[go: up one dir, main page]

JP2012015167A - 半導体モジュールおよびその製造方法 - Google Patents

半導体モジュールおよびその製造方法 Download PDF

Info

Publication number
JP2012015167A
JP2012015167A JP2010147557A JP2010147557A JP2012015167A JP 2012015167 A JP2012015167 A JP 2012015167A JP 2010147557 A JP2010147557 A JP 2010147557A JP 2010147557 A JP2010147557 A JP 2010147557A JP 2012015167 A JP2012015167 A JP 2012015167A
Authority
JP
Japan
Prior art keywords
fin
flat plate
portions
cooling
cooling fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010147557A
Other languages
English (en)
Inventor
Naomi Sugimoto
尚規 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010147557A priority Critical patent/JP2012015167A/ja
Publication of JP2012015167A publication Critical patent/JP2012015167A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】絶縁膜と冷却フィンとの間の良好な接合を得つつ、冷却フィンによる放熱性能を十分に発揮させることができる構造の半導体モジュールおよびその製造方法を提供する。
【解決手段】ヒートスプレッダ13、14と冷却フィン18、19とを別体で構成し、ヒートスプレッダ13、14表面に形成した絶縁膜13b、14bを介して、ヒートスプレッダ13、14と冷却フィン18、19とを接合する構成において、冷却フィン18、19を、フィン部18a、19aと平板部18b、19bとが重ねられて、フィン部18a、19aのフィン山と平板部18b、19bとがろう付けにより接合されて、フィン部18a、19aのフィン山と平板部18b、19bとの接合部にフィレット51が形成された構成とし、冷却フィン18、19の平板部18b、19bと絶縁膜13b、14bとを半田付けにより接合する。
【選択図】図3

