[go: up one dir, main page]

JP2012038749A - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP2012038749A
JP2012038749A JP2010174369A JP2010174369A JP2012038749A JP 2012038749 A JP2012038749 A JP 2012038749A JP 2010174369 A JP2010174369 A JP 2010174369A JP 2010174369 A JP2010174369 A JP 2010174369A JP 2012038749 A JP2012038749 A JP 2012038749A
Authority
JP
Japan
Prior art keywords
impurity diffusion
conductivity type
semiconductor substrate
region
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010174369A
Other languages
English (en)
Inventor
Kazutaka Manabe
和孝 眞鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Memory Japan Ltd
Original Assignee
Elpida Memory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elpida Memory Inc filed Critical Elpida Memory Inc
Priority to JP2010174369A priority Critical patent/JP2012038749A/ja
Priority to US13/195,615 priority patent/US20120032277A1/en
Publication of JP2012038749A publication Critical patent/JP2012038749A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/01Manufacture or treatment
    • H10D64/017Manufacture or treatment using dummy gates in processes wherein at least parts of the final gates are self-aligned to the dummy gates, i.e. replacement gate processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/0223Manufacture or treatment of FETs having insulated gates [IGFET] having source and drain regions or source and drain extensions self-aligned to sides of the gate
    • H10D30/0227Manufacture or treatment of FETs having insulated gates [IGFET] having source and drain regions or source and drain extensions self-aligned to sides of the gate having both lightly-doped source and drain extensions and source and drain regions self-aligned to the sides of the gate, e.g. lightly-doped drain [LDD] MOSFET or double-diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/601Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/213Channel regions of field-effect devices
    • H10D62/221Channel regions of field-effect devices of FETs
    • H10D62/235Channel regions of field-effect devices of FETs of IGFETs
    • H10D62/299Channel regions of field-effect devices of FETs of IGFETs having lateral doping variations
    • H10D62/307Channel regions of field-effect devices of FETs of IGFETs having lateral doping variations the doping variations being parallel to the channel lengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/351Substrate regions of field-effect devices
    • H10D62/357Substrate regions of field-effect devices of FETs
    • H10D62/364Substrate regions of field-effect devices of FETs of IGFETs
    • H10D62/371Inactive supplementary semiconductor regions, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/667Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor comprising a layer of alloy material, compound material or organic material contacting the insulator, e.g. TiN workfunction layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/667Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor comprising a layer of alloy material, compound material or organic material contacting the insulator, e.g. TiN workfunction layers
    • H10D64/668Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor comprising a layer of alloy material, compound material or organic material contacting the insulator, e.g. TiN workfunction layers the layer being a silicide, e.g. TiSi2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/691Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator comprising metallic compounds, e.g. metal oxides or metal silicates 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/693Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator the insulator comprising nitrogen, e.g. nitrides, oxynitrides or nitrogen-doped materials

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】MOSトランジスタのソース及びドレイン電極に生じる寄生容量を低減する。高速動作が可能な半導体装置を提供する。
【解決手段】半導体装置は、MOSトランジスタを備える。MOSトランジスタは、1対の第1、第2及び第3の不純物拡散領域を有する。第2の不純物拡散領域は、第1の不純物拡散領域を挟むように半導体基板内に設けられた第1導電型の不純物拡散領域であり、第1の不純物拡散領域よりも第1導電型の不純物濃度が高くなる。第3の不純物拡散領域は、1対の第1の不純物拡散領域に接すると共に第2の不純物拡散領域に接しないように、半導体基板内に設けられた第2導電型の不純物拡散領域である。
【選択図】図8

