[go: up one dir, main page]

JP2011208861A - Device and method for managing performance of heat exchanger - Google Patents

Device and method for managing performance of heat exchanger Download PDF

Info

Publication number
JP2011208861A
JP2011208861A JP2010075993A JP2010075993A JP2011208861A JP 2011208861 A JP2011208861 A JP 2011208861A JP 2010075993 A JP2010075993 A JP 2010075993A JP 2010075993 A JP2010075993 A JP 2010075993A JP 2011208861 A JP2011208861 A JP 2011208861A
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
medium
cooled
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010075993A
Other languages
Japanese (ja)
Other versions
JP5020347B2 (en
Inventor
Masamitsu Tamura
真満 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2010075993A priority Critical patent/JP5020347B2/en
Publication of JP2011208861A publication Critical patent/JP2011208861A/en
Application granted granted Critical
Publication of JP5020347B2 publication Critical patent/JP5020347B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device and a method for managing performance of a heat exchanger capable of easily determining whether a heat transfer pipe of the heat exchanger functions as designed or not.SOLUTION: The heat exchanger performance managing device 10 accepts inlet temperature of a cooled medium, inlet temperature of a cooling medium, and set temperature. Next, the heat exchanger performance managing device 10 calculates a necessary area for cooling the cooled medium to the set temperature based on a predetermined value related to heat-exchange between the cooling medium and the cooled medium, and the temperature of the cooled medium and the temperature of the cooling medium which it accepted, and calculates a heat transfer pipe effective area where heat exchange is performed based on a surface area and the number of the heat transfer tubes. The heat exchanger performance managing device 10 measures outlet temperature of the cooled medium, and determines that the heat exchanger is abnormal when the calculated necessary area is smaller than the calculated effective area while the measured temperature of the cooled medium is higher than the accepted set temperature.

Description

本発明は、熱交換器性能管理装置及び方法に関する。   The present invention relates to a heat exchanger performance management apparatus and method.

従来より、発電プラントのように全設備をまかなう大規模な潤滑油系統や、冷却水系統等を有した工場は、それらの系統の内部を流れる流体の温度を、各系統が要求する温度になるように制御する熱交換器を備えている。   Conventionally, factories with large-scale lubricating oil systems and cooling water systems that cover all facilities like power plants have the temperatures required by each system for the temperature of the fluid flowing through those systems. The heat exchanger is controlled as follows.

ここで、熱交換器について説明する。図6は、熱交換器500の構成を示す概略図である。図6において、熱交換器500は、冷却媒体が冷却水入口501から流入し、伝熱管521を流れて、冷却水出口502から流出する。被冷却媒体は、被冷却水入口511から流入し、伝熱管521の間を流れて、被冷却水出口512から流出する。そして、熱交換器500は、伝熱管521を流れる冷却水や海水等の冷却媒体と、伝熱管521の間を流れる被冷却媒体との間で伝熱管521を介して熱交換を行うことによって被冷却媒体を冷却する。   Here, the heat exchanger will be described. FIG. 6 is a schematic diagram showing the configuration of the heat exchanger 500. In FIG. 6, in the heat exchanger 500, the cooling medium flows from the cooling water inlet 501, flows through the heat transfer pipe 521, and flows out from the cooling water outlet 502. The cooled medium flows in from the cooled water inlet 511, flows between the heat transfer tubes 521, and flows out of the cooled water outlet 512. The heat exchanger 500 performs heat exchange between the cooling medium such as cooling water and seawater flowing through the heat transfer tube 521 and the cooling medium flowing between the heat transfer tubes 521 through the heat transfer tubes 521. Cool the cooling medium.

ここで、熱交換器において、伝熱管の内部に異物が混入したり、異物が生成されることにより内部に詰まり等が発生すると、伝熱管を介する冷却媒体と被冷却媒体との熱交換の効率が低くなり、冷却能力が低下する。例えば、冷却能力が低下して発電プラント運転中に被冷却媒体の温度が下がらない場合、熱交換器の開放点検が行なわれ、伝熱管の詰りに起因する冷却能力の低下か、その他の原因による冷却能力の低下かが調査される。ところが、熱交換器の開放点検を行った結果、伝熱管の詰りに起因する冷却能力の低下ではないことが判明する場合が生じている。例えば、冷却媒体に使用されている海水の温度が、想定されている温度よりも高い場合がある。このような原因の場合、熱交換器の開放点検作業は、無駄な作業になる。   Here, in the heat exchanger, when foreign matter is mixed inside the heat transfer tube or clogging occurs due to the generation of foreign matter, the efficiency of heat exchange between the cooling medium and the medium to be cooled via the heat transfer tube Becomes lower and the cooling capacity decreases. For example, if the cooling capacity is reduced and the temperature of the cooled medium does not drop during power plant operation, the heat exchanger is inspected for openness, the cooling capacity is reduced due to clogged heat transfer tubes, or other causes It is investigated whether the cooling capacity is reduced. However, as a result of performing an open inspection of the heat exchanger, there are cases where it is found that the cooling capacity is not lowered due to clogging of the heat transfer tubes. For example, the temperature of seawater used as the cooling medium may be higher than the assumed temperature. In the case of such a cause, the heat exchanger open inspection work becomes useless work.

熱交換器の冷却能力の低下において、熱交換器を開放する前に異常原因を把握し、運転中の熱交換器の性能を評価するための技術を開示する特許文献1から4が知られている。   Patent Documents 1 to 4 that disclose techniques for grasping the cause of abnormality before opening the heat exchanger and evaluating the performance of the heat exchanger during operation are known in the decline in the cooling capacity of the heat exchanger. Yes.

特許文献1に開示された異常監視装置は、冷却媒体の入口温度及び出口温度と、被冷却媒体の入口温度及び出口温度と、設備周囲の大気温度とを検出し、検出した温度をもとに判別パラメータを算出し、算出したパラメータと許容値とを比較することによって冷却媒体の通水状態を判別する。   The abnormality monitoring device disclosed in Patent Document 1 detects the inlet temperature and outlet temperature of the cooling medium, the inlet temperature and outlet temperature of the medium to be cooled, and the ambient air temperature around the equipment, and based on the detected temperatures. A discrimination parameter is calculated, and the water flow state of the cooling medium is discriminated by comparing the calculated parameter with an allowable value.

特許文献2に開示された性能監視器は、熱交換媒体(冷却媒体)の出力温度、入力温度及び流量と、熱交換表面積の温度とを測定し、実際熱伝達率と、公称熱伝達率との比(ファウリング率)を算出する。そして、性能監視器は、ファウリング率の値によって熱交換表面の清浄度を判断する。   The performance monitor disclosed in Patent Document 2 measures the output temperature, input temperature and flow rate of the heat exchange medium (cooling medium), and the temperature of the heat exchange surface area, and the actual heat transfer rate, nominal heat transfer rate, The ratio (fouling rate) is calculated. The performance monitor determines the cleanliness of the heat exchange surface based on the value of the fouling rate.

特許文献3に開示された監視装置は、熱交換器の熱交換能力を監視して熱交換器の汚れを検知する監視装置であって、熱交換媒体(冷却媒体)の入口温度と、出口温度とを測定し、被冷却流体(被冷却媒体)の出口温度を測定する。そして、監視装置は、通常運転時に、被冷却流体(被冷却媒体)の出口温度が第2の所定値(T1)を超え、かつ熱交換媒体(冷却媒体)の入口温度が第3の所定値(T2)を超えたときには、熱交換媒体(冷却媒体)の温度が高いことを促す表示を行い、被冷却流体(被冷却媒体)の出口温度が第2の所定値(T1)を超え、かつ熱交換媒体(冷却媒体)の入口温度が第3の所定値(T2)未満のときで、熱交換媒体(冷却媒体)の出口温度と熱交換媒体(冷却媒体)の入口温度との差が第1の所定値(T0)未満のときにはクーラの清掃を促す表示を行い、第1の所定値(T0)を越えたときには、熱交換媒体(冷却媒体)の流量不足の表示を行う。   The monitoring device disclosed in Patent Document 3 is a monitoring device that monitors the heat exchange capability of the heat exchanger to detect contamination of the heat exchanger, and includes an inlet temperature and an outlet temperature of the heat exchange medium (cooling medium). And the outlet temperature of the fluid to be cooled (cooled medium) is measured. In the normal operation, the monitoring device has an outlet temperature of the fluid to be cooled (cooled medium) exceeding a second predetermined value (T1) and an inlet temperature of the heat exchange medium (cooling medium) is a third predetermined value. When (T2) is exceeded, a display prompting that the temperature of the heat exchange medium (cooling medium) is high is performed, the outlet temperature of the fluid to be cooled (cooled medium) exceeds the second predetermined value (T1), and When the inlet temperature of the heat exchange medium (cooling medium) is less than the third predetermined value (T2), the difference between the outlet temperature of the heat exchange medium (cooling medium) and the inlet temperature of the heat exchange medium (cooling medium) is When the value is less than a predetermined value (T0) of 1, a message for prompting the cleaning of the cooler is displayed. When the value exceeds the first predetermined value (T0), an insufficient flow rate of the heat exchange medium (cooling medium) is displayed.

