[go: up one dir, main page]

JP2012105540A - Electric vehicle equipped with ground fault detecting system - Google Patents

Electric vehicle equipped with ground fault detecting system Download PDF

Info

Publication number
JP2012105540A
JP2012105540A JP2011284187A JP2011284187A JP2012105540A JP 2012105540 A JP2012105540 A JP 2012105540A JP 2011284187 A JP2011284187 A JP 2011284187A JP 2011284187 A JP2011284187 A JP 2011284187A JP 2012105540 A JP2012105540 A JP 2012105540A
Authority
JP
Japan
Prior art keywords
insulation resistance
voltage
ground fault
power source
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011284187A
Other languages
Japanese (ja)
Other versions
JP5255112B2 (en
Inventor
Mitsuaki Yano
充昭 矢野
Toshiaki Takeshita
寿晶 武下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011284187A priority Critical patent/JP5255112B2/en
Publication of JP2012105540A publication Critical patent/JP2012105540A/en
Application granted granted Critical
Publication of JP5255112B2 publication Critical patent/JP5255112B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】第1及び第2非接地電源が存在する場合における絶縁抵抗の検出精度を向上させる。
【解決手段】第1非接地電源14の接地部に対する第1絶縁抵抗RL1を検出する第1絶縁抵抗検出部51と、第2非接地電源12の接地部に対する第2絶縁抵抗RL2を検出する第2絶縁抵抗検出部52とを別々に備え、異なるタイミングで第1絶縁抵抗RL1、R2を計測する構成とする。
【選択図】図1
An object of the present invention is to improve the detection accuracy of insulation resistance in the presence of first and second ungrounded power supplies.
A first insulation resistance detector 51 for detecting a first insulation resistance RL1 for a ground portion of a first non-grounded power supply 14 and a second insulation resistance RL2 for a ground portion of a second non-grounded power supply 12 are detected. The second insulation resistance detection unit 52 is provided separately, and the first insulation resistances RL1 and R2 are measured at different timings.
[Selection] Figure 1

Description

この発明は、非接地電源の接地部(接地)に対する地絡や絶縁状態を検出する地絡検知システムを備える電気自動車に関する。   The present invention relates to an electric vehicle including a ground fault detection system that detects a ground fault and an insulation state with respect to a ground portion (ground) of an ungrounded power source.

一般に、電気自動車では、高圧化(例えば、200[V]以上)されている電源を車体から絶縁して非接地電源として取り扱う。   Generally, in an electric vehicle, a high-voltage power supply (for example, 200 [V] or higher) is insulated from the vehicle body and handled as an ungrounded power supply.

このように高圧の非接地電源の地絡(漏電、または絶縁が劣化して絶縁抵抗が下がった状態も含む。)を検知する技術が提案されている(特許文献1)。   As described above, there has been proposed a technique for detecting a ground fault of a high-voltage ungrounded power supply (including a state in which an insulation resistance is lowered due to leakage or insulation deterioration) (Patent Document 1).

この特許文献1に係る技術では、単一の非接地電源の地絡を判定するようにしている。   In the technique according to Patent Document 1, a ground fault of a single non-grounded power source is determined.

特開平8−226950号公報JP-A-8-226950

ところで、近時、第1非接地電源、例えば燃料電池の他、第2非接地電源、例えば蓄電装置(バッテリ等)を用いて、負荷を駆動する電気自動車が提案されているが、これら第1及び第2非接地電源を有する電気自動車の地絡検知システムについては、その構成が明らかになっていない。   By the way, recently, an electric vehicle that drives a load by using a first non-grounded power source, for example, a fuel cell, and a second non-grounded power source, for example, a power storage device (battery or the like) has been proposed. And, the configuration of the ground fault detection system for an electric vehicle having the second ungrounded power source has not been clarified.

この発明はこの種の課題を解決するものであり、第1及び第2非接地電源を有する電気自動車に好適であり絶縁抵抗計測精度(検出精度)の高い地絡検知システムを備える電気自動車を提供することを目的とする。   The present invention solves this type of problem, and is suitable for an electric vehicle having first and second ungrounded power supplies, and provides an electric vehicle including a ground fault detection system having high insulation resistance measurement accuracy (detection accuracy). The purpose is to do.

この発明に係る地絡検知システムを備える電気自動車は、負荷と、前記負荷に電力を供給する電圧(E1)の第1非接地電源と、前記負荷と前記第1非接地電源との間に一方の入出力端子が接続されるコンバータと、前記コンバータの他方の入出力端子に接続され前記第1非接地電源より低電圧(E2(E2<E1))の第2非接地電源と、を備える電気自動車において、以下の特徴(1)〜(4)を有する。   An electric vehicle equipped with a ground fault detection system according to the present invention includes a load, a first non-grounded power source of a voltage (E1) for supplying power to the load, and one between the load and the first non-grounded power source. And a second non-grounded power source connected to the other input / output terminal of the converter and having a lower voltage (E2 (E2 <E1)) than the first non-grounded power source. The automobile has the following features (1) to (4).

(1)前記第1非接地電源の接地部に対する第1絶縁抵抗を検出する第1絶縁抵抗検出部と、前記第2非接地電源の接地部に対する第2絶縁抵抗を検出する第2絶縁抵抗検出部と、前記第1絶縁抵抗又は前記第2絶縁抵抗を、異常検知閾値と比較し、前記第1絶縁抵抗又は前記第2絶縁抵抗のいずれかが、前記異常検知閾値より小さい値である場合に地絡と判定する地絡判定部と、を備えることを特徴とする。   (1) A first insulation resistance detection unit that detects a first insulation resistance with respect to a grounding part of the first non-grounded power supply, and a second insulation resistance detection that detects a second insulation resistance with respect to the grounding part of the second non-grounded power supply. And the first insulation resistance or the second insulation resistance are compared with an abnormality detection threshold value, and either the first insulation resistance or the second insulation resistance is smaller than the abnormality detection threshold value. A ground fault determination unit for determining a ground fault.

この特徴(1)を備える発明によれば、第1及び第2非接地電源のそれぞれに第1及び第2絶縁抵抗検出部を設ける構成としているので、絶縁抵抗の検出精度を向上させることができる。   According to the invention having this feature (1), the first and second insulation resistance detectors are provided in the first and second non-grounded power supplies, respectively, so that the insulation resistance detection accuracy can be improved. .

(2)上記の特徴(1)を有する発明において、前記異常検知閾値は、前記第1絶縁抵抗及び第2絶縁抵抗毎に、同一漏洩電流値となる異なる値の第1異常検知閾値と第2異常検知閾値に設定されることを特徴とする。このように設定すれば、第1及び第2非接地電源とも、同一の漏洩電流にて地絡の有無を判定することができる。   (2) In the invention having the above feature (1), the abnormality detection threshold is different from each other in the first abnormality detection threshold and the second abnormality detection value that have the same leakage current value for each of the first insulation resistance and the second insulation resistance. The abnormality detection threshold value is set. With this setting, it is possible to determine the presence or absence of a ground fault with the same leakage current in both the first and second ungrounded power supplies.

(3)上記の特徴(1)又は(2)を有する発明において、前記第1絶縁抵抗検出部と前記第2絶縁抵抗検出部とは、それぞれ、同一結線構成の回路とされ、前記第1絶縁抵抗検出部は、前記第1非接地電源の電圧(E1)に向かって第1所定時間第1コンデンサに充電して充電電圧(V01)を得、放電した後、前記第1絶縁抵抗を経由して前記第1非接地電源の電圧(E1)に向かって第2所定時間前記第1コンデンサに充電して充電電圧(V11)を得、前記充電電圧(V01)と(V11)との比に基づき、前記第1絶縁抵抗を算出し、前記第2絶縁抵抗検出部は、前記第2非接地電源の電圧(E2)に向かって第3所定時間第2コンデンサに充電して充電電圧(V02)を得、放電した後、前記第2絶縁抵抗を経由して前記第2非接地電源の電圧(E2)に向かって第4所定時間前記第2コンデンサに充電して充電電圧(V12)を得、前記充電電圧(V02)と(V12)との比に基づき、前記第2絶縁抵抗を算出することを特徴とする。   (3) In the invention having the above feature (1) or (2), each of the first insulation resistance detector and the second insulation resistance detector is a circuit having the same connection configuration, and the first insulation The resistance detector obtains a charging voltage (V01) by charging the first capacitor toward the voltage (E1) of the first non-grounded power source for a first predetermined time, discharges the voltage, and then passes through the first insulation resistance. And charging the first capacitor toward the voltage (E1) of the first non-grounded power source for a second predetermined time to obtain a charging voltage (V11), based on the ratio of the charging voltages (V01) and (V11) The first insulation resistance is calculated, and the second insulation resistance detection unit charges the second capacitor for a third predetermined time toward the voltage (E2) of the second non-grounded power source to obtain a charging voltage (V02). And after discharging, through the second insulation resistance, A charge voltage (V12) is obtained by charging the second capacitor toward a ground power supply voltage (E2) for a fourth predetermined time, and based on a ratio between the charge voltage (V02) and (V12), the second insulation The resistance is calculated.

この特徴(3)を有する発明によれば、第1及び第2絶縁抵抗検出部をそれぞれ、いわゆるフライングキャパシタ方式で構成することができる。   According to the invention having the feature (3), each of the first and second insulation resistance detectors can be configured by a so-called flying capacitor system.

(4)上記の特徴(3)を有する発明において、前記第1絶縁抵抗検出部と前記第2絶縁抵抗検出部とは、異なるタイミングで前記第1絶縁抵抗及び前記第2絶縁抵抗をそれぞれ検出することを特徴とする。このように構成すれば、第1非接地電源の第1絶縁抵抗及び第2非接地電源の第2絶縁抵抗を確実かつ正確に検出することができる。   (4) In the invention having the above feature (3), the first insulation resistance detection unit and the second insulation resistance detection unit detect the first insulation resistance and the second insulation resistance, respectively, at different timings. It is characterized by that. If comprised in this way, the 1st insulation resistance of a 1st non-grounded power supply and the 2nd insulation resistance of a 2nd non-grounded power supply can be detected reliably and correctly.

この発明によれば、第1及び第2非接地電源を有する電気自動車の絶縁抵抗の検出精度を向上することができる。   According to this invention, the detection accuracy of the insulation resistance of the electric vehicle having the first and second ungrounded power supplies can be improved.

この発明の一実施形態に係る地絡検知システムを備える電気自動車の全体構成図である。1 is an overall configuration diagram of an electric vehicle including a ground fault detection system according to an embodiment of the present invention. DC/DCコンバータの回路図である。It is a circuit diagram of a DC / DC converter. インバータの回路図である。It is a circuit diagram of an inverter. 第1絶縁抵抗検出部の回路図である。It is a circuit diagram of a 1st insulation resistance detection part. 第2絶縁抵抗検出部の回路図である。It is a circuit diagram of a 2nd insulation resistance detection part. 絶縁抵抗の計測の原理動作説明に供されるタイムチャートである。It is a time chart used for the principle operation | movement description of the measurement of an insulation resistance. 電源電圧計測期間(充電期間)の説明図である。It is explanatory drawing of a power supply voltage measurement period (charging period). コンデンサ電圧読込・放電期間の説明図である。It is explanatory drawing of a capacitor voltage reading and discharge period. +側地絡計測期間(充電期間)の説明図である。It is explanatory drawing of + side ground fault measurement period (charge period). 絶縁抵抗の大小と所定時間内での充電電圧の変化の対応説明図である。It is explanatory drawing corresponding to the magnitude of an insulation resistance, and the change of the charging voltage within predetermined time. 電圧比と絶縁抵抗値の関係説明特性図である。It is a characteristic explanatory view of the relationship between the voltage ratio and the insulation resistance value. 第1非接地電源の中途で地絡している例の説明図である。It is explanatory drawing of the example which has a ground fault in the middle of the 1st ungrounded power supply. 第2非接地電源の中途で地絡している例の説明図である。It is explanatory drawing of the example which has a ground fault in the middle of the 2nd non-grounded power supply. 地絡している電源の違いによる充電時間の対応説明図である。It is correspondence explanatory drawing of the charge time by the difference in the power supply which has a ground fault. 地絡している電源の違いによる絶縁抵抗の読込値の説明図である。It is explanatory drawing of the read value of the insulation resistance by the difference in the power supply which has a ground fault. 第1非接地電源と第2非接地電源の電圧差による地絡抵抗の検出程度の説明図である。It is explanatory drawing of the extent of detection of ground fault resistance by the voltage difference of a 1st non-grounded power supply and a 2nd non-grounded power supply. 第1非接地電源と第2非接地電源の電圧差が大きい場合に地絡抵抗検出が不可の例の説明図である。It is explanatory drawing of the example which cannot detect ground fault resistance, when the voltage difference of a 1st non-grounded power supply and a 2nd non-grounded power supply is large. この発明の一実施例の動作説明に供されるタイムチャートである。It is a time chart used for operation | movement description of one Example of this invention. 電圧比と第1絶縁抵抗との対応関係説明図である。FIG. 6 is an explanatory diagram of a correspondence relationship between a voltage ratio and a first insulation resistance. 電圧比と第2絶縁抵抗との対応関係説明図である。FIG. 6 is an explanatory diagram of a correspondence relationship between a voltage ratio and a second insulation resistance. この発明の他の実施形態に係る地絡システムを備える電気自動車の全体構成図である。It is a whole block diagram of an electric vehicle provided with the ground fault system which concerns on other embodiment of this invention.

以下、この発明に係る地絡検知システムを備える電気自動車の実施形態について図面を参照して説明する。   Hereinafter, an embodiment of an electric vehicle including a ground fault detection system according to the present invention will be described with reference to the drawings.

図1は、一実施形態に係る電気自動車10の全体構成図を示している。   FIG. 1 shows an overall configuration diagram of an electric vehicle 10 according to an embodiment.

この電気自動車10は、基本的には、第1主回路配線1P、1N間に電圧E1を発生する第1非接地電源(第1直流電源)としての燃料電池(Fuel Cell)14(第1非接地電源14ともいう。)と、第2主回路配線2P、2N間に電圧E2(E1>E2)を発生する第2非接地電源(第2直流電源)としてのバッテリ12(蓄電装置であり第2非接地電源12ともいう。)とから構成されるハイブリッド直流電源装置と、このハイブリッド直流電源装置からインバータ22を通じて電力が供給される負荷である走行駆動用のモータ16とから構成される。なお、燃料電池14とインバータ22との間には、燃料電池14への電流の流入を防止するダイオード15が挿入されている。   The electric vehicle 10 basically has a fuel cell 14 (first non-power source) as a first ungrounded power source (first DC power source) that generates a voltage E1 between the first main circuit wirings 1P and 1N. And a battery 12 (a power storage device and a second power source) that generates a voltage E2 (E1> E2) between the second main circuit wirings 2P and 2N. 2 also referred to as a non-grounded power supply 12) and a travel drive motor 16 that is a load to which electric power is supplied from the hybrid DC power supply device through the inverter 22. A diode 15 is inserted between the fuel cell 14 and the inverter 22 to prevent current from flowing into the fuel cell 14.

燃料電池14は、例えば固体高分子電解質膜をアノード電極とカソード電極とで両側から挟み込んで形成されたセルを積層したスタック構造にされている。燃料電池14には、反応ガス供給部18が配管を通じて接続されている。反応ガス供給部18は、一方の反応ガスである水素(燃料ガス)を貯留する水素タンク(不図示)と、他方の反応ガスである空気(酸化剤ガス)を圧縮するコンプレッサ(不図示)を備えている。反応ガス供給部18から燃料電池14に供給された水素と空気の燃料電池14内での電気化学反応により生成された発電電流がモータ16とバッテリ12に供給される。   The fuel cell 14 has, for example, a stack structure in which cells formed by sandwiching a solid polymer electrolyte membrane between an anode electrode and a cathode electrode from both sides are stacked. A reaction gas supply unit 18 is connected to the fuel cell 14 through a pipe. The reaction gas supply unit 18 includes a hydrogen tank (not shown) that stores hydrogen (fuel gas) as one reaction gas, and a compressor (not shown) that compresses air (oxidant gas) as the other reaction gas. I have. A power generation current generated by an electrochemical reaction in the fuel cell 14 of hydrogen and air supplied from the reaction gas supply unit 18 to the fuel cell 14 is supplied to the motor 16 and the battery 12.

燃料電池システム11は、燃料電池14及び反応ガス供給部18の制御を含め電気自動車10の全体を制御するECU(Electronic Control Unit)40(制御部)を有する。   The fuel cell system 11 includes an ECU (Electronic Control Unit) 40 (control unit) that controls the entire electric vehicle 10 including control of the fuel cell 14 and the reaction gas supply unit 18.

DC/DCコンバータ20は、一方側が第2主回路配線2P、2N及び開閉器42を通じてバッテリ12に接続され、他方側が第1主回路配線1P、1Nを通じて燃料電池14とモータ16側に接続されたチョッパ型の電圧変換装置である。   The DC / DC converter 20 has one side connected to the battery 12 through the second main circuit wires 2P and 2N and the switch 42, and the other side connected to the fuel cell 14 and the motor 16 side through the first main circuit wires 1P and 1N. This is a chopper type voltage converter.

図2は、DC/DCコンバータ20の回路図を示す。   FIG. 2 shows a circuit diagram of the DC / DC converter 20.

DC/DCコンバータ20は、バッテリ12の電圧E2を燃料電池14側の電圧E1(E2<E1)に電圧変換(昇圧変換)するとともに、燃料電池14側の電圧E1をバッテリ12側の電圧E2に電圧変換(降圧変換)する昇降圧型の電圧変換装置である。   The DC / DC converter 20 converts the voltage E2 of the battery 12 into a voltage E1 (E2 <E1) on the fuel cell 14 side, and converts the voltage E1 on the fuel cell 14 side to a voltage E2 on the battery 12 side. This is a step-up / step-down voltage converter that performs voltage conversion (step-down conversion).

DC/DCコンバータ20は、ECU40により駆動される3相の相アームPA、QA、RAと、リアクトル90とから構成される。   The DC / DC converter 20 includes three-phase phase arms PA, QA, RA driven by the ECU 40, and a reactor 90.

P相アームPAは、上アーム素子(上アームスイッチング素子81pとダイオード83p)と下アーム素子(下アームスイッチング素子82pとダイオード84p)とで構成される。   P-phase arm PA is composed of an upper arm element (upper arm switching element 81p and diode 83p) and a lower arm element (lower arm switching element 82p and diode 84p).

Q相アームQAは、上アーム素子(上アームスイッチング素子81qとダイオード83q)と下アーム素子(下アームスイッチング素子82qとダイオード84q)とで構成される。   Q-phase arm QA includes an upper arm element (upper arm switching element 81q and diode 83q) and a lower arm element (lower arm switching element 82q and diode 84q).

R相アームRAは、上アーム素子(上アームスイッチング素子81rとダイオード83r)と下アーム素子(下アームスイッチング素子82rとダイオード84r)とで構成される。   R-phase arm RA is composed of an upper arm element (upper arm switching element 81r and diode 83r) and a lower arm element (lower arm switching element 82r and diode 84r).

上アームスイッチング素子81p、81q、81rと下アームスイッチング素子82p、82q、82rには、それぞれ例えばMOSFET又はIGBT等が採用される。   As the upper arm switching elements 81p, 81q, 81r and the lower arm switching elements 82p, 82q, 82r, for example, MOSFETs or IGBTs are employed.

リアクトル90は、各相アームPA、QA、RAの中点(共通接続点)とバッテリ12の正極との間に挿入され、DC/DCコンバータ20により電圧E2と電圧E1との間で電圧を変換する際に、エネルギを放出及び蓄積する作用を有する。   Reactor 90 is inserted between the midpoint (common connection point) of each phase arm PA, QA, RA and the positive electrode of battery 12, and DC / DC converter 20 converts the voltage between voltage E2 and voltage E1. In doing so, it has the function of releasing and storing energy.

平滑用のコンデンサ94、96がそれぞれ第2主回路配線2P、2N及び第1主回路配線1P、1N間に挿入される。   Smoothing capacitors 94 and 96 are inserted between the second main circuit wirings 2P and 2N and the first main circuit wirings 1P and 1N, respectively.

アームスイッチング素子81p、81q、81r、82p、82q、82rは、ECU40から供給されるゲート駆動信号(駆動電圧)のレベルによりオンオフが切り替えられる。この場合、DC/DCコンバータ20は、3相アーム交替駆動動作又は全相同時駆動動作で動作する。   The arm switching elements 81p, 81q, 81r, 82p, 82q, and 82r are switched on and off according to the level of the gate drive signal (drive voltage) supplied from the ECU 40. In this case, the DC / DC converter 20 operates in a three-phase arm replacement driving operation or an all-phase simultaneous driving operation.

図3は、インバータ22の回路図を示す。インバータ22は、3相フルブリッジ型の構成とされて、直流/交流変換を行い、直流を3相の交流に変換してモータ16のU相コイル、V相コイル、W相コイルに供給する一方、回生動作に伴う交流/直流変換後の直流を第1主回路配線1P、1N側からDC/DCコンバータ20を通じて第2主回路配線2P、2N側に供給し、バッテリ12を充電等する。   FIG. 3 shows a circuit diagram of the inverter 22. The inverter 22 has a three-phase full-bridge configuration, performs DC / AC conversion, converts DC to three-phase AC, and supplies it to the U-phase coil, V-phase coil, and W-phase coil of the motor 16. The direct current after the alternating current / direct current conversion accompanying the regenerative operation is supplied from the first main circuit wiring 1P, 1N side to the second main circuit wiring 2P, 2N side through the DC / DC converter 20, and the battery 12 is charged.

インバータ22は、ECU40により駆動されるMOSFET又はIGBT等のスイッチング素子51u、51v、51w、52u、52v、52wと、逆方向接続されたダイオード53u、53v、53w、54u、54v、54wとから構成される。   The inverter 22 includes switching elements 51u, 51v, 51w, 52u, 52v, 52w such as MOSFETs or IGBTs driven by the ECU 40, and diodes 53u, 53v, 53w, 54u, 54v, 54w connected in the reverse direction. The

再び、図1において、モータ16は、トランスミッション24を通じて車輪26を回転する。なお、実際上、インバータ22とモータ16を併せて負荷23という。   Again in FIG. 1, motor 16 rotates wheels 26 through transmission 24. In practice, the inverter 22 and the motor 16 are collectively referred to as a load 23.

第2主回路配線2P、2N間に開閉器42を介して接続される高圧(High Voltage)のバッテリ12は、蓄電装置(エネルギストレージ)であり、例えばリチウムイオン2次電池又はキャパシタ等を利用することができる。この実施形態ではリチウムイオン2次電池を利用している。   The high voltage battery 12 connected between the second main circuit wirings 2P and 2N via the switch 42 is a power storage device (energy storage), and uses, for example, a lithium ion secondary battery or a capacitor. be able to. In this embodiment, a lithium ion secondary battery is used.

ECU40は、上述したように、燃料電池システム11の他、開閉器42、DC/DCコンバータ20、負荷23及び後述する第1及び第2絶縁抵抗検出部51、52等、電気自動車10全体を統括して制御するマイクロコンピュータ等から構成される。なお、ECU40に対してメインスイッチ35(電源スイッチ)が接続され、このメインスイッチ35は、電気自動車10及び燃料電池システム11をオン(起動又は始動)オフ(停止)するイグニッションスイッチとしての機能を有する。   As described above, the ECU 40 controls the entire electric vehicle 10 including the fuel cell system 11, the switch 42, the DC / DC converter 20, the load 23, and first and second insulation resistance detectors 51 and 52 described later. And a microcomputer to be controlled. A main switch 35 (power switch) is connected to the ECU 40, and the main switch 35 has a function as an ignition switch for turning on (starting or starting) and turning off (stopping) the electric vehicle 10 and the fuel cell system 11. .

さらに、第1主回路配線1P、1Nに接続された燃料電池14、インバータ22及びモータ16の地絡を絶縁抵抗RL1の値により検出する第1絶縁抵抗検出部51が第1主回路配線1P、1N間に設けられ、第2主回路配線2P、2Nに接続されたバッテリ12の地絡を絶縁抵抗RL2の値により検出する第2絶縁抵抗検出部52が第2主回路配線2P、2N間に設けられる。   Further, a first insulation resistance detection unit 51 that detects a ground fault of the fuel cell 14, the inverter 22 and the motor 16 connected to the first main circuit wirings 1P and 1N based on the value of the insulation resistance RL1 includes a first main circuit wiring 1P, A second insulation resistance detection unit 52 is provided between 1N and detects the ground fault of the battery 12 connected to the second main circuit wirings 2P and 2N based on the value of the insulation resistance RL2. Provided.

第1及び第2絶縁抵抗検出部51、52及び機能手段としての地絡判定部39(比較部)を有するECU40により地絡検知システムが構成される。   The ground fault detection system is configured by the ECU 40 having the first and second insulation resistance detection units 51 and 52 and the ground fault determination unit 39 (comparison unit) as a functional unit.

図4は、第1絶縁抵抗検出部51の回路図を示している。図5は、第2絶縁抵抗検出部52の回路図を示している。なお、第1及び第2絶縁抵抗検出部51、52の回路結線構成は同一である。   FIG. 4 shows a circuit diagram of the first insulation resistance detector 51. FIG. 5 shows a circuit diagram of the second insulation resistance detector 52. The first and second insulation resistance detectors 51 and 52 have the same circuit connection configuration.

図4(図5)において、第1主回路配線1P、1N(第2主回路配線2P、2N)間に、スイッチSW1(SW11)とスイッチSW2(SW21)の一端が接続され、スイッチSW1(SW11)の他端が抵抗値R1(R11)の抵抗器101(111)の一端に接続される。抵抗器101(111)の他端が抵抗値R4(R41)の抵抗器104(114)の一端、スイッチSW3(SW13)の一端、及び容量C1(C11)のコンデンサ106(116)の一端に接続される。   In FIG. 4 (FIG. 5), one ends of a switch SW1 (SW11) and a switch SW2 (SW21) are connected between the first main circuit wirings 1P and 1N (second main circuit wirings 2P and 2N), and the switch SW1 (SW11 ) Is connected to one end of a resistor 101 (111) having a resistance value R1 (R11). The other end of the resistor 101 (111) is connected to one end of a resistor 104 (114) having a resistance value R4 (R41), one end of a switch SW3 (SW13), and one end of a capacitor 106 (116) of a capacitor C1 (C11). Is done.

抵抗器104(114)の他端は、スイッチSW4(SW41)を通じて、接地(車体、車体グラウンド)との間の電圧値(電圧)Vを計測する電圧センサ(電圧計)50a(50b)に接続されるとともに、検出電圧値VがECU40のメモリ(記憶部)に記憶される。スイッチSW3(SW31)の他端は、抵抗値RS1(RS11)の抵抗器103(113)を通じて接地される。   The other end of the resistor 104 (114) is connected through a switch SW4 (SW41) to a voltage sensor (voltmeter) 50a (50b) that measures a voltage value (voltage) V between the resistor 104 (114) and the ground (vehicle body, vehicle body ground). At the same time, the detected voltage value V is stored in the memory (storage unit) of the ECU 40. The other end of the switch SW3 (SW31) is grounded through a resistor 103 (113) having a resistance value RS1 (RS11).

コンデンサ106(116)の他端は、スイッチSW2(SW21)の他端に接続されるとともに、スイッチSW5(SW51)を介し、抵抗値R5(R51)の抵抗器105(115)を通じて接地される。   The other end of the capacitor 106 (116) is connected to the other end of the switch SW2 (SW21) and grounded through the resistor 105 (115) having a resistance value R5 (R51) via the switch SW5 (SW51).

スイッチSW1〜SW4(SW11〜SW51)の開閉タイミングは、ECU40(開閉器の開閉タイミング制御部)により制御される。   The opening / closing timing of the switches SW1 to SW4 (SW11 to SW51) is controlled by the ECU 40 (switch opening / closing timing control unit).

基本的には以上のように構成される地絡検知システムを備える電気自動車10の地絡検知動作について以下のA、B、Cの順に説明する。   Basically, the ground fault detection operation of the electric vehicle 10 including the ground fault detection system configured as described above will be described in the following order of A, B, and C.

A.第1及び第2絶縁抵抗検出部51、52による絶縁抵抗計測(検出)の動作原理の説明
B.この発明の前提となる、第1絶縁抵抗検出部51のみが存在し、第2絶縁抵抗検出部52が存在しない場合の問題点(課題)の説明
C.この発明の実施形態に係る第1及び第2絶縁抵抗検出部51、52の両方が存在する場合の動作説明
A. B. Description of operation principle of insulation resistance measurement (detection) by the first and second insulation resistance detectors 51 and 52 Explanation of problems (problems) when only the first insulation resistance detection unit 51 exists and the second insulation resistance detection unit 52 does not exist, which is a premise of the present invention. Explanation of operation when both the first and second insulation resistance detectors 51 and 52 according to the embodiment of the present invention exist

まず、A.第1及び第2絶縁抵抗検出部51、52による絶縁抵抗計測(検出)の動作原理について、第1絶縁抵抗検出部51を例として説明する。   First, A. The operation principle of the insulation resistance measurement (detection) by the first and second insulation resistance detectors 51 and 52 will be described by taking the first insulation resistance detector 51 as an example.

図6は、絶縁抵抗RLの計測の動作説明に供されるタイムチャートである。「I:電源電圧計測期間」の時点t0〜t1の第1立ち上がり時間(第1所定時間)T1rでは、図7に示すように、スイッチSW1、SW2が閉じられ、コンデンサ106に第1非接地電源14の電圧E1[V]に向かって次の(1)式で示す充電が遂行される。
V0=E1[1−exp{−(T1r/R1×C1)}] …(1)
FIG. 6 is a time chart used to explain the operation of measuring the insulation resistance RL. At the first rise time (first predetermined time) T1r at time points t0 to t1 of “I: power supply voltage measurement period”, the switches SW1 and SW2 are closed as shown in FIG. The charging shown by the following equation (1) is performed toward the voltage E1 [V] of 14.
V0 = E1 [1-exp {− (T1r / R1 × C1)}] (1)

この電圧V0が、図8に示すように、時点t1において、スイッチSW1、SW2が開かれ、スイッチSW4、SW5が閉じられて、電圧センサ50aにより計測され、ECU40のメモリに記憶される。ECU40と電圧センサ50aは、時点t1から時点t2の間ピークホールド回路として動作する。時点t1〜t2は、「II.コンデンサ電圧読込・放電期間」である。なお、放電は、図8の矢印の経路に示すように、電圧センサ50aの内部抵抗を通じて行われる。   As shown in FIG. 8, the voltage V0 is measured by the voltage sensor 50a and stored in the memory of the ECU 40 at the time t1 when the switches SW1 and SW2 are opened and the switches SW4 and SW5 are closed. The ECU 40 and the voltage sensor 50a operate as a peak hold circuit from time t1 to time t2. Time t1 to t2 is “II. Capacitor voltage reading / discharging period”. The discharge is performed through the internal resistance of the voltage sensor 50a as shown by the path of the arrow in FIG.

なお、時点t0〜t2間では、コンデンサ106への充電について、車体(接地)と、第1非接地電源14の+側との間の絶縁抵抗RL(抵抗値もRL[Ω]とする。)の影響のない回路接続になっていることが分かる。   In addition, between time t0 and t2, with respect to charging of the capacitor 106, an insulation resistance RL between the vehicle body (ground) and the positive side of the first non-grounded power supply 14 (the resistance value is also RL [Ω]). It can be seen that the circuit connection is free from the influence of.

次に、「III.+側地絡計測期間」の時点t2〜t3間の第2立ち上がり時間(第2所定時間)T2rでは、図9に示すように、スイッチSW2、SW3が閉じられ、第1非接地電源14の+側から、絶縁抵抗RL(ここでは、第1絶縁抵抗RL1をRLとして説明する。)、抵抗器103、スイッチSW3、コンデンサ106、スイッチSW2、及び第1非接地電源14の−側に至る経路で電流がながれ、コンデンサ106に第1非接地電源14の電圧E1[V]に向かって次の(2)式で示す充電が遂行される。
V1=E1[1−exp{−(T2r/(RL+RS1)×C1)}]
…(2)
Next, at a second rise time (second predetermined time) T2r between time points t2 and t3 of “III. + Side ground fault measurement period”, as shown in FIG. 9, the switches SW2 and SW3 are closed, and the first From the positive side of the non-grounded power supply 14, the insulation resistance RL (here, the first insulation resistance RL 1 is described as RL), the resistor 103, the switch SW 3, the capacitor 106, the switch SW 2, and the first non-grounded power supply 14. The current flows along the path to the negative side, and the capacitor 106 is charged by the following equation (2) toward the voltage E1 [V] of the first non-grounded power supply 14.
V1 = E1 [1-exp {-(T2r / (RL + RS1) × C1)}]
... (2)

この電圧V1が、図8に示したのと同様の接続回路で(スイッチSW1、SW2が開かれ、スイッチSW4、SW5が閉じられる。)、電圧センサ50aにより計測され、ECU40のメモリに記憶される。ECU40と電圧センサ50aは、時点t3から時点t4の間ピークホールド回路として動作する。時点t3〜t4は、「IV.コンデンサ電圧読込・放電期間」である。上記のように、コンデンサ106は、フライングキャパシタとして作用している。   This voltage V1 is measured by the voltage sensor 50a in a connection circuit similar to that shown in FIG. 8 (the switches SW1 and SW2 are opened and the switches SW4 and SW5 are closed) and stored in the memory of the ECU 40. . The ECU 40 and the voltage sensor 50a operate as a peak hold circuit from time t3 to time t4. Times t3 to t4 are “IV. Capacitor voltage reading / discharging period”. As described above, the capacitor 106 functions as a flying capacitor.

この場合、絶縁抵抗の大小と所定時間内での充電電圧の変化の対応説明図である図10に示すように、電圧V1は、(2)式から電流制限抵抗がRL+RS1であることが分かるので、絶縁抵抗RLが大きいほど、時定数が大きくなって、第2所定時間T2rでの電圧V1が小さくなり、絶縁抵抗RLが小さいほど、充電電圧V1は、第1非接地電源14の電圧(電源電圧)E1に近づくことが分かる。   In this case, as shown in FIG. 10, which is a diagram for explaining the correspondence between the magnitude of the insulation resistance and the change in the charging voltage within a predetermined time, the voltage V1 can be understood from the equation (2) that the current limiting resistance is RL + RS1. As the insulation resistance RL increases, the time constant increases, and the voltage V1 at the second predetermined time T2r decreases. As the insulation resistance RL decreases, the charging voltage V1 becomes the voltage of the first ungrounded power supply 14 (power supply). It can be seen that the voltage approaches E1.

よって、電圧比V0/V1と絶縁抵抗(絶縁抵抗値)RLの関係を示す図11の特性110例に示すように、電圧V1と電圧V0の比V0/V1から絶縁抵抗RLを求めることができる。   Therefore, the insulation resistance RL can be obtained from the ratio V0 / V1 of the voltage V1 to the voltage V0 as shown in the example of the characteristic 110 in FIG. 11 showing the relationship between the voltage ratio V0 / V1 and the insulation resistance (insulation resistance value) RL. .

なお、地絡は、第1非接地電源14の+側(正極)から起こる場合と、第1非接地電源14の途中{燃料電池14は、燃料電池セルを積層(直列に接続)したスタック構成となっているので、いずれかのセル位置}で起こる場合があるが、この場合には、特許文献1に示されているように、−側(負極)での絶縁抵抗の検出を行うことで、誤差を相殺することができる。すなわち、負極から地絡している箇所までの電圧をE1L、地絡している箇所から正極までの電圧をE1Hとすると、E1L+E1H=E1となるので、誤差を相殺することができる。   Note that the ground fault occurs from the positive side (positive electrode) of the first non-grounded power source 14 and the middle of the first non-grounded power source 14 {the fuel cell 14 is a stack configuration in which fuel cells are stacked (connected in series). May occur at any cell position}, but in this case, as shown in Patent Document 1, by detecting the insulation resistance on the negative side (negative electrode), , The error can be offset. That is, if the voltage from the negative electrode to the ground fault location is E1L and the voltage from the ground fault location to the positive electrode is E1H, E1L + E1H = E1, and thus the error can be offset.

例えば、図12に示すように、スイッチSW2とスイッチSW3が閉じているときの電圧V1は、次の(3)式で求めることができる。
V1=E1L[1−exp{−(T2r/(RL+RS1)×C1)}]
…(3)
For example, as shown in FIG. 12, the voltage V1 when the switch SW2 and the switch SW3 are closed can be obtained by the following equation (3).
V1 = E1L [1-exp {-(T2r / (RL + RS1) × C1)}]
... (3)

次いで、ECU40の地絡判定部39は、安全性を考慮した所定漏電電流以下となる絶縁抵抗閾値である異常検知閾値Rx[Ω](基準値)と、計測した絶縁抵抗RLとを比較し、絶縁抵抗RLが異常検知閾値Rxより小さい値である場合(RL<Rx)に地絡と判定し、警告を行う。   Next, the ground fault determination unit 39 of the ECU 40 compares the abnormality detection threshold value Rx [Ω] (reference value), which is an insulation resistance threshold value that is equal to or less than a predetermined leakage current considering safety, with the measured insulation resistance RL, When the insulation resistance RL is smaller than the abnormality detection threshold Rx (RL <Rx), it is determined that there is a ground fault, and a warning is given.

次に、B.この発明の前提となる、第1絶縁抵抗検出部51のみが存在し、第2絶縁抵抗検出部52が存在しない場合の問題点(課題)について説明する。   Next, B. A problem (problem) when only the first insulation resistance detection unit 51 exists and the second insulation resistance detection unit 52 does not exist will be described.

図13に示すように、第1絶縁抵抗検出部51のみが存在していて、第2非接地電源12が途中で地絡(絶縁抵抗が下がっている)している場合を考える。この場合、図6に示したタイムチャートが適用され、第1非接地電源14の絶縁抵抗RLを検出しようとする場合、図7に示したように結線され、上記(1)式で電圧V0が計測される。   As shown in FIG. 13, consider a case where only the first insulation resistance detection unit 51 exists and the second non-grounded power supply 12 is grounded (insulation resistance is lowered) on the way. In this case, when the time chart shown in FIG. 6 is applied and the insulation resistance RL of the first ungrounded power supply 14 is to be detected, the connection is made as shown in FIG. 7, and the voltage V0 is expressed by the above equation (1). It is measured.

次いで、第1非接地電源14の絶縁抵抗RLを検出するために、図9(図13)に示すように結線すると、実際に地絡しているのは、第2非接地電源12であるため、図13の経路で電流が流れるので、電圧V1は、次の(4)式で求められる。
V1=E2L[1−exp{−(T2r/(RL+RS1)×C1)}]
…(4)
Next, in order to detect the insulation resistance RL of the first non-grounded power supply 14, it is the second non-grounded power supply 12 that is actually grounded when connected as shown in FIG. 9 (FIG. 13). Since the current flows through the path of FIG. 13, the voltage V1 is obtained by the following equation (4).
V1 = E2L [1-exp {-(T2r / (RL + RS1) × C1)}]
... (4)

ところが、地絡している箇所から第1非接地電源14の正極までの電圧をE2Hとすると、E2H+E2L=E1となるため、特許文献1に係る手法を用いても誤差を消すことができない。   However, if the voltage from the ground fault point to the positive electrode of the first non-grounded power supply 14 is E2H, E2H + E2L = E1, and therefore the error cannot be eliminated even by using the method according to Patent Document 1.

すなわち、図14の充電特性図を参照して説明すると、同じ値の絶縁抵抗RLであっても、電圧E1の第1非接地電源14側に(地絡が)存在する場合と、電圧E2(E2<E1)側に(地絡が)存在する場合で、電圧V1の計測結果が異なってしまう。換言すれば、第1絶縁抵抗検出部51のみが存在する場合には、電圧E1基準で計測するため、電圧E2の第2非接地電源12側に地絡(絶縁抵抗RL)がある場合には、第2所定時間T2rの充電時間での到達電圧V1がV1bと、第1非接地電源14側に地絡(絶縁抵抗RL)がある場合の到達電圧V1fcに比べて低くなる。換言すれば、電圧E2の第2非接地電源12側に地絡(絶縁抵抗RL)がある場合には、立ち上がり時間が長くなるので絶縁抵抗RLを高めに読み込んでしまうという問題がある。   That is, with reference to the charging characteristic diagram of FIG. 14, even when the insulation resistance RL has the same value, there is a case where a ground (earth fault) exists on the first ungrounded power supply 14 side of the voltage E1, and the voltage E2 ( When the (E2 <E1) side exists (ground fault), the measurement result of the voltage V1 is different. In other words, when only the first insulation resistance detection unit 51 is present, measurement is performed based on the voltage E1, and therefore when there is a ground fault (insulation resistance RL) on the second non-grounded power supply 12 side of the voltage E2. The reached voltage V1 during the charging time of the second predetermined time T2r is lower than V1b and the reached voltage V1fc when there is a ground fault (insulation resistance RL) on the first non-grounded power supply 14 side. In other words, when there is a ground fault (insulation resistance RL) on the second non-grounded power supply 12 side of the voltage E2, there is a problem that the rise time becomes longer and the insulation resistance RL is read higher.

図15に示す電圧比に対する絶縁抵抗の特性111を参照して説明すると、第1絶縁抵抗検出部51のみで電圧E1基準で絶縁抵抗RLを計測すると、地絡(絶縁抵抗RL)が、電圧E2の第2非接地電源12側にある場合には比V0/V1=V0/V1bが高くなり、絶縁抵抗RLを高めに読み込んでしまう。地絡(絶縁抵抗RL)が、電圧E1の第1非接地電源14側にある場合には比V0/V1=V0/V1fcが小さくなり、絶縁抵抗RLを正確に精度よく読み込むことができる。   Referring to the characteristic 111 of the insulation resistance with respect to the voltage ratio shown in FIG. 15, when the insulation resistance RL is measured on the basis of the voltage E1 only by the first insulation resistance detection unit 51, the ground fault (insulation resistance RL) becomes the voltage E2. In the case of the second ungrounded power supply 12 side, the ratio V0 / V1 = V0 / V1b becomes high, and the insulation resistance RL is read higher. When the ground fault (insulation resistance RL) is on the first ungrounded power supply 14 side of the voltage E1, the ratio V0 / V1 = V0 / V1fc becomes small, and the insulation resistance RL can be read accurately and accurately.

この傾向は、電圧E1と電圧E2の差が大きくなるほど顕著に現れる。よって、図16に示すように、差ΔV(E1−E2)が小さい場合には、異常検知閾値Rxと、E1側、E2側での絶縁抵抗RL(E1側結果、E2側結果)とを比較することにより地絡を検出することができるが、図17に示すように、差ΔV(E1−E2)が大きい場合には、異常検知閾値Rxと、E1側、E2側での絶縁抵抗RL(E1側結果、E2側結果)とを比較しても、地絡を検出することができない。   This tendency becomes more prominent as the difference between the voltage E1 and the voltage E2 increases. Therefore, as shown in FIG. 16, when the difference ΔV (E1−E2) is small, the abnormality detection threshold Rx is compared with the insulation resistance RL (E1 side result, E2 side result) on the E1 side and E2 side. As shown in FIG. 17, when the difference ΔV (E1-E2) is large, the abnormality detection threshold value Rx and the insulation resistance RL (E1 side, E2 side) can be detected. Even if the E1 side result and the E2 side result) are compared, the ground fault cannot be detected.

C.この発明の一実施形態に係る第1及び第2絶縁抵抗検出部51、52の両方が存在する場合の動作を図1、図18を参照して説明する。   C. The operation when both the first and second insulation resistance detectors 51 and 52 according to the embodiment of the present invention are present will be described with reference to FIGS.

ECU40は、時点ta〜時点tbの間で第1絶縁抵抗検出部51を作動させる動作信号を該第1絶縁抵抗検出部51に出力し、その後、異なるタイミングの時点tc〜tdの間で第2絶縁抵抗検出部52を作動させる動作信号を該第2絶縁抵抗検出部52に出力する。   The ECU 40 outputs an operation signal for operating the first insulation resistance detection unit 51 between the time point ta and the time point tb to the first insulation resistance detection unit 51, and then the second operation signal between the time points tc and td at different timings. An operation signal for operating the insulation resistance detection unit 52 is output to the second insulation resistance detection unit 52.

この場合、第1絶縁抵抗検出部51は、第1非接地電源14の電圧E1に向かって第1所定時間T1rコンデンサ106(容量C1)に充電して充電電圧V01を得(時点t0)、放電した後(時点t2)、第1絶縁抵抗RL1(図7のRL)を経由して第1非接地電源14の電圧E1に向かって第2所定時間T2rコンデンサ106に充電して充電電圧V11を得(同時点t2)、前記充電電圧V01とV11との比(V01/V11)に基づき、図11に対応する図19に示す特性110を用いて第1絶縁抵抗RL1を算出する。   In this case, the first insulation resistance detector 51 charges the T1r capacitor 106 (capacitance C1) for the first predetermined time toward the voltage E1 of the first non-grounded power supply 14 to obtain the charging voltage V01 (time point t0), and discharges it. (Time t2), the T2r capacitor 106 is charged through the first insulation resistance RL1 (RL in FIG. 7) toward the voltage E1 of the first non-grounded power supply 14 for a second predetermined time to obtain the charging voltage V11. (Simultaneous point t2) Based on the ratio (V01 / V11) between the charging voltages V01 and V11, the first insulation resistance RL1 is calculated using the characteristic 110 shown in FIG. 19 corresponding to FIG.

次に、第2絶縁抵抗検出部52は、第2非接地電源12の電圧E2に向かって第3所定時間T12rコンデンサ106(容量C11)に充電して充電電圧V02を得(時点t11)、放電した後(時点t12)、第2絶縁抵抗RL2を経由して第2非接地電源12の電圧E2に向かって第4所定時間T22rコンデンサ116に充電して充電電圧V12を得、充電電圧V02とV12との比(V02/V12)に基づき、図20に示す特性210を用いて第2絶縁抵抗RL2を算出する。   Next, the second insulation resistance detector 52 charges the T12r capacitor 106 (capacitance C11) for the third predetermined time toward the voltage E2 of the second non-grounded power supply 12 to obtain the charging voltage V02 (time t11), and discharges it. After that (time t12), the charging voltage V12 is obtained by charging the T22r capacitor 116 for the fourth predetermined time toward the voltage E2 of the second non-grounded power supply 12 via the second insulation resistance RL2, and the charging voltages V02 and V12 are obtained. Based on this ratio (V02 / V12), the second insulation resistance RL2 is calculated using the characteristic 210 shown in FIG.

このように、第1非接地電源14の電圧E1及び第2非接地電源12の電圧E2を基準にそれぞれタイミングをずらして第1及び第2絶縁抵抗RL1、RL2を計測することで、絶縁抵抗RL(RL1、RL2)の検出精度を高めることができる。   In this way, by measuring the first and second insulation resistances RL1 and RL2 while shifting the timing based on the voltage E1 of the first non-grounded power supply 14 and the voltage E2 of the second non-grounded power supply 12, respectively, the insulation resistance RL is measured. The detection accuracy of (RL1, RL2) can be increased.

次いで、地絡判定部39は、計測した第1絶縁抵抗RL1及び第2絶縁抵抗RL2を、それぞれ異常検知閾値Rx1(図19)、Rx2(図20)と大小比較し、第1絶縁抵抗RL1又は第2絶縁抵抗RL2のいずれかが、異常検知閾値Rx1、Rx2より小さい値(RL1<Rx1又はRL2<Rx2)である場合に地絡と判定し、警告する。   Next, the ground fault determination unit 39 compares the measured first insulation resistance RL1 and second insulation resistance RL2 with the abnormality detection thresholds Rx1 (FIG. 19) and Rx2 (FIG. 20), respectively, to determine the first insulation resistance RL1 or If any of the second insulation resistances RL2 has a value smaller than the abnormality detection thresholds Rx1 and Rx2 (RL1 <Rx1 or RL2 <Rx2), it is determined that there is a ground fault and a warning is given.

なお、異常検知閾値Rx1、Rx2は同じ値としてもよいが、漏洩電流が所定値(漏洩電流が同値)以上、例えば電源規格等で定められた規格値以上となる異なる値に設定することが好ましい。   Although the abnormality detection thresholds Rx1 and Rx2 may be the same value, it is preferable to set the leakage current to a different value that is not less than a predetermined value (leakage current is the same value), for example, not less than a standard value defined in the power supply standard. .

なお、この発明は、上述した実施形態に限らず、この明細書の記載内容に基づき、例えば、図21の他の実施形態の全体構成図に示すように、インバータ22の入力側に第3絶縁抵抗検出部53を設け、タイミングをずらして第1〜第3絶縁抵抗検出部51〜53を作動させて、第1〜第3絶縁抵抗RL1、RL2、RL3を計測する構成に変更する等、種々の構成を採り得ることはもちろんである。   Note that the present invention is not limited to the above-described embodiment, and based on the description in this specification, for example, as shown in the overall configuration diagram of another embodiment of FIG. The resistance detection unit 53 is provided, the timings are shifted, the first to third insulation resistance detection units 51 to 53 are operated, and the first to third insulation resistances RL1, RL2, and RL3 are changed to the measurement configuration. Of course, it is possible to adopt the following configuration.

10…地絡検知システムを備える電気自動車
12…第2非接地電源(バッテリ) 14…第1非接地電源(燃料電池)
39…地絡判定部 40…ECU
51〜53…第1〜第3絶縁抵抗検出部
DESCRIPTION OF SYMBOLS 10 ... Electric vehicle provided with a ground fault detection system 12 ... Second ungrounded power source (battery) 14 ... First ungrounded power source (fuel cell)
39 ... Ground fault determination unit 40 ... ECU
51-53 ... 1st-3rd insulation resistance detection part

この発明に係る地絡検知システムを備える電気自動車は、駆動用モータを含む負荷と、前記負荷に電力を供給し、第1電圧(E1)を発生する第1非接地電源と、前記負荷と前記第1非接地電源との間に一方の入出力端子が接続されるコンバータと、前記コンバータの他方の入出力端子に接続され前記第1非接地電源より低電圧の第2電圧(E2(E2<E1))を発生する第2非接地電源と、を備える電気自動車において、以下の特徴(1)〜()を有する。 An electric vehicle including a ground fault detection system according to the present invention includes a load including a drive motor, a first ungrounded power source that supplies power to the load and generates a first voltage (E1), the load, and the load A converter having one input / output terminal connected to the first ungrounded power supply, and a second voltage (E2 (E2 <E2 <) connected to the other input / output terminal of the converter and lower than the first ungrounded power supply. An electric vehicle including a second non-grounded power source that generates E1)) has the following features (1) to ( 2 ).

(1)前記第1非接地電源の両端に接続され、前記第1非接地電源の接地部に対する第1絶縁抵抗を検出する第1絶縁抵抗検出部と、前記第2非接地電源の両端に接続され、前記第2非接地電源の接地部に対する第2絶縁抵抗を検出する第2絶縁抵抗検出部と、前記第1絶縁抵抗及び前記第2絶縁抵抗を、異常検知閾値と比較し、前記第1絶縁抵抗又は前記第2絶縁抵抗のいずれかが、前記異常検知閾値より小さい値である場合に地絡と判定する地絡判定部と、を備え、前記第1絶縁抵抗検出部は、前記第1非接地電源の前記第1電圧(E1)に向かって第1所定時間第1コンデンサに充電して第1充電電圧(V01)を得、放電した後、前記第1絶縁抵抗を経由して前記第1非接地電源の前記第1電圧(E1)に向かって第2所定時間前記第1コンデンサに充電して第2充電電圧(V11)を得、前記第1充電電圧(V01)と前記第2充電電圧(V11)との比に基づき、前記第1絶縁抵抗を算出し、前記第2絶縁抵抗検出部は、前記第2非接地電源の前記第2電圧(E2)に向かって第3所定時間第2コンデンサに充電して第3充電電圧(V02)を得、放電した後、前記第2絶縁抵抗を経由して前記第2非接地電源の前記第2電圧(E2)に向かって第4所定時間前記第2コンデンサに充電して第4充電電圧(V12)を得、前記第3充電電圧(V02)と前記第4充電電圧(V12)との比に基づき、前記第2絶縁抵抗を算出することを特徴とする。 (1) Connected to both ends of the first non-grounded power source, connected to both ends of the second non-grounded power source, and a first insulation resistance detecting unit for detecting a first insulation resistance with respect to the grounding part of the first non-grounded power source A second insulation resistance detection unit for detecting a second insulation resistance with respect to a ground part of the second non-grounded power source, the first insulation resistance and the second insulation resistance are compared with an abnormality detection threshold, and the first one of the insulation resistance and the second insulation resistance, e Bei and a ground fault and determines the ground determining unit when the an abnormality detection threshold value smaller than the first insulation resistance detector, the first The first capacitor is charged to the first voltage (E1) of the 1 ungrounded power source for a first predetermined time to obtain a first charging voltage (V01), and after discharging, the first capacitor is passed through the first insulation resistance. The second predetermined time toward the first voltage (E1) of the first ungrounded power source 1 capacitor is charged to obtain a second charging voltage (V11), the first insulation resistance is calculated based on a ratio between the first charging voltage (V01) and the second charging voltage (V11), The 2 insulation resistance detector obtains a third charging voltage (V02) by charging the second capacitor toward the second voltage (E2) of the second non-grounded power source for a third predetermined time, and after discharging, The second capacitor is charged through a second insulation resistance toward the second voltage (E2) of the second ungrounded power source for a fourth predetermined time to obtain a fourth charging voltage (V12), and the third based on the ratio of the charge voltage (V02) and the fourth charging voltage (V12), characterized that you calculate the second insulation resistance.

上記の特徴()を有する発明によれば、第1及び第2絶縁抵抗検出部をそれぞれ、いわゆるフライングキャパシタ方式で構成することができる。 According to the invention having the above feature ( 1 ), each of the first and second insulation resistance detectors can be configured by a so-called flying capacitor system.

)上記の特徴()を有する発明において、前記第1絶縁抵抗検出部と前記第2絶縁抵抗検出部とは、異なるタイミングで前記第1絶縁抵抗及び前記第2絶縁抵抗をそれぞれ検出することを特徴とする。このように構成すれば、第1非接地電源の第1絶縁抵抗及び第2非接地電源の第2絶縁抵抗を確実かつ正確に検出することができる。 ( 2 ) In the invention having the above feature ( 1 ), the first insulation resistance detection unit and the second insulation resistance detection unit detect the first insulation resistance and the second insulation resistance, respectively, at different timings. It is characterized by that. If comprised in this way, the 1st insulation resistance of a 1st non-grounded power supply and the 2nd insulation resistance of a 2nd non-grounded power supply can be detected reliably and correctly.

Claims (4)

負荷と、前記負荷に電力を供給する電圧(E1)の第1非接地電源と、前記負荷と前記第1非接地電源との間に一方の入出力端子が接続されるコンバータと、前記コンバータの他方の入出力端子に接続され前記第1非接地電源より低電圧(E2(E2<E1))の第2非接地電源と、を備える電気自動車において、
前記第1非接地電源の接地部に対する第1絶縁抵抗を検出する第1絶縁抵抗検出部と、
前記第2非接地電源の接地部に対する第2絶縁抵抗を検出する第2絶縁抵抗検出部と、
前記第1絶縁抵抗又は前記第2絶縁抵抗を、異常検知閾値と比較し、前記第1絶縁抵抗又は前記第2絶縁抵抗のいずれかが、前記異常検知閾値より小さい値である場合に地絡と判定する地絡判定部と、
を備えることを特徴とする地絡検知システムを備える電気自動車。
A load, a first non-grounded power source of voltage (E1) for supplying power to the load, a converter having one input / output terminal connected between the load and the first non-grounded power source, and In an electric vehicle comprising: a second non-grounded power source connected to the other input / output terminal and having a lower voltage (E2 (E2 <E1)) than the first non-grounded power source,
A first insulation resistance detector for detecting a first insulation resistance with respect to a ground part of the first non-grounded power source;
A second insulation resistance detector for detecting a second insulation resistance with respect to a ground part of the second non-grounded power source;
The first insulation resistance or the second insulation resistance is compared with an abnormality detection threshold, and when either the first insulation resistance or the second insulation resistance is smaller than the abnormality detection threshold, A ground fault determination unit for determining;
An electric vehicle equipped with a ground fault detection system.
請求項1記載の地絡検知システムを備える電気自動車において、
前記異常検知閾値は、前記第1絶縁抵抗及び第2絶縁抵抗毎に、同一漏洩電流値となる異なる値の第1異常検知閾値と第2異常検知閾値に設定される
ことを特徴とする地絡検知システムを備える電気自動車。
An electric vehicle comprising the ground fault detection system according to claim 1.
The abnormality detection threshold value is set to a first abnormality detection threshold value and a second abnormality detection threshold value which are different from each other in the same leakage current value for each of the first insulation resistance and the second insulation resistance. An electric vehicle equipped with a detection system.
請求項1又は2記載の地絡検知システムを備える電気自動車において、
前記第1絶縁抵抗検出部と前記第2絶縁抵抗検出部とは、それぞれ、同一結線構成の回路とされ、
前記第1絶縁抵抗検出部は、前記第1非接地電源の電圧(E1)に向かって第1所定時間第1コンデンサに充電して充電電圧(V01)を得、放電した後、前記第1絶縁抵抗を経由して前記第1非接地電源の電圧(E1)に向かって第2所定時間前記第1コンデンサに充電して充電電圧(V11)を得、前記充電電圧(V01)と(V11)との比に基づき、前記第1絶縁抵抗を算出し、
前記第2絶縁抵抗検出部は、前記第2非接地電源の電圧(E2)に向かって第3所定時間第2コンデンサに充電して充電電圧(V02)を得、放電した後、前記第2絶縁抵抗を経由して前記第2非接地電源の電圧(E2)に向かって第4所定時間前記第2コンデンサに充電して充電電圧(V12)を得、前記充電電圧(V02)と(V12)との比に基づき、前記第2絶縁抵抗を算出する
ことを特徴とする地絡検知システムを備える電気自動車。
In an electric vehicle comprising the ground fault detection system according to claim 1 or 2,
Each of the first insulation resistance detector and the second insulation resistance detector is a circuit having the same connection configuration,
The first insulation resistance detecting unit charges the first capacitor for a first predetermined time toward the voltage (E1) of the first non-grounded power source to obtain a charging voltage (V01), discharges the first insulation, The first capacitor is charged through a resistor toward the voltage (E1) of the first ungrounded power source for a second predetermined time to obtain a charging voltage (V11), and the charging voltages (V01) and (V11) And calculating the first insulation resistance based on the ratio of
The second insulation resistance detection unit charges the second capacitor for a third predetermined time toward the voltage (E2) of the second non-grounded power source to obtain a charging voltage (V02), and discharges the second insulation resistance. Charge the second capacitor through a resistor toward the voltage (E2) of the second non-grounded power source for a fourth predetermined time to obtain a charging voltage (V12), and the charging voltages (V02) and (V12) An electric vehicle comprising a ground fault detection system, wherein the second insulation resistance is calculated on the basis of the ratio.
請求項3記載の地絡検知システムを備える電気自動車において、
前記第1絶縁抵抗検出部と前記第2絶縁抵抗検出部とは、異なるタイミングで前記第1絶縁抵抗及び前記第2絶縁抵抗をそれぞれ検出する
ことを特徴とする地絡検知システムを備える電気自動車。
An electric vehicle comprising the ground fault detection system according to claim 3,
An electric vehicle comprising a ground fault detection system, wherein the first insulation resistance detection unit and the second insulation resistance detection unit detect the first insulation resistance and the second insulation resistance, respectively, at different timings.
JP2011284187A 2011-12-26 2011-12-26 Electric vehicle with ground fault detection system Expired - Fee Related JP5255112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011284187A JP5255112B2 (en) 2011-12-26 2011-12-26 Electric vehicle with ground fault detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011284187A JP5255112B2 (en) 2011-12-26 2011-12-26 Electric vehicle with ground fault detection system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009086715A Division JP4937293B2 (en) 2009-03-31 2009-03-31 Electric vehicle with ground fault detection system

Publications (2)

Publication Number Publication Date
JP2012105540A true JP2012105540A (en) 2012-05-31
JP5255112B2 JP5255112B2 (en) 2013-08-07

Family

ID=46395239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011284187A Expired - Fee Related JP5255112B2 (en) 2011-12-26 2011-12-26 Electric vehicle with ground fault detection system

Country Status (1)

Country Link
JP (1) JP5255112B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104319A1 (en) * 2015-12-15 2017-06-22 日産自動車株式会社 Vehicle system equipped with fuel cell, and control method for vehicle system equipped with fuel cell
WO2018111507A1 (en) * 2016-12-14 2018-06-21 General Electric Company System and method for leakage current and fault location detection in electric vehicle dc power circuites

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08226950A (en) * 1994-12-12 1996-09-03 Honda Motor Co Ltd Method and device for detecting insulation of ungrounded power source
JP2006136151A (en) * 2004-11-08 2006-05-25 Daihatsu Motor Co Ltd Leak detection method
JP2007147391A (en) * 2005-11-25 2007-06-14 Nissan Motor Co Ltd Insulation resistance measurement system
JP2007300753A (en) * 2006-05-01 2007-11-15 Nissan Motor Co Ltd System for detecting insulation resistance
JP2008139249A (en) * 2006-12-05 2008-06-19 Sanyo Electric Co Ltd Leakage current detecting method for electric vehicle
JP2008293674A (en) * 2007-05-22 2008-12-04 Toyota Motor Corp Earth leakage detector
JP2008304290A (en) * 2007-06-07 2008-12-18 Toyota Motor Corp Earth leakage detector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08226950A (en) * 1994-12-12 1996-09-03 Honda Motor Co Ltd Method and device for detecting insulation of ungrounded power source
JP2006136151A (en) * 2004-11-08 2006-05-25 Daihatsu Motor Co Ltd Leak detection method
JP2007147391A (en) * 2005-11-25 2007-06-14 Nissan Motor Co Ltd Insulation resistance measurement system
JP2007300753A (en) * 2006-05-01 2007-11-15 Nissan Motor Co Ltd System for detecting insulation resistance
JP2008139249A (en) * 2006-12-05 2008-06-19 Sanyo Electric Co Ltd Leakage current detecting method for electric vehicle
JP2008293674A (en) * 2007-05-22 2008-12-04 Toyota Motor Corp Earth leakage detector
JP2008304290A (en) * 2007-06-07 2008-12-18 Toyota Motor Corp Earth leakage detector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104319A1 (en) * 2015-12-15 2017-06-22 日産自動車株式会社 Vehicle system equipped with fuel cell, and control method for vehicle system equipped with fuel cell
JPWO2017104319A1 (en) * 2015-12-15 2018-10-04 日産自動車株式会社 Fuel cell-equipped vehicle system and control method of fuel cell-equipped vehicle system
US10239405B2 (en) 2015-12-15 2019-03-26 Nissan Motor Co., Ltd. Fuel cell equipped vehicle system and control method for fuel cell equipped vehicle system
WO2018111507A1 (en) * 2016-12-14 2018-06-21 General Electric Company System and method for leakage current and fault location detection in electric vehicle dc power circuites
US10168372B2 (en) 2016-12-14 2019-01-01 General Electric Company System and method for leakage current and fault location detection in electric vehicle DC power circuits
CN110072728A (en) * 2016-12-14 2019-07-30 通用电气公司 The system and method that leakage current and abort situation for electric vehicle DC power supply circuit detect
CN110072728B (en) * 2016-12-14 2020-07-07 通用电气公司 System and method for leakage current and fault location detection for electric vehicle DC power supply circuits
EP3554885A4 (en) * 2016-12-14 2020-08-26 General Electric Company SYSTEM AND PROCEDURE FOR LEAK CURRENT AND FAULT LOCATION DETECTION IN DC CIRCUITS OF ELECTRIC VEHICLES

Also Published As

Publication number Publication date
JP5255112B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP4937293B2 (en) Electric vehicle with ground fault detection system
US8164344B2 (en) Electric vehicle with ground fault detecting system
JP5323561B2 (en) Ground fault detection system and electric vehicle equipped with the system
US8241802B2 (en) Fuel cell system with constantly accurate impedance measurement
KR101251180B1 (en) Voltage balancing device for secondary battery system
WO2011121410A2 (en) Fuel cell system
JPWO2010146688A1 (en) Converter output diode short-circuit detection device
US11774499B2 (en) Relay diagnosis device, relay diagnosis method, battery system, and electric vehicle
US10406932B2 (en) Energy storage apparatus, vehicle apparatus, and control method
US12072393B2 (en) Leakage detection device and power system for vehicle
CN113453943B (en) Leakage detection device and power supply system for vehicle
CN106972211A (en) Electrical storage device, conveying equipment and control method
US12174267B2 (en) Earth leakage detecting device, and vehicular power supply system
JP5255112B2 (en) Electric vehicle with ground fault detection system
JP7534387B2 (en) Leakage detection device, vehicle power supply system
JP7097741B2 (en) Current detection system, power storage system
CN108490359A (en) A kind of equipment, dynamical system and the automobile of detection power battery pack insulating properties
US12191774B2 (en) Bidirectional power supply system for powering a battery management system of an electric vehicle
JP2017102083A (en) Offset voltage generation apparatus and offset voltage generation method
US20150301148A1 (en) Method for Checking an Electrical Current Measurement, Circuit for Carrying Out the Method, Battery and Motor Vehicle
JP2023013792A (en) Power conversion device for fuel cells, and fuel cell system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130418

R150 Certificate of patent or registration of utility model

Ref document number: 5255112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees