[go: up one dir, main page]

JP2012037458A - Sample holder for liquid oil - Google Patents

Sample holder for liquid oil Download PDF

Info

Publication number
JP2012037458A
JP2012037458A JP2010179814A JP2010179814A JP2012037458A JP 2012037458 A JP2012037458 A JP 2012037458A JP 2010179814 A JP2010179814 A JP 2010179814A JP 2010179814 A JP2010179814 A JP 2010179814A JP 2012037458 A JP2012037458 A JP 2012037458A
Authority
JP
Japan
Prior art keywords
plate
liquid oil
hole
sample holder
basement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010179814A
Other languages
Japanese (ja)
Inventor
Toshinori Wada
叔憲 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Priority to JP2010179814A priority Critical patent/JP2012037458A/en
Publication of JP2012037458A publication Critical patent/JP2012037458A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】 より少量の液体油でも、高い分析精度を維持できる液体油の分光測定を行うための液体油用試料ホルダの提供。
【解決手段】 板状のベースメント部材(2)及び固定板(3)と、これらを付き合わせた固定状態を保持する固定具(8)と、を含み、固定状態でベースメント部材(2)及び固定板(3)を垂直に貫通する光透過窓としての貫通孔(2c、3c)を設けるとともに、ベースメント部材(2)には主面から貫通孔(2c)の周縁部を所定の深さまで座ぐり加工した座ぐり部(2d)を設け、座ぐり部内には貫通孔(2c)を閉塞するように2枚の板状の光学結晶板(6、4)を順に重ねて配置し、光学結晶板(4,6)同士を密着させる弾性部材(7)を固定板(3)の主面上の貫通孔(3c)の周縁部に沿って与え、少なくとも光透過窓に干渉しないように光学結晶板(4,6)の間にスペーサ部材(5)を挿入しこの間隙内に液体油(9)を保持する。
【選択図】 図3
PROBLEM TO BE SOLVED: To provide a sample holder for liquid oil for performing spectroscopic measurement of liquid oil that can maintain high analysis accuracy even with a smaller amount of liquid oil.
A basement member (2) including a plate-like basement member (2) and a fixing plate (3), and a fixture (8) for holding a fixed state in which they are attached together. And through holes (2c, 3c) as light transmission windows that vertically penetrate the fixing plate (3), and the basement member (2) has a peripheral portion of the through holes (2c) extending from the main surface to a predetermined depth. A counterbore part (2d) that is counterbored to the end is provided, and two plate-like optical crystal plates (6, 4) are sequentially stacked in the counterbore part so as to close the through hole (2c), An elastic member (7) for bringing the optical crystal plates (4, 6) into close contact with each other is provided along the peripheral edge of the through hole (3c) on the main surface of the fixed plate (3) so as not to interfere with at least the light transmission window. A spacer member (5) is inserted between the optical crystal plates (4, 6), and liquid oil (9 ).
[Selection] Figure 3

Description

本発明は、赤外線分光測定装置内にセットされ液体油の分光測定を行うための液体油用試料ホルダに関する。   The present invention relates to a sample holder for liquid oil that is set in an infrared spectrometer and performs spectroscopic measurement of liquid oil.

赤外線分光分析は、測定物質へ赤外線を照射し、その透過光又は反射光の分光スペクトルから測定物質の化学結合を特定する分析手法である。ここで測定物質が液状物質である場合、赤外線透過物質を含む容器に液状物質を蓄え、赤外線分光測定装置内の赤外線の経路をよぎる位置にこれをセットして透過光で分析を行っていた。一方、少量の液状物質からなる測定物質を分析するためには、赤外線透過物質からなる光学結晶板の上に液状物質を滴下し、透過光で分析を行っていた。しかしながら、液状物質の表面張力により赤外線の透過部分のその厚さを均一とできず、定量的な分析を行うことは困難であった。これに対して、所定間隔だけ隔てて平行配置された2枚の光学結晶板の間に測定物質である液状物質を流し込む分析方法が知られている。   Infrared spectroscopic analysis is an analysis method in which a measurement substance is irradiated with infrared rays and a chemical bond of the measurement substance is identified from the spectrum of transmitted or reflected light. Here, when the measurement substance is a liquid substance, the liquid substance is stored in a container containing an infrared transmission substance, and this is set at a position crossing the infrared path in the infrared spectroscopic measurement apparatus and analyzed with the transmitted light. On the other hand, in order to analyze a measurement substance made of a small amount of liquid substance, the liquid substance was dropped on an optical crystal plate made of an infrared transmitting substance, and the analysis was performed with transmitted light. However, the thickness of the infrared transmitting portion cannot be made uniform due to the surface tension of the liquid substance, and it has been difficult to perform quantitative analysis. On the other hand, an analysis method is known in which a liquid substance as a measurement substance is poured between two optical crystal plates arranged in parallel at a predetermined interval.

特許文献1では、セルロースなどの天然繊維やポリエステルなどの合成繊維に測定物質である液状物質を吸収させ、この繊維を2枚の光学結晶板の間に挟んで液状物質を滲み出させ、滲み出し部分の分光分析を行う方法が開示されている。かかる滲み出し部分では、少量であっても赤外線の透過部分の液状物質の厚さ、すなわち赤外線の透過長さは、2枚の光学結晶板の間の距離と等しくなり、均一にできる。   In Patent Document 1, a natural substance such as cellulose or a synthetic fiber such as polyester absorbs a liquid substance as a measurement substance, and the liquid substance is leached by sandwiching the fiber between two optical crystal plates. A method for performing spectroscopic analysis is disclosed. Even in a small amount, the thickness of the liquid material in the infrared transmission portion, that is, the infrared transmission length, is equal to the distance between the two optical crystal plates, and can be made uniform.

また、特許文献2では、2枚のシリコン単結晶からなる光学結晶板(窓板)の少なくとも一方に液状物質を保持する酸化シリコンからなる切り欠きを有する囲いを均一な高さに形成し、押え板の間に光学結晶板(窓板)を挟み込むことが開示されている。囲いの厚さを調整することで、2枚の光学結晶板の間の距離を一定にして平行に維持でき、液状物質の赤外線の透過長さを均一にできるのである。   Further, in Patent Document 2, an enclosure having a notch made of silicon oxide for holding a liquid substance is formed at a uniform height on at least one of two optical crystal plates (window plates) made of silicon single crystal. It is disclosed that an optical crystal plate (window plate) is sandwiched between plates. By adjusting the thickness of the enclosure, the distance between the two optical crystal plates can be kept constant and parallel, and the infrared transmission length of the liquid material can be made uniform.

特開2005−030990号公報JP-A-2005-030990 実開平03−16047号公報Japanese Utility Model Publication No. 03-16047

ところで、液体油の赤外線分光分析において、少量添加される添加剤などの化学結合は、液体油の主たる炭化水素の化学結合と比較して分光スペクトルを明瞭に区別しづらい。そこで、2枚の光学結晶板の間の距離を拡げて、赤外線の透過長さを延長してかかる分光スペクトルを明瞭にすることが求められる。その一方で、より少量の液体油を分析するには、赤外線の透過面積を減じることとなる。かかる場合、例えば、特許文献2のように光学結晶板の面積に対する囲いによって囲まれる液体油の保持部分の面積を小さくすることで赤外線の透過面積を減じられる。しかしながら、このように面積の小さな囲いでは2枚の光学結晶板の間の距離を一定にして平行に維持することは難しくなり、液状物質の赤外線の透過長さを均一にできない。つまり、定量的な分析を行うことは困難である。   By the way, in the infrared spectroscopic analysis of liquid oil, chemical bonds such as additives added in a small amount are difficult to distinguish clearly from the chemical bonds of the main hydrocarbons of liquid oil. Therefore, it is required to increase the distance between the two optical crystal plates and extend the infrared transmission length to clarify the spectrum. On the other hand, to analyze a smaller amount of liquid oil, the infrared transmission area is reduced. In such a case, for example, by reducing the area of the liquid oil holding portion surrounded by the enclosure with respect to the area of the optical crystal plate as in Patent Document 2, the infrared transmission area can be reduced. However, it is difficult to keep the distance between the two optical crystal plates constant and parallel in such a small enclosure, and the transmission length of the infrared rays of the liquid substance cannot be made uniform. That is, it is difficult to perform a quantitative analysis.

本発明は、かかる事情に鑑みてなされたものであって、その目的とするところは、より少量の液体油でも、高い分析精度を維持できる赤外線分光測定装置内にセットされ液体油の分光測定を行うための液体油用試料ホルダの提供である。   The present invention has been made in view of such circumstances, and the object of the present invention is to perform spectroscopic measurement of liquid oil set in an infrared spectrometer capable of maintaining high analysis accuracy even with a smaller amount of liquid oil. Providing a sample holder for liquid oil to perform.

本発明による液体油用試料ホルダは、赤外線分光測定装置内にセットされ液体油の分光測定を行うための試料ホルダであって、互いに平行な第1及び第2の主面をそれぞれ有する板状のベースメント部材及び固定板と、前記ベースメント部材及び固定板の第1主面同士を付き合わせた固定状態を保持する固定具と、を含み、前記固定状態で前記ベースメント部材及び固定板を垂直に貫通する光透過窓としての貫通孔を設けるとともに、前記ベースメント部材には前記貫通孔の軸線に沿って前記第1主面から前記貫通孔の周縁部を所定の深さまで座ぐり加工した座ぐり部を設け、前記座ぐり部内には前記貫通孔を閉塞するように2枚の板状の光学結晶板を順に重ねて配置し、前記固定板を前記ベースメント部材に前記固定具で固定するのに併せて前記光学結晶板同士を密着させる弾性部材を前記固定板の前記第1の主面上の前記貫通孔の周縁部に沿って与え、少なくとも前記光透過窓に干渉しないように前記光学結晶板の間にスペーサ部材を挿入しこの間隙内に前記液体油を保持することを特徴とする。   A sample holder for liquid oil according to the present invention is a sample holder that is set in an infrared spectrometer and performs spectroscopic measurement of liquid oil, and has plate-like shapes each having first and second main surfaces parallel to each other. A basement member and a fixing plate, and a fixture for holding a fixing state in which the first main surfaces of the basement member and the fixing plate are attached to each other, and the basement member and the fixing plate are vertically arranged in the fixing state. The basement member is provided with a through hole serving as a light transmission window that passes through the basement member, and a peripheral edge of the through hole is spotted from the first main surface to a predetermined depth along the axis of the through hole. A counterbore portion is provided, and two plate-like optical crystal plates are sequentially stacked in the counterbore portion so as to close the through hole, and the fixing plate is fixed to the basement member with the fixing tool. Together with An elastic member for bringing the optical crystal plates into close contact with each other is provided along a peripheral edge of the through hole on the first main surface of the fixed plate, and at least a spacer between the optical crystal plates so as not to interfere with the light transmission window. A member is inserted to hold the liquid oil in the gap.

かかる発明によれば、互いに平行な第1及び第2の主面をそれぞれ有する板状のベースメント部材及び固定板を固定具で固定することにより、弾性部材を介した上で、ベースメント部材の座ぐり部と固定板によって、液体油を保持する2枚の光学結晶板とその間に挟みこまれたスペーサ部材とを押圧して固定できる。光学結晶板に対して広い面積を有するベースメント部材と固定板の主面を、互いに平行に付き合わせられることから、2枚の光学結晶板の主面は、液体油の量を減らし、赤外線の透過面積を減じさせても、平行に維持できる。よって、液状物質の赤外線の透過長さを均一にでき、定量的な分析をさせ得る。すなわち、より少量の液体油でも、高い分析精度を維持させて分光測定できる赤外線分光測定装置用の液体油用試料ホルダを得ることができる。   According to this invention, the plate-like basement member having the first and second main surfaces parallel to each other and the fixing plate are fixed by the fixing tool, so that the basement member is inserted through the elastic member. The counterbore part and the fixing plate can press and fix the two optical crystal plates holding the liquid oil and the spacer member sandwiched therebetween. Since the basement member having a large area relative to the optical crystal plate and the main surface of the fixing plate can be attached in parallel to each other, the main surfaces of the two optical crystal plates reduce the amount of liquid oil, Even if the transmission area is reduced, it can be kept parallel. Therefore, the infrared ray transmission length of the liquid substance can be made uniform, and quantitative analysis can be performed. That is, it is possible to obtain a liquid oil sample holder for an infrared spectroscopic measurement apparatus capable of performing spectroscopic measurement while maintaining high analysis accuracy even with a smaller amount of liquid oil.

上記した発明において、前記光透過窓は円形であることを特徴としてよい。かかる発明によれば、光透過窓を通過する赤外線は、その照射軸から全方位に均一に液体油を透過するので、より少量の液体油の分析においても高い分析精度を維持できる。   In the above-described invention, the light transmission window may be circular. According to this invention, since the infrared light passing through the light transmission window transmits liquid oil uniformly in all directions from the irradiation axis, high analysis accuracy can be maintained even in analysis of a smaller amount of liquid oil.

上記した発明において、前記光学結晶板は四方形であることを特徴としてよい。かかる発明によれば、座ぐり部内で光学結晶板が位置ずれしづらくできて、より少量の液体油の分析においても高い分析精度を維持できる。また、光学結晶板のハンドリングが容易となり、光学結晶板の表面損傷による分析精度の低下を生じさせることなく、高い分析精度を維持できる。   In the above-described invention, the optical crystal plate may be a quadrangle. According to this invention, it is difficult for the optical crystal plate to be displaced in the spot facing portion, and high analysis accuracy can be maintained even in the analysis of a smaller amount of liquid oil. Moreover, handling of the optical crystal plate is facilitated, and high analysis accuracy can be maintained without causing a decrease in analysis accuracy due to surface damage of the optical crystal plate.

上記した発明において、前記スペーサ部材は貫通孔を包囲するような環状板体であることを特徴としてもよい。かかる発明によれば、赤外線を遮断させることなく、赤外線の液体油に対する照射面積を減少させず、得られる分光スペクトルの強度を低下させることがないため、定量的な分析をさせ、分析精度をより高く維持させることができる。   In the above-described invention, the spacer member may be an annular plate that surrounds the through hole. According to this invention, the infrared light is not blocked, the irradiation area of the infrared liquid oil is not reduced, and the intensity of the obtained spectral spectrum is not lowered. It can be kept high.

本発明の1つの実施例の部品図である。FIG. 3 is a component diagram of one embodiment of the present invention. 本発明の1つの実施例の組立て時の斜視図である。It is a perspective view at the time of the assembly of one Example of this invention. 本発明の1つの実施例の組立て時の断面図である。It is sectional drawing at the time of the assembly of one Example of this invention. 本発明の1つの実施例を含む装置の構成図である。1 is a block diagram of an apparatus including one embodiment of the present invention. 本発明の1つの実施例により得られる分光スペクトルの図である。FIG. 3 is a spectrum obtained by one embodiment of the present invention. 本発明の1つの実施例と従来例により得られる分光スペクトルの図である。It is a figure of the spectrum obtained by one Example of this invention, and a prior art example.

本発明の1つの実施例による試料ホルダについて図1乃至図3を用いてその詳細について説明する。   The sample holder according to one embodiment of the present invention will be described in detail with reference to FIGS.

図1に示すように、試料ホルダ1は、組立てて測定物質である液体油を保持できるホルダであって、ベースメント部材2と、固定板3と、上窓板4と、スペーサ部材5と、下窓板6と、弾性部材7とを含む。   As shown in FIG. 1, the sample holder 1 is a holder that can assemble and hold liquid oil as a measurement substance, and includes a basement member 2, a fixing plate 3, an upper window plate 4, a spacer member 5, A lower window plate 6 and an elastic member 7 are included.

ベースメント部材2は、主面を長方形とする板体であり、その主面となるベースメント部材表面2aとベースメント部材裏面2bは互いに平行である。また、ベースメント部材2は、その主面に対して略垂直に貫通し略円筒形の内周面を有し、後述するように赤外線分光測定装置10内で照射させた赤外線を通過させることのできる窓としてベースメント部材孔2cを有している。ベースメント部材孔2cの軸線に沿って座ぐり加工、つまり、ベースメント部材孔2cの周囲の上面を円形に平滑に切削する加工がされている。かかる座ぐり加工により生じた略円筒形の内周面と底面(ベースメント部材孔2cの上端からつながる面)を座ぐり部2dとする。ベースメント部材表面2a上において、座ぐり部2dから所定の間隔で、すなわち、後述する固定板3のボルト用孔3dに対応する位置で、4本のボルト2eがその軸線をベースメント部材表面2aに対して略垂直にしてそれぞれ植設されている。   The basement member 2 is a plate whose main surface is rectangular, and the basement member surface 2a and the basement member back surface 2b, which are the main surfaces, are parallel to each other. Further, the basement member 2 has a substantially cylindrical inner peripheral surface that penetrates substantially perpendicularly to the main surface, and allows infrared rays irradiated in the infrared spectrometer 10 to pass through as will be described later. A basement member hole 2c is provided as a possible window. A counterbore process is performed along the axis of the basement member hole 2c, that is, the upper surface around the basement member hole 2c is cut smoothly into a circle. The substantially cylindrical inner peripheral surface and bottom surface (surface connected from the upper end of the basement member hole 2c) generated by the counterbore processing are defined as a counterbore portion 2d. On the basement member surface 2a, the four bolts 2e use the axis of the basement member surface 2a at a predetermined interval from the counterbore 2d, that is, at a position corresponding to a bolt hole 3d of the fixing plate 3 described later. They are planted so as to be substantially perpendicular to each other.

固定板3は主面を長方形とする板体であり、その主面となる固定板表面3aと固定板裏面3bは互いに平行である。固定板3には、その主面に対して垂直に貫通する孔として、固定板孔3cと4つのボルト用孔3dが設けられている。固定板孔3cは赤外線を通過させることのできる円形の窓として、固定板3の略中央のベースメント部材孔2cに対応する位置に設けられている。ベースメント部材孔2cと固定板孔3cの開口部の直径は、同じである。ボルト用孔3dは、固定板孔3cから所定の間隔を取って、上記したボルト2eに対応する位置にそれぞれ設けられている。後述する組み立ての際に、ボルト2eをボルト用孔3dに通し、ナット8で締めることにより、ベースメント部材2と固定板3を締結させることができる(図2参照)。   The fixed plate 3 is a plate body whose main surface is rectangular, and the fixed plate front surface 3a and the fixed plate back surface 3b, which are the main surfaces, are parallel to each other. The fixing plate 3 is provided with a fixing plate hole 3c and four bolt holes 3d as holes that penetrate perpendicularly to the main surface. The fixed plate hole 3c is provided at a position corresponding to the basement member hole 2c at the substantially center of the fixed plate 3 as a circular window through which infrared rays can pass. The diameters of the openings of the basement member hole 2c and the fixed plate hole 3c are the same. The bolt holes 3d are provided at positions corresponding to the above-described bolts 2e at a predetermined interval from the fixing plate hole 3c. At the time of assembly described later, the basement member 2 and the fixing plate 3 can be fastened by passing the bolt 2e through the bolt hole 3d and tightening with the nut 8 (see FIG. 2).

上窓板4及び下窓板6は、臭化カリウム(KBr)からなり、略直方体の形状を有する板体である。下窓板6は、下窓板上面6aを有する。なお、本実施例では、上窓板4及び下窓板6の材料として臭化カリウムを用いたが、一般的に赤外線分光分析で照射させる赤外線の波数域(4000〜400cm−1)内の赤外線を透過させることのできる光学結晶、例えば、塩化ナトリウム(NaCl)、セレン化亜鉛(ZnSe)、臭沃化タリウム(KRS−5)、ヨウ化セシウム(CsI)などを用いてもよい。 The upper window plate 4 and the lower window plate 6 are plate bodies made of potassium bromide (KBr) and having a substantially rectangular parallelepiped shape. The lower window plate 6 has a lower window plate upper surface 6a. In this embodiment, potassium bromide was used as the material of the upper window plate 4 and the lower window plate 6, but in general, infrared rays in the infrared wave number range (4000 to 400 cm −1 ) irradiated by infrared spectroscopy. For example, an optical crystal capable of transmitting light, such as sodium chloride (NaCl), zinc selenide (ZnSe), thallium bromoiodide (KRS-5), cesium iodide (CsI), or the like may be used.

図1に図3を併せて参照すると、スペーサ部材5は、鉛を含む材料からなる輪環状の板体であり、内周面5aを有する。スペーサ部材5は、試料ホルダ1において、ベースメント部材孔2c及び固定板孔3cに挟まれる円柱形状の領域9aを取り囲むように上窓板4と下窓板6の間に配置される。赤外線を固定板表面3aに略垂直に固定板3の上方より照射させると、赤外線は固定板孔3c、領域9a及びベースメント部材孔2cを通過する。なお、本実施例では、スペーサ部材5の材料として鉛を含む材料を用いたが、2枚の光学結晶板の間に挟み込まれても変形しない程度の機械的強度を有し、且つ液体油と接触して化学的安定を保つ物質、例えば、アルミニウムを含む材料などを用いてもよい。   Referring to FIG. 1 together with FIG. 3, the spacer member 5 is an annular plate body made of a material containing lead, and has an inner peripheral surface 5a. The spacer member 5 is disposed between the upper window plate 4 and the lower window plate 6 in the sample holder 1 so as to surround a columnar region 9a sandwiched between the basement member hole 2c and the fixing plate hole 3c. When infrared rays are irradiated from above the fixing plate 3 substantially perpendicularly to the fixing plate surface 3a, the infrared rays pass through the fixing plate hole 3c, the region 9a, and the basement member hole 2c. In this embodiment, a material containing lead is used as the material of the spacer member 5, but it has a mechanical strength that does not deform even if it is sandwiched between two optical crystal plates, and is in contact with liquid oil. Alternatively, a substance that keeps chemical stability, for example, a material containing aluminum may be used.

弾性部材7は、弾性を有するゴムからなり、輪環状の板体である。弾性部材7は、固定板孔3cを取り囲むように固定板裏面3b側に接着されている。なお、本実施例では、弾性部材7の形状を輪環体の板体としたが、環状の内周側の形状を円形とした板体であれば、外周側の形状は特に問わない。ナット8は、ボルト2と螺合されて、ベースメント部材2と固定板3を締め付けることができる。   The elastic member 7 is made of rubber having elasticity and is an annular plate. The elastic member 7 is bonded to the fixed plate rear surface 3b side so as to surround the fixed plate hole 3c. In the present embodiment, the shape of the elastic member 7 is a ring-shaped plate, but the shape of the outer peripheral side is not particularly limited as long as the shape of the annular inner periphery is circular. The nut 8 can be screwed to the bolt 2 to fasten the basement member 2 and the fixing plate 3.

ここで、図4に示すように、1つの例として、赤外線分光測定装置10は、光源11と、干渉計12と、試料室13と、検出器14と、A/D変換器15と、コンピュータ16と、ディスプレイ17とを含む。光源11は高輝度セラミックス光源からなり、赤外線を照射することができる。   Here, as shown in FIG. 4, as an example, the infrared spectrometer 10 includes a light source 11, an interferometer 12, a sample chamber 13, a detector 14, an A / D converter 15, and a computer. 16 and a display 17. The light source 11 is a high-intensity ceramic light source and can emit infrared rays.

干渉計12は、固定鏡12aと、移動鏡12bと、半透過鏡12cとを含む。固定鏡12aと移動鏡12bはいずれも反射鏡である。半透過鏡12cは、照射された光の一部を反射させ、その光の他の残部を透過させることができる。   Interferometer 12 includes a fixed mirror 12a, a movable mirror 12b, and a semi-transmissive mirror 12c. Both the fixed mirror 12a and the movable mirror 12b are reflecting mirrors. The semi-transmissive mirror 12c can reflect a part of the irradiated light and transmit the other remaining part of the light.

試料室13は、その内部において、試料ホルダ1に保持された液体油9に対して、移動鏡12bの移動により干渉を生じさせた赤外線を照射するために設けられている。そのため、試料室13は、かかる赤外線を固定板表面3aに対して略垂直に上方から照射させ、ベースメント部材孔2cと固体板孔3cを通過させて、液体油9を透過させることのできる位置に、試料ホルダ1をセットすることができるようになっている。   The sample chamber 13 is provided to irradiate the liquid oil 9 held in the sample holder 1 with infrared rays that cause interference due to the movement of the movable mirror 12b. Therefore, the sample chamber 13 irradiates the infrared rays from above substantially perpendicularly to the fixed plate surface 3a, passes through the basement member hole 2c and the solid plate hole 3c, and allows the liquid oil 9 to pass through. In addition, the sample holder 1 can be set.

検出器14は、液体油9を透過した赤外線を検出し、受光した赤外線の吸光度に対応したアナログ電気信号を生成し、A/D変換器15に向けて出力することができる。A/D変換器15は、検出器14から出力されたアナログ電気信号をデジタル電気信号へ変換し、コンピュータ16へ出力することができる。コンピュータ16は、演算処理装置とメモリなどの記憶装置を含む。コンピュータ16は、A/D変換器15より出力されたデジタル電気信号を、高速フーリエ変換して、分光スペクトルを得ることができる。ディスプレイ17は、液晶ディスプレイであり、コンピュータ16で得た分光スペクトルを可視化させて、操作者に確認させることができる。ディスプレイ17はプロジェクタやプリンタなどの他の出力装置であってもよい。   The detector 14 can detect infrared light transmitted through the liquid oil 9, generate an analog electrical signal corresponding to the absorbance of the received infrared light, and output the analog electrical signal to the A / D converter 15. The A / D converter 15 can convert the analog electrical signal output from the detector 14 into a digital electrical signal and output it to the computer 16. The computer 16 includes an arithmetic processing unit and a storage device such as a memory. The computer 16 can obtain a spectral spectrum by performing a fast Fourier transform on the digital electrical signal output from the A / D converter 15. The display 17 is a liquid crystal display, and the spectrum obtained by the computer 16 can be visualized and confirmed by the operator. The display 17 may be another output device such as a projector or a printer.

次に、図1乃至図3を用いて、試料ホルダ1の組み立て方を説明する。   Next, how to assemble the sample holder 1 will be described with reference to FIGS. 1 to 3.

図1乃至図3に示すように、まず、下窓板6にスペーサ部材5が載せられる。下窓板6の下窓板上面6aとスペーサ部材5の内周面5aで形成される領域を満たすように、液体油9が滴下される。この上に上窓板4が載せられ、液体油9は、上窓板4、下窓板6及びスペーサ部材5に挟み込まれる。下から順に下窓板6、スペーサ部材5、上窓板4を重ねたまま、これらを座ぐり部2dの底面に載置する。固定板裏面3b側に接着された弾性部材7により上窓板4を座ぐり部2dの底面に向けて押圧するように、固定板3をベースメント部材2にナット8で締結する。これにより、測定物質である液体油9は、上窓板4と下窓板6の間で、スペーサ部材5にその周囲を囲まれて、試料ホルダ1に保持される。   As shown in FIGS. 1 to 3, the spacer member 5 is first placed on the lower window plate 6. Liquid oil 9 is dripped so that the area | region formed with the lower window board upper surface 6a of the lower window board 6 and the internal peripheral surface 5a of the spacer member 5 may be satisfy | filled. The upper window plate 4 is placed thereon, and the liquid oil 9 is sandwiched between the upper window plate 4, the lower window plate 6, and the spacer member 5. With the lower window plate 6, the spacer member 5, and the upper window plate 4 stacked in order from the bottom, these are placed on the bottom surface of the spot facing portion 2d. The fixing plate 3 is fastened to the basement member 2 with a nut 8 so that the upper window plate 4 is pressed toward the bottom surface of the spot facing portion 2d by the elastic member 7 bonded to the fixing plate back surface 3b side. Thereby, the liquid oil 9 as the measurement substance is held by the sample holder 1 between the upper window plate 4 and the lower window plate 6, surrounded by the spacer member 5.

ここでスペーサ部材5と弾性部材7は、赤外線の通り道となる領域9aを取り囲むように設置される。このようにスペーサ部材5と弾性部材7を設置すれば、赤外線の通過を遮断させることなく、得られる分光スペクトルの強度を低下させることがないため、定量的な分析をさせ、分析精度をより高く維持させることができる。   Here, the spacer member 5 and the elastic member 7 are installed so as to surround a region 9a that becomes a path of infrared rays. If the spacer member 5 and the elastic member 7 are installed in this way, the intensity of the obtained spectral spectrum is not reduced without blocking the passage of infrared rays. Can be maintained.

次に、本実施例による試料ホルダ1により得られた液体油9の分光スペクトルについて説明する。なお、液体油9は炭化水素に添加剤を添加された潤滑油を用いた。   Next, the spectral spectrum of the liquid oil 9 obtained by the sample holder 1 according to the present embodiment will be described. The liquid oil 9 was a lubricating oil obtained by adding an additive to a hydrocarbon.

図5には、本実施例による試料ホルダ1により得られた分光スペクトルが示されている。赤外線の透過長さとなる液体油9の膜厚は、スペーサ部材5により、図5(a)から(c)まで順に、0.025mm、0.05mm、0.1mmになされている。いずれにおいても、炭化水素に由来する分光スペクトルが明瞭に観察され、膜厚が大となるにつれ、ベース(基線)が波打つようになる。一方、波数1800〜500cm−1程度にある添加剤に由来する分光スペクトルのピークは、膜厚0.025mm、膜厚0.05mmで不明瞭であるが、膜厚0.1mmでは明瞭となる。膜厚0.1mmよりも膜厚を厚くするとノイズも大きくなる。例えば波数720cm−1付近の基油である炭化水素の吸収の特徴を表わすピークの吸収が強くなって、添加剤の吸収の特徴を表わすピークが再び不明瞭になる。つまり、この液体油9については、膜厚0.1mmとして得られた分光スペクトルを分析することが適当である。 FIG. 5 shows a spectrum obtained by the sample holder 1 according to this example. The film thickness of the liquid oil 9 serving as the infrared transmission length is 0.025 mm, 0.05 mm, and 0.1 mm by the spacer member 5 in order from FIG. In any case, the spectrum derived from the hydrocarbon is clearly observed, and the base (base line) becomes undulated as the film thickness increases. On the other hand, the peak of a spectral spectrum derived from an additive having a wave number of about 1800 to 500 cm −1 is unclear when the film thickness is 0.025 mm and 0.05 mm, but becomes clear when the film thickness is 0.1 mm. When the film thickness is made thicker than 0.1 mm, noise increases. For example, the absorption of the peak representing the absorption characteristics of the hydrocarbon, which is a base oil near the wave number of 720 cm −1, becomes stronger, and the peak representing the absorption characteristics of the additive becomes unclear again. That is, for this liquid oil 9, it is appropriate to analyze the spectrum obtained with a film thickness of 0.1 mm.

図6には、液体油9の膜厚を0.1mmとして得られた分光スペクトルが示されている。図6(a)は本実施例による試料ホルダ1を用いて得られた分光スペクトル、図6(b)は従来型の、すなわち液体油9の保持される領域の広い試料ホルダを用いて得られた比較例としての分光スペクトルである。これらを比較すると、液体油9の保持される領域を従来型より狭くしてより少量の液体油を保持する本実施例による試料ホルダ1であっても、従来型の試料ホルダと同等の強度の分光スペクトルを得られる。つまり、本実施例による試料ホルダ1では、従来型のホルダによって得られた過去の分析結果に対しても継続的に定量的な分析ができる。   FIG. 6 shows a spectrum obtained by setting the film thickness of the liquid oil 9 to 0.1 mm. 6A is a spectral spectrum obtained using the sample holder 1 according to the present embodiment, and FIG. 6B is obtained using a conventional sample holder, that is, a wide sample oil holding region. It is the spectrum as a comparative example. Comparing these, even in the sample holder 1 according to the present embodiment in which the region where the liquid oil 9 is held is made narrower than that of the conventional type and a smaller amount of liquid oil is held, the strength is equivalent to that of the conventional type sample holder. A spectrum can be obtained. That is, the sample holder 1 according to the present embodiment can continuously perform quantitative analysis on the past analysis results obtained by the conventional holder.

以上述べてきたように、本実施例によれば、互いに平行な主面をそれぞれ有する板状のベースメント部材2及び固定板3をボルト2e及びナット8で締結し固定することにより、弾性部材7を介した上で、ベースメント部材2の座ぐり部2dと固定板3の固定板裏面3bによって、液体油を保持する上窓板4及び下窓板6とその間に挟みこまれたスペーサ部材5とを押圧して固定できる。これにより、上窓板4と下窓板6に対して広い面積を有するベースメント部材2と固定板3とがベースメント部材表面2aと固定板裏面3bとを互いに平行に付き合わせられることから、上窓板4と下窓板6の主面は、液体油9の量を減らし、赤外線の透過面積を減じさせても、平行に維持できる。よって、液体油9の赤外線の透過長さを均一にでき、定量的な分析をさせ得る。   As described above, according to the present embodiment, the plate-like basement member 2 and the fixing plate 3 having main surfaces parallel to each other are fastened and fixed by the bolts 2e and the nuts 8 to thereby fix the elastic member 7. The spacer member 5 is sandwiched between the upper window plate 4 and the lower window plate 6 that hold liquid oil by the counterbore 2d of the basement member 2 and the fixing plate back surface 3b of the fixing plate 3. And can be fixed. Thereby, since the basement member 2 and the fixing plate 3 having a large area with respect to the upper window plate 4 and the lower window plate 6 can be attached to the basement member surface 2a and the fixing plate back surface 3b in parallel with each other, The main surfaces of the upper window plate 4 and the lower window plate 6 can be maintained in parallel even if the amount of the liquid oil 9 is reduced and the infrared transmission area is reduced. Therefore, the infrared transmission length of the liquid oil 9 can be made uniform, and quantitative analysis can be performed.

さらに、ベースメント部材孔2c及び固定板孔3cは赤外線を通過させる円形の窓である。そのため、これらを通過する赤外線は、その照射軸から全方位に対して均一に液体油を透過する。したがって、より少量の液体油9の分析においても高い分析精度を維持できる。   Further, the basement member hole 2c and the fixing plate hole 3c are circular windows that allow infrared rays to pass through. Therefore, the infrared rays that pass through them are transmitted uniformly through the liquid oil in all directions from the irradiation axis. Accordingly, high analysis accuracy can be maintained even when analyzing a smaller amount of liquid oil 9.

さらに、上窓板4及び下窓板6は四方形(略直方体形状)なので、例えばその四隅を周囲に当接させるなどすることで座ぐり部2d内における位置ずれを抑制できる。そのため、より少量の液体油の分析においても高い分析精度を維持できる。また、四方形である上窓板4と下窓板6は、その製造を容易とするとともにハンドリングを容易とし、ハンドリングミスによる表面の損傷を発生させづらい。よって、上窓板4と下窓板6の表面損傷による分析精度の低下を防止し、高い分析精度を維持できる。   Furthermore, since the upper window plate 4 and the lower window plate 6 are quadrangular (substantially rectangular parallelepiped shape), for example, the position shift in the spot facing portion 2d can be suppressed by bringing the four corners into contact with the periphery. Therefore, high analysis accuracy can be maintained even when analyzing a smaller amount of liquid oil. Further, the upper window plate 4 and the lower window plate 6 which are quadrilaterals are easy to manufacture and easy to handle, and are difficult to cause surface damage due to handling mistakes. Therefore, it is possible to prevent a decrease in analysis accuracy due to surface damage of the upper window plate 4 and the lower window plate 6 and maintain high analysis accuracy.

ここまで本発明による代表的実施例について説明したが、本発明は必ずしもこれに限定されるものではない。当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるであろう。   Although the exemplary embodiments according to the present invention have been described so far, the present invention is not necessarily limited thereto. Those skilled in the art will recognize a variety of alternative embodiments and modifications without departing from the scope of the appended claims.

1 試料ホルダ
2 ベースメント部材
3 固定板
4 上窓板
5 スペーサ部材
6 下窓板
7 弾性部材
9 液体油
1 Sample holder 2 Basement member 3 Fixed plate 4 Upper window plate 5 Spacer member 6 Lower window plate 7 Elastic member 9 Liquid oil

Claims (4)

赤外線分光測定装置内にセットされ液体油の分光測定を行うための試料ホルダであって、
互いに平行な第1及び第2の主面をそれぞれ有する板状のベースメント部材及び固定板と、前記ベースメント部材及び固定板の第1主面同士を付き合わせた固定状態を保持する固定具と、を含み、
前記固定状態で前記ベースメント部材及び固定板を垂直に貫通する光透過窓としての貫通孔を設けるとともに、前記ベースメント部材には前記貫通孔の軸線に沿って前記第1主面から前記貫通孔の周縁部を所定の深さまで座ぐり加工した座ぐり部を設け、前記座ぐり部内には前記貫通孔を閉塞するように2枚の板状の光学結晶板を順に重ねて配置し、前記固定板を前記ベースメント部材に前記固定具で固定するのに併せて前記光学結晶板同士を密着させる弾性部材を前記固定板の前記第1の主面上の前記貫通孔の周縁部に沿って与え、少なくとも前記光透過窓に干渉しないように前記光学結晶板の間にスペーサ部材を挿入しこの間隙内に前記液体油を保持することを特徴とする赤外線分光測定装置内にセットされる液体油用試料ホルダ。
A sample holder that is set in an infrared spectrometer and performs spectroscopic measurement of liquid oil,
A plate-like basement member and a fixing plate each having first and second main surfaces parallel to each other; and a fixture for holding a fixed state in which the first main surfaces of the basement member and the fixing plate are brought together. Including,
In the fixed state, a through hole is provided as a light transmission window that vertically penetrates the basement member and the fixing plate, and the basement member extends from the first main surface along the axis of the through hole to the through hole. A counterbore part is formed by counterboring the peripheral part of the plate to a predetermined depth, and two plate-like optical crystal plates are sequentially stacked in the counterbore part so as to close the through-hole, and the fixing is performed. Along with fixing the plate to the basement member with the fixture, an elastic member for bringing the optical crystal plates into close contact with each other is provided along the peripheral edge of the through hole on the first main surface of the fixing plate. A sample holder for liquid oil set in an infrared spectroscopic measurement device, wherein a spacer member is inserted between the optical crystal plates so as not to interfere with at least the light transmission window, and the liquid oil is held in the gap. .
前記光透過窓は円形であることを特徴とする請求項1記載の液体油用試料ホルダ。   The sample holder for liquid oil according to claim 1, wherein the light transmission window is circular. 前記光学結晶板は四方形であることを特徴とする請求項1又は2に記載の液体油用試料ホルダ。   The sample holder for liquid oil according to claim 1, wherein the optical crystal plate has a quadrangular shape. 前記スペーサ部材は貫通孔を包囲するような環状板体であることを特徴とする請求項1記載の液体油用試料ホルダ。   The sample holder for liquid oil according to claim 1, wherein the spacer member is an annular plate body surrounding the through hole.
JP2010179814A 2010-08-10 2010-08-10 Sample holder for liquid oil Pending JP2012037458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010179814A JP2012037458A (en) 2010-08-10 2010-08-10 Sample holder for liquid oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010179814A JP2012037458A (en) 2010-08-10 2010-08-10 Sample holder for liquid oil

Publications (1)

Publication Number Publication Date
JP2012037458A true JP2012037458A (en) 2012-02-23

Family

ID=45849588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010179814A Pending JP2012037458A (en) 2010-08-10 2010-08-10 Sample holder for liquid oil

Country Status (1)

Country Link
JP (1) JP2012037458A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101309129B1 (en) 2012-03-15 2013-09-16 주식회사 메카시스 Sample handler for analyzing a small quantity of sample, analyzing apparatus using the sample handler, and analyzing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55159137A (en) * 1979-05-30 1980-12-11 Toyobo Co Ltd Liquid cell for infrared spectroscopy
JPH0316047U (en) * 1989-06-29 1991-02-18
JP2008051533A (en) * 2006-08-22 2008-03-06 Tochigi Nikon Corp Sample holding container and terahertz measurement system
JP2009047623A (en) * 2007-08-22 2009-03-05 Jiyasuko Eng Kk Transmission measuring holder
JP3151516U (en) * 2009-04-15 2009-06-25 株式会社島津製作所 Liquid sample holder
JP2011257146A (en) * 2010-06-04 2011-12-22 Horiba Ltd Cell for optical measurement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55159137A (en) * 1979-05-30 1980-12-11 Toyobo Co Ltd Liquid cell for infrared spectroscopy
JPH0316047U (en) * 1989-06-29 1991-02-18
JP2008051533A (en) * 2006-08-22 2008-03-06 Tochigi Nikon Corp Sample holding container and terahertz measurement system
JP2009047623A (en) * 2007-08-22 2009-03-05 Jiyasuko Eng Kk Transmission measuring holder
JP3151516U (en) * 2009-04-15 2009-06-25 株式会社島津製作所 Liquid sample holder
JP2011257146A (en) * 2010-06-04 2011-12-22 Horiba Ltd Cell for optical measurement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101309129B1 (en) 2012-03-15 2013-09-16 주식회사 메카시스 Sample handler for analyzing a small quantity of sample, analyzing apparatus using the sample handler, and analyzing method
WO2013137525A1 (en) * 2012-03-15 2013-09-19 주식회사 메카시스 Sample-mounting device for analysis of small amount of sample, and analysis apparatus and analysis method using same

Similar Documents

Publication Publication Date Title
McClelland et al. A practical guide to FT-IR photoacoustic spectroscopy
US7424093B2 (en) Fluorescent x-ray analysis apparatus
JPS6093926A (en) Discriminating method in spectrometry
WO1998003044A1 (en) Method and device for measuring the thickness of opaque and transparent films
US10088363B2 (en) Biometric sensor and biometric analysis system including the same
CN107063432B (en) Optical means and device a kind of while that measure ultrasonic wave direction, the sound intensity and frequency
CN108458787B (en) Echelle grating type space heterodyne Raman spectrometer light channel structure
JP2012037458A (en) Sample holder for liquid oil
GB2453633A (en) An x-ray diffraction measuring system incorporating a debye-scherrer optical system
JP4340814B2 (en) Spectral analysis apparatus and spectral analysis method
WO2013128707A1 (en) Measuring apparatus for measuring characteristics of subject to be measured
CN219391871U (en) Analytical system for detecting samples
JP3982732B2 (en) X-ray fluorescence measurement equipment
CN216247693U (en) Infrared emissivity testing arrangement
TWI475210B (en) Optical detection apparatus
JP2013096919A (en) Sample storage container and infrared absorption spectrum measuring jig
JP2002350344A (en) Method and apparatus for measuring environment
EP3076159A1 (en) System for analyzing a gas mixture
KR101623490B1 (en) Apparatus and method for measuring gas using reflected infrared detector measuring with extensive of poison gas, and computer-readable recording medium with program therefor
WO2011048992A1 (en) Measuring device and measuring method for measuring properties of a subject to be measured
KR101512666B1 (en) A Measuring apparatus of diffraction efficiency for hologram recording medium
TW202138786A (en) Measuring jig, and calibration method and terahertz wave measuring method using same
JP6772989B2 (en) Sample holder
CN116106339A (en) X-ray absorption spectrometer
CN220188400U (en) X-ray diffraction and X-ray fluorescence spectrum synchronous combination system and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150507