特許文献4に開示された異常監視装置は、熱交換器において、異常を判定できる異常監視装置であって、各種のプロセス計測部と、差圧算出部と、性能演算部と、判定部とを備えている。そして、異常監視装置は、熱交換器の入口と出口における給水圧力の差圧及び熱交換器の熱交換性能の両者を監視すると共に、必要に応じてドレン水位調節弁の開度を同時に監視することにより、スケール皮膜生成その他の異常を監視する。   The abnormality monitoring device disclosed in Patent Document 4 is an abnormality monitoring device capable of determining an abnormality in a heat exchanger, and includes various process measurement units, a differential pressure calculation unit, a performance calculation unit, and a determination unit. I have. The abnormality monitoring device monitors both the differential pressure of the feed water pressure at the inlet and outlet of the heat exchanger and the heat exchange performance of the heat exchanger, and simultaneously monitors the opening of the drain water level control valve as necessary. To monitor scale film formation and other abnormalities.

特開昭57−43198号公報JP-A-57-43198 特開昭60−207900号公報JP-A-60-207900 実開平2−85283号公報Japanese Utility Model Publication No. 2-85283 特開平5−39902号公報Japanese Patent Laid-Open No. 5-39902

しかしながら、特許文献1に開示された異常監視装置は、入口温度と出口温度との条件をパラメータ化し、許容値との比較の組み合わせによって異常を監視する装置なので、例えば、伝熱管の詰りに起因する冷却能力の低下か否かを具体的に監視する装置ではない。また、特許文献2に開示された性能監視器は、熱交換表面の清浄度を算出するので、伝熱管の詰りについての情報が得られるだけである。また、特許文献3に開示された監視装置は、例えば、被冷却媒体が冷却されない場合、被冷却媒体の入口温度に関わらず熱交換器の詰りか冷却媒体の流量不足かを判断するので、被冷却媒体の入口温度によっては冷却媒体の流量不足でない場合に、冷却媒体の流量不足の表示を行う場合がある。特許文献4に開示された異常監視装置は、各種のプロセス計測部が必要であり、例えば、伝熱管の詰りに起因する冷却能力の低下か否かだけを知りたい場合には、コスト面等において現実的ではない。   However, the abnormality monitoring device disclosed in Patent Document 1 is a device that parameterizes the conditions of the inlet temperature and the outlet temperature and monitors the abnormality by a combination of comparisons with allowable values. For example, the abnormality monitoring device is caused by clogging of heat transfer tubes. It is not a device that specifically monitors whether or not the cooling capacity is reduced. Moreover, since the performance monitor disclosed by patent document 2 calculates the cleanliness | purity of a heat exchange surface, only the information about the clogging of a heat exchanger tube is obtained. The monitoring device disclosed in Patent Document 3, for example, determines whether the heat exchanger is clogged or the cooling medium flow rate is insufficient regardless of the inlet temperature of the cooling medium when the cooling medium is not cooled. Depending on the inlet temperature of the cooling medium, when the cooling medium flow rate is not insufficient, the lack of cooling medium flow rate may be displayed. The abnormality monitoring device disclosed in Patent Literature 4 requires various process measurement units. For example, when it is desired to know only whether the cooling capacity is reduced due to clogging of heat transfer tubes, in terms of cost, etc. Not realistic.

そこで、熱交換器の伝熱管が設計どおりに機能しているか否かを容易に判断することができる装置が求められている。   Therefore, there is a demand for an apparatus that can easily determine whether or not a heat transfer tube of a heat exchanger functions as designed.

本発明は、熱交換器の伝熱管が設計どおりに機能しているか否かを容易に判断することができる熱交換器性能管理装置及び方法を目的とする。   An object of the present invention is to provide a heat exchanger performance management apparatus and method that can easily determine whether or not a heat transfer tube of a heat exchanger functions as designed.

本発明では、以下のような解決手段を提供する。   The present invention provides the following solutions.

(1) 複数の伝熱管を流れる冷却媒体と、前記複数の伝熱管の間を流れる被冷却媒体とが前記伝熱管を介して熱交換を行うことによって前記被冷却媒体を冷却する熱交換器において、前記熱交換器の性能を管理する熱交換器性能管理装置であって、前記被冷却媒体が前記熱交換器に流入する入口における前記被冷却媒体の温度と、前記冷却媒体が前記熱交換器に流入する入口における前記冷却媒体の温度と、前記被冷却媒体を前記熱交換器が冷却する温度である設定温度とを受け付ける受付手段と、前記受付手段によって受け付けられた前記設定温度まで前記被冷却媒体を冷却するために必要な前記伝熱管の面積である必要面積を、冷却媒体及び被冷却媒体の熱交換に関係する所定の値と、前記受付手段によって受け付けられた前記被冷却媒体の温度及び前記冷却媒体の温度と、に基づいて算出する必要面積算出手段と、熱交換が行われる前記伝熱管の面積である有効面積を、前記伝熱管の表面積及び本数に基づいて算出する有効面積算出手段と、前記熱交換器によって冷却された前記被冷却媒体が前記熱交換器から流出する出口における前記被冷却媒体の温度を測定する測定手段と、前記必要面積算出手段によって算出された必要面積が、前記有効面積算出手段によって算出された有効面積より小さく、かつ、前記測定手段によって測定された前記被冷却媒体の温度が前記受付手段によって受け付けられた設定温度より高い場合に、前記熱交換器が異常であると判別する異常判別手段と、を備える熱交換器性能管理装置。   (1) In a heat exchanger that cools the cooling medium by performing heat exchange between the cooling medium flowing through the plurality of heat transfer tubes and the cooling medium flowing between the plurality of heat transfer tubes via the heat transfer tubes. A heat exchanger performance management device for managing the performance of the heat exchanger, wherein the temperature of the medium to be cooled at an inlet where the medium to be cooled flows into the heat exchanger, and the heat medium being the heat exchanger Receiving means for receiving a temperature of the cooling medium at an inlet flowing into the cooling medium and a set temperature that is a temperature at which the heat exchanger cools the medium to be cooled; and the cooling target to the set temperature received by the receiving means The required area, which is the area of the heat transfer tube necessary for cooling the medium, is set to a predetermined value related to heat exchange between the cooling medium and the medium to be cooled, and the object to be cooled received by the receiving means. The required area calculating means for calculating based on the body temperature and the temperature of the cooling medium, and the effective area, which is the area of the heat transfer tube where heat exchange is performed, are calculated based on the surface area and number of the heat transfer tubes. The effective area calculation means, the measurement means for measuring the temperature of the cooling medium at the outlet where the cooling medium cooled by the heat exchanger flows out of the heat exchanger, and the required area calculation means When the required area is smaller than the effective area calculated by the effective area calculating unit and the temperature of the medium to be cooled measured by the measuring unit is higher than the set temperature received by the receiving unit, the heat A heat exchanger performance management device comprising: an abnormality determination unit that determines that the exchanger is abnormal.

(1)の構成によれば、本発明に係る熱交換器性能管理装置は、被冷却媒体が熱交換器に流入する入口における被冷却媒体の温度と、冷却媒体が熱交換器に流入する入口における冷却媒体の温度と、被冷却媒体を熱交換器が冷却する温度である設定温度とを受け付ける。次に、熱交換器性能管理装置は、受け付けた設定温度まで被冷却媒体を冷却するために必要な伝熱管の面積である必要面積を、冷却媒体及び被冷却媒体の熱交換に関係する所定の値と、受け付けた被冷却媒体の温度及び冷却媒体の温度と、に基づいて算出し、熱交換が行われる伝熱管の面積である有効面積を、伝熱管の表面積及び本数に基づいて算出する。そして、熱交換器性能管理装置は、冷却された被冷却媒体が熱交換器から流出する出口における被冷却媒体の温度を測定し、算出した必要面積が、算出した有効面積より小さく、かつ、測定した被冷却媒体の温度が受け付けた設定温度より高い場合に、熱交換器が異常であると判別する。   According to the configuration of (1), the heat exchanger performance management device according to the present invention includes the temperature of the medium to be cooled at the inlet at which the medium to be cooled flows into the heat exchanger, and the inlet at which the cooling medium flows into the heat exchanger. And a set temperature that is a temperature at which the heat exchanger cools the medium to be cooled. Next, the heat exchanger performance management device determines a necessary area, which is an area of the heat transfer tube necessary for cooling the cooled medium to the received set temperature, to a predetermined temperature related to heat exchange between the cooling medium and the cooled medium. It calculates based on the value, the temperature of the received cooling medium, and the temperature of the cooling medium, and calculates the effective area, which is the area of the heat transfer tube where heat exchange is performed, based on the surface area and the number of heat transfer tubes. The heat exchanger performance management device measures the temperature of the cooled medium at the outlet where the cooled cooled medium flows out of the heat exchanger, and the calculated required area is smaller than the calculated effective area and is measured. When the temperature of the cooled medium is higher than the accepted set temperature, it is determined that the heat exchanger is abnormal.

すなわち、熱交換器性能管理装置は、受け付けた被冷却媒体の入口温度と、冷却媒体の入口温度と、設定温度とから伝熱管の必要面積を算出し、有効面積を算出し、算出した必要面積が、算出した有効面積より小さく、かつ、測定した被冷却媒体の出口温度が受け付けた設定温度より高い場合に、熱交換器が異常であると判別する。したがって、本発明に係る熱交換器性能管理装置は、受け付けた被冷却媒体及び冷却媒体の入口温度と、測定した被冷却媒体の出口温度とによって、熱交換器の伝熱管が設計どおりに機能しているか否かを容易に判断することができる。   That is, the heat exchanger performance management device calculates the required area of the heat transfer tube from the received inlet temperature of the cooling medium, the inlet temperature of the cooling medium, and the set temperature, calculates the effective area, and calculates the required area. However, when the calculated effective area is smaller and the measured outlet temperature of the medium to be cooled is higher than the accepted set temperature, it is determined that the heat exchanger is abnormal. Therefore, in the heat exchanger performance management device according to the present invention, the heat transfer tube of the heat exchanger functions as designed by the received cooling medium and the inlet temperature of the cooling medium and the measured outlet temperature of the cooling medium. It can be easily determined whether or not.

(2) 前記異常判別手段によって、異常であると判別された場合に、前記必要面積と前記有効面積との差に基づいて、前記伝熱管のうち熱交換が行われなかった伝熱管の本数を算出する本数算出手段、をさらに備える(1)に記載の熱交換器性能管理装置。   (2) When it is determined that the abnormality is detected by the abnormality determination unit, the number of heat transfer tubes that have not been subjected to heat exchange among the heat transfer tubes is determined based on the difference between the required area and the effective area. The heat exchanger performance management device according to (1), further comprising: a number calculation means for calculating.

(2)の構成によれば、熱交換器性能管理装置は、異常であると判別された場合に、必要面積と有効面積との差に基づいて、伝熱管のうち熱交換が行われなかった伝熱管の本数を算出する。したがって、(2)の熱交換器性能管理装置は、熱交換器の伝熱管が設計どおりに機能していないと判断した場合に、熱交換が行われなかった伝熱管の本数を容易に示すことができる。   According to the configuration of (2), when the heat exchanger performance management device is determined to be abnormal, heat exchange was not performed among the heat transfer tubes based on the difference between the required area and the effective area. Calculate the number of heat transfer tubes. Therefore, when the heat exchanger performance management device of (2) judges that the heat exchanger tubes of the heat exchanger are not functioning as designed, it should easily indicate the number of heat exchanger tubes that have not been subjected to heat exchange. Can do.

(3) 前記被冷却媒体が前記熱交換器に流入する入口における前記被冷却媒体の温度を測定する被冷却媒体温度測定手段と、前記冷却媒体が前記熱交換器に流入する入口における前記冷却媒体の温度を測定する冷却媒体温度測定手段と、をさらに備える(1)又は(2)に記載の熱交換器性能管理装置。   (3) Cooled medium temperature measuring means for measuring the temperature of the cooled medium at the inlet where the cooled medium flows into the heat exchanger, and the cooling medium at the inlet where the cooled medium flows into the heat exchanger The heat exchanger performance management device according to (1) or (2), further comprising: a cooling medium temperature measuring unit that measures the temperature of the heat exchanger.

(3)の構成によれば、熱交換器性能管理装置は、被冷却媒体が熱交換器に流入する入口における被冷却媒体の温度を測定し、冷却媒体が熱交換器に流入する入口における冷却媒体の温度を測定する。したがって、(3)の熱交換器性能管理装置は、測定した被冷却媒体及び冷却媒体の入口温度と、受け付けた設定温度と、測定した被冷却媒体の出口温度とによって、熱交換器の伝熱管が設計どおりに機能しているか否かをさらに容易に判断することができる。   According to the configuration of (3), the heat exchanger performance management device measures the temperature of the medium to be cooled at the inlet where the medium to be cooled flows into the heat exchanger, and cools the inlet at which the cooling medium flows into the heat exchanger. Measure the temperature of the medium. Therefore, the heat exchanger performance management device of (3) is based on the measured cooling medium and the inlet temperature of the cooling medium, the received set temperature, and the measured outlet temperature of the cooling medium. Can more easily determine whether or not is functioning as designed.

(4) 複数の伝熱管を流れる冷却媒体と、前記複数の伝熱管の間を流れる被冷却媒体とが前記伝熱管を介して熱交換を行うことによって前記被冷却媒体を冷却する熱交換器において、前記熱交換器の性能を管理する熱交換器性能管理装置が実行する方法であって、前記被冷却媒体が前記熱交換器に流入する入口における前記被冷却媒体の温度と、前記冷却媒体が前記熱交換器に流入する入口における前記冷却媒体の温度と、前記被冷却媒体を前記熱交換器が冷却する温度である設定温度とを受け付ける受付ステップと、前記受付ステップによって受け付けられた前記設定温度まで前記被冷却媒体を冷却するために必要な前記伝熱管の面積である必要面積を、冷却媒体及び被冷却媒体の熱交換に関係する所定の値と、前記受付ステップによって受け付けられた前記被冷却媒体の温度及び前記冷却媒体の温度と、に基づいて算出する必要面積算出ステップと、熱交換が行われる前記伝熱管の面積である有効面積を、前記伝熱管の表面積及び本数算出に基づいて算出する有効面積算出ステップと、前記熱交換器によって冷却された前記被冷却媒体が前記熱交換器から流出する出口における前記被冷却媒体の温度を測定するステップと、前記必要面積算出ステップによって算出された必要面積が、前記有効面積算出ステップによって算出された有効面積より小さく、かつ、前記測定ステップによって測定された前記被冷却媒体の温度が前記受付ステップによって受け付けられた前記設定温度より高い場合に、前記熱交換器が異常であると判別するステップと、を備える方法。   (4) In the heat exchanger that cools the cooled medium by performing heat exchange between the cooling medium flowing through the plurality of heat transfer tubes and the cooled medium flowing between the plurality of heat transfer tubes via the heat transfer tubes. A method executed by a heat exchanger performance management device that manages the performance of the heat exchanger, wherein the temperature of the medium to be cooled at an inlet where the medium to be cooled flows into the heat exchanger, and the cooling medium A receiving step for receiving the temperature of the cooling medium at the inlet flowing into the heat exchanger and a set temperature that is a temperature at which the heat exchanger cools the medium to be cooled, and the set temperature received by the receiving step The required area, which is the area of the heat transfer tube necessary for cooling the cooled medium, is determined by a predetermined value related to heat exchange between the cooling medium and the cooled medium, and the receiving step. The required area calculation step of calculating based on the received temperature of the medium to be cooled and the temperature of the cooling medium, and the effective area that is the area of the heat transfer tube in which heat exchange is performed, the surface area of the heat transfer tube and An effective area calculating step for calculating based on the number calculation, a step for measuring a temperature of the cooling medium at an outlet where the cooling medium cooled by the heat exchanger flows out of the heat exchanger, and the required area The required area calculated by the calculating step is smaller than the effective area calculated by the effective area calculating step, and the temperature of the medium to be cooled measured by the measuring step is received by the receiving step. Determining that the heat exchanger is abnormal if higher.

したがって、熱交換器の性能を管理する熱交換器性能管理装置が実行する方法は、受け付けた被冷却媒体及び冷却媒体の入口温度と、測定した被冷却媒体の出口温度とによって、熱交換器の伝熱管が設計どおりに機能しているか否かを容易に判断することができる。   Therefore, the method executed by the heat exchanger performance management device that manages the performance of the heat exchanger is based on the received cooling medium, the inlet temperature of the cooling medium, and the measured outlet temperature of the cooling medium. It is possible to easily determine whether or not the heat transfer tube functions as designed.

本発明は、熱交換器の伝熱管が設計どおりに機能しているか否かを容易に判断することができる。よって、本発明は、熱交換器の現在の運転状況を把握でき、熱交換器を開放して点検する必要があるか否かを容易に判断することができる。さらに、本発明は、伝熱管が設計どおりに機能しているか否かの判断について迅速に判断し、熱交換器の監視業務の強化を図ることができる。   The present invention can easily determine whether or not the heat transfer tube of the heat exchanger functions as designed. Therefore, this invention can grasp | ascertain the present operating condition of a heat exchanger, and can judge easily whether it is necessary to open and inspect a heat exchanger. Furthermore, according to the present invention, it is possible to quickly determine whether or not the heat transfer tube is functioning as designed, thereby enhancing the monitoring operation of the heat exchanger.

本発明の一実施形態に係る熱交換器性能管理装置の機能を示す機能ブロック図である。It is a functional block diagram which shows the function of the heat exchanger performance management apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る熱交換器性能管理装置のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the heat exchanger performance management apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る熱交換器性能管理装置の処理内容を示すフローチャートである。It is a flowchart which shows the processing content of the heat exchanger performance management apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る熱交換器性能管理装置において、入口温度及び設定温度を受け付ける一例と、判断の表示の一例とを示す図である。In a heat exchanger performance management device concerning one embodiment of the present invention, it is a figure showing an example which receives entrance temperature and preset temperature, and an example of a display of judgment. 本発明の一実施形態に係る熱交換器性能管理装置の実施形態2の機能を示す機能ブロック図である。It is a functional block diagram which shows the function of Embodiment 2 of the heat exchanger performance management apparatus which concerns on one Embodiment of this invention. 熱交換器の構成を示す概略図である。It is the schematic which shows the structure of a heat exchanger.

[実施形態1]
以下、本発明の実施形態について図を参照しながら説明する。
[Embodiment 1]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る熱交換器性能管理装置10の機能を示す機能ブロック図である。熱交換器性能管理装置10は、受付手段としての受付部11と、必要面積算出手段としての必要面積算出部12と、有効面積算出手段としての有効面積算出部13と、測定手段としての測定部14と、異常判別手段としての異常判別部15と、本数算出手段としての本数算出部16とを備える。そして、熱交換器性能管理装置10は、被冷却媒体を冷却するために必要な必要面積と、伝熱管521の有効面積とに基づいて熱交換器500の性能を管理する。   FIG. 1 is a functional block diagram showing functions of a heat exchanger performance management apparatus 10 according to an embodiment of the present invention. The heat exchanger performance management apparatus 10 includes a receiving unit 11 as a receiving unit, a required area calculating unit 12 as a required area calculating unit, an effective area calculating unit 13 as an effective area calculating unit, and a measuring unit as a measuring unit. 14, an abnormality determination unit 15 as an abnormality determination unit, and a number calculation unit 16 as a number calculation unit. And the heat exchanger performance management apparatus 10 manages the performance of the heat exchanger 500 based on a required area required in order to cool a to-be-cooled medium, and the effective area of the heat exchanger tube 521. FIG.

受付部11は、被冷却媒体が熱交換器500に流入する入口における被冷却媒体の温度と、冷却媒体が熱交換器500に流入する入口における冷却媒体の温度と、被冷却媒体を熱交換器500が冷却する温度である設定温度とを受け付ける。例えば、受付部11は、表示装置(例えば、後述する図2の表示部2014)に被冷却媒体の温度と、冷却媒体の温度と、設定温度とを受け付けるメッセージを表示させ、操作部から入力されたそれぞれのデータを受け付ける。入力されたデータは、冷却媒体の入口温度、被冷却媒体の入口温度、及び被冷却媒体の設定温度として記憶部(例えば、後述する図2の補助記憶部2015)に記憶される。   The receiving unit 11 includes a temperature of the cooling medium at the inlet where the cooling medium flows into the heat exchanger 500, a temperature of the cooling medium at the inlet where the cooling medium flows into the heat exchanger 500, and the cooling medium as a heat exchanger. A set temperature, which is a temperature at which 500 is cooled, is received. For example, the reception unit 11 displays a message for receiving the temperature of the cooling medium, the temperature of the cooling medium, and the set temperature on a display device (for example, the display unit 2014 in FIG. 2 described later), and is input from the operation unit. Accept each data. The input data is stored in the storage unit (for example, auxiliary storage unit 2015 in FIG. 2 described later) as the cooling medium inlet temperature, the cooling medium inlet temperature, and the set temperature of the cooling medium.

必要面積算出部12は、受付部11によって受け付けられた設定温度まで被冷却媒体を冷却するために必要な伝熱管521の面積である必要面積を、冷却媒体及び被冷却媒体の熱交換に関係する所定の値と、受付部11によって受け付けられた被冷却媒体の温度及び冷却媒体の温度と、に基づいて算出する。ここで、熱交換に関係する所定の値は、例えば、被冷却媒体の流量、比熱、比重や、冷却媒体の流量、比熱、比重等である。熱交換に関係する所定の値は、それぞれ受付部11によって受け付けられるとしてもよい。   The necessary area calculation unit 12 relates to the necessary area, which is the area of the heat transfer tube 521 necessary for cooling the cooling medium to the set temperature received by the receiving unit 11, for heat exchange between the cooling medium and the cooling medium. Calculation is performed based on the predetermined value, the temperature of the medium to be cooled and the temperature of the cooling medium received by the receiving unit 11. Here, the predetermined values related to heat exchange are, for example, the flow rate, specific heat, and specific gravity of the medium to be cooled, the flow rate of the cooling medium, specific heat, specific gravity, and the like. The predetermined values related to the heat exchange may be received by the receiving unit 11.

例えば、必要面積算出部12は、被冷却媒体を設定温度まで下げるために必要な伝熱管521の必要面積を、次の数式によって算出する。
必要面積=交換熱量/(熱貫流率×対数平均温度差)
For example, the required area calculation unit 12 calculates the required area of the heat transfer tube 521 that is required to lower the medium to be cooled to the set temperature by the following formula.
Necessary area = heat exchange / (heat transmissivity x logarithm average temperature difference)

ここで、交換熱量=(ti−to)×Go×Cp×γ×4.186/3600である。この数式において、tiは被冷却媒体の入口温度℃、toは設定温度℃、Goは被冷却媒体流量t/h、Cpは被冷却媒体の比熱、γは被冷却媒体の比重kg/m、4.186は単位換算(水の比熱は1cal/g=4.186J/g)、3600は被冷却媒体流量を1秒あたりの流量に換算する定数である。 Here, the exchange heat amount = (ti-to) × Go × Cp × γ × 4.186 / 3600. In this equation, ti is the inlet temperature of the medium to be cooled ° C, to is the set temperature ° C, Go is the flow rate of the medium to be cooled t / h, Cp is the specific heat of the medium to be cooled, γ is the specific gravity kg / m 3 of the medium to be cooled, 4.186 is a unit conversion (the specific heat of water is 1 cal / g = 4.186 J / g), and 3600 is a constant for converting the cooling medium flow rate into a flow rate per second.

また、熱貫流率=1/設計伝熱抵抗+管汚れ抵抗である。
この数式において、設計伝熱抵抗及び管汚れ抵抗は、熱交換器500の設計時に定まる値である。
Further, the heat transmissivity = 1 / designed heat transfer resistance + tube fouling resistance.
In this equation, the design heat transfer resistance and the tube fouling resistance are values determined when the heat exchanger 500 is designed.

また、対数平均温度差=B/ln((A+B)/(A−B))(lnは自然対数)である。この数式において、
A=被冷却媒体入口温度+設定温度−冷却媒体入口温度−冷却媒体出口温度であり、
B=√(被冷却媒体入口温度−設定温度)+(冷却媒体出口温度−冷却媒体入口温度)である。
Logarithmic average temperature difference = B / ln ((A + B) / (AB)) (ln is a natural logarithm). In this formula,
A = cooled medium inlet temperature + set temperature−cooling medium inlet temperature−cooling medium outlet temperature,
B = √ (cooled medium inlet temperature−set temperature) 2 + (cooling medium outlet temperature−cooling medium inlet temperature) 2

冷却媒体の出口温度(To)は、To=Ti+△Tで算出される。
ここで、Tiは、冷却媒体入口温度、△Tは、冷却媒体の温度上昇である。
△Tは、△T=H/Gw×Cwp×γw×(4.186/3600)の数式で算出される。
ここで、Hは、交換熱量W、Gwは、冷却媒体流量t/h、Cwpは、冷却媒体の比熱、γwは、冷却媒体の比重kg/mである。
The outlet temperature (To) of the cooling medium is calculated as To = Ti + ΔT.
Here, Ti is the coolant inlet temperature, and ΔT is the temperature rise of the coolant.
ΔT is calculated by the equation: ΔT = H / Gw × Cwp × γw × (4.186 / 3600).
Here, H is the exchange heat quantity W, Gw is the cooling medium flow rate t / h, Cwp is the specific heat of the cooling medium, and γw is the specific gravity kg / m 3 of the cooling medium.

例えば、被冷却媒体の入口温度が39.88℃、冷却媒体の入口温度が30.00℃、設定温度が35℃、被冷却媒体流量が1440kg/hの場合、
交換熱量=(39.88−35)*1440*1.00*1000*4.186/3600=8,171,072W=7,027,200cal/hとなる。
また、熱貫流率は、熱交換器500の取扱説明書等により、
1853.4kcal/mh℃=2155.50W/m℃である。
For example, when the inlet temperature of the cooling medium is 39.88 ° C., the inlet temperature of the cooling medium is 30.00 ° C., the set temperature is 35 ° C., and the cooling medium flow rate is 1440 kg / h,
Exchange heat quantity = (39.88-35) * 1440 * 1.00 * 1000 * 4.186 / 3600 = 8,171,072W = 7,027,200 cal / h.
In addition, the heat transmissivity is determined by the instruction manual of the heat exchanger 500, etc.
1853.4 kcal / m 2 h ° C. = 2155.50 W / m 2 ° C.

そして、冷却媒体流量が1620kg/hの場合、
△T=8,171,072/(1620*0.94*1.025*(4.186/3600))=4.5021℃となり、冷却媒体の出口温度は、
To=30+4.5021=34.5021℃となる。
そうすると、対数平均温度差は、
A=39.88+35−30−34.50=10.38であり、
B=√(39.88−35)+(34.50−30)=6.64であるので、
対数平均温度差=6.64/ln((10.38+6.64)/(10.38−6.64))=4.3808となる。
そして、必要面積=8,171,072/(2155.50*4.3808)=865.315mとなる。
And when the coolant flow rate is 1620 kg / h,
ΔT = 8,171,072 / (1620 * 0.94 * 1.025 * (4.186 / 3600)) = 4.5021 ° C. The cooling medium outlet temperature is
To = 30 + 4.5021 = 34.5021 ° C.
Then, the logarithm average temperature difference is
A = 39.88 + 35-30-34.50 = 10.38,
Since B = √ (39.88−35) 2 + (34.50−30) 2 = 6.64,
Logarithmic average temperature difference = 6.64 / ln ((10.38 + 6.64) / (10.38−6.64)) = 4.3808.
The required area is 8,171,072 / (2155.50 * 4.3808) = 865.315 m 2 .

有効面積算出部13は、熱交換が行われる伝熱管521の面積である有効面積を、伝熱管521の表面積及び本数に基づいて算出する。例えば、有効面積算出部13は、有効面積を次の数式によって算出する。
有効面積(ベアチューブの場合)=π×管外径×伝熱管本数×管有効長
有効面積(フィンチューブの場合)=単位長さあたりの面積×伝熱管本数×管有効長
The effective area calculation unit 13 calculates an effective area that is an area of the heat transfer tubes 521 in which heat exchange is performed based on the surface area and the number of the heat transfer tubes 521. For example, the effective area calculation unit 13 calculates the effective area by the following formula.
Effective area (for bare tube) = π x tube outer diameter x number of heat transfer tubes x effective tube length Effective area (for fin tube) = area per unit length x number of heat transfer tubes x effective tube length

例えば、ベアチューブにおいて、管外径が0.01905m、伝熱管本数が2068本、管有効長7.676mの場合、有効面積は、π*0.01905*2068*7.676=950.015mとなる。 For example, in a bare tube, when the tube outer diameter is 0.01905 m, the number of heat transfer tubes is 2,068, and the tube effective length is 7.676 m, the effective area is π * 0.01905 * 2068 * 7.676 = 950.015 m 2 It becomes.

測定部14は、熱交換器500によって冷却された被冷却媒体が熱交換器500から流出する被冷却水出口512における被冷却媒体の温度を測定する。例えば、測定部14は、被冷却媒体が熱交換器500から流出する被冷却水出口512に配置された温度センサ301から温度データを受信し、受信した温度データを記憶部(例えば、後述する図2の補助記憶部2015)に記憶させる。   The measurement unit 14 measures the temperature of the cooling medium at the cooling water outlet 512 from which the cooling medium cooled by the heat exchanger 500 flows out of the heat exchanger 500. For example, the measurement unit 14 receives temperature data from the temperature sensor 301 arranged at the cooling water outlet 512 from which the medium to be cooled flows out of the heat exchanger 500, and stores the received temperature data in a storage unit (for example, a diagram described later). 2 auxiliary storage unit 2015).

異常判別部15は、必要面積算出部12によって算出された必要面積が、有効面積算出部13によって算出された有効面積より小さく、かつ、測定部14によって測定された被冷却媒体の温度が受付部11によって受け付けられた設定温度より高い場合に、熱交換器500が異常であると判別する。   The abnormality determination unit 15 is configured such that the required area calculated by the required area calculation unit 12 is smaller than the effective area calculated by the effective area calculation unit 13 and the temperature of the medium to be cooled measured by the measurement unit 14 is the reception unit. 11, it is determined that the heat exchanger 500 is abnormal.

本数算出部16は、異常判別部15によって、異常であると判別された場合に、必要面積と有効面積との差に基づいて、伝熱管521のうち熱交換が行われなかった伝熱管521の本数を算出する。例えば、本数算出部16は、閉塞率を次の数式によって算出し、算出した閉塞率と、伝熱管521の総本数とに基づいて熱交換が行われなかった伝熱管521の本数を算出する。   When the abnormality determining unit 15 determines that the number is abnormal, the number calculating unit 16 determines the number of heat transfer tubes 521 in which heat exchange has not been performed among the heat transfer tubes 521 based on the difference between the required area and the effective area. Calculate the number. For example, the number calculation unit 16 calculates the blockage rate by the following formula, and calculates the number of heat transfer tubes 521 that have not been subjected to heat exchange based on the calculated blockage rate and the total number of heat transfer tubes 521.

本数算出部16は、閉塞率を次の数式で算出する。
閉塞率=(有効面積−必要面積)/π×0.019×7.676
例えば、上述の場合、有効面積は950.015mであり、必要面積は865.315mであるので、閉塞率=84.70/π*0.019*7.676=8.92%となる。そして、伝熱管本数が2068本の場合、熱交換が行われなかった伝熱管521の本数=2068×0.0892=184本となる。
The number calculation unit 16 calculates the blocking rate using the following formula.
Blockage rate = (effective area−required area) /π×0.019×7.676
For example, in the case described above, the effective area is 950.015 m 2 and the required area is 865.315 m 2 , so the blocking rate = 84.70 / π * 0.019 * 7.676 = 8.92%. . When the number of heat transfer tubes is 2068, the number of heat transfer tubes 521 that have not been subjected to heat exchange = 2068 × 0.0892 = 184.

図2は、本発明の一実施形態に係る熱交換器性能管理装置10のハードウェア構成を示すブロック図である。図2に示すように、熱交換器性能管理装置10は、CPU(Central Processing Unit)2011、メモリ2012、操作部2013、表示部2014、補助記憶部2015及び機器I/F2016がバスライン2050により接続されて構成されている。   FIG. 2 is a block diagram showing a hardware configuration of the heat exchanger performance management apparatus 10 according to an embodiment of the present invention. As shown in FIG. 2, the heat exchanger performance management apparatus 10 includes a CPU (Central Processing Unit) 2011, a memory 2012, an operation unit 2013, a display unit 2014, an auxiliary storage unit 2015, and a device I / F 2016 connected by a bus line 2050. Has been configured.

CPU2011は、熱交換器性能管理装置10を統括的に制御する部分であり、メモリ2012に記憶された各種プログラムを適宜読み出して実行することにより、上述したハードウェアと協働し、本発明に係る各種機能を実現している。メモリ2012は、適宜読み出して実行されるプログラムを記憶し、プログラムの実行によって作成される種々の情報を記憶する。   The CPU 2011 is a part that controls the heat exchanger performance management apparatus 10 in an integrated manner, and by appropriately reading and executing various programs stored in the memory 2012, the CPU 2011 cooperates with the hardware described above, and relates to the present invention. Various functions are realized. The memory 2012 stores a program that is read and executed as appropriate, and stores various information created by executing the program.

操作部2013は、各種設定や入力操作を行う操作ボタン群、決定操作ボタン等を備えており、操作部2013による入力情報はCPU2011の制御下で処理される。すなわち、ユーザは、操作部2013を介して、必要な各種の設定操作、又は指定操作等が可能である。表示部2014は、LCD(Liquid Crystal Display)や有機EL(Electro Luminescence)によって構成され、各種情報を表示する。   The operation unit 2013 includes an operation button group for performing various settings and input operations, a determination operation button, and the like. Input information from the operation unit 2013 is processed under the control of the CPU 2011. That is, the user can perform various necessary setting operations or designation operations via the operation unit 2013. The display unit 2014 includes an LCD (Liquid Crystal Display) and an organic EL (Electro Luminescence), and displays various types of information.

補助記憶部2015は、フラッシュメモリ等により構成され、熱交換器性能管理装置10が機能するための各種プログラム及び本発明の機能を実行するプログラムを記憶している。さらに、補助記憶部2015は、熱交換に関係する所定の値等の各種データを記憶している。   The auxiliary storage unit 2015 is configured by a flash memory or the like, and stores various programs for the heat exchanger performance management device 10 to function and programs for executing the functions of the present invention. Further, the auxiliary storage unit 2015 stores various data such as predetermined values related to heat exchange.

機器I/F2016は、熱交換器性能管理装置10と、熱交換器500に配置された温度センサ301とを接続し、温度センサ301からの温度データを受信できるようにするためのインターフェースである。   The device I / F 2016 is an interface for connecting the heat exchanger performance management apparatus 10 and the temperature sensor 301 disposed in the heat exchanger 500 so that temperature data from the temperature sensor 301 can be received.

図3は、本発明の一実施形態に係る熱交換器性能管理装置10の処理内容を示すフローチャートである。本処理は、開始指令により開始し、処理終了により終了する。   FIG. 3 is a flowchart showing the processing contents of the heat exchanger performance management apparatus 10 according to an embodiment of the present invention. This process starts with a start command and ends with the end of the process.

ステップS101において、CPU2011(受付部11)は、被冷却媒体の入口温度を受け付ける。より具体的には、CPU2011は、表示部2014に被冷却媒体の入口温度を受け付けるメッセージを表示させ、入力されたデータを被冷却媒体の入口温度として補助記憶部2015に記憶させる。その後、CPU2011は、処理をステップS102に移す。   In step S101, the CPU 2011 (receiving unit 11) receives the inlet temperature of the medium to be cooled. More specifically, the CPU 2011 displays a message for accepting the inlet temperature of the medium to be cooled on the display unit 2014 and stores the input data in the auxiliary storage unit 2015 as the inlet temperature of the medium to be cooled. Thereafter, the CPU 2011 moves the process to step S102.

ステップS102において、CPU2011(受付部11)は、冷却媒体の入口温度を受け付ける。より具体的には、CPU2011は、表示部2014に冷却媒体の入口温度を受け付けるメッセージを表示させ、入力されたデータを冷却媒体の入口温度として補助記憶部2015に記憶させる。その後、CPU2011は、処理をステップS103に移す。   In step S102, the CPU 2011 (receiving unit 11) receives the inlet temperature of the cooling medium. More specifically, the CPU 2011 displays a message for accepting the inlet temperature of the cooling medium on the display unit 2014, and stores the input data in the auxiliary storage unit 2015 as the inlet temperature of the cooling medium. Thereafter, the CPU 2011 moves the process to step S103.

ステップS103において、CPU2011(受付部11)は、被冷却媒体を冷却する設定温度を受け付ける。より具体的には、CPU2011は、表示部2014に設定温度を受け付けるメッセージを表示させ、入力されたデータを設定温度として補助記憶部2015に記憶させる。その後、CPU2011は、処理をステップS104に移す。   In step S103, the CPU 2011 (receiving unit 11) receives a set temperature for cooling the medium to be cooled. More specifically, the CPU 2011 displays a message for accepting the set temperature on the display unit 2014 and stores the input data in the auxiliary storage unit 2015 as the set temperature. Thereafter, the CPU 2011 moves the process to step S104.

ステップS104において、CPU2011(必要面積算出部12)は、設定温度まで被冷却媒体を冷却するための必要面積を算出する。より具体的には、CPU2011は、ステップS101からステップS103において受け付けた被冷却媒体の入口温度、冷却媒体の入口温度及び設定温度と、熱交換に関係する所定の値と、に基づいて上述の数式により必要面積を算出する。その後、CPU2011は、処理をステップS105に移す。   In step S <b> 104, the CPU 2011 (required area calculation unit 12) calculates a necessary area for cooling the cooling target medium to the set temperature. More specifically, the CPU 2011 calculates the above formula based on the cooling medium inlet temperature, the cooling medium inlet temperature and the set temperature received in steps S101 to S103, and a predetermined value related to heat exchange. To calculate the required area. Thereafter, the CPU 2011 moves the process to step S105.

ステップS105において、CPU2011(有効面積算出部13)は、熱交換が行われる有効面積を算出する。より具体的には、CPU2011は、伝熱管521の表面積及び本数に基づいて、上述の数式により有効面積を算出する。その後、CPU2011は、処理をステップS106に移す。   In step S105, the CPU 2011 (effective area calculation unit 13) calculates an effective area where heat exchange is performed. More specifically, the CPU 2011 calculates the effective area by the above formula based on the surface area and the number of the heat transfer tubes 521. Thereafter, the CPU 2011 moves the process to step S106.

ステップS106において、CPU2011(測定部14)は、被冷却媒体の出口温度を測定する。より具体的には、CPU2011は、被冷却媒体が熱交換器500から流出する被冷却水出口512に配置された温度センサ301から温度データを受信し、受信した温度データを補助記憶部2015に記憶させる。その後、CPU2011は、処理をステップS107に移す。   In step S106, the CPU 2011 (measurement unit 14) measures the outlet temperature of the medium to be cooled. More specifically, the CPU 2011 receives temperature data from the temperature sensor 301 disposed at the cooling water outlet 512 from which the medium to be cooled flows out of the heat exchanger 500, and stores the received temperature data in the auxiliary storage unit 2015. Let Thereafter, the CPU 2011 moves the process to step S107.

ステップS107において、CPU2011(異常判別部15)は、必要面積が有効面積より小さいか否かを判断する。より具体的には、CPU2011は、ステップS104において算出された必要面積が、ステップS105において算出された有効面積より小さいか否かを判断する。この判断がYESの場合、CPU2011は、処理をステップS108に移し、NOの場合、CPU2011は、処理をステップS110に移す。   In step S107, the CPU 2011 (abnormality determination unit 15) determines whether the required area is smaller than the effective area. More specifically, the CPU 2011 determines whether or not the required area calculated in step S104 is smaller than the effective area calculated in step S105. If the determination is YES, the CPU 2011 moves the process to step S108, and if the determination is NO, the CPU 2011 moves the process to step S110.

ステップS108において、CPU2011は、被冷却媒体の出口温度が設定温度より高いか否かを判断する。より具体的には、CPU2011は、ステップS106において測定された被冷却媒体の出口温度がステップS103において受け付けられた設定温度より高いか否かを判断する。この判断がYESの場合、CPU2011は、処理をステップS109に移し、NOの場合、CPU2011は、処理をステップS111に移す。   In step S108, the CPU 2011 determines whether the outlet temperature of the medium to be cooled is higher than the set temperature. More specifically, the CPU 2011 determines whether or not the outlet temperature of the medium to be cooled measured in step S106 is higher than the set temperature accepted in step S103. If the determination is YES, the CPU 2011 moves the process to step S109, and if the determination is NO, the CPU 2011 moves the process to step S111.

ステップS109において、CPU2011(異常判別部15)は、異常であることを報知する。より具体的には、CPU2011は、異常であることを示すメッセージを表示部2014に表示させる。そして、CPU2011(本数算出部16)は、熱交換が行われなかった伝熱管521の本数を算出し、表示部2014に表示させる。その後、CPU2011は、処理を終了する。   In step S109, the CPU 2011 (abnormality determination unit 15) notifies that there is an abnormality. More specifically, the CPU 2011 causes the display unit 2014 to display a message indicating that there is an abnormality. Then, the CPU 2011 (number calculation unit 16) calculates the number of heat transfer tubes 521 that have not been subjected to heat exchange, and causes the display unit 2014 to display the number. Thereafter, the CPU 2011 ends the process.

ステップS110において、CPU2011(異常判別部15)は、条件が熱交換器500の性能を超えていることを報知する。より具体的には、CPU2011は、条件が熱交換器500の性能を超えていることを示すメッセージを表示部2014に表示させる。その後、CPU2011は、処理を終了する。   In step S110, the CPU 2011 (abnormality determination unit 15) notifies that the condition exceeds the performance of the heat exchanger 500. More specifically, the CPU 2011 causes the display unit 2014 to display a message indicating that the condition exceeds the performance of the heat exchanger 500. Thereafter, the CPU 2011 ends the process.

ステップS111において、CPU2011(異常判別部15)は、異常でないことを報知する。より具体的には、CPU2011は、異常でないことを示すメッセージを表示部2014に表示させる。その後、CPU2011は、処理を終了する。   In step S111, the CPU 2011 (abnormality determination unit 15) notifies that there is no abnormality. More specifically, the CPU 2011 causes the display unit 2014 to display a message indicating that there is no abnormality. Thereafter, the CPU 2011 ends the process.

図4は、本発明の一実施形態に係る熱交換器性能管理装置10において、入口温度及び設定温度を受け付ける一例と、判断の表示の一例とを示す図である。図4に示す例は、被冷却媒体の入口温度入力欄201、冷却媒体の入口温度入力欄202及び設定温度入力欄203に、被冷却媒体の入口温度、冷却媒体の入口温度及び設定温度が入力され、表示されていることを示す例である。また、図4に示す例は、測定温度表示欄204に、温度センサ301によって測定された被冷却媒体の出口温度が表示されていることを示す例である。そして、図4に示す例は、必要面積表示欄205及び有効面積表示欄206に、熱交換器性能管理装置10が算出した必要面積及び有効面積が表示されていることを示す例である。さらに、図4に示す例は、判定欄207に、熱交換器500の伝熱管521が設計どおりに機能していないと判別した場合のメッセージが表示され、閉塞率表示欄208及び詰り本数表示欄209に閉塞率及び詰り本数が表示されていることを示す例である。   FIG. 4 is a diagram illustrating an example of receiving the inlet temperature and the set temperature and an example of a determination display in the heat exchanger performance management apparatus 10 according to an embodiment of the present invention. In the example illustrated in FIG. 4, the inlet temperature of the cooling medium, the inlet temperature of the cooling medium, and the set temperature are input to the inlet temperature input field 201 of the cooling medium, the inlet temperature input field 202 of the cooling medium, and the set temperature input field 203. This is an example of being displayed. The example shown in FIG. 4 is an example showing that the outlet temperature of the medium to be cooled measured by the temperature sensor 301 is displayed in the measured temperature display field 204. The example shown in FIG. 4 is an example showing that the necessary area and effective area calculated by the heat exchanger performance management device 10 are displayed in the necessary area display column 205 and the effective area display column 206. Further, in the example shown in FIG. 4, a message when it is determined that the heat transfer tube 521 of the heat exchanger 500 is not functioning as designed is displayed in the determination column 207, and the blockage rate display column 208 and the clogging number display column are displayed. In this example, the blockage rate and the number of clogs are displayed in 209.

実施形態1によれば、熱交換器性能管理装置10は、被冷却媒体の入口温度と、冷却媒体の入口温度と、設定温度とを受け付ける。次に、熱交換器性能管理装置10は、必要面積を算出し、有効面積を算出する。そして、熱交換器性能管理装置10は、被冷却媒体の出口温度を測定し、算出した必要面積が、算出した有効面積より小さく、かつ、測定した被冷却媒体の出口温度が受け付けた設定温度より高い場合に、熱交換器500が異常であると判別する。さらに、熱交換器性能管理装置10は、異常であると判別した場合に、必要面積と有効面積との差に基づいて、伝熱管521のうち熱交換が行われなかった伝熱管521の本数を算出する。したがって、熱交換器性能管理装置10は、熱交換器500の伝熱管521が設計どおりに機能しているか否かを容易に判断することができる。   According to the first embodiment, the heat exchanger performance management device 10 receives the inlet temperature of the medium to be cooled, the inlet temperature of the cooling medium, and the set temperature. Next, the heat exchanger performance management device 10 calculates a necessary area and calculates an effective area. The heat exchanger performance management device 10 measures the outlet temperature of the cooling medium, the calculated required area is smaller than the calculated effective area, and the measured outlet temperature of the cooling medium is higher than the set temperature received. When it is high, it is determined that the heat exchanger 500 is abnormal. Furthermore, if the heat exchanger performance management device 10 determines that the heat exchanger is abnormal, the heat exchanger performance management device 10 determines the number of heat transfer tubes 521 that have not undergone heat exchange out of the heat transfer tubes 521 based on the difference between the required area and the effective area. calculate. Therefore, the heat exchanger performance management device 10 can easily determine whether or not the heat transfer tube 521 of the heat exchanger 500 is functioning as designed.

[実施形態2]
図5は、本発明の一実施形態に係る熱交換器性能管理装置10の実施形態2の機能を示す機能ブロック図である。図5は、熱交換器性能管理装置10が図1の実施形態1に加えて、被冷却媒体温度測定手段としての被冷却媒体温度測定部17と、冷却媒体温度測定手段としての冷却媒体温度測定部18とを備えていることを示す図である。温度センサ302及び温度センサ303は、機器I/F2016を介して熱交換器性能管理装置10に接続される。
[Embodiment 2]
FIG. 5 is a functional block diagram showing functions of the second embodiment of the heat exchanger performance management apparatus 10 according to one embodiment of the present invention. FIG. 5 shows that the heat exchanger performance management device 10 adds a cooling medium temperature measuring unit 17 as a cooling medium temperature measuring unit and a cooling medium temperature measurement as a cooling medium temperature measuring unit in addition to the first embodiment of FIG. It is a figure which shows having the part 18. FIG. The temperature sensor 302 and the temperature sensor 303 are connected to the heat exchanger performance management apparatus 10 via the device I / F 2016.

被冷却媒体温度測定部17は、被冷却媒体が熱交換器500に流入する入口における被冷却媒体の温度を測定する。例えば、被冷却媒体温度測定部17は、被冷却媒体が熱交換器500に流入する被冷却水入口511に配置された温度センサ302から温度データを受信し、受信した温度データを補助記憶部2015に記憶させる。冷却媒体温度測定部18は、冷却媒体が熱交換器500に流入する冷却水入口501における冷却媒体の温度を測定する。例えば、冷却媒体温度測定部18は、冷却媒体が熱交換器500に流入する冷却水入口501に配置された温度センサ303から温度データを受信し、受信した温度データを補助記憶部2015に記憶させる。そして、熱交換器性能管理装置10は、測定した被冷却媒体の入口温度と、測定した冷却媒体の入口温度と、受け付けた設定温度とから伝熱管521の必要面積を算出し、有効面積を算出し、算出した必要面積が、算出した有効面積より小さく、かつ、測定した被冷却媒体の出口温度が受け付けた設定温度より高い場合に、熱交換器500が異常であると判別する。   The to-be-cooled medium temperature measuring unit 17 measures the temperature of the to-be-cooled medium at the inlet where the to-be-cooled medium flows into the heat exchanger 500. For example, the cooling medium temperature measurement unit 17 receives temperature data from the temperature sensor 302 disposed at the cooling water inlet 511 through which the cooling medium flows into the heat exchanger 500, and the received temperature data is stored in the auxiliary storage unit 2015. Remember me. The cooling medium temperature measurement unit 18 measures the temperature of the cooling medium at the cooling water inlet 501 where the cooling medium flows into the heat exchanger 500. For example, the cooling medium temperature measurement unit 18 receives temperature data from the temperature sensor 303 disposed at the cooling water inlet 501 into which the cooling medium flows into the heat exchanger 500, and stores the received temperature data in the auxiliary storage unit 2015. . Then, the heat exchanger performance management device 10 calculates the required area of the heat transfer tube 521 from the measured inlet temperature of the cooling medium, the measured inlet temperature of the cooling medium, and the received set temperature, and calculates the effective area. When the calculated required area is smaller than the calculated effective area and the measured outlet temperature of the medium to be cooled is higher than the accepted set temperature, it is determined that the heat exchanger 500 is abnormal.

実施形態2によれば、熱交換器性能管理装置10は、被冷却媒体の入口温度を測定し、冷却媒体の入口温度を測定する。したがって、熱交換器性能管理装置10は、測定した被冷却媒体及び冷却媒体の入口温度と、受け付けた設定温度と、測定した被冷却媒体の出口温度とによって、熱交換器500の伝熱管521が設計どおりに機能しているか否かをさらに容易に判断することができる。   According to the second embodiment, the heat exchanger performance management device 10 measures the inlet temperature of the cooling medium and measures the inlet temperature of the cooling medium. Therefore, the heat exchanger performance management device 10 determines that the heat transfer tube 521 of the heat exchanger 500 is configured according to the measured cooling medium and the inlet temperature of the cooling medium, the received set temperature, and the measured outlet temperature of the cooling medium. It can be more easily determined whether or not it functions as designed.

以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限るものではない。また、本発明の実施形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本発明の実施形態に記載されたものに限定されるものではない。   As mentioned above, although embodiment of this invention was described, this invention is not restricted to embodiment mentioned above. The effects described in the embodiments of the present invention are only the most preferable effects resulting from the present invention, and the effects of the present invention are limited to those described in the embodiments of the present invention. is not.

10 熱交換器性能管理装置
11 受付部
12 必要面積算出部
13 有効面積算出部
14 測定部
15 異常判別部
16 本数算出部
17 被冷却媒体温度測定部
18 冷却媒体温度測定部
301、302、303 温度センサ
500 熱交換器
501 冷却水入口
502 冷却水出口
511 被冷却水入口
512 被冷却水出口
521 伝熱管
DESCRIPTION OF SYMBOLS 10 Heat exchanger performance management apparatus 11 Reception part 12 Required area calculation part 13 Effective area calculation part 14 Measurement part 15 Abnormality determination part 16 Number calculation part 17 Cooling medium temperature measurement part 18 Cooling medium temperature measurement part 301,302,303 Temperature Sensor 500 Heat exchanger 501 Cooling water inlet 502 Cooling water outlet 511 Cooled water inlet 512 Cooled water outlet 521 Heat transfer tube

Claims (4)

複数の伝熱管を流れる冷却媒体と、前記複数の伝熱管の間を流れる被冷却媒体とが前記伝熱管を介して熱交換を行うことによって前記被冷却媒体を冷却する熱交換器において、前記熱交換器の性能を管理する熱交換器性能管理装置であって、
前記被冷却媒体が前記熱交換器に流入する入口における前記被冷却媒体の温度と、前記冷却媒体が前記熱交換器に流入する入口における前記冷却媒体の温度と、前記被冷却媒体を前記熱交換器が冷却する温度である設定温度とを受け付ける受付手段と、
前記受付手段によって受け付けられた前記設定温度まで前記被冷却媒体を冷却するために必要な前記伝熱管の面積である必要面積を、冷却媒体及び被冷却媒体の熱交換に関係する所定の値と、前記受付手段によって受け付けられた前記被冷却媒体の温度及び前記冷却媒体の温度と、に基づいて算出する必要面積算出手段と、
熱交換が行われる前記伝熱管の面積である有効面積を、前記伝熱管の表面積及び本数算出に基づいて算出する有効面積算出手段と、
前記熱交換器によって冷却された前記被冷却媒体が前記熱交換器から流出する出口における前記被冷却媒体の温度を測定する測定手段と、
前記必要面積算出手段によって算出された必要面積が、前記有効面積算出手段によって算出された有効面積より小さく、かつ、前記測定手段によって測定された前記被冷却媒体の温度が前記受付手段によって受け付けられた設定温度より高い場合に、前記熱交換器が異常であると判別する異常判別手段と、
を備える熱交換器性能管理装置。
In the heat exchanger that cools the cooling medium by performing heat exchange between the cooling medium flowing through the plurality of heat transfer tubes and the cooling medium flowing between the plurality of heat transfer tubes via the heat transfer tubes, the heat A heat exchanger performance management device for managing the performance of the exchanger,
The temperature of the cooled medium at the inlet where the cooled medium flows into the heat exchanger, the temperature of the cooling medium at the inlet where the cooled medium flows into the heat exchanger, and the heat exchange of the cooled medium Receiving means for receiving a set temperature that is a temperature that the vessel cools;
A required area, which is an area of the heat transfer tube necessary for cooling the cooled medium to the set temperature received by the receiving means, a predetermined value related to heat exchange between the cooling medium and the cooled medium; A required area calculating means for calculating based on the temperature of the medium to be cooled and the temperature of the cooling medium received by the receiving means;
An effective area calculating means for calculating an effective area, which is an area of the heat transfer tube in which heat exchange is performed, based on calculation of a surface area and the number of the heat transfer tubes;
Measuring means for measuring the temperature of the cooled medium at an outlet where the cooled medium cooled by the heat exchanger flows out of the heat exchanger;
The required area calculated by the required area calculating unit is smaller than the effective area calculated by the effective area calculating unit, and the temperature of the medium to be cooled measured by the measuring unit is received by the receiving unit. An abnormality determining means for determining that the heat exchanger is abnormal when the temperature is higher than a set temperature;
A heat exchanger performance management device comprising:
前記異常判別手段によって、異常であると判別された場合に、前記必要面積と前記有効面積との差に基づいて、前記伝熱管のうち熱交換が行われなかった伝熱管の本数を算出する本数算出手段、をさらに備える請求項1に記載の熱交換器性能管理装置。   The number for calculating the number of heat transfer tubes in which heat exchange has not been performed among the heat transfer tubes based on the difference between the required area and the effective area when the abnormality determination unit determines that there is an abnormality. The heat exchanger performance management device according to claim 1, further comprising a calculation unit. 前記被冷却媒体が前記熱交換器に流入する入口における前記被冷却媒体の温度を測定する被冷却媒体温度測定手段と、
前記冷却媒体が前記熱交換器に流入する入口における前記冷却媒体の温度を測定する冷却媒体温度測定手段と、
をさらに備える請求項1又は2に記載の熱交換器性能管理装置。
Cooling medium temperature measuring means for measuring the temperature of the cooling medium at an inlet where the cooling medium flows into the heat exchanger;
Cooling medium temperature measuring means for measuring the temperature of the cooling medium at an inlet where the cooling medium flows into the heat exchanger;
The heat exchanger performance management device according to claim 1 or 2, further comprising:
複数の伝熱管を流れる冷却媒体と、前記複数の伝熱管の間を流れる被冷却媒体とが前記伝熱管を介して熱交換を行うことによって前記被冷却媒体を冷却する熱交換器において、前記熱交換器の性能を管理する熱交換器性能管理装置が実行する方法であって、
前記被冷却媒体が前記熱交換器に流入する入口における前記被冷却媒体の温度と、前記冷却媒体が前記熱交換器に流入する入口における前記冷却媒体の温度と、前記被冷却媒体を前記熱交換器が冷却する温度である設定温度とを受け付ける受付ステップと、
前記受付ステップによって受け付けられた前記設定温度まで前記被冷却媒体を冷却するために必要な前記伝熱管の面積である必要面積を、冷却媒体及び被冷却媒体の熱交換に関係する所定の値と、前記受付ステップによって受け付けられた前記被冷却媒体の温度及び前記冷却媒体の温度と、に基づいて算出する必要面積算出ステップと、
熱交換が行われる前記伝熱管の面積である有効面積を、前記伝熱管の表面積及び本数算出に基づいて算出する有効面積算出ステップと、
前記熱交換器によって冷却された前記被冷却媒体が前記熱交換器から流出する出口における前記被冷却媒体の温度を測定する測定ステップと、
前記必要面積算出ステップによって算出された必要面積が、前記有効面積算出ステップによって算出された有効面積より小さく、かつ、前記測定ステップによって測定された前記被冷却媒体の温度が前記受付ステップによって受け付けられた前記設定温度より高い場合に、前記熱交換器が異常であると判別するステップと、
を備える方法。
In the heat exchanger that cools the cooling medium by performing heat exchange between the cooling medium flowing through the plurality of heat transfer tubes and the cooling medium flowing between the plurality of heat transfer tubes via the heat transfer tubes, the heat A method performed by a heat exchanger performance management device for managing the performance of the exchanger,
The temperature of the cooled medium at the inlet where the cooled medium flows into the heat exchanger, the temperature of the cooling medium at the inlet where the cooled medium flows into the heat exchanger, and the heat exchange of the cooled medium A reception step for receiving a set temperature, which is a temperature at which the vessel cools,
A required area, which is an area of the heat transfer tube necessary for cooling the cooled medium to the set temperature received by the receiving step, a predetermined value related to heat exchange between the cooling medium and the cooled medium; A necessary area calculating step for calculating based on the temperature of the medium to be cooled and the temperature of the cooling medium received by the receiving step;
An effective area calculating step for calculating an effective area, which is an area of the heat transfer tube in which heat exchange is performed, based on a calculation of the surface area and the number of the heat transfer tubes;
A measurement step of measuring a temperature of the cooled medium at an outlet where the cooled medium cooled by the heat exchanger flows out of the heat exchanger;
The required area calculated by the required area calculating step is smaller than the effective area calculated by the effective area calculating step, and the temperature of the medium to be cooled measured by the measuring step is received by the receiving step. Determining that the heat exchanger is abnormal when the temperature is higher than the set temperature;
A method comprising:
JP2010075993A 2010-03-29 2010-03-29 Heat exchanger performance management apparatus and method Expired - Fee Related JP5020347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010075993A JP5020347B2 (en) 2010-03-29 2010-03-29 Heat exchanger performance management apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010075993A JP5020347B2 (en) 2010-03-29 2010-03-29 Heat exchanger performance management apparatus and method

Publications (2)

Publication Number Publication Date
JP2011208861A true JP2011208861A (en) 2011-10-20
JP5020347B2 JP5020347B2 (en) 2012-09-05

Family

ID=44940111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010075993A Expired - Fee Related JP5020347B2 (en) 2010-03-29 2010-03-29 Heat exchanger performance management apparatus and method

Country Status (1)

Country Link
JP (1) JP5020347B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015228775A (en) * 2014-06-02 2015-12-17 東芝三菱電機産業システム株式会社 Motor cooler controller

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146966A (en) * 1980-04-15 1981-11-14 Mitsubishi Heavy Ind Ltd Operation monitoring of suction refrigerating machine
JPS5743198A (en) * 1980-08-27 1982-03-11 Hitachi Ltd Abnormal condition supervising device in heat exchanger unit
JPS60207900A (en) * 1984-03-23 1985-10-19 エルサグ・インターナショナル・ビー・ブイ Monitor apparatus for performance of heat exchanger
JPH03105157A (en) * 1989-09-18 1991-05-01 Daikin Ind Ltd Refrigerator operation control device and operation control method
JPH0419329A (en) * 1990-05-11 1992-01-23 Komatsu Ltd Device for detecting deterioration of radiator performance and its judgement
JPH0447569Y2 (en) * 1985-03-29 1992-11-10
JPH0539902A (en) * 1990-05-10 1993-02-19 Toshiba Corp Monitoring device for abnormality of heat exchanger
JPH06330747A (en) * 1993-05-26 1994-11-29 Kubota Corp Diagnosis of in-line type heat exchanger

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146966A (en) * 1980-04-15 1981-11-14 Mitsubishi Heavy Ind Ltd Operation monitoring of suction refrigerating machine
JPS5743198A (en) * 1980-08-27 1982-03-11 Hitachi Ltd Abnormal condition supervising device in heat exchanger unit
JPS60207900A (en) * 1984-03-23 1985-10-19 エルサグ・インターナショナル・ビー・ブイ Monitor apparatus for performance of heat exchanger
JPH0447569Y2 (en) * 1985-03-29 1992-11-10
JPH03105157A (en) * 1989-09-18 1991-05-01 Daikin Ind Ltd Refrigerator operation control device and operation control method
JPH0539902A (en) * 1990-05-10 1993-02-19 Toshiba Corp Monitoring device for abnormality of heat exchanger
JPH0419329A (en) * 1990-05-11 1992-01-23 Komatsu Ltd Device for detecting deterioration of radiator performance and its judgement
JPH06330747A (en) * 1993-05-26 1994-11-29 Kubota Corp Diagnosis of in-line type heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015228775A (en) * 2014-06-02 2015-12-17 東芝三菱電機産業システム株式会社 Motor cooler controller

Also Published As

Publication number Publication date
JP5020347B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
CN105424740B (en) A kind of fused salt heat exchanging/heat accumulation equipment performance testing device
CN104406453B (en) The control device of condenser on-line cleaning equipment and control method and central air-conditioning
CN108871821A (en) Based on mean value-moving range method air cooler energy efficiency state method of real-time
US20120000628A1 (en) Method for function monitoring and/or control of a cooling system, and a corresponding cooling system
CN111625433A (en) Server thermal test method, device and related equipment
JP4301085B2 (en) Deterioration diagnosis system for heat source equipment
JP5020347B2 (en) Heat exchanger performance management apparatus and method
JP5549804B2 (en) Vapor quality monitoring device
JP5125970B2 (en) Scale adhesion monitoring device for geothermal fluid utilization system
CN112433066A (en) Method and apparatus for measuring flow velocity of high temperature particles
CN211575977U (en) System for monitoring fouling coefficient of plate heat exchanger in real time
KR101570075B1 (en) Leak detecting device of heat exchanger and leak detecting method thereof
EP3169961B1 (en) Furnace cooling panel monitoring system
KR101656672B1 (en) Evaluating method for degree of risk using creep and wall thinning of heat exchanger steam tube
CN214335005U (en) A device for measuring the flow rate of high temperature particles
CN108011153B (en) A thermal management monitoring device
CN116928886A (en) Chemical industry conduction oil stove safety supervision system based on multivariable
CN114414644B (en) System and method for determining oxygen content in liquid alkali metals
KR102451283B1 (en) Condition monitoring system and method for water treatment equipment
CN215416406U (en) Lubricating oil temperature control system
CN113653630B (en) Method for detecting performance and early warning faults of compressor lubrication system
CN207123177U (en) A kind of industrial high temperature stove cooling device
CN220019447U (en) Water-cooled motor cooling wall corrosion detection device
CN102401704B (en) Full-automatic calibration system for dial thermometer
CN220552141U (en) Cooling water circulation device and high-temperature water sampling system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120612

R150 Certificate of patent or registration of utility model

Ref document number: 5020347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees