all general liquid crystal display elements in practical use are liquid crystal display elements using nematic liquid crystals.
ネマティック液晶を用いた液晶表示素子は、互いに対向する2枚の基板と、それぞれの基板の対向する面に形成された透明電極と、それぞれの基板の透明電極上に形成され、ラビング法によって配向処理された配向膜と、基板間に注入されたネマティック液晶からなる液晶層とを有している。 A liquid crystal display element using nematic liquid crystal is formed on two substrates facing each other, transparent electrodes formed on opposite surfaces of the respective substrates, and transparent electrodes on the respective substrates. And a liquid crystal layer made of nematic liquid crystal injected between the substrates.
TN(Twisted Nematic)、ECB(Electrically Controlled Birefringence)、STN(Super Twisted Nematic)、IPS(In−Plane Switching)およびVA(Virtical Alignment)等、ネマティック液晶を用いた多数のLCDモードが現在実用化されているが、ネマティック液晶を用いた液晶表示素子は、連続階調表示は可能であるものの、原理的に双安定性(メモリ性)を有しない。 TN (Twisted Nematic), ECB (Electrically Controlled Birefringence), STN (Super Twisted Nematic), IPS (In-Plane Switching) and VA (Virtual Alignment LCD) However, a liquid crystal display element using a nematic liquid crystal can perform continuous tone display, but does not have bistability (memory property) in principle.
また、ネマティック液晶を用いた液晶表示素子は、配向均一性が高く、そのため高いコントラストを実現することができる。また、ネマティック液晶を配向させるのに、ラビング法によって配向処理された配向膜を用いること、すなわちラビング法を適用することができる。一方、ネマティック液晶を用いた液晶表示素子は、家庭用テレビ等に適用可能(動画応答可能)な応答速度を実現することはできるものの、ネマティック液晶の原理から考えて、1msを切るような高速応答化への対応は容易なことではない。 In addition, a liquid crystal display element using a nematic liquid crystal has high alignment uniformity, so that high contrast can be realized. In order to align the nematic liquid crystal, an alignment film that has been subjected to an alignment treatment by a rubbing method, that is, a rubbing method can be applied. On the other hand, a liquid crystal display element using nematic liquid crystal can realize a response speed applicable to a home television (moving video response), but considering the principle of nematic liquid crystal, it has a high response speed of less than 1 ms. It is not easy to respond to the change.
そこで、液晶表示素子の応答速度を向上させるために、ネマティック液晶の代わりに低分子強誘電性液晶を用いた表面安定化(SS−FLC:Surface Stabilized−Ferroelectric Liquid Crystal)モードの液晶表示素子が提案されている。低分子強誘電性液晶を用いたSS−FLCモードの液晶表示素子は、液晶層のネマティック液晶が、低分子強誘電性液晶に置き換えられた構造を有している。 Accordingly, in order to improve the response speed of the liquid crystal display element, a surface stabilized liquid crystal display (SS-FLC) mode liquid crystal display element using a low molecular ferroelectric liquid crystal instead of a nematic liquid crystal is proposed. Has been. An SS-FLC mode liquid crystal display element using a low molecular ferroelectric liquid crystal has a structure in which the nematic liquid crystal in the liquid crystal layer is replaced with a low molecular ferroelectric liquid crystal.
低分子強誘電性液晶を用いたSS−FLCモードの液晶表示素子は、ネマティック液晶を用いた液晶表示素子と比べて応答速度を向上させることはできるものの、原理的に双安定性を有するので、単純に連続階調表示を行うことはできない。低分子強誘電性液晶を用いたSS−FLCモードの液晶表示素子において連続階調表示を行うには、面積階調、ドメイン階調、フレーム階調等の技術を適用する必要があり(例えば、特許文献1参照)、構造が複雑になったり、コストが高くなったりするという問題が生じる。 The SS-FLC mode liquid crystal display element using low-molecular ferroelectric liquid crystal can improve the response speed compared with the liquid crystal display element using nematic liquid crystal, but has bistability in principle. It is not possible to simply perform continuous tone display. In order to perform continuous gradation display in an SS-FLC mode liquid crystal display element using low molecular ferroelectric liquid crystal, it is necessary to apply techniques such as area gradation, domain gradation, and frame gradation (for example, There is a problem that the structure becomes complicated and the cost becomes high.
また、低分子強誘電性液晶を用いたSS−FLCモードの液晶表示素子は、低分子強誘電性液晶が層構造をとるので、ネマティック液晶を用いた液晶表示素子と比べて配向安定性が低下する。また、均一な配向を得ることが難しく、ネマティック液晶を用いた液晶表示素子に比べ、コントラストが低下する。なお、低分子強誘電性液晶を配向させるのに、ラビング法によって配向処理された配向膜を用いること、すなわちラビング法を適用することができる。 In addition, the SS-FLC mode liquid crystal display element using low molecular ferroelectric liquid crystal has a lower layer stability than the liquid crystal display element using nematic liquid crystal because the low molecular ferroelectric liquid crystal has a layer structure. To do. In addition, it is difficult to obtain uniform alignment, and the contrast is lowered as compared with a liquid crystal display element using nematic liquid crystal. In order to align the low-molecular ferroelectric liquid crystal, an alignment film that has been subjected to an alignment treatment by a rubbing method, that is, a rubbing method can be applied.
また、低分子強誘電性液晶を用いたSS−FLCモードの液晶表示素子の双安定性を犠牲にして、連続階調表示を行うH−V(Half−V)モード、Vモードの液晶表示素子が提案されている(例えば、特許文献2参照)。この低分子強誘電性液晶を用いたH−Vモード、Vモードの液晶表示素子は、ネマティック液晶を用いた液晶表示素子の高速応答版を目指したものである。 Also, an HV (Half-V) mode or V mode liquid crystal display element that performs continuous tone display at the expense of bistability of an SS-FLC mode liquid crystal display element using a low-molecular ferroelectric liquid crystal. Has been proposed (see, for example, Patent Document 2). The HV mode and V mode liquid crystal display elements using the low-molecular ferroelectric liquid crystal aim at a high-speed response version of the liquid crystal display element using the nematic liquid crystal.
低分子強誘電性液晶を用いたH−Vモード、Vモードの液晶表示素子は、ネマティック液晶を用いた液晶表示素子と比べて応答速度を向上させることができる。また、低分子強誘電性液晶を用いたH−Vモード、Vモードの液晶表示素子は、双安定性を犠牲にして連続階調表示を行う。 The HV mode and V mode liquid crystal display elements using low-molecular ferroelectric liquid crystal can improve the response speed as compared with the liquid crystal display elements using nematic liquid crystal. In addition, HV mode and V mode liquid crystal display elements using low-molecular ferroelectric liquid crystal perform continuous tone display at the expense of bistability.
また、低分子強誘電性液晶を用いたH−Vモード、Vモードの液晶表示素子は、低分子強誘電性液晶が層構造をとるので、ネマティック液晶を用いた液晶表示素子と比べて配向安定性が低下する。また、均一な配向を得ることが難しく、ネマティック液晶を用いた液晶表示素子に比べ、コントラストが低下する。なお、低分子強誘電性液晶を配向させるのに、ラビング法によって配向処理された配向膜を用いること、すなわちラビング法を適用することができる。 In addition, the HV mode and V mode liquid crystal display elements using low molecular ferroelectric liquid crystal have a layered structure of the low molecular ferroelectric liquid crystal, so that the alignment stability is stable compared to the liquid crystal display element using nematic liquid crystal. Sex is reduced. In addition, it is difficult to obtain uniform alignment, and the contrast is lowered as compared with a liquid crystal display element using nematic liquid crystal. In order to align the low-molecular ferroelectric liquid crystal, an alignment film that has been subjected to an alignment treatment by a rubbing method, that is, a rubbing method can be applied.
また、低分子強誘電性液晶を用いたSS−FLCモードの液晶表示素子において、配向安定性を向上させるために、高分子強誘電性液晶を用いたSS−FLCモードの液晶表示素子が提案されている(例えば、特許文献3〜7参照)。 In order to improve the alignment stability of SS-FLC mode liquid crystal display elements using low-molecular ferroelectric liquid crystals, SS-FLC mode liquid crystal display elements using polymer ferroelectric liquid crystals have been proposed. (For example, see Patent Documents 3 to 7).
高分子強誘電性液晶を用いたSS−FLCモードの液晶表示素子は、互いに対向する2枚の基板と、それぞれの基板の対向する面に形成された透明電極と、基板間に注入された高分子強誘電性液晶により形成された液晶層とを有している。ここで、液晶層は、基板間に電圧を印加しつつ、基板にせん断応力をかけて高分子強誘電性液晶を配向させるせん断法(ズリ法)によって配向処理されている。 An SS-FLC mode liquid crystal display element using a polymer ferroelectric liquid crystal is composed of two substrates facing each other, transparent electrodes formed on opposing surfaces of each substrate, and a high-potential injected between the substrates. A liquid crystal layer formed of molecular ferroelectric liquid crystal. Here, the liquid crystal layer is subjected to an alignment treatment by a shearing method (displacement method) in which a polymer ferroelectric liquid crystal is aligned by applying a shear stress to the substrate while applying a voltage between the substrates.
高分子強誘電性液晶を用いたSS−FLCモードの液晶表示素子は、ネマティック液晶を用いた液晶表示素子と同等の応答速度を実現できるものの、分子量が大きく、粘度が高いので、低分子強誘電性液晶を用いた液晶表示素子よりも応答速度は遅くなる。また、高分子強誘電性液晶を用いたSS−FLCモードの液晶表示素子は、原理的に双安定性を有するので、単純に連続階調表示を行うことはできず、連続階調表示を行うには、上述した面積階調、ドメイン階調、フレーム階調等の技術を適用する必要がある。この場合には、構造が複雑になったり、コストが高くなったりするという問題がある。 The SS-FLC mode liquid crystal display element using polymer ferroelectric liquid crystal can achieve the same response speed as the liquid crystal display element using nematic liquid crystal, but has a large molecular weight and high viscosity. The response speed is slower than that of a liquid crystal display element using a conductive liquid crystal. In addition, an SS-FLC mode liquid crystal display element using a polymer ferroelectric liquid crystal has bistability in principle, and therefore cannot simply perform continuous gradation display, but performs continuous gradation display. It is necessary to apply the above-described techniques such as area gradation, domain gradation, and frame gradation. In this case, there is a problem that the structure becomes complicated and the cost becomes high.
また、高分子強誘電性液晶を用いたSS−FLCモードの液晶表示素子は、高分子強誘電性液晶が層構造をとるので、ネマティック液晶を用いた液晶表示素子と比べて配向安定性は低いが、分子量が大きいので、低分子強誘電性液晶を用いた液晶表示素子よりも配向安定性は高くなる。また、高分子強誘電性液晶が層構造をとり、均一な配向を得ることが困難なので、ネマティック液晶を用いた液晶表示素子ほどのコントラストを得ることはできない。また、分子量が大きいので、ラビング法で均一配向を得ることが難しく、工程が複雑なせん断法(ズリ法)によって配向処理されている。 In addition, the SS-FLC mode liquid crystal display element using the polymer ferroelectric liquid crystal has a lower alignment stability than the liquid crystal display element using the nematic liquid crystal because the polymer ferroelectric liquid crystal has a layer structure. However, since the molecular weight is large, the alignment stability is higher than that of a liquid crystal display device using a low molecular ferroelectric liquid crystal. Further, since the polymer ferroelectric liquid crystal has a layer structure and it is difficult to obtain uniform alignment, it is not possible to obtain contrast as high as that of a liquid crystal display element using nematic liquid crystal. In addition, since the molecular weight is large, it is difficult to obtain uniform alignment by the rubbing method, and the alignment treatment is performed by a shearing method (slip method) having a complicated process.
なお、上述した従来のネマティック液晶を用いた液晶表示素子、低分子強誘電性液晶を用いた液晶表示素子(SS−FLCモード、H−Vモード、Vモード)および高分子強誘電性液晶を用いた液晶表示素子(SS−FLC(せん断法))の何れも、連続階調表示を行いつつ、電圧がオフになった場合に、その階調状態を保持(メモリ)する連続階調メモリ性は有していない。 In addition, the above-described conventional liquid crystal display element using nematic liquid crystal, liquid crystal display element using low molecular ferroelectric liquid crystal (SS-FLC mode, HV mode, V mode), and polymer ferroelectric liquid crystal are used. Any of the liquid crystal display elements (SS-FLC (shearing method)) has a continuous gradation memory property that maintains (memory) the gradation state when the voltage is turned off while performing continuous gradation display. I don't have it.
連続階調表示が可能な液晶表示素子(例えば、ネマティック液晶、H-Vモード、Vモード)における配向角度(電圧印加によって配向角度が変化する)とポテンシャルとの関係(ポテンシャルカーブ)は、配向膜へのラビング法による配向処理の影響を強く受け決定される。 The relationship (potential curve) between the orientation angle (the orientation angle changes with voltage application) and the potential in a liquid crystal display element capable of continuous tone display (for example, nematic liquid crystal, HV mode, V mode) It is strongly influenced by the orientation treatment by the rubbing method.
また、双安定性を有する低分子強誘電性液晶または高分子強誘電性液晶を用いたSS−FLCモードの液晶表示素子では、電圧の印加によって、液晶分子が双安定位置に移動する。低分子強誘電性液晶または高分子強誘電性液晶を用いたSS−FLCモードにおける配向角度とポテンシャルとの関係から、従来の液晶表示素子の原理では、中間階調で階調状態をメモリすることはできない。 In an SS-FLC mode liquid crystal display element using a low-molecular ferroelectric liquid crystal or a polymer ferroelectric liquid crystal having bistability, liquid crystal molecules move to a bistable position when a voltage is applied. Based on the relationship between the orientation angle and the potential in SS-FLC mode using low-molecular ferroelectric liquid crystal or polymer ferroelectric liquid crystal, the principle of conventional liquid crystal display elements is to memorize the gradation state with intermediate gradation. I can't.
そのため、従来の液晶表示素子では、連続階調表示を行いつつ、電圧がオフになった場合に、その階調状態を保持(メモリ)する連続階調メモリ性を実現することができないという問題があった。そこで、ドメイン階調を適用して連続階調メモリ性を実現することが提案されている(例えば、非特許文献1参照)。 For this reason, the conventional liquid crystal display element has a problem that, when the voltage is turned off while performing continuous gradation display, the continuous gradation memory property that retains (memory) the gradation state cannot be realized. there were. Therefore, it has been proposed to realize continuous tone memory performance by applying domain tones (see, for example, Non-Patent Document 1).
このような点に鑑み、この発明の出願人は、一般的に普及しているネマティック液晶を用いた液晶表示素子と同等の表示特性を有しながらも、連続階調表示が可能で、かつ連続階調メモリ性を実現することができる液晶表示素子を既に提案している。これは、互いに対向する両基板間に封入される液晶材料として、高分子強誘電性液晶を含むものである。 In view of such a point, the applicant of the present invention is capable of continuous gradation display while having display characteristics equivalent to those of a liquid crystal display element using a nematic liquid crystal that has been widely used, and is capable of continuous display. A liquid crystal display element capable of realizing gradation memory properties has already been proposed. This includes a polymer ferroelectric liquid crystal as a liquid crystal material sealed between both opposing substrates.
しかしながら、互いに対向する両基板間に封入される液晶材料として、高分子強誘電性液晶を含んで構成される強誘電性液晶では、TN方式やIPS方式の液晶パネルに比べて液晶分子のコントラストが劣る。 However, a ferroelectric liquid crystal composed of a polymer ferroelectric liquid crystal as a liquid crystal material sealed between both opposing substrates has a contrast of liquid crystal molecules as compared with a TN or IPS liquid crystal panel. Inferior.
また、強誘電性液晶は層構造を取るため液晶分子の向きを一方向に揃えるのが難しく、均一配向が得にくい。その為、黒表示時の漏れ光が多く、コントラストの向上が難しい。 Further, since the ferroelectric liquid crystal has a layer structure, it is difficult to align the liquid crystal molecules in one direction, and it is difficult to obtain uniform alignment. For this reason, there is much light leakage during black display, and it is difficult to improve contrast.
この発明は、上記のような課題を解決するためになされたものであり高コントラストの高分子強誘電性液晶を用いた液晶表示素子およびその製造方法を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a liquid crystal display element using a high-contrast polymer ferroelectric liquid crystal and a method for manufacturing the same.
この発明に係る液晶表示素子は、互いに対向する第1基板および第2基板と、前記第1基板および第2基板の各対向面にそれぞれ形成され、ラビング法によって配向処理された第1配向膜および第2配向膜と、前記第1配向膜が形成された前記第1基板と前記第2配向膜が形成された前記第2基板との間に、高分子強誘電性液晶を含む液晶材料が封入されて形成された液晶層とを備え、前記第1基板と前記第2基板のラビング方向は平行でないことを特徴とする。 The liquid crystal display element according to the present invention includes a first substrate and a second substrate facing each other, a first alignment film formed on each of the opposing surfaces of the first substrate and the second substrate, and subjected to an alignment treatment by a rubbing method, A liquid crystal material containing a polymer ferroelectric liquid crystal is enclosed between a second alignment film, the first substrate on which the first alignment film is formed, and the second substrate on which the second alignment film is formed. The rubbing directions of the first substrate and the second substrate are not parallel to each other.
また、この発明に係る液晶表示素子の製造方法は、互いに対向する第1基板および第2基板の各対向面に、ラビング法によって配向処理された第1配向膜および第2配向膜をそれぞれ形成する配向膜形成ステップと、前記第1配向膜が形成された前記第1基板と前記第2配向膜が形成された前記第2基板との間に、高分子強誘電性液晶を含む液晶材料を封入して液晶層を形成する液晶層形成ステップとを備え、前記第1基板と前記第2基板のラビング方向は平行でないことを特徴とする。 In the method for manufacturing a liquid crystal display element according to the present invention, the first alignment film and the second alignment film that are aligned by the rubbing method are respectively formed on the opposing surfaces of the first substrate and the second substrate facing each other. A liquid crystal material containing a polymer ferroelectric liquid crystal is sealed between the alignment film forming step and the first substrate on which the first alignment film is formed and the second substrate on which the second alignment film is formed. And a liquid crystal layer forming step of forming a liquid crystal layer, wherein the rubbing directions of the first substrate and the second substrate are not parallel.
この発明によれば、第1基板と第2基板のラビング方向が平行でなく、クロスラビングとすることで、捩れが解消し、コントラストが向上する。 According to the present invention, the rubbing directions of the first substrate and the second substrate are not parallel but cross rubbing, so that the twist is eliminated and the contrast is improved.
以下、この発明に係る液晶表示素子の好適な実施の形態につき図面を用いて説明する。 Hereinafter, preferred embodiments of a liquid crystal display device according to the present invention will be described with reference to the drawings.
実施の形態1.
図1は、この発明の実施の形態1に係る液晶表示素子の構成を示す断面図である。
図1において、この液晶表示素子は、第1基板1、第2基板2、第1透明電極3、第2透明電極4、第1配向膜5、第2配向膜6、液晶層7およびシール材8を備えている。
1 is a cross-sectional view showing a configuration of a liquid crystal display element according to
In FIG. 1, this liquid crystal display element includes a
互いに対向する第1基板1および第2基板2は、それぞれガラス基板であり、液晶層7は、第1基板1と第2基板2との間に、高分子強誘電性液晶を含む液晶材料が封入されて形成されている。ここで、液晶材料は、高分子強誘電性液晶または高分子強誘電性液晶と低分子液晶との混合物である。第1基板1には、第1基板1の液晶層7とは反対側に設けられて光源として機能するバックライト(図示せず)からの光が入射する。
The
第1透明電極3は、第1基板1の第2基板2と対向する面に形成されている。第2透明電極4は、第2基板2の第1基板1と対向する面に形成されている。第1透明電極3および第2透明電極4は、それぞれ画素電極および対向電極を構成し、第1基板1および第2基板2に対して垂直方向の電界を発生させる。
The first transparent electrode 3 is formed on the surface of the
第1配向膜5は、第1基板1の第1透明電極3上に形成され、ラビング法によって配向処理されている。第2配向膜6は、第2基板2の第2透明電極4上に形成され、ラビング法によって配向処理されている。
The
次に、この発明の実施の形態1に係る液晶表示素子の製造手順について説明する。
まず、第1基板1にスパッタリング法等を用いて第1透明電極3およびTFT(Thin Film Transistor、図示せず)を形成する。また、第2基板2にカラーフィルタ(図示せず)を貼り付けるとともに、カラーフィルタ上に第2透明電極4を形成する。
Next, a manufacturing procedure of the liquid crystal display element according to the first embodiment of the present invention will be described.
First, the first transparent electrode 3 and the TFT (Thin Film Transistor, not shown) are formed on the
続いて、第1基板1および第2基板2を洗浄した後、第1基板1の第1透明電極3およびTFT上、並びに第2基板2の第2透明電極4上に、配向膜としてそれぞれポリイミド(RN1199A:日産化学工業(株)製)を塗布する。このポリイミドは、透明電極の付いた基板上にスピンコートし1000Åの膜厚とした。
Subsequently, after the
次に、ポリイミドを塗布した第1基板1および第2基板2に対しプリベーク処理およびメインキュア処理を施し、その後、窒素雰囲気または大気雰囲気中で焼成温度を230℃〜350℃の範囲で30分間焼成し、ラビング法によって配向処理を行って、図2に示す如く、上下基板に角度を持たせてクロスラビングさせ、第1配向膜5および第2配向膜6を形成する。
Next, pre-bake treatment and main cure treatment are performed on the
これにより、図3に示すように、Twist状態での捩れが、クロスラビングをすることで解消され、Uniform状態となり、コントラストが上昇する。 As a result, as shown in FIG. 3, the twist in the Twist state is eliminated by performing the cross rubbing, the Uniform state is obtained, and the contrast is increased.
続いて、第1基板1および第2基板2を洗浄した後、第1基板1の周辺部にシール材を塗布し、第1基板1と第2基板2とを貼り合わせる。次に、接着された第1基板1と第2基板2との間に、次の化学式で示される高分子強誘電性液晶と、低分子液晶とを混合した液晶材料を注入して封止し、アニール処理を経て液晶層7を形成する。ここで、高分子強誘電性液晶と低分子液晶とを混合するのは、液晶材料の粘度を下げて応答速度を向上させるとともに、動作可能な温度範囲を広げるためである。このとき、液晶材料を高分子強誘電性液晶のみとしてもよい。
Subsequently, after cleaning the
なお、接着された第1基板1と第2基板2との間に液晶材料を注入する代わりに、第1基板1と第2基板2とを接着する前に、シール材8が塗布された第1基板1上に液晶材料を滴下してもよい。液晶材料を滴下することにより、液晶の充填時間を短縮することができる。
Instead of injecting a liquid crystal material between the
続いて、液晶層7が形成された液晶表示素子に対して、AC75Vの電圧を印加しながら周波数62.5Hz、ISO温度より室温まで急冷するエージング処理(電界印加処理)を行い、強誘電性液晶を何れかの双安定位置に配向させる。このとき、降温勾配を10℃/minとする。このように所定の降温勾配に基づいて電界印加処理を行うことにより、高分子強誘電性液晶の特別な配向処理は不要となる。
Subsequently, the liquid crystal display element on which the
なお、上述したように、従来の高分子強誘電性液晶を用いたSS−FLCモードの液晶表示素子では、エージングの際に、液晶表示素子に電圧を印加しながらせん断応力をかけて高分子強誘電性液晶を配向させるという複雑な工程が必要であったが、この発明の実施の形態1に係る液晶表示素子では、その必要はない。
As described above, in the SS-FLC mode liquid crystal display element using the conventional polymer ferroelectric liquid crystal, during the aging, a high stress is applied to the liquid crystal display element by applying a shear stress while applying a voltage. Although a complicated process of aligning the dielectric liquid crystal is necessary, the liquid crystal display element according to
このようにして製造されたパネルに偏光板を貼付しコントラストを測定した。コントラストは、白表示時の明るさ/黒表示時の明るさで与えられる。 A polarizing plate was attached to the panel thus produced, and the contrast was measured. The contrast is given by the brightness when displaying white / the brightness when displaying black.
表1と図4は、ラビング角度とコントラストの実験結果を示すものである。この実験結果から、上基板のラビング角度が0°〜7°の範囲で、コントラストが凡そ100以上となり、良好なものとなることが理解される。このとき、下基板のラビング軸は上基板とは液晶の捩れの逆方向に線対称に持たせ、ラビング角度が0°〜−7°の範囲となる。なお、表1において、Bは黒表示時、Wは白表示時、CRはコントラスト(W/B)を示す。 Table 1 and FIG. 4 show the experimental results of the rubbing angle and contrast. From this experimental result, it is understood that the contrast becomes approximately 100 or more when the rubbing angle of the upper substrate is in the range of 0 ° to 7 °, which is favorable. At this time, the rubbing axis of the lower substrate is axisymmetric to the upper substrate in the direction opposite to the twist of the liquid crystal, and the rubbing angle is in the range of 0 ° to −7 °. In Table 1, B represents black, W represents white, and CR represents contrast (W / B).
上述したように、上下基板にラビングを異なる角度で処理して、自発分極を上下基板全体に一致するUniform状態にさせることで、ムラや欠陥などの問題なく視野角も広い、かつコントラスト顕著に上げることが出来る。 As described above, rubbing is performed on the upper and lower substrates at different angles to bring the spontaneous polarization into a uniform state that matches the entire upper and lower substrates, thereby widening the viewing angle without problems such as unevenness and defects, and significantly increasing the contrast. I can do it.
1 第1基板、2 第2基板、3 第1透明電極、4 第2透明電極、5 第1配向膜、6 第2配向膜、7 液晶層、8 シール材。
DESCRIPTION OF
Claims (10)
前記第1基板および第2基板の各対向面にそれぞれ形成され、ラビング法によって配向処理された第1配向膜および第2配向膜と、
前記第1配向膜が形成された前記第1基板と前記第2配向膜が形成された前記第2基板との間に、高分子強誘電性液晶を含む液晶材料が封入されて形成された液晶層と
を備え、
前記第1基板と前記第2基板のラビング方向は平行でない
ことを特徴とする液晶表示素子。 A first substrate and a second substrate facing each other;
A first alignment film and a second alignment film, which are formed on the opposing surfaces of the first substrate and the second substrate, respectively, and subjected to alignment treatment by a rubbing method;
A liquid crystal formed by sealing a liquid crystal material including a polymer ferroelectric liquid crystal between the first substrate on which the first alignment film is formed and the second substrate on which the second alignment film is formed. With layers,
The liquid crystal display element, wherein the rubbing directions of the first substrate and the second substrate are not parallel.
前記第1基板と前記第2基板に対し、それぞれのラビング軸は液晶の捩れの逆方向に持たせる
ことを特徴とする液晶表示素子。 The liquid crystal display element according to claim 1,
A liquid crystal display element, wherein the rubbing axes of the first substrate and the second substrate are provided in directions opposite to the twist of the liquid crystal.
前記第1基板と前記第2基板に対し、それぞれのラビング軸が線対称である
ことを特徴とする液晶表示素子。 The liquid crystal display element according to claim 1 or 2,
A liquid crystal display element, wherein the rubbing axes are axisymmetric with respect to the first substrate and the second substrate.
前記液晶材料は、前記高分子強誘電性液晶のみである
ことを特徴とする液晶表示素子。 The liquid crystal display element according to any one of claims 1 to 3,
The liquid crystal display element, wherein the liquid crystal material is only the polymer ferroelectric liquid crystal.
前記液晶材料は、前記高分子強誘電性液晶と低分子液晶との混合物である
ことを特徴とする液晶表示素子。 The liquid crystal display element according to any one of claims 1 to 3,
The liquid crystal display element, wherein the liquid crystal material is a mixture of the polymer ferroelectric liquid crystal and a low molecular liquid crystal.
前記第1配向膜が形成された前記第1基板と前記第2配向膜が形成された前記第2基板との間に、高分子強誘電性液晶を含む液晶材料を封入して液晶層を形成する液晶層形成ステップと
を備え、
前記第1基板と前記第2基板のラビング方向は平行でない
ことを特徴とする液晶表示素子の製造方法。 An alignment film forming step of forming a first alignment film and a second alignment film, each of which is aligned by a rubbing method, on each facing surface of the first substrate and the second substrate facing each other;
A liquid crystal material including a polymer ferroelectric liquid crystal is sealed between the first substrate on which the first alignment film is formed and the second substrate on which the second alignment film is formed to form a liquid crystal layer. A liquid crystal layer forming step,
The method for manufacturing a liquid crystal display element, wherein the rubbing directions of the first substrate and the second substrate are not parallel.
前記第1基板と前記第2基板に対し、それぞれのラビング軸は液晶の捩れの逆方向に持たせる
ことを特徴とする液晶表示素子の製造方法。 In the manufacturing method of the liquid crystal display element of Claim 6,
A method for manufacturing a liquid crystal display element, characterized in that the rubbing axes of the first substrate and the second substrate are provided in directions opposite to the twist of the liquid crystal.
前記第1基板と前記第2基板に対し、それぞれのラビング軸が線対称である
ことを特徴とする液晶表示素子の製造方法。 In the manufacturing method of the liquid crystal display element of Claim 6 or 7,
A method of manufacturing a liquid crystal display element, wherein the rubbing axes are axisymmetric with respect to the first substrate and the second substrate.
前記液晶材料は、前記高分子強誘電性液晶のみである
ことを特徴とする液晶表示素子の製造方法。 In the manufacturing method of the liquid crystal display element of any one of Claim 6-8,
The method of manufacturing a liquid crystal display element, wherein the liquid crystal material is only the polymer ferroelectric liquid crystal.
前記液晶材料は、前記高分子強誘電性液晶と低分子液晶との混合物である
ことを特徴とする液晶表示素子の製造方法。 In the manufacturing method of the liquid crystal display element of any one of Claim 6-8,
The method for producing a liquid crystal display element, wherein the liquid crystal material is a mixture of the high-molecular ferroelectric liquid crystal and the low-molecular liquid crystal.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010255945A JP2012108252A (en) | 2010-11-16 | 2010-11-16 | Liquid crystal display element and manufacturing method for the same |
KR1020110119423A KR101992881B1 (en) | 2010-11-16 | 2011-11-16 | liquid crystal display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010255945A JP2012108252A (en) | 2010-11-16 | 2010-11-16 | Liquid crystal display element and manufacturing method for the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012108252A true JP2012108252A (en) | 2012-06-07 |
Family
ID=46269355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010255945A Pending JP2012108252A (en) | 2010-11-16 | 2010-11-16 | Liquid crystal display element and manufacturing method for the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012108252A (en) |
KR (1) | KR101992881B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200071627A (en) | 2018-12-11 | 2020-06-19 | 이제연 | wireless charging adapter |
KR20220087675A (en) | 2020-12-18 | 2022-06-27 | 김대훈 | apparatus accessory of electromagnet coupling |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3267844B2 (en) * | 1994-11-09 | 2002-03-25 | シャープ株式会社 | Liquid crystal element and manufacturing method thereof |
JPH09304794A (en) * | 1996-05-20 | 1997-11-28 | Toshiba Corp | Liquid crystal display element |
JP2000081627A (en) * | 1998-09-04 | 2000-03-21 | Idemitsu Kosan Co Ltd | Liquid crystal element |
KR100319928B1 (en) * | 2000-02-15 | 2002-01-09 | 윤종용 | Ferroelectric LCD panel and manufacturing method thereof by rubbing orientation of the orientation film |
JP2010014868A (en) * | 2008-07-02 | 2010-01-21 | Ricoh Co Ltd | Powder storage device and image forming apparatus |
JP5509569B2 (en) * | 2008-10-08 | 2014-06-04 | Dic株式会社 | Polymer-stabilized ferroelectric liquid crystal composition, liquid crystal element, and method for producing the display element |
-
2010
- 2010-11-16 JP JP2010255945A patent/JP2012108252A/en active Pending
-
2011
- 2011-11-16 KR KR1020110119423A patent/KR101992881B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
KR20120052885A (en) | 2012-05-24 |
KR101992881B1 (en) | 2019-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4614200B2 (en) | Normally black vertical alignment type liquid crystal display device and manufacturing method thereof | |
JP2002341358A (en) | Liquid crystal display panel manufacturing method | |
US20110317092A1 (en) | Liquid crystal display device | |
JP2012108252A (en) | Liquid crystal display element and manufacturing method for the same | |
KR101675936B1 (en) | Liquid crystal alignment layer comprising amphiphilic block copolymer, liquid crystal display device using the same and method for manufacturing the same | |
KR20020058832A (en) | Method of fabricating ferroelectric liquid crystal display | |
JP2011099909A (en) | Liquid crystal display device | |
JP2012108249A (en) | Manufacturing method for liquid crystal display element, and liquid crystal display element | |
JP2012108248A (en) | Manufacturing method for liquid crystal display element, and liquid crystal display element | |
US20050140898A1 (en) | In plane switching mode liquid crystal display device and method of fabricating the same | |
KR101274650B1 (en) | Liquid Crystal Display Device and Fabrication Method Thereof | |
JP2012108250A (en) | Manufacturing method for liquid crystal display element | |
JP2012108251A (en) | Liquid crystal display element and manufacturing method for the same | |
KR101868475B1 (en) | fabricating method of liquid crystal display device and liquid crystal display device | |
JP2000075308A (en) | Liquid crystal display device and preparation thereof | |
US8681294B2 (en) | Optical compensation film for LCD viewing angles reduction | |
JP2007094020A (en) | Liquid crystal display device | |
JP4508697B2 (en) | Liquid crystal panel and liquid crystal display device using the same | |
US20040131798A1 (en) | Liquid crystal display device and method of producing the same | |
JPH11174451A (en) | Liquid crystal display device | |
KR100360471B1 (en) | Method for manufacturing an antiferroelectric Liquid Crystal Display panel | |
KR100802306B1 (en) | Liquid Crystal Display and Manufacturing Method Thereof | |
JP5822984B2 (en) | Driving method of liquid crystal display device | |
JP3239310B2 (en) | Ferroelectric liquid crystal display device | |
JP3308076B2 (en) | Liquid crystal display device and method of manufacturing the same |