Description

本発明は、ヒートスプレッダ(放熱板)による放熱が行われる半導体パワー素子が形成された半導体チップとヒートスプレッダとを樹脂モールドして一体構造とした半導体モジュールに関するもので、例えば、インバータの上アーム(ハイサイド側素子)と下アーム(ローサイド側素子)のいずれかの半導体パワー素子を樹脂モールド部にてモールドした1in1構造や、上下アームの二つの半導体パワー素子を一つの樹脂モールド部にてモールドした2in1構造等の半導体モジュールに適用すると好適である。
従来より、半導体モジュールでは、半導体パワー素子が形成された半導体チップと半導体チップの放熱を行うためのヒートスプレッダとを樹脂モールドして一体化構造とすることが一般的である。そして、このような半導体モジュールとして、放熱効率をより高めるために、冷却フィンを一体化したヒートスプレッダが用いられている(例えば、特許文献1参照)。このような半導体モジュールでは、冷却水などの冷媒が流される冷却機構が備えられ、ヒートスプレッダの冷却フィン側を冷媒流れに接するように配置することで、半導体パワー素子で発した熱が良好に放出されるようにしている。
しかしながら、冷媒に接するようにヒートスプレッダを配置する構造とする場合、ヒートスプレッダから冷媒へ通電してしまう。このため、複数並べて配置された半導体チップの放熱用のヒートスプレッダ同士の間が冷媒を通じて導通する可能性や、冷媒に迷走電流が発生することにより、冷却回路内の他部分も含め、冷媒に接触する金属に電食が発生し、貫通穴が空く可能性がある。
そこで、従来では、ヒートスプレッダの表面に絶縁物を設けることで、ヒートスプレッダから冷媒への通電を防止している。冷却フィンを一体化したヒートスプレッダの場合には、冷却フィンの表面に絶縁材を形成することで、ヒートスプレッダから冷媒への通電を防止できる構造としている。
特開2006−165534号公報
しかしながら、凹凸のある冷却フィンの表面に信頼性の高い絶縁物を形成することは困難である。すなわち、冷却フィンの表面に絶縁物を形成する方法として、スパッタリング、CVD、溶射などの気相成長法を採用することが考えられるが、冷却フィンの隙間に均一に絶縁物を形成することは難しい。このため、ヒートスプレッダからのリークの発生を的確に防止できない可能性がある。
また、一般的に冷却フィンと一体構造のヒートスプレッダは、削り出し、鍛造、押し出し成形などによって形成されるが、これらの加工方法では微細なフィン形状を形成することは困難である。このため、十分な伝熱面積を確保することが難しい。
そこで、これらの問題を解決する方法として、ヒートスプレッダと冷却フィンとを別体で構成し、ヒートスプレッダ表面に形成した絶縁膜を介して、ヒートスプレッダと冷却フィンとを接合することが考えられる。これによると、ヒートスプレッダの平らな表面に絶縁膜を形成することで、絶縁膜を均一に形成でき、信頼性の高い絶縁膜を形成することができる。また、ヒートスプレッダと冷却フィンとを別体とすることで、冷却フィンとして、放熱性能が高い冷却フィンであるコルゲートフィンを採用することができる。
ただし、この方法では、絶縁膜と冷却フィンとの接合が必要となり、この接合方法としては、接着剤を用いた接合や、超音波溶着を用いた接合が考えられる。
しかし、どちらの接合方法においても、ヒートスプレッダと冷却フィンとの間の熱伝導性が低いことが問題となる。すなわち、接着剤を用いた場合、金属と同程度の接着剤を用意することは困難であり、通常、接着剤の熱伝導性は金属よりも低いため、ヒートスプレッダと冷却フィンとの間の熱伝導性が低くなってしまう。また、超音波溶着での接合では、コルゲートフィンのフィン山と絶縁膜との接合領域が狭く、熱伝導領域が狭いため、ヒートスプレッダと冷却フィンとの間の熱伝導性が低くなってしまう。この結果、冷却フィンによる放熱性能が十分に発揮されない。
本発明は上記点に鑑みて、絶縁膜と冷却フィンとの間の良好な接合を得つつ、冷却フィンによる放熱性能を十分に発揮させることができる構造の半導体モジュールおよびその製造方法を提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、半導体チップ(11)、第1、第2ヒートスプレッダ(13、14)、端子(15〜17)を樹脂モールド部(20)にてモールド化したものを1つのユニット(10)として、該ユニット(10)の両端を蓋部(40、41)にて挟み込んで固定具(43)にて固定した半導体モジュールであって、
第1、第2ヒートスプレッダ(13、14)のうち半導体チップ(11)と反対側の面は平坦面とされ、この平坦面には、当該平坦面を覆う絶縁膜(13b、14b)が備えられていると共に、該絶縁膜(13b、14b)を介して、断面波形状のコルゲートタイプの冷却フィン(18、19)が接合されており、
冷却フィン(18、19)は、複数のフィン山を有するフィン部(18a、19a)と、平板部(18b、19b)とが重ねられて、平板部(18b、19b)のうちフィン部側の面とフィン部(18a、19a)のうち平板部側のフィン山とがろう付けにより接合された構成であると共に、平板部(18b、19b)のうちフィン部(18a、19a)とは反対側の面と絶縁膜(13b、14b)とが半田付けにより接合されており、
フィン部(18a、19a)と平板部(18b、19b)との接合部に、ろう材によるフィレット(51)が形成されていることを特徴としている。
これによると、コルゲートタイプの冷却フィンの構成を、フィン部と平板部とが重ねられて、フィン部のフィン山と平板部とがろう付けにより接合された構成とし、冷却フィンの平板部と絶縁膜とを半田付けにより接合しているので、フィン部−平板部間や、平板部−絶縁膜間において良好な接合が得られる。
また、本発明では、一般的な接着剤よりも熱伝導性が高い半田およびろう材を用いて金属的に接合しているので、接着剤で接合した場合と比較して、ヒートスプレッダと冷却フィンとの間の熱伝導性を向上できる。また、本発明では、接合部にフィレットが形成されているので、超音波溶着のように接合部にフィレットが形成されていない場合と比較して、フィン山の接合部での接合領域を広くでき、ヒートスプレッダと冷却フィンとの間の熱伝導性を向上できる。
したがって、本発明によれば、絶縁膜と冷却フィンとの間の良好な接合を得つつ、冷却フィンによる放熱性能を十分に発揮させることができる。
本発明においては、例えば、請求項2に記載のように、フィン部(18a、19a)として、平面視でフィン山が波状に配置されているウェーブフィンを採用することができる。
さらに、ウェーブフィンを採用する場合では、請求項3に記載のように、冷却フィン(18、19)のうちの一方の波状のフィン部(18a、19a)に対して、冷却フィン(18、19)のうちの他方の波状のフィン部(18a、19a)が180度位相がずらされて、クロスウェーブ形状が形成される平面レイアウトとすることが好ましい。これにより、冷却フィンを通過する冷媒により多くの乱流を発生させることが可能となり、この乱流によってより冷却フィンによる放熱性能を高められるからである。
また、請求項4に記載の発明では、請求項1〜3のいずれか1つに記載の半導体モジュールの製造方法であって、
フィン部(18a、19a)と平板部(18b、19b)とが一体に形成された金属板(50)を用意し、金属板(50)のうちフィン部(18a、19a)と平板部(18b、19b)との間の折り曲げ部(18c、19c)で折り曲げることにより、フィン部(18a、19a)と平板部(18b、19b)とを重ね合わせて、平板部(18b、19b)のうちフィン部側の面とフィン部(18a、19a)のうち平板部側のフィン山とをろう付けにより接合することで冷却フィン(18、19)を形成し、
形成した冷却フィン(18、19)の平板部(18b、19b)と絶縁膜(13b、14b)とを半田付けにより接合することを特徴としている。
このように、冷却フィンの形成では、フィン部と平板部とが一体に形成された金属板を、折り曲げ部で折り曲げることにより、フィン部と平板部とを重ね合わせる方法を採用することで、フィン部と平板部とが別体に形成された場合と比較して、冷却フィンの生産性を高めることができる。
請求項4に記載の発明では、例えば、請求項5に記載のように、フィン部と平板部とのろう付けのために、金属板(50)として、フィン部(18a、19a)と平板部(18b、19b)との重ね合わせ面となる母材の表面にろう材がクラッドされているクラッド材を用いることが好ましい。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
本発明の第1実施形態における半導体モジュール1の断面図である。 図1に示す半導体モジュール1を構成するユニット10の1つを取り出した図であり、(a)はユニット10の平面図、(b)は(a)のA−A’断面図、(c)は(a)のB−B’断面図である。 冷却フィン18、19とヒートスプレッダ13、14の断面拡大図である。 図1に示す半導体モジュール1の製造工程を示した断面図である。 冷却フィン18、19の製造工程を示す断面図である。 図5(a)中の領域Cの拡大図である。 第2実施形態における半導体モジュール1を構成するユニット10のうち隣り合うユニット10の対向する冷却フィン18、19の平面レイアウト図である。 第3実施形態における半導体モジュール1を構成するユニット10の冷却フィン18、19の平面レイアウト図である。
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。
(第1実施形態)
本発明の第1実施形態における冷却機構を備えた半導体モジュールについて説明する。この半導体モジュールは、例えば車両用の三相モータの駆動を行うためのインバータ等に適用される。
図1は、本実施形態における半導体モジュール1の断面図である。この図に示すように、半導体モジュール1は、例えばインバータを構成する半導体パワー素子などが形成された半導体チップ11などの各種構成部品を樹脂モールドしたものを1つのユニット10として、ユニット10を複数個積層することによって構成されている。
図2は、半導体モジュール1を構成するユニット10の1つを取り出した図であり、(a)はユニット10の平面図、(b)は(a)のA−A’断面図、(c)は(a)のB−B’断面図である。なお、図1、2では、冷却フィン18、19を簡略化(平板部18b、19bを省略)している。
図2(a)〜(c)に示されるように、各ユニット10は、半導体パワー素子が形成された半導体チップ11に加えて、金属ブロック12、ヒートスプレッダ13、14、正極リード15、負極リード16、制御端子17等を備え、これらが樹脂モールド部20によって樹脂モールドされることで一体化された構造とされている。また、各ユニット10には、冷却フィン18、19が備えられており、この冷却フィン18、19によって、より高い放熱効率が得られるようにしている。
なお、ここでは各ユニット10に、半導体パワー素子が形成された半導体チップ11を1つのみ備えた1in1構造について説明するが、半導体チップ11を2つ備える2in1構造、半導体チップ11を3つ備える3in1構造など、他の構造についても1ユニットとすることができる。例えば、インバータの場合、2in1構造としては上下アームを構成する2つの半導体チップ11をモールドして一体構造とする場合が想定され、3in1構造としては三相分の上アームもしくは下アームを構成する3つの半導体チップ11をモールドして一体構造とする場合が想定される。
半導体チップ11には、IGBTやパワーMOSFETなどの半導体パワー素子が形成されている。例えば、半導体モジュール1が三相モータ駆動用のインバータに適用される場合、上アームもしくは下アームのいずれか一方を構成する半導体パワー素子とフリーホイールダイオード(以下、FWDという)とが1チップ化されたものが半導体チップ11とされる。本実施形態では、半導体パワー素子を基板厚み方向に電流を流す縦型の半導体素子としており、半導体チップ11の表面側や裏面側には、各種パッドが形成された構造とされている。具体的には、半導体チップ11の表面側には、半導体パワー素子のゲート等に接続されるパッドが形成されていると共に、半導体パワー素子のエミッタに接続されるパッドが形成され、裏面側は、裏面全面が半導体パワー素子のコレクタに繋がるパッドとされている。
なお、図2では半導体チップ11を1チップ化した構造として図示してあるが、半導体パワー素子とFWDとが別々のチップに形成されているような構造であっても良い。また、半導体チップ11に基板横方向に電流を流す横型の半導体パワー素子が形成された構造であっても構わない。
金属ブロック12は、熱伝達率の高い金属で構成され、例えば銅やアルミニウム等によって構成される。この金属ブロック12は、半導体チップ11の表面側に形成された半導体パワー素子のエミッタに接続されるパッド上に半田等を介して電気的および物理的に接続されている。この金属ブロック12が半導体チップ11の表面側に備えられることにより、半導体チップ11の表面からヒートスプレッダ14までの距離が所定間隔空けられている。
ヒートスプレッダ13、14は、半導体チップ11から伝えられる熱を広範囲に拡散させて放出する放熱板として機能する。一方のヒートスプレッダ13は、半導体チップ11の裏面側のパッドに物理的にだけでなく電気的にも接続されることで、放熱板としての機能に加えて、半導体パワー素子のコレクタに接続される配線としても機能している。また、他方のヒートスプレッダ14は、金属ブロック12に対して電気的および物理的に接続されることで、放熱板としての機能に加えて、半導体パワー素子のエミッタに接続される配線としても機能している。これらヒートスプレッダ13、14のうち半導体チップ11と反対側の面は、樹脂モールド部20から露出させられている。この露出させられている面に放熱(冷却)を促進させるための冷却フィン18、19が接合されることで、冷却フィン18、19を介して冷却水による冷却が行える構成とされている。
また、ヒートスプレッダ13、14は、ヒートスプレッダ13、14から冷却水への通電を防止するための絶縁構造を有し、かつ、冷却フィン18、19の接合が行える構造とされている。
具体的には、図1、図2(b)、(c)に示すように、ヒートスプレッダ13、14は、金属板13a、14aと、金属板13a、14aの表面に形成された絶縁膜13b、14bとを有している。
金属板13a、14aは、主に放熱板および電流経路として機能する部分であり、例えば所定厚さの四角形の部材で構成され、熱伝達率が高く、導電率も高い銅などの金属で構成されている。
絶縁膜13b、14bは、金属板13a、14aのうち半導体チップ11と反対側の表面に形成されている。絶縁膜13b、14bは、SiN、アルミナなどの絶縁材料で構成され、例えば、スパッタリング、CVD、溶射などの気相成長法によって形成されている。 金属板13a、14aのうち絶縁膜13b、14bが形成される面が平坦面となっているため、絶縁膜13b、14bの膜厚は、ほぼ均一になっている。
このように、ヒートスプレッダ13、14のうち半導体チップ11に電気的に接続される金属板13a、14aよりも冷却水側に絶縁膜13b、14bを備えていることから、この絶縁膜13b、14bによって冷却水との絶縁が図られている。このため、ヒートスプレッダ13、14から冷却水への通電が抑制され、背景技術の欄に記載の通り、腐食の発生等を抑制することができる。
正極リード15は、半導体チップ11の正極端子を構成するものである。この正極リード15は、ヒートスプレッダ13に対して一体成形もしくは半田や溶接等によって接合され、ヒートスプレッダ13を介して半導体チップ11の裏面側に備えられた半導体パワー素子のコレクタに繋がるパッドに電気的に接続されている。また、正極リード15におけるヒートスプレッダ13に接合された端部と反対側の端部は、樹脂モールド部20から露出させられており、この露出部分を通じて外部との接続が行えるように構成されている。
負極リード16は、半導体チップ11の負極端子を構成するものである。この負極リード16は、ヒートスプレッダ14に対して一体成形もしくは半田や溶接等によって接合され、ヒートスプレッダ14を介して半導体チップ11の表面側に備えられた半導体パワー素子のエミッタに繋がるパッドに電気的に接続されている。また、負極リード16におけるヒートスプレッダ14に接合された端部と反対側の端部は、樹脂モールド部20から露出させられており、この露出部分を通じて外部との接続が行えるように構成されている。
制御端子17は、半導体パワー素子のゲート配線や半導体パワー素子に流れる電流のセンス、半導体チップ11の温度のセンス等に用いられるもので、半導体チップ11の表面側に形成された半導体パワー素子のゲート等に接続されるパッドにボンディングワイヤ17aを介して電気的に接続されている。制御端子17における半導体チップ11と接続される端部と反対側の端部は、樹脂モールド部20から露出させられており、この露出部分を通じて外部との接続が行えるように構成されている。なお、半導体チップ11の表面とヒートスプレッダ14との間が金属ブロック12によって所定間隔空けられていることから、ボンディングワイヤ17aはヒートスプレッダ14と干渉することなく、良好に半導体チップ11と制御端子17との電気的接続が行えるようになっている。
冷却フィン18、19は、ヒートスプレッダ13、14の露出している面、つまり絶縁膜13b、14bの表面に半田付けにより接合されている。冷却フィン18、19は、例えばアルミニウム等の熱伝導性の高い金属材料で構成され、横断面が波形状のコルゲートタイプのフィンである。冷却フィン18、19は、コルゲートタイプのフィンであれば、どのような平面レイアウトのものであっても構わないが、本実施形態では、図2(a)に示すように、冷却フィンの平面視でフィン山が波状に延びているウェーブフィンとしている。
ここで、図3に、冷却フィン18、19とヒートスプレッダ13、14の断面拡大図を示す。なお、図3では、冷却フィン18について図示しているが、冷却フィン19についても同様の形状とされているため、図3中に括弧付きで冷却フィン19の対応場所の符号を付しておく。ヒートスプレッダ13、14についても同様に、ヒートスプレッダ14を括弧付きで示している。
図3に示すように、冷却フィン18(19)は、フィン部18a(19a)と、平板部18b(19b)とを有し、フィン部18a(19a)が平板部18b(19b)に接合され、平板部18b(19b)が絶縁膜13b(14b)に接合されている。
フィン部18a(19a)は、フィン山が上下交互に位置するように、複数のフィン山が形成されて、横断面が波形状のコルゲートフィンを構成する部分である。図3では、フィン山の頂部は平坦面を有しているが、角や曲面を有する形状であっても良い。
平板部18b(19b)は、平坦な板状部分である。本実施形態では、この平板部18b(19b)は、フィン部18a(19a)と一体であり、折り曲げ部18c(19c)で折り曲げられることによって、平板部18b(19b)とフィン部18a(19a)とが重ね合わされている。
そして、平板部18b(19b)とフィン部18a(19a)との接合部では、フィン部18a(19a)のヒートスプレッダ側に位置するフィン山の頂部と、平板部18b(19b)のうちフィン部側の面とが、ろう付けによって接合されている。このため、フィン山と平板部18b(19b)との接合部には、フィレット51が形成されている。ちなみに、「フィレット」とは、図3に示されるように、ろう付けを行ったフィン山と平板部の間からはみ出したろうの部分を意味する。
一方、平板部18b(19b)のうちフィン部とは反対側の面と絶縁膜13b(14b)との接合は、半田付けにより行われている。
図1、2に示す樹脂モールド部20は、上述したユニット10内に備えられる各構成部品(半導体チップ11、金属ブロック12、ヒートスプレッダ13、14、正極リード15、負極リード16および制御端子17)の接続を終えたものを成形型内に設置したのち、その成形型内に樹脂を注入してモールド化することで構成される。具体的には、樹脂モールド部20は、各構成部品を熱硬化性樹脂でモールド化した熱硬化性樹脂モールド部21と、熱硬化性樹脂モールド部21の外縁を囲むように熱可塑性樹脂でモールド化した熱可塑性樹脂モールド部22とによって構成されている。
熱硬化性樹脂モールド部21は、例えばエポキシ樹脂等の熱硬化性樹脂にて構成されており、上述した各構成部品を覆いつつ、正極リード15や負極リード16および制御端子17の一端側を露出させ、かつ、ヒートスプレッダ13、14の一面側を露出させるように構成されている。そして、樹脂モールド部20のうち、この熱硬化性樹脂モールド部21のみによって各構成部品の防水が行えるようになっている。また、熱硬化性樹脂モールド部21は、一方向が長手方向となる長方板状とされ、その長辺を構成する一側面から正極リード15および負極リード16が引き出されており、その長辺と対向する長辺を構成する一側面から制御端子17が引き出されている。このため、各構成部品を熱硬化性樹脂モールド部21によって覆ったものによってパワーカードが構成され、このパワーカードの部分のみでもリユースが可能な構成とされている。
一方、熱可塑性樹脂モールド部22は、例えばポリフェニレンサルファイド(PPS)樹脂等の熱硬化性樹脂にて構成されており、熱硬化性樹脂モールド部21の外縁を覆いつつ、各構成部品のうち熱硬化性樹脂モールド部21から露出させられている部分、すなわち正極リード15や負極リード16および制御端子17の一端側やヒートスプレッダ13、14の一面側を露出させている。熱可塑性樹脂モールド部22は枠状に形成され、熱可塑性樹脂モールド部22の内側を窓部22a、22bとして、各窓部22a、22bを通じてヒートスプレッダ13、14が露出させられている。
また、熱可塑性樹脂モールド部22は、半導体モジュール1の冷却機構を構成する冷媒通路としての水路30(図1参照)の一部を構成している。具体的には、本実施形態の熱可塑性樹脂モールド部22も、熱硬化性樹脂モールド部21の長手方向と同方向を長手方向とする長方板状部材にて構成されている。熱可塑性樹脂モールド部22には、熱硬化性樹脂モールド部21の長手方向両端よりも外側に突き出している部分に形成された主水路を構成する通路穴22cと、熱可塑性樹脂モールド部22の両面において外縁部よりも凹ませた凹部22dとが形成されている。これら通路穴22cや凹部22dが水路30の一部を構成しており、複数のユニット10を積層したときに各通路穴22cと凹部22dとを含む水路30が構成されるようになっている。
さらに、熱可塑性樹脂モールド部22には、凹部22dを囲むように形成されたシール部材セット用の溝部22eが形成されている。この溝部22eには後述するOリング42(図1参照)が嵌め込まれる。そして、複数のユニット10を積層したときに、Oリング42によりユニット10同士の間のシールが為され、水路30に流される冷媒としての冷却水が樹脂モールド部20の外部に漏れることを防止している。このような構造により、各ユニット10が構成されている。
さらに、半導体モジュール1には、図1に示すように蓋部40、パイプ付蓋部41、Oリング42および固定具43が備えられている。
蓋部40およびパイプ付蓋部41は、上記のように構成されたユニット10を複数個積層したときの両先端部にそれぞれ配置されるものである。蓋部40は、各ユニット10の樹脂モールド部20と対応する形状の板状部材で構成されている。蓋部40を複数個積層したユニット10の積層体の一方の先端部に配置したときに、蓋部40とユニット10との間には、凹部22dによる隙間が形成されるようになっている。一方、パイプ付蓋部41は、各ユニット10の樹脂モールド部20と対応する形状の板状部材に対して2本のパイプ41a、41bを備えた構成とされている。2本のパイプ41a、41bの一方は冷却水の入口、他方は冷却水の出口とされ、それぞれ各ユニット10に形成された通路穴22cと対応する位置に配置されている。また、パイプ付蓋部41のうちユニット10側の面には、シール部材セット用の溝部41cが形成されている。
Oリング42は、各ユニット10に形成されたシール部材セット用の溝部22eやパイプ付蓋部41に形成されたシール部材セット用の溝部41c内に嵌め込まれ、積層された各ユニット10の間やユニット10と蓋部40およびパイプ付蓋部41の間をシールする。
固定具43は、溝部22eおよび溝部41c内にOリング42を嵌め込みつつ、積層した複数個のユニット10の両先端部に蓋部40およびパイプ付蓋部41を配置したのち、蓋部40およびパイプ付蓋部41の両側から挟み込むことで固定するものである。この固定具43によって固定されることで、パイプ41a、41bおよび各ユニット10に形成した通路穴22cおよび凹部22dによる水路30が構成された半導体モジュール1が構成されている。この固定具43は着脱可能に構成されており、固定具43を取り外すことにより、各ユニット10や蓋部40およびパイプ付蓋部41が分解できるようになっている。本実施形態では、固定具43は、両端がフックとされており、両端のフックの間の間隔が蓋部40と複数個のユニット10およびパイプ付蓋部41を積層したときの幅よりも狭くされ、両フックの弾性力によって固定できるようになっている。なお、ここでは固定具43を両端にフックを設けた構造としたが、勿論、固定具43をネジ締め固定できるような構造としても構わない。
以上のような構造により、本実施形態にかかる半導体モジュール1が構成されている。このような構成の半導体モジュール1は、各ユニット10の間やユニット10と蓋部40およびパイプ付蓋部41の間がOリング42によってシールされているため、水路30からの冷却水漏れを防止しつつ、冷却水による高い冷却効果により各ユニット10に備えられた半導体チップ11を冷却することができる。特に、ヒートスプレッダ13、14の表面に放熱を促進させるための冷却フィン18、19を備えていることから、より放熱面積を増大させることができ、さらに高い冷却効果を得ることが可能となる。
具体的には、図1に示すように、パイプ41aおよび各ユニット10に形成された2つの通路穴22cのうちの一方にて一方の主水路31が構成されると共に、各ユニット10に形成された2つの通路穴22cのうちの他方およびパイプ41bにて構成されるもう一方の主水路32が構成される。また、各ユニット10の凹部22dにて分岐水路33が構成される。このため、図1中に矢印で示したように、パイプ41aから供給された冷却水が一方の主水路31を通じて各ユニット10に行き渡った後、分岐水路33を通じてもう一方の主水路32側に移動し、さらにその主水路32からパイプ41bを通じて排出される。このとき、各ユニット10に備えられたヒートスプレッダ13、14および冷却フィン18、19が冷却水に接して冷却されるため、半導体チップ11で発した熱を効果的に放出することが可能となる。
次に、上記のように構成される半導体モジュール1の製造方法について説明する。図4は、図1に示す半導体モジュール1の製造工程を示した断面図である。なお、図4では、冷却フィン18、19を簡略化して示している。この図を参照して、半導体モジュール1の製造方法を説明する。
〔図4(a)の工程〕
まず、正極リード15や負極リード16および制御端子17が一体化されたリードフレームを用意し、ヒートスプレッダ13の表面側にリードフレームを配置すると共に正極リード15を半田等によってヒートスプレッダ13の表面に接合する。また、ヒートスプレッダ13の表面に、半田等を介してIGBTやFWDなどの半導体パワー素子が形成された半導体チップ11を実装したのち、半導体チップ11の表面に形成された半導体パワー素子のゲート等に繋がるパッドと制御端子17とをボンディングワイヤ17aにて接続する。続いて、半導体チップ11の表面に半田等を介して金属ブロック12を接合する。さらに、金属ブロック12や負極リード16の表面に半田等を設置した後、その上にヒートスプレッダ14を配置し、金属ブロック12や負極リード16とヒートスプレッダ14とを接合する。なお、本実施形態では、ヒートスプレッダ13、14として、金属板13a、14aの表面に絶縁膜13b、14aが形成されたものを用いている。
〔図4(b)の工程〕
各部が接続された各構成部品をトランスファー成形機などの成形型内に配置したのち、成形型内にエポキシ樹脂等の熱硬化性樹脂を注入し、熱硬化性樹脂モールド部21を形成する。これにより、パワーカードが構成される。このとき、ヒートスプレッダ13、14のうち半導体チップ11と反対側の面が最初から露出した状態となるような成形を行っても良いが、ここではヒートスプレッダ13、14の当該面まで熱硬化性樹脂モールド部21にて覆われるようにしている。
〔図4(c)の工程〕
切削もしくは研削などによる平坦加工装置を用意し、これによってヒートスプレッダ13、14の表面を覆っている熱硬化性樹脂モールド部21の一部を除去し、ヒートスプレッダ13、14を露出させる。
〔図4(d)の工程〕
熱硬化性樹脂モールド部21によって各構成部品をモールド化したパワーカードをさらに別の成形型内に配置したのち、成形型内にポリフェニレンサルファイド樹脂等の熱可塑性樹脂を注入し、熱可塑性樹脂モールド部22を形成する。
〔図4(e)の工程〕
熱硬化性樹脂モールド部21から露出させられているヒートスプレッダ13、14の表面に、別途製造された冷却フィン18、19を半田付けにより接合する。
ここで、冷却フィン18、19の製造方法について説明する。図5は、冷却フィン18、19の製造工程を示す断面図である。
〔図5(a)の工程〕
1枚の金属板50を用意する。金属板50としては、母材がアルミニウム等で構成され、母材のうちフィン部と平板部との重ね合わせ面となる片面に、ろう材の層が予めクラッドされているクラッド材が用いられる。また、この金属板50としては、例えば、0.1mm以下の厚さのものが用いられる。
そして、この金属板50にフィン部18a、19aと平板部18b、19bとを形成する。フィン部18a、19aは、プレス成形法によって形成される。プレス成形法としては、金属板50を順次送りこむことにより複数回に分けてフィン山を形成したり、1回のプレスでフィン部18a、19aを形成したり(一発プレス成形)、例えば、中央のプレス型に金属板を起こり込みながらの絞り(引き込み)成形したりする方法等を採用することができる。なお、金属板50のうちフィン部18a、19aを形成した残りの部分が平板部18b、19bとなる。
〔図5(b)の工程〕
フィン部18a、19aと平板部18b、19bとが一体に形成された金属板50を折り曲げる。ここで、図6に、図5(a)中の領域Cの拡大図を示す。この折り曲げでは、図6に示すように、フィン部18a、19aと平板部18b、19bとの間に形成されたスリット18dを起点とする。なお、スリット18dの形成は、フィン部18a、19aの形成前もしくは後のどちらでも良い。これによって、金属板50が折り曲げ部18cで折り曲げられ、フィン部18a、19aと平板部18b、19bとが重ね合わされる。
このように、スリット18dの位置を予め所定位置に設定することで、折り曲げるだけでフィン部18a、19aと平板部18b、19bとを重ね合わせることができ、フィン部18a、19aと平板部18b、19bとの位置合わせの工程が不要となる。
〔図5(c)の工程〕
重ね合わされたフィン部18a、19aと平板部18b、19bとをろう付けする。ここでは、パワーカードとは別に、冷却フィン18、19単品でろう付けを行う。このろう付けでは、加熱温度を例えば600℃とし、フィン山を潰さないように、例えば、フィン部18a、19aと平板部18b、19bとが密着している両端部を抑えながら加熱する。
これにより、合わせ面のろう材によって、フィン部18a、19aのうち平板部側のフィン山と平板部18b、19bとの間が接合されると共に、両者からろう材がはみ出すことで、フィレット51が形成される。このようにして、冷却フィン18、19が製造される。
図4(e)の工程では、フィン山を潰さないように、例えば、冷却フィン18、19の両端部等を抑えながら加熱することにより、冷却フィン18、19とヒートスプレッダ13、14表面の絶縁膜13a、14aとを半田付けをする。これにより、ユニット10が形成される。
その後、図1に示されるように、図4(e)の工程まで実施したユニット10を複数個(本実施形態の場合には3個)用意し、各ユニット10における熱可塑性樹脂モールド部22の溝部22e内にOリング42を嵌め込む。そして、ユニット10を複数個(図1中では3個)積層する。
次いで、蓋部40およびパイプ付蓋部41を用意し、パイプ付蓋部41に形成されたシール部材セット用の溝部41cにOリング42を嵌め込む。そして、積層した複数のユニット10の積層方向の一方の先端部に蓋部40を配置すると共に、他方の先端部にパイプ付蓋部41を配置する。
次いで、蓋部40と複数のユニット10およびパイプ付蓋部41を積層したものを固定具43にて固定する。これにより、図1に示した本実施形態の半導体モジュール1が完成する。
以上説明したように、本実施形態の半導体モジュール1では、ヒートスプレッダ13、14と冷却フィン18、19とを別体で構成し、ヒートスプレッダ13、14を金属板13a、14aと絶縁膜13b、14bで構成して、冷却フィン18、19を後付けする構造としている。
これとは異なり、従来のように、冷却フィンがヒートスプレッダと一体構造とされている場合、樹脂成形時に冷却フィンの間にモールド樹脂が入り込まないようにするために、冷却フィンが入り込む穴を有した成形型を用いなければならない。このような成形型を用いた場合、冷却フィンと冷却フィンが入り込む穴との位置決めが困難であると同時に、冷却フィンの穴への抜き差し時に冷却フィンが変形、破損、汚染されるという問題が発生する。
そこで、本実施形態のように、冷却フィン18、19をヒートスプレッダ13、14と別体構造とすることで、冷却フィン18、19が無い状態で樹脂モールド部21の樹脂成形を行うことができるため、製造工程の簡略化を図ることができると共に、冷却フィン18、19が変形、破損、汚染されることを防止することができる。
また、本実施形態によると、各ヒートスプレッダ13、14に備えた絶縁膜13b、14bにより、ヒートスプレッダ13、14から冷却水への通電を防止できると共に、冷却フィン18、19をヒートスプレッダ13、14とは別々に形成できることから、冷却フィン18、19として、細密形状を有し放熱性能が高いコルゲートタイプのフィンを採用できる。
さらに、本実施形態によると、冷却フィン18、19の構成を、フィン部18a、19aと平板部18b、19bとが重ねられて、フィン部18a、19aのフィン山頂部と平板部18b、19bとがろう付けにより接合された構成とし、冷却フィン18、19の平板部18b、19bと絶縁膜13b、14bとを半田付けにより接合しているので、フィン部−平板部間や、平板部−絶縁膜間において良好な接合が得られる。
また、本実施形態によると、一般的な接着剤よりも熱伝導性が高い半田およびろう材を用いて金属的に接合しているので、接着剤で接合した場合と比較して、ヒートスプレッダ13、14と冷却フィン18、19との間の熱伝導性を向上できる。また、本発明では、フィン部18a、19aのフィン山と平板部18b、19bとの接合部にフィレット51が形成されているので、超音波溶着のように接合部にフィレットが形成されていない場合と比較して、フィン山の接合部での接合領域を広くでき、ヒートスプレッダ13、14と冷却フィン18、19との間の熱伝導性を向上できる。
したがって、本実施形態によれば、接着剤や超音波溶着による接合を採用した場合と比較して、冷却フィン18、19による放熱性能を十分に発揮させることができる。
ここで、本実施形態とは異なり、本実施形態の平板部18b、19bを省略し、フィン部18a、19aのフィン山を絶縁膜13b、14bに直接接合することが考えられる。しかし、この場合、フィン部18a、19aのフィン山と絶縁膜13b、14bとの間に接合不良が生じると、ユニット10全体が不良品となってしまう。
これに対して、本実施形態では、図5(a)〜(c)の工程で、冷却フィン18、19単品でろう付けを行うので、ろう付け後に、フィン部18a、19aのフィン山が平板部18b、19bに対して良好に接合されているかの確認(検査)を行うことが可能となる。これにより、フィン山と平板部との間に接合不良が生じた冷却フィンが、ヒートスプレッダ13、14に接合されることを防止でき、フィン山の接合保証が可能となる。
また、本実施形態とは異なり、本実施形態の平板部18b、19bを省略し、フィン部18a、19aのフィン山を絶縁膜13b、14bに直接接合する場合では、絶縁膜側に位置するフィン山を絶縁膜に密着させるために、冷却フィン全体に荷重をかける必要が生じるので、フィン山が潰れてしまう恐れがある。
これに対して、本実施形態では、冷却フィン18、19を絶縁膜13、14に接合する図4(e)の工程において、平板部18b、19bと絶縁膜13b、14bとを半田付けするので、冷却フィン18、19の両端部等の一部に荷重をかけることで、フィン山が潰れないようにすることができる。これは、平板部18b、19bの一部に荷重をかけると、平板部18b、19bの全面に応力が分散するからである。
また、半田付けにより、フィン部18a、19aのフィン山を絶縁膜13b、14bに直接接合しようとすると、フィン部18a、19aで形成される冷却水流路に半田が流れ込むことで、冷却水流路が塞がれてしまう恐れがある。
これに対して、本実施形態によれば、板部18b、19bと絶縁膜13b、14bとを半田付けするので、このような問題を防ぐことができる。
(第2実施形態)
本実施形態は、第1実施形態に対して冷却フィン18、19の平面視でのフィン山のレイアウトを変更したものであり、その他の部分については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
図7は、本実施形態における半導体モジュール1を構成するユニット10のうち隣り合うユニット10の対向する冷却フィン18、19を示した平面図であり、図1の紙面上方から見たときの冷却フィン18、19のレイアウトに相当している。
本実施形態では、図7に示すように、隣り合うユニット10のフィン向きを反転させて、複数のユニット10を積層させている。すなわち、隣り合うユニット10に備えられている対向する冷却フィン18、19について、冷却フィン18のフィン山が構成するウェーブと、冷却フィン19のフィン山が構成するウェーブとが、180度位相をずらした関係となるようなクロスウェーブ形状としている。
このように、冷却フィン18、19によってクロスウェーブ形状が形成される平面レイアウトとすることで、冷却フィン18、19を通過する冷却水により多くの乱流を発生させることが可能となる。このため、この乱流によってより冷却フィン18、19による冷却性能(放熱性能)を高めることが可能となる。
(第3実施形態)
図8に本実施形態における冷却フィン18、19の平面図を示す。コルゲートタイプの冷却フィン18、19として、第1実施形態では、冷却フィンの平面視でフィン山が波状に延びているウェーブフィンを用いたが、本実施形態では、図8に示すように、冷却フィンの平面視でフィン山が直線状に延びているストレートフィンを用いている。
(他の実施形態)
(1)上述の実施形態では、冷却フィン18、19の形成において、金属板50として、母材のうちフィン部と平板部との重ね合わせ面となる片面に、ろう材の層が予めクラッドされているクラッド材を用いたが、クラッドされていないものを用いても良い。この場合、金属板50を折り曲げた後、フィン部18a、19aと平板部18b、19bとの間に、平板状のろう材を挟み、フィン部18a、19aと平板部18b、19bとを、かしめた状態で加熱することで、ろう付けしても良い。
(2)上述の実施形態では、冷却フィン18、19の形成において、図5(a)、(b)に示されるように、フィン部18a、19aと平板部18b、19bとが一体に形成された金属板50を折り曲げ部18c、19cで折り曲げることにより、フィン部18a、19aと平板部18b、19bとを重ね合わせていたが、フィン部18a、19aと平板部18b、19bとを別体として形成して、両者を重ね合わせても良い。
この場合でも、フィン部18a、19aと平板部18b、19bとのろう付けによって、フィン山と平板部18b、19bとの接合部に、ろう材によるフィレット51が形成されるので、上述の実施形態と同様の効果が得られる。
ただし、冷却フィン18、19の生産性を高めるという観点では、フィン部18a、19aと平板部18b、19bとの位置合わせの工程が不要となる等の理由から、フィン部18a、19aと平板部18b、19bとが一体に形成された金属板50を折り曲げ部18c、19cで折り曲げる方法を採用することが好ましい。
(3)上述の実施形態では、樹脂モールド部20が熱硬化性樹脂モールド部21と熱可塑性樹脂モールド部22とによって構成される場合を例に挙げて説明した。しかしながら、これら樹脂モールド部をすべて熱硬化性樹脂もしくは共に熱可塑性樹脂にて構成しても良い。ただし、耐熱性を考慮すると、半導体チップ11などの構成要素を覆う部分については熱硬化性樹脂で構成するのが好ましく、各ユニット10の外縁部のみを交換してパワーカードをリユースできるようにするのであれば、比較的低温で軟化するように、その外縁部を熱可塑性樹脂で構成するのが好ましい。
(4)上述の実施形態では、三相モータを駆動するインバータに対して半導体モジュール1を適用する場合を例に挙げて説明したが、インバータに限らず、他の装置に本発明の半導体モジュール1を適用しても良い。
(5)上述の実施形態では、冷媒として冷却水を例に挙げて説明したが、他の冷媒を用いても構わない。
1 半導体モジュール
10 ユニット
11 半導体チップ
13、14 ヒートスプレッダ
15 正極リード
16 負極リード
17 制御端子
18、19 冷却フィン
18a、19a フィン部
18b、19b 平板部
18c、19c 折り曲げ部
20 樹脂モールド部
21 熱硬化性樹脂モールド部
21a 凹部
22 熱可塑性樹脂モールド部
22c 通路穴
30 水路
40 蓋部
41 パイプ付蓋部
43 固定具
51 フィレット

Claims (5)

  1. 表面および裏面を有し、半導体パワー素子が形成された半導体チップ(11)と、
    前記半導体チップ(11)の裏面側に接続される第1ヒートスプレッダ(13)と、
    前記半導体チップ(11)の表面側に接続される第2ヒートスプレッダ(14)と、
    前記半導体パワー素子に電気的に接続される端子(15〜17)と、
    前記半導体パワー素子に電気的に接続された前記端子(15〜17)の一部を露出させると共に、前記第1、第2ヒートスプレッダ(13、14)のうち前記半導体チップ(11)と反対側の面を露出させつつ、前記半導体チップ(11)、前記第1、第2ヒートスプレッダ(13、14)および前記端子(15〜17)を覆い、かつ、冷媒が流される冷媒通路の一部を構成する樹脂モールド部(20)と、を有し、
    前記半導体チップ(11)、前記第1、第2ヒートスプレッダ(13、14)、前記端子(15〜17)を前記樹脂モールド部(20)にてモールド化したものを1つのユニット(10)として、該ユニット(10)の両端を蓋部(40、41)にて挟み込んで固定具(43)にて固定した半導体モジュールであって、
    前記第1、第2ヒートスプレッダ(13、14)のうち前記半導体チップ(11)と反対側の面は平坦面とされ、この平坦面には、当該平坦面を覆う絶縁膜(13b、14b)が備えられていると共に、該絶縁膜(13b、14b)を介して、断面波形状のコルゲートタイプの冷却フィン(18、19)が接合されており、
    前記冷却フィン(18、19)は、複数のフィン山を有するフィン部(18a、19a)と、前記平板部(18b、19b)とが重ねられて、前記平板部(18b、19b)のうち前記フィン部側の面と前記フィン部(18a、19a)のうち前記平板部側の前記フィン山とがろう付けにより接合された構成であると共に、前記平板部(18b、19b)のうち前記フィン部(18a、19a)とは反対側の面と前記絶縁膜(13b、14b)とが半田付けにより接合されており、
    前記フィン部(18a、19a)と前記平板部(18b、19b)との接合部に、ろう材によるフィレット(51)が形成されていることを特徴とする半導体モジュール。
  2. 前記フィン部(18a、19a)は、平面視で前記フィン山が波状に配置されているウェーブフィンであることを特徴とする請求項1に記載の半導体モジュール。
  3. 隣り合う前記ユニット(10)に備えられた前記冷却フィン(18、19)は、前記冷却フィン(18、19)のうちの一方の波状の前記フィン部(18a、19a)に対して、前記冷却フィン(18、19)のうちの他方の波状の前記フィン部(18a、19a)が180度位相がずらされて、クロスウェーブ形状が形成される平面レイアウトとされていることを特徴とする請求項2に記載の半導体モジュール。
  4. 請求項1〜3のいずれか1つに記載の半導体モジュールの製造方法であって、
    前記フィン部(18a、19a)と前記平板部(18b、19b)とが一体に形成された金属板(50)を用意し、前記金属板(50)のうち前記フィン部(18a、19a)と前記平板部(18b、19b)との間の折り曲げ部(18c、19c)で折り曲げることにより、前記フィン部(18a、19a)と前記平板部(18b、19b)とを重ね合わせて、前記平板部(18b、19b)のうち前記フィン部側の面と前記フィン部(18a、19a)のうち前記平板部側の前記フィン山とをろう付けにより接合することで前記冷却フィン(18、19)を形成し、
    形成した前記冷却フィン(18、19)の前記平板部(18b、19b)と前記絶縁膜(13b、14b)とを半田付けにより接合することを特徴とする半導体モジュールの製造方法。
  5. 前記金属板(50)として、前記フィン部(18a、19a)と前記平板部(18b、19b)との重ね合わせ面となる母材の表面にろう材がクラッドされているクラッド材を用いることを特徴とする請求項4に記載の半導体モジュールの製造方法。
JP2010147557A 2010-06-29 2010-06-29 半導体モジュールおよびその製造方法 Pending JP2012015167A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010147557A JP2012015167A (ja) 2010-06-29 2010-06-29 半導体モジュールおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010147557A JP2012015167A (ja) 2010-06-29 2010-06-29 半導体モジュールおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2012015167A true JP2012015167A (ja) 2012-01-19

Family

ID=45601294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010147557A Pending JP2012015167A (ja) 2010-06-29 2010-06-29 半導体モジュールおよびその製造方法

Country Status (1)

Country Link
JP (1) JP2012015167A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013183038A (ja) * 2012-03-02 2013-09-12 Mitsubishi Electric Corp 半導体装置
JP2014192165A (ja) * 2013-03-26 2014-10-06 Kyocera Corp 冷却基板、素子収納用パッケージ、および実装構造体
CN112066114A (zh) * 2020-09-14 2020-12-11 深圳比特微电子科技有限公司 一种管件转接头、液冷板散热器和计算设备
CN113835488A (zh) * 2021-09-24 2021-12-24 北京百度网讯科技有限公司 处理器模组及服务器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272595U (ja) * 1988-11-22 1990-06-01
JPH08320194A (ja) * 1994-10-03 1996-12-03 Sumitomo Metal Ind Ltd Lsiパッケージ冷却用コルゲート型放熱フィン
JP2004165281A (ja) * 2002-11-11 2004-06-10 Mitsubishi Electric Corp モールド樹脂封止型パワー半導体装置及びその製造方法
JP2004273479A (ja) * 2003-03-05 2004-09-30 Hitachi Ltd 放熱フィン付パワー半導体モジュール
JP2006165534A (ja) * 2004-11-11 2006-06-22 Denso Corp 半導体装置
JP2006310486A (ja) * 2005-04-27 2006-11-09 Toyota Industries Corp 絶縁回路基板及びパワーモジュール用基板
JP2008166423A (ja) * 2006-12-27 2008-07-17 Denso Corp 冷却管およびその製造方法
JP2009212302A (ja) * 2008-03-04 2009-09-17 Denso Corp 半導体モジュール及びその製造方法
JP2010010418A (ja) * 2008-06-27 2010-01-14 Denso Corp 積層型冷却器
JP2010135697A (ja) * 2008-12-08 2010-06-17 Toyota Motor Corp 積層モジュール構造

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272595U (ja) * 1988-11-22 1990-06-01
JPH08320194A (ja) * 1994-10-03 1996-12-03 Sumitomo Metal Ind Ltd Lsiパッケージ冷却用コルゲート型放熱フィン
JP2004165281A (ja) * 2002-11-11 2004-06-10 Mitsubishi Electric Corp モールド樹脂封止型パワー半導体装置及びその製造方法
JP2004273479A (ja) * 2003-03-05 2004-09-30 Hitachi Ltd 放熱フィン付パワー半導体モジュール
JP2006165534A (ja) * 2004-11-11 2006-06-22 Denso Corp 半導体装置
JP2006310486A (ja) * 2005-04-27 2006-11-09 Toyota Industries Corp 絶縁回路基板及びパワーモジュール用基板
JP2008166423A (ja) * 2006-12-27 2008-07-17 Denso Corp 冷却管およびその製造方法
JP2009212302A (ja) * 2008-03-04 2009-09-17 Denso Corp 半導体モジュール及びその製造方法
JP2010010418A (ja) * 2008-06-27 2010-01-14 Denso Corp 積層型冷却器
JP2010135697A (ja) * 2008-12-08 2010-06-17 Toyota Motor Corp 積層モジュール構造

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013183038A (ja) * 2012-03-02 2013-09-12 Mitsubishi Electric Corp 半導体装置
JP2014192165A (ja) * 2013-03-26 2014-10-06 Kyocera Corp 冷却基板、素子収納用パッケージ、および実装構造体
CN112066114A (zh) * 2020-09-14 2020-12-11 深圳比特微电子科技有限公司 一种管件转接头、液冷板散热器和计算设备
CN113835488A (zh) * 2021-09-24 2021-12-24 北京百度网讯科技有限公司 处理器模组及服务器
CN113835488B (zh) * 2021-09-24 2024-03-26 北京百度网讯科技有限公司 处理器模组及服务器

Similar Documents

Publication Publication Date Title
JP5273101B2 (ja) 半導体モジュールおよびその製造方法
JP5115595B2 (ja) 半導体モジュールの製造方法
JP5115594B2 (ja) 半導体モジュール
JP6979864B2 (ja) パワー半導体装置及びその製造方法
JP5382049B2 (ja) 半導体装置
JP5279632B2 (ja) 半導体モジュール
US8981552B2 (en) Power converter, semiconductor device, and method for manufacturing power converter
JP5659938B2 (ja) 半導体ユニットおよびそれを用いた半導体装置
JP4984730B2 (ja) 半導体装置
JP5126278B2 (ja) 半導体装置およびその製造方法
JP2013232614A (ja) 半導体装置
CN110771027B (zh) 功率半导体装置及使用该装置的电力转换装置
JP6899784B2 (ja) パワー半導体装置
JP2008042074A (ja) 半導体装置及び電力変換装置
JP5392196B2 (ja) 半導体装置
CN105814682A (zh) 半导体装置
JP2012015167A (ja) 半導体モジュールおよびその製造方法
JP2012016095A (ja) 電力変換装置
JP5845835B2 (ja) 半導体モジュール
JP2013062282A (ja) 半導体装置
JP5343775B2 (ja) 電力用半導体装置
KR101482839B1 (ko) 반도체 장치 및 반도체 장치 제조 방법
JP5125530B2 (ja) 電力変換装置
JP5840102B2 (ja) 電力用半導体装置
JP7643186B2 (ja) 半導体モジュールおよび半導体モジュールの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140507