Description

本発明は、半導体装置およびその製造方法に関する。
微細化の進展に伴い、MOSトランジスタの短チャネル効果が顕在化している。短チャネル効果を抑制するために、ソース及びドレイン領域を形成する不純物と反対導電型の不純物を用いてポケット領域を形成する技術が知られている(特許文献1)。ポケット領域を備えたNチャネル型のMOSトランジスタの一例を、図10に断面模式図で示す。
図10に示すように、P型シリコンからなる半導体基板21に素子分離領域22が設けられている。半導体基板21の主面上に、ゲート絶縁膜20を介してゲート電極23が設けられている。ゲート電極23の側面はサイドウォール絶縁膜26で覆われている。
半導体基板内21に導入されたN型不純物によって、エクステンション領域25およびSD領域27が形成されている。エクステンション領域25のN型不純物濃度は、SD領域27のN型不純物濃度よりも低くなるように設定されている。このエクステンション領域25およびSD領域27は、MOSトランジスタのソース/ドレイン電極として機能する。
エクステンション領域25およびSD領域27の全体を囲むように、P型不純物によってポケット領域29が形成されている。これによりMOSトランジスタの短チャネル効果が抑制される。
また、MOSトランジスタの高性能化を目的として、ゲート絶縁膜をHigh−K膜(高誘電体膜)で形成する技術が開発されている。High−K膜でゲート絶縁膜を形成する際には、ダマシンゲート法と称される方法によってゲート電極を形成することが好ましいとされている(特許文献2)。ダマシンゲート法は、ソース/ドレイン電極となる不純物拡散領域を形成した後に、ゲート絶縁膜およびゲート電極の形成を行う方法である。
特開2001−160621号公報 特開2009−27002号公報
図10の矢印Dで示した部分の不純物濃度プロファイルを、模式図として図11に示す。図11の横軸は矢印Dに沿った、半導体基板の表面からの位置(深さ)を示す。図11の縦軸は各不純物の相対的な濃度を示す。
図10、図11に示したように、N型のSD領域27の外側を覆うようにP型のポケット領域29が設けられているため、SD領域27とポケット領域29間のPN接合によって、寄生容量が生じる。微細化に応じて短チャネル効果の抑制を大きくするためには、ポケット領域の不純物濃度を増加させる必要があり、SD領域との間に生じる寄生容量はさらに増大する。このため、MOSトランジスタを配置して形成した回路素子の高速動作が阻害されると言う問題があった。
また、このような問題は、High−K膜をゲート絶縁膜として用いるMOSトランジスタにおいても発生していた。すなわち、High−K膜を用いたMOSトランジスタにおいて、短チャネル効果抑制のためにポケット領域を形成する場合には、従来と同様の構造(図10)とならざるを得なかった。このため、先に説明したように寄生容量の発生に起因して電気回路の高速動作が阻害されると言う問題があった。
一実施形態は、
半導体基板と、
前記半導体基板上に順に設けられたゲート絶縁膜及びゲート電極と、
前記半導体基板内の、前記ゲート電極を挟んだ両側に設けられた1対の第1導電型の第1の不純物拡散領域と、
前記1対の第1の不純物拡散領域を挟むように前記半導体基板内に設けられた1対の第1導電型の第2の不純物拡散領域であって、前記第1の不純物拡散領域よりも第1導電型の不純物濃度が高い第2の不純物拡散領域と、
前記1対の第1の不純物拡散領域に接すると共に前記1対の第2の不純物拡散領域に接しないように、前記半導体基板内に設けられた1対の第2導電型の第3の不純物拡散領域と、
を有するMOSトランジスタを備えた半導体装置に関する。
他の実施形態は、
半導体基板と、
前記半導体基板上に順に設けられたゲート絶縁膜及びゲート電極と、
前記ゲート電極の両側面上に設けられたサイドウォールと、
前記半導体基板内の、前記ゲート電極及びサイドウォールを挟んだ両側に設けられた1対の第1導電型の第2の不純物拡散領域と、
少なくとも前記サイドウォールの下の半導体基板内の領域に前記1対の第2の不純物拡散領域に接するように設けられた1対の第1導電型の第1の不純物拡散領域であって、前記第2の不純物拡散領域よりも第1導電型の不純物濃度が低い第1の不純物拡散領域と、
前記サイドウォール及びゲート絶縁膜の下の半導体基板内の領域に、前記第1の不純物拡散領域に接すると共に前記第2の不純物拡散領域に接しないように設けられた1対の第2導電型の第3の不純物拡散領域と、
を有するMOSトランジスタを備えた半導体装置に関する。
他の実施形態は、
半導体基板上にダミーゲート絶縁膜及びダミーゲート電極をこの順に形成する工程と、
前記半導体基板内の、前記ダミーゲート電極を挟んだ両側に第1導電型の不純物を注入することにより、第1の領域を形成する工程と、
前記ダミーゲート電極の両側面上にサイドウォールを形成する工程と、
前記半導体基板内の、前記ダミーゲート電極及びサイドウォールを挟んだ両側に第1導電型の不純物を注入することにより、
(A)前記半導体基板内の、前記ダミーゲート電極及びサイドウォールを挟んだ両側に、1対の第1導電型の第2の不純物拡散領域を形成し、
(B)前記半導体基板内の、前記サイドウォール及びダミーゲート絶縁膜の下に位置する前記第1の領域を1対の第1導電型の第1の不純物拡散領域とする、工程と、
前記ダミーゲート電極を除去する工程と、
前記ダミーゲート絶縁膜の下に位置する半導体基板の2つの領域に、第2導電型の不純物を注入することにより、前記第1の不純物拡散領域に接すると共に前記第2の不純物拡散領域に接しないように1対の第2導電型の第3の不純物拡散領域を形成する工程と、
前記ダミーゲート絶縁膜を除去して、1対のサイドウォールの間に位置する半導体基板を露出させる工程と、
露出した半導体基板上に、ゲート絶縁膜及びゲート電極をこの順に形成することにより、MOSトランジスタを得る工程と、
を有する半導体装置の製造方法に関する。
MOSトランジスタのソース及びドレイン電極に生じる寄生容量を低減できる。これにより、高速動作が可能な半導体装置を形成することが可能となる。
本発明の半導体装置の一例の一製造工程を表す図である。 本発明の半導体装置の一例の一製造工程を表す図である。 本発明の半導体装置の一例の一製造工程を表す図である。 本発明の半導体装置の一例の一製造工程を表す図である。 本発明の半導体装置の一例の一製造工程を表す図である。 本発明の半導体装置の一例の一製造工程を表す図である。 本発明の半導体装置の一例の一製造工程を表す図である。 本発明の半導体装置の一例を表す図である。 図8の半導体装置の不純物濃度プロファイルを表す図である。 関連する半導体装置を表す図である。 関連する半導体装置の不純物濃度プロファイルを表す図である。
以下に、Nチャネル型のMOSトランジスタを形成する場合の製造方法について説明する。図1〜図8は、本実施例の製造方法を説明するための断面模式図である。
図1に示すように、STI法により、P型のシリコンからなる半導体基板1に、絶縁膜を埋設して素子分離領域2を形成する。素子分離領域2によって周囲を区画された領域がMOSトランジスタの活性領域となる。なお、Nチャネル型のMOSトランジスタを形成する領域には、半導体基板1にホウ素(B)等のP型不純物を導入してP型ウェルを形成してもよい。
図2に示すように、半導体基板1の表面に酸化シリコン(SiO2)からなるダミーゲート絶縁膜3および、多結晶シリコンからなるダミーゲート電極4を堆積して、ゲート電極の形状にパターニングを行う。
図3に示すように、イオン注入法により、ヒ素(As)またはリン(P)等のN型不純物を半導体基板1に導入し、N型のエクステンション領域5を形成する。イオン注入は半導体基板1の表面に対して垂直(注入傾き角:0°)の設定で行う。注入条件としては例えば、エネルギー2〜10KeV、ドーズ量5×1012〜5×1013atoms/cm2の範囲を例示できる。このエクステンション領域5の不純物濃度は、後で形成するSD領域の不純物濃度よりも低くなるように設定する。
図4に示すように、窒化シリコン膜の堆積とエッチバックにより、ゲート電極の側面を覆うサイドウォール絶縁膜6を形成する。この後に、イオン注入法により、ヒ素またはリン等のN型不純物を半導体基板1に導入し、N型のSD領域7(第2の不純物拡散領域に相当する)を形成する。イオン注入は半導体基板1の表面に対して垂直(注入傾き角:0°)の設定で行う。注入条件としては、例えばエネルギー10〜30KeV、ドーズ量1×1014〜5×1015atoms/cm2の範囲を例示できる。このSD領域7の不純物濃度は、先に形成したエクステンション領域5(サイドウォール及びゲート絶縁膜の下に位置するエクステンション領域5が、第1の不純物拡散領域に相当する)の不純物濃度よりも高くなるように設定する。
図5に示すように、CVD法により、酸化シリコンの堆積を行い上面をCMP法によって平坦化する。ダミーゲート電極4の上面が露出した時点でCMP法による研磨は停止する。これにより第1層間絶縁膜8が形成される。
図6に示すように、エッチングによってダミーゲート電極4を除去する。この後に、斜めイオン注入法によって、ホウ素(B)等のP型不純物を半導体基板1に導入し、P型のポケット領域9(第3の不純物拡散領域に相当する)を形成する。イオン注入は、半導体基板1の表面に対して所定の傾き角度を有する状態で行う。この傾き角度の設定によって、ポケット領域9の形成される領域を調整することができる。これにより、エクステンション領域5の外側を覆うように接触して、SD領域7には接触しない状態のポケット領域9を形成できる。注入条件としては、例えば注入傾き角度5〜25°、エネルギー3〜15KeV、ドーズ量1×1013〜1×1014atoms/cm2の範囲が例示できる。MOSトランジスタを配置する領域にあらかじめP型ウェルが形成されている場合には、このポケット領域9の不純物濃度はP型ウェルの不純物濃度よりも高くなるように設定される。
この後に、ランプアニール装置等を用いた急速熱処理法によって、850〜950℃程度のアニールを行うことで、不純物の活性化を行い、MOSトランジスタのソース/ドレイン電極が形成される。なお、ポケット領域9の注入角度およびエネルギー等の設定する際には、このアニール処理によって生じるポケット領域9の横方向への熱拡散も考慮して、注入条件の設定を行うことが好ましい。
図7に示すように、希釈したフッ酸等を用いた湿式エッチングによってダミーゲート絶縁膜3を除去し、半導体基板1の表面を露出させる。この後に、High−K膜(高誘電体膜)を3〜5nmの膜厚に堆積して、ゲート絶縁膜10を形成する。High−K膜としては、HfSiON、HfO2、Al23、ZrO2等の高誘電体膜や、それらの高誘電体膜を含む積層膜(例えば、酸化シリコン膜とHfSiON膜の積層膜等)が例示できる。
引き続き、先にダミーゲート電極4を除去した部分に導電膜を埋設して、表面をCMP処理することにより、ゲート電極11を形成する。ゲート電極11に用いる導電膜としては、Niシリサイド、Hfシリサイド、窒化チタン(TiN)等の金属膜が例示できる。導電膜は異なる材料からなる積層膜で構成してもよい。
図8に示すように、ゲート電極11の上面を覆うように、酸化シリコン等を用いて第2層間絶縁膜12を形成する。SD領域に接続するコンタクトプラグ13、および引き出し用配線14、ゲート電極に接続するコンタクトプラグと引き出し用配線(図示せず)を形成すればMOSトランジスタが完成する。
図8の矢印Dで示した部分の不純物濃度プロファイルを模式図として図9に示す。図9の横軸は矢印Dに沿った、半導体基板の表面からの位置(深さ)を示す。図9の縦軸は各不純物の相対的な濃度を示す。図8、図9で示したように、本実施例ではN型のSD領域7の外側を覆うP型のポケット領域9が存在しないため、SD領域7とポケット領域9間のPN接合に起因した寄生容量の発生を回避できる。エクステンション領域5はSD領域7よりも不純物濃度が低いため、エクステンション領域5とポケット領域9のPN接合に起因した寄生容量は小さく、従来型の構造(図10)に比べて寄生容量を大幅に低減できる。
以上の実施例ではNチャネル型のMOSトランジスタの場合について説明したが、イオン注入で導入する不純物の導電型を変更することで、Pチャネル型のMOSトランジスタも同様にして形成できる。具体的には、エクステンション領域とSD領域をP型の不純物で形成し、ポケット領域をN型の不純物で形成すればよい。P型の半導体基板を用いる場合には、Pチャネル型のMOSトランジスタを形成する領域には、あらかじめN型ウェルを形成しておく。Pチャネル型のMOSトランジスタを形成する場合にも、先に説明した方法と同様にポケット領域を形成することで、寄生容量を低減したMOSトランジスタを形成できる。
また、ゲート絶縁膜としてHigh−K絶縁膜を用いる代わりに、従来の酸化シリコン膜を用いる場合であっても、ダマシンゲート法でゲート電極を形成することにより本発明を適用できる。
20 ゲート絶縁膜
1、21 半導体基板
2、22 素子分離領域
3 ダミーゲート絶縁膜
4 ダミーゲート電極
5、25 エクステンション領域
6、26 サイドウォール絶縁膜
7、27 ソース及びドレイン領域
8 第1層間絶縁膜
9、29 ポケット領域
10 ゲート絶縁膜
11、23 ゲート電極
12 第2層間絶縁膜
13 コンタクトプラグ
14 引き出し用配線

Claims (14)

  1. 半導体基板と、
    前記半導体基板上に順に設けられたゲート絶縁膜及びゲート電極と、
    前記半導体基板内の、前記ゲート電極を挟んだ両側に設けられた1対の第1導電型の第1の不純物拡散領域と、
    前記1対の第1の不純物拡散領域を挟むように前記半導体基板内に設けられた1対の第1導電型の第2の不純物拡散領域であって、前記第1の不純物拡散領域よりも第1導電型の不純物濃度が高い第2の不純物拡散領域と、
    前記1対の第1の不純物拡散領域に接すると共に前記1対の第2の不純物拡散領域に接しないように、前記半導体基板内に設けられた1対の第2導電型の第3の不純物拡散領域と、
    を有するMOSトランジスタを備えた半導体装置。
  2. 前記第1の不純物拡散領域の少なくとも一部の上には、前記ゲート電極の両側面に接するようにサイドウォールが設けられる、請求項1に記載の半導体装置。
  3. 半導体基板と、
    前記半導体基板上に順に設けられたゲート絶縁膜及びゲート電極と、
    前記ゲート電極の両側面上に設けられたサイドウォールと、
    前記半導体基板内の、前記ゲート電極及びサイドウォールを挟んだ両側に設けられた1対の第1導電型の第2の不純物拡散領域と、
    少なくとも前記サイドウォールの下の半導体基板内の領域に前記1対の第2の不純物拡散領域に接するように設けられた1対の第1導電型の第1の不純物拡散領域であって、前記第2の不純物拡散領域よりも第1導電型の不純物濃度が低い第1の不純物拡散領域と、
    前記サイドウォール及びゲート絶縁膜の下の半導体基板内の領域に、前記第1の不純物拡散領域に接すると共に前記第2の不純物拡散領域に接しないように設けられた1対の第2導電型の第3の不純物拡散領域と、
    を有するMOSトランジスタを備えた半導体装置。
  4. 前記ゲート絶縁膜は、少なくとも高誘電体膜を含む、請求項1〜3の何れか1項に記載の半導体装置。
  5. 前記高誘電体膜は、HfSiON膜、HfO2膜、Al23膜、又はZrO2膜である、請求項4に記載の半導体装置。
  6. 前記第1導電型がN型、前記第2導電型がP型であり、前記MOSトランジスタはNチャネル型のMOSトランジスタである、請求項1〜5の何れか1項に記載の半導体装置。
  7. 前記第1導電型がP型、前記第2導電型がN型であり、前記MOSトランジスタはPチャネル型のMOSトランジスタである、請求項1〜5の何れか1項に記載の半導体装置。
  8. 半導体基板上にダミーゲート絶縁膜及びダミーゲート電極をこの順に形成する工程と、
    前記半導体基板内の、前記ダミーゲート電極を挟んだ両側に第1導電型の不純物を注入することにより、第1の領域を形成する工程と、
    前記ダミーゲート電極の両側面上にサイドウォールを形成する工程と、
    前記半導体基板内の、前記ダミーゲート電極及びサイドウォールを挟んだ両側に第1導電型の不純物を注入することにより、
    (A)前記半導体基板内の、前記ダミーゲート電極及びサイドウォールを挟んだ両側に、1対の第1導電型の第2の不純物拡散領域を形成し、
    (B)前記半導体基板内の、前記サイドウォール及びダミーゲート絶縁膜の下に位置する前記第1の領域を1対の第1導電型の第1の不純物拡散領域とする、工程と、
    前記ダミーゲート電極を除去する工程と、
    前記ダミーゲート絶縁膜の下に位置する半導体基板の2つの領域に、第2導電型の不純物を注入することにより、前記第1の不純物拡散領域に接すると共に前記第2の不純物拡散領域に接しないように1対の第2導電型の第3の不純物拡散領域を形成する工程と、
    前記ダミーゲート絶縁膜を除去して、1対のサイドウォールの間に位置する半導体基板を露出させる工程と、
    露出した半導体基板上に、ゲート絶縁膜及びゲート電極をこの順に形成することにより、MOSトランジスタを得る工程と、
    を有する半導体装置の製造方法。
  9. 前記第3の不純物拡散領域を形成する工程において、
    前記半導体基板の主面に垂直な方向に対して斜め方向から、前記第2導電型の不純物を注入する、請求項8に記載の半導体装置の製造方法。
  10. 前記第3の不純物拡散領域を形成する工程において、
    前記第2導電型の不純物の注入角度は、前記半導体基板の主面に垂直な方向に対して5〜25°である、請求項9に記載の半導体装置の製造方法。
  11. 前記ゲート絶縁膜は、少なくとも高誘電体膜を含む、請求項8〜10の何れか1項に記載の半導体装置の製造方法。
  12. 前記高誘電体膜は、HfSiON膜、HfO2膜、Al23膜、又はZrO2膜である、請求項11に記載の半導体装置の製造方法。
  13. 前記第1導電型がN型、前記第2導電型がP型であり、前記MOSトランジスタはNチャネル型のMOSトランジスタである、請求項8〜12の何れか1項に記載の半導体装置の製造方法。
  14. 前記第1導電型がP型、前記第2導電型がN型であり、前記MOSトランジスタはPチャネル型のMOSトランジスタである、請求項8〜12の何れか1項に記載の半導体装置の製造方法。
JP2010174369A 2010-08-03 2010-08-03 半導体装置およびその製造方法 Pending JP2012038749A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010174369A JP2012038749A (ja) 2010-08-03 2010-08-03 半導体装置およびその製造方法
US13/195,615 US20120032277A1 (en) 2010-08-03 2011-08-01 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010174369A JP2012038749A (ja) 2010-08-03 2010-08-03 半導体装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2012038749A true JP2012038749A (ja) 2012-02-23

Family

ID=45555511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010174369A Pending JP2012038749A (ja) 2010-08-03 2010-08-03 半導体装置およびその製造方法

Country Status (2)

Country Link
US (1) US20120032277A1 (ja)
JP (1) JP2012038749A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8486778B2 (en) 2011-07-15 2013-07-16 International Business Machines Corporation Low resistance source and drain extensions for ETSOI
CN106531794B (zh) * 2015-09-15 2021-02-09 联华电子股份有限公司 高压金属氧化物半导体晶体管元件及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW506079B (en) * 2000-02-17 2002-10-11 Koninkl Philips Electronics Nv A method of manufacturing a semiconductor device
US6797576B1 (en) * 2000-03-31 2004-09-28 National Semiconductor Corporation Fabrication of p-channel field-effect transistor for reducing junction capacitance
US6924180B2 (en) * 2003-02-10 2005-08-02 Chartered Semiconductor Manufacturing Ltd. Method of forming a pocket implant region after formation of composite insulator spacers
JP4011024B2 (ja) * 2004-01-30 2007-11-21 株式会社ルネサステクノロジ 半導体装置およびその製造方法

Also Published As

Publication number Publication date
US20120032277A1 (en) 2012-02-09

Similar Documents

Publication Publication Date Title
TWI460859B (zh) 半導體裝置及製造半導體裝置之方法
JP4782821B2 (ja) 自己整合損傷層を有するデバイス構造体
CN107452738B (zh) 包括伪栅极结构的集成电路及其形成方法
JP2012004473A (ja) 半導体装置及び半導体装置の製造方法
US20120132986A1 (en) Semiconductor devices and methods of manufacturing the same
JP2013074189A (ja) 半導体装置及びその製造方法
TWI429059B (zh) 半導體裝置
JP2011192800A (ja) 半導体装置及びその製造方法
CN104701136A (zh) 电容器、半导体器件及其形成方法
CN106024600A (zh) 短沟道nfet装置
US20110062527A1 (en) Semiconductor apparatus and method for manufacturing same
US8785267B2 (en) Methods of manufacturing semiconductor devices including transistors
CN113327978B (zh) 半导体结构及其形成方法
JP2011129811A (ja) 半導体装置とその製造方法
JP5060002B2 (ja) 半導体装置の製造方法
JP2012038749A (ja) 半導体装置およびその製造方法
JP2012238630A (ja) 半導体装置及びその製造方法
JP2011049366A (ja) 半導体装置の製造方法
JP2013045953A (ja) 半導体装置およびその製造方法
JP2013012686A (ja) 半導体装置及びその製造方法
TW201838149A (zh) 半導體裝置及其製造方法
JP2012230993A (ja) 半導体基板、半導体装置及びその製造方法
CN104517840A (zh) 一种半导体器件的制造方法
JP2013105838A (ja) 半導体装置およびその製造方法
KR100605908B1 (ko) 반도체 소자 및 그 제조 방법