[go: up one dir, main page]

JP2011188587A - Stator - Google Patents

Stator Download PDF

Info

Publication number
JP2011188587A
JP2011188587A JP2010049234A JP2010049234A JP2011188587A JP 2011188587 A JP2011188587 A JP 2011188587A JP 2010049234 A JP2010049234 A JP 2010049234A JP 2010049234 A JP2010049234 A JP 2010049234A JP 2011188587 A JP2011188587 A JP 2011188587A
Authority
JP
Japan
Prior art keywords
stator
coil
phase
wire
peripheral side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010049234A
Other languages
Japanese (ja)
Other versions
JP5626758B2 (en
Inventor
Tetsuya Ikutani
徹也 幾谷
Tsutomu Michioka
力 道岡
Naoya Yura
直也 由良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2010049234A priority Critical patent/JP5626758B2/en
Publication of JP2011188587A publication Critical patent/JP2011188587A/en
Application granted granted Critical
Publication of JP5626758B2 publication Critical patent/JP5626758B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Windings For Motors And Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an unconventional, epoch-making exciting coil structure which contributes to the miniaturization, weight reduction, and cost cutting of a motor, in a stator in which a plurality of teeth with magnetic poles on which exciting coils are wound concentrically are arranged in the circumferential direction. <P>SOLUTION: The exciting coils 8u to 8w of the stator 2 are formed by rectangular wire coils 13a. In that case, the rectangular wire coils 13a are formed by winding a rectangular wire 13 to start winding the wire from outer circumferential side and to finish winding the wire at the outer circumferential side by alternately changing the winding direction of each step from the outer circumferential side to the inner circumferential side and from the inner circumferential side to the outer circumferential side with its wide width surface facing the circumferential surface of each of teeth 51, 62 of the stator 2 and each exciting coil of at least a part of magnetic poles is formed by a cassette coil 81 of the same rectangular wire 13. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、励磁コイルが集中巻きされる複数の磁極のティースを周方向に配設したステータに関し、詳しくは、従来にない画期的な励磁コイルの構造の提供に関する。   The present invention relates to a stator in which teeth of a plurality of magnetic poles around which an exciting coil is concentratedly wound are arranged in the circumferential direction, and more particularly to provision of an unprecedented exciting exciting coil structure.

従来、アキシャルギャップ、ラジアルギャップのいずれのモータも、励磁コイルが集中巻きされる複数の磁極のティースを周方向に配設したステータを備える。   Conventionally, both the axial gap and radial gap motors include a stator in which teeth of a plurality of magnetic poles around which an exciting coil is concentrated are arranged in the circumferential direction.

図11は3相駆動のアキシャルギャップモータにおけるステータの励磁コイルの結線構造を示し、ステータ100のコア110は、モータケース111内において、中心部にモータ軸(図示せず)が遊挿される円環状であり、3相U、V、Wの励磁コイルとして、それぞれ4個のU相コイルU1〜U4、V相コイルV1〜V4、W相コイルW1〜W4を備える。各コイルU1〜W4は、コア110に周方向に略等間隔に設けられた各磁極のティース112にインシュレータ(図示せず)を介して集中巻きされ、外周側、内周側のコイル巻線(ワイヤ)113u、113v、113wをバスリングとして、直列或いは並列に結線され、さらに、コア110の外周側に位置する各結線部14u、14v、14wに引き出される。なお、中性線115は、外周側に配置されている(例えば、特許文献1(段落[0007]、[0008]、図1等)参照)。   FIG. 11 shows a connection structure of stator excitation coils in a three-phase drive axial gap motor. The core 110 of the stator 100 is an annular shape in which a motor shaft (not shown) is loosely inserted in the center of a motor case 111. As three-phase U, V, and W excitation coils, four U-phase coils U1 to U4, V-phase coils V1 to V4, and W-phase coils W1 to W4 are provided. The coils U1 to W4 are concentratedly wound around the teeth 112 of magnetic poles provided at substantially equal intervals in the circumferential direction on the core 110 via insulators (not shown), and coil windings on the outer peripheral side and inner peripheral side ( Wires 113u, 113v, 113w are connected in series or in parallel with the bus ring, and are further drawn out to the connection portions 14u, 14v, 14w located on the outer peripheral side of the core 110. In addition, the neutral wire 115 is arrange | positioned at the outer peripheral side (for example, refer patent document 1 (paragraph [0007], [0008], FIG. 1 etc.)).

また、アキシャルギャップモータにおけるステータの励磁コイルの他の結線構造として、断面円形の同じ丸線を集中巻きして同相の磁極の各励磁コイルを連続的に形成することも提案されている(例えば、特許文献2(段落[0040]−[0093]、図1、図2等)参照)。   In addition, as another connection structure of the excitation coil of the stator in the axial gap motor, it has also been proposed to continuously form the respective excitation coils of the same phase magnetic poles by concentrating the same circular wire having a circular cross section (for example, Patent Document 2 (see paragraphs [0040]-[0093], FIG. 1, FIG. 2, etc.).

さらに、アキシャルギャップモータにおけるステータの励磁コイルのさらに他の結線構造として、上下に重ねて形成した平角コイルの一層目と二層目を電気的に接続することによりコイルを形成することも提案されている(例えば、特許文献3(段落[0014]、図1等)参照)。   Furthermore, it has also been proposed to form a coil by electrically connecting the first and second layers of a rectangular coil that are formed one above the other as a connection structure of a stator exciting coil in an axial gap motor. (For example, see Patent Document 3 (paragraph [0014], FIG. 1 and the like)).

特開2006−345655号公報JP 2006-345655 A 特開2006−230179号公報JP 2006-230179 A 特開平9−168270号公報JP-A-9-168270

特許文献1に記載のステータの場合、励磁コイルを接続するために外周側および内周側にバスリングが必要でモータの体格、重量が大きくなり、モータのコストアップも招く。また、バスリングと各励磁コイルを接続するので結線個所が多く、生産性が低い。   In the case of the stator described in Patent Document 1, bus rings are required on the outer peripheral side and the inner peripheral side in order to connect the exciting coil, which increases the physique and weight of the motor and increases the cost of the motor. In addition, since the bus ring and each exciting coil are connected, there are many connection points and productivity is low.

特許文献2に記載のステータの場合、前記のバスリングは使用しないが、各励磁コイルを、各相毎に連続した1本の巻線により、コイル間の渡り線とともにダミーメンバーに巻きつけその長さを確保して製作するので、その製造方法上、平角線は使えず、丸線のコイルしか使用できない。そのため、コイルの占積率は、丸線間の隙間により平角線ほどには高くできず、その分モータの体格は大きくなる。   In the case of the stator described in Patent Document 2, the bus ring is not used, but each exciting coil is wound around a dummy member together with a connecting wire between the coils by one continuous winding for each phase. Since it is manufactured with a certain thickness, a rectangular wire cannot be used in the manufacturing method, and only a round wire coil can be used. For this reason, the space factor of the coil cannot be as high as that of the flat wire due to the gap between the round wires, and the physique of the motor is increased accordingly.

特許文献3に記載のステータの場合、上側の平角コイルと下側の平角コイルの結線が必要であり、コイルの内周側を半田づけする等しなければならず、生産性が低いという問題がある。   In the case of the stator described in Patent Document 3, it is necessary to connect the upper rectangular coil and the lower rectangular coil, the inner peripheral side of the coil must be soldered, and the productivity is low. is there.

そして、ラジアルギャップモータにおけるステータの励磁コイルについても、上記と同様の各問題がある。   The stator excitation coil in the radial gap motor has the same problems as described above.

本発明は、励磁コイルが集中巻きされる複数の磁極のティースを周方向に配設したステータにおいて、モータの小型、軽量化およびコストダウンに寄与する従来にない画期的な励磁コイル構造を提供することを目的とする。   The present invention provides an unprecedented exciting excitation coil structure that contributes to reduction in size, weight and cost of a motor in a stator in which teeth of a plurality of magnetic poles around which an excitation coil is concentrated are arranged in the circumferential direction. The purpose is to do.

上記した目的を達成するために、本発明のステータは、励磁コイルが集中巻きされる複数の磁極のティースを周方向に配設したステータにおいて、前記励磁コイルは平角線コイルにより形成され、前記平角線コイルは、平角線を、幅の広い面が前記各ティースの周面に対向する向きで、段毎に巻き方向を外周側から内周側、内周側から外周側に交互に変えて外周側から巻き始めて外周側で巻き終わるように巻回した構造であり、かつ、前記各磁極の前記励磁コイルとしての前記平角線コイルは、少なくとも一部ずつが同じ平角線で連続して形成されたものであることを特徴としている(請求項1)。   In order to achieve the above-described object, the stator according to the present invention is a stator in which teeth of a plurality of magnetic poles around which an exciting coil is concentrated are arranged in the circumferential direction. The exciting coil is formed by a rectangular wire coil, and the rectangular The wire coil has a rectangular wire with a wide surface facing the peripheral surface of each tooth, and the winding direction is changed alternately from the outer peripheral side to the inner peripheral side and from the inner peripheral side to the outer peripheral side for each step. The rectangular wire coil as the exciting coil of each of the magnetic poles is continuously formed at least partly with the same rectangular wire. (Claim 1).

請求項1に係る本発明のステータの場合、ステータの各磁極の励磁コイルは、平角線を、幅の広い面が各ティースの周面に対向する向き(エッジワイズを横向きとすれば、それを引き起こした巻き易い縦向き)で、1段目は巻き方向を外周側から内周側、2段目は巻き方向を反対の内周側から外周側、…に、段毎に巻き方向を交互に変え、外周側から巻き始めて外周側で巻き終わるように巻回したコイル体で形成される。しかも、例えば同じ相の磁極の励磁コイルのコイル体は、同じ1本の平角線により、前記のようにして外周側から巻き始めて外周側で巻き終わることをくり返して連続的に形成される。   In the case of the stator according to the first aspect of the present invention, the exciting coil of each magnetic pole of the stator has a rectangular wire in a direction in which the wide surface faces the peripheral surface of each tooth (if the edgewise is set sideways, In the first stage, the winding direction is changed from the outer circumference side to the inner circumference side, the second stage is the winding direction from the opposite inner circumference side to the outer circumference side, and so on. In other words, it is formed of a coil body wound so as to start winding from the outer peripheral side and finish winding on the outer peripheral side. In addition, for example, the coil body of the exciting coil having the same phase magnetic pole is continuously formed by repeating the start of winding from the outer peripheral side and the end of winding on the outer peripheral side as described above by the same single rectangular wire.

この場合、丸線でなく平角線を用いるとともに、その平角線をいわゆるアルファ巻きで集中巻きして各励磁コイルが形成されるので、平角線が隙間なく巻き重ねられることにより、ステータのスロット断面積に対する励磁コイルの占積率が高くなる。また、平角線のアルファ巻きのコイル体は、曲げ容易方向に折り曲げて励磁コイルを構成するので、丸線のコイル体のように内周側および外周側に膨らまず、とくにステータの内周側とモータ軸との空間を狭くしてモータの体格を小さくできる。   In this case, a rectangular wire is used instead of a round wire, and each exciting coil is formed by concentrating the rectangular wire with a so-called alpha winding. The space factor of the exciting coil with respect to is increased. In addition, the alpha wire coil body of a rectangular wire is bent in an easy bending direction to constitute an exciting coil, so that it does not swell toward the inner peripheral side and the outer peripheral side like a round wire coil body. The size of the motor can be reduced by narrowing the space with the motor shaft.

さらに、平角線の巻き始めと巻き終りがいずれもコイル体の外周側の位置になるので、巻き終わった平角線をステータの内周側から外周側に引き回す必要がなく、そのため、モータ軸方向の平角線の引き回しが不要で、モータの体格が大きくなることがない。具体的には、平角線を内周側から外周側に引き回すのであれば、ステータの磁極高さ、またはステータとロータとのギャップ(隙間)をその平角線の厚み分大きい目に確保する必要があり、また、ステータの外周側にも平角線の厚み分の隙間を確保する必要があるが、本発明の場合は平角線をステータの内周側から外周側に引き回す必要がないので、その分モータ軸方向にも径方向にもモータの体格が小さくなる。   Further, since the winding start and end of the flat wire are both positioned on the outer peripheral side of the coil body, it is not necessary to draw the flat wire that has been wound from the inner peripheral side to the outer peripheral side of the stator, There is no need to draw a flat wire, and the size of the motor does not increase. Specifically, if the rectangular wire is routed from the inner peripheral side to the outer peripheral side, it is necessary to ensure that the magnetic pole height of the stator or the gap (gap) between the stator and the rotor is larger by the thickness of the rectangular wire. In addition, it is necessary to secure a gap corresponding to the thickness of the flat wire on the outer peripheral side of the stator, but in the case of the present invention, it is not necessary to route the flat wire from the inner peripheral side of the stator to the outer peripheral side. The size of the motor is reduced both in the motor axial direction and in the radial direction.

その上、平角線をアルファ巻きするので、励磁コイルのコーナー部分や渡り線等の折り曲げが容易で厚みも厚くならず、励磁コイル等の形成が容易で、しかも、モータが一層小型、軽量になる。   In addition, since the rectangular wire is alpha-wrapped, it is easy to bend the corners and crossovers of the exciting coil, the thickness is not increased, the exciting coil is easily formed, and the motor becomes smaller and lighter. .

また、同じ相の全部または一部の磁極の励磁コイルが、同じ平角線のコイル体で継ぎ目なく連続的に形成されるので、バスリングは不要になり、その分、モータは小型、軽量になるとともに、コストダウンを図ることができる。   In addition, the exciting coils of all or part of the magnetic poles of the same phase are continuously formed with the same rectangular wire coil body, so that no bus ring is required, and the motor becomes smaller and lighter accordingly. At the same time, the cost can be reduced.

したがって、モータの小型、軽量化およびコストダウンに寄与する従来にない画期的な励磁コイルの構造を提供することができる。   Therefore, it is possible to provide an unprecedented exciting excitation coil structure that contributes to the reduction in size, weight and cost of the motor.

本発明の一実施形態の3相駆動のアキシャルギャップモータの一部を省略した分解斜視図である。It is the disassembled perspective view which abbreviate | omitted a part of the three-phase drive axial gap motor of one Embodiment of this invention. は図1のステータの一部の励磁コイルを形成するカセットコイルの斜視図である。FIG. 2 is a perspective view of a cassette coil forming a part of exciting coils of the stator of FIG. 1. 図2のカセットコイルの平面図である。It is a top view of the cassette coil of FIG. (a)、(b)は図3のB−B線、A−A線の位置それぞれの巻回状態を説明する断面図である。(A), (b) is sectional drawing explaining the winding state of each position of the BB line of FIG. 3, and the AA line. (a)、(b)は1相の一部の励磁コイルを組み付けた状態の図1のステータの正面図、そのC−C線の断面図である。(A), (b) is the front view of the stator of FIG. 1 of the state which assembled | attached the exciting coil of one phase, and sectional drawing of the CC line | wire. (a)、(b)は2相の一部の励磁コイルを組み付けた状態の図1のステータの正面図、そのD−D線の断面図である。(A), (b) is the front view of the stator of FIG. 1 of the state which assembled | attached some excitation coils of two phases, and sectional drawing of the DD line | wire. (a)、(b)は3相の一部の励磁コイルを組み付けた状態の図1のステータの正面図、そのE−E線の断面図である。(A), (b) is the front view of the stator of FIG. 1 of the state which assembled | attached the excitation coil of a part of 3 phases, and sectional drawing of the EE line. (a)、(b)は1相の残りの励磁コイルも組み付けた状態の図1のステータの正面図、そのF−F線の断面図である。(A), (b) is the front view of the stator of FIG. 1 of the state which also assembled the remaining excitation coils of one phase, and the sectional view of the FF line. (a)、(b)は2相の残りの励磁コイルも組み付けた状態の図1のステータの正面図、そのG−G線の断面図である。(A), (b) is the front view of the stator of FIG. 1 of the state which assembled | attached the remaining excitation coils of two phases, and sectional drawing of the GG line. (a)、(b)は3相の残りの励磁コイルも組み付けた組み付け完了状態の図1のステータの正面図、そのH−H線の断面図である。(A), (b) is the front view of the stator of FIG. 1 of the assembly completion state which also assembled | attached the remaining excitation coils of three phases, and sectional drawing of the HH line. 従来例のステータの励磁コイル構造の説明図である。It is explanatory drawing of the exciting coil structure of the stator of a prior art example.

つぎに、本発明をより詳細に説明するため、一実施形態について、図1〜図10を参照して詳述する。なお、それらの図面においては、モータ軸等は適宜省略している。   Next, in order to describe the present invention in more detail, an embodiment will be described in detail with reference to FIGS. In these drawings, the motor shaft and the like are omitted as appropriate.

図1は本実施形態の3相駆動のアキシャルギャップモータ1を示し、アキシャルギャップモータ1は、ステータ2の表裏の両面側にギャップを設けてロータ3a、3bが対向するように配置され、ステータ2の表裏のいずれか一方の磁極面が全てN極またはS極に励磁され、ステータ2の表裏のいずれか他方の磁極面が全て逆のS極またはN極に励磁される立体磁路構成である。   FIG. 1 shows a three-phase drive axial gap motor 1 according to the present embodiment. The axial gap motor 1 is arranged such that gaps are provided on both front and back sides of the stator 2 so that the rotors 3a and 3b face each other. The solid magnetic path configuration in which either one of the front and back magnetic pole surfaces of the stator 2 is excited to the N pole or the S pole, and either one of the front and back magnetic pole faces of the stator 2 is excited to the opposite S pole or the N pole. .

この立体磁路構成につき、3相U、V、Wの励磁によってステータ2の表面側の磁極が全てS極、裏面の磁極が全てN極に励磁されるとして、さらに詳述する。   This three-dimensional magnetic path configuration will be described in further detail on the assumption that all the magnetic poles on the front surface side of the stator 2 are excited to the S pole and all the magnetic poles on the back surface are excited to the N pole by the excitation of the three phases U, V, and W.

まず、ロータ3a、3bはモータ軸4に回転自在に軸支され、ステータ2はモータ軸4が中心部に遊挿されてロータ3a、3b間に固定状態に配置さる。   First, the rotors 3a and 3b are rotatably supported by the motor shaft 4, and the stator 2 is placed in a fixed state between the rotors 3a and 3b with the motor shaft 4 being loosely inserted in the center.

つぎに、ステータ2の表面および裏面に、U、V、Wの順に各相の磁極を配設して、各相の磁極を90度の間隔で各4個ずつ配置する場合、ステータ2は、平面視が扇形の12個の分割コア51を周方向に配置した表面側コア5と、分割コア51と同じ形状の12個の分割コア61を各分割コア51と背中合わせで1/2磁極ビッチずらして周方向に配置した裏面側コア6とを備える。各分割コア51は例えば圧粉磁心によりS極のティース52とともに形成され、各分割コア61は例えば圧粉磁心によりN極のティース62とともに形成される。このようにすることにより、モータ軸4方向から見たステータ2の磁極数は表裏の片側の12極の倍の24極になる。   Next, when the magnetic poles of each phase are arranged in the order of U, V, and W on the front and back surfaces of the stator 2 and each of the four magnetic poles is arranged at intervals of 90 degrees, the stator 2 The surface-side core 5 in which 12 divided cores 51 having a fan shape in a plan view are arranged in the circumferential direction and the 12 divided cores 61 having the same shape as the divided cores 51 are shifted from each divided core 51 back to back by 1/2 magnetic pole bitch. And a back-side core 6 disposed in the circumferential direction. Each divided core 51 is formed with an S-pole tooth 52 by, for example, a dust core, and each divided core 61 is formed with an N-pole tooth 62 by, for example, a dust core. By doing so, the number of magnetic poles of the stator 2 viewed from the direction of the motor shaft 4 becomes 24 poles, which is twice the 12 poles on one side of the front and back.

各分割コア51、61にはそれぞれ絶縁隔壁としての例えば樹脂製のつば付外枠形状のインシュレータ7が着脱自在に外装される。   Each of the split cores 51 and 61 is detachably mounted with an insulator 7 having a flanged outer frame shape as an insulating partition, for example.

U相の分割コア51、61にはインシュレータ7を介して集中巻きのU相の励磁コイル8uが装着され、V相の分割コア51、61にはインシュレータ7を介して集中巻きのV相の励磁コイル8vが装着され、W相の分割コア51、61にはインシュレータ7を介して集中巻きのW相の励磁コイル8wが装着される。   The U-phase split cores 51 and 61 are provided with a concentrated winding U-phase excitation coil 8 u via an insulator 7, and the V-phase split cores 51 and 61 are concentrated with a concentrated winding V-phase excitation via an insulator 7. A coil 8v is mounted, and a concentrated winding W-phase exciting coil 8w is mounted to the W-phase split cores 51 and 61 via an insulator 7.

そして、各分割コア51にインシュレータ7を介して装着された励磁コイル8u、8v、8wは、渡り線ガイドおよび端子台としての絶縁性の環状の2重の外側枠体9a、9bおよび、それぞれ1対の分割リング状の3重の内側係止体10a、10b、10cが、外側および内側に嵌められて固定される。同様に、各分割コア61にインシュレータ7を介して装着された励磁コイル8u、8v、8wは、渡り線ガイドおよび端子台としての絶縁性の環状の2重の外側枠体9c、9dおよび、それぞれ1対の分割リング状の3重の内側係止体10d、10e、10fが、外側および内側に嵌められて固定される。   The exciting coils 8u, 8v, 8w mounted on the divided cores 51 via the insulator 7 are each formed of an insulating annular double outer frame 9a, 9b as a crossover guide and a terminal block, and 1 each. A pair of split ring-shaped triple inner locking bodies 10a, 10b, and 10c are fitted and fixed on the outer side and the inner side. Similarly, the exciting coils 8u, 8v, 8w attached to the respective split cores 61 via the insulator 7 are insulating loop double outer frames 9c, 9d as a crossover guide and a terminal block, respectively. A pair of split ring-shaped triple inner locking bodies 10d, 10e, and 10f are fitted and fixed to the outside and the inside.

一方、ロータ3a、3bは、それぞれステータ2に対向する磁極面に周方向に等間隔に配設された例えば8個のティースの磁極31を備える。   On the other hand, each of the rotors 3a and 3b includes, for example, eight teeth magnetic poles 31 arranged at equal intervals in the circumferential direction on the magnetic pole surfaces facing the stator 2.

さらに、モータ軸4に同軸状に磁性体の円筒形の軸磁路材11が設けられ、軸磁路材11の両端面はロータ3a、3bのヨーク面に接合している。   Furthermore, a cylindrical shaft magnetic path material 11 made of a magnetic material is provided coaxially on the motor shaft 4, and both end surfaces of the shaft magnetic path material 11 are joined to the yoke surfaces of the rotors 3 a and 3 b.

そして、アキシャルギャップモータ1は、ステータ2の表裏両面の各相の励磁コイル8u、8v、8wの順次の通電により、例えばU相の場合、表側の90度間隔の4個のU相のティース52はS極に励磁され、裏側の90度間隔の4個のU相のティース62はN極に励磁され、この裏側のU相のN極から出た磁束が、対向するロータ3bの近傍の磁極31、磁路形成部材4を通ってロータ3aに向かい、ステータ2のU相のS極近傍のロータ3aの磁極からステータ2の表側のU相のS極に向かう。また、V相の場合、ステータ2において、表側のU相のティース52の隣の90度間隔の4個のV相のティース52はS極に励磁され、裏側の90度間隔の4個のV相のティース62はN極に励磁され、裏側のV相のN極から出た磁束が、対向するロータ3bの近傍の磁極31、磁路形成部材4を通ってロータ3aに向かい、ステータ2のV相のS極近傍のロータ3aの磁極からステータ2の表側のV相のS極に向かう。さらに、W相の場合、ステータ2において、表側のV相のティース52の隣の90度間隔の4個のW相のティース52はS極に励磁され、裏側の90度間隔の4個のW相のティース62はN極に励磁され、裏側のW相のN極から出た磁束が、対向するロータ3bの近傍の磁極31、磁路形成部材4を通ってロータ3aに向かい、ステータ2のW相のS極近傍のロータ3aの磁極からステータ2の表側のW相のS極に向かう。   Then, the axial gap motor 1 is driven by sequential energization of the excitation coils 8u, 8v, 8w of the respective phases on the front and back surfaces of the stator 2, for example, in the case of the U phase, four U-phase teeth 52 at intervals of 90 degrees on the front side. Is excited to the S pole, and the four U-phase teeth 62 at 90 ° intervals on the back side are excited to the N pole, and the magnetic flux emitted from the U pole of the U phase on the back side is a magnetic pole near the opposing rotor 3b. 31, through the magnetic path forming member 4, toward the rotor 3 a, and from the magnetic pole of the rotor 3 a near the U-phase S pole of the stator 2 toward the U-phase S pole on the front side of the stator 2. In the case of the V-phase, in the stator 2, the four V-phase teeth 52 at 90 ° intervals adjacent to the U-phase teeth 52 on the front side are excited to the S pole, and the four V-phase teeth at 90 ° intervals on the back side. The phase teeth 62 are excited to the N pole, and the magnetic flux emitted from the V phase N pole on the back side passes through the magnetic pole 31 in the vicinity of the opposing rotor 3b and the magnetic path forming member 4 to the rotor 3a. From the magnetic pole of the rotor 3a in the vicinity of the V-phase S pole, the V-phase S pole on the front side of the stator 2 is directed. Further, in the case of the W phase, in the stator 2, the four W phase teeth 52 at 90 ° intervals adjacent to the front V phase teeth 52 are excited to the S pole, and the four W W at 90 ° intervals on the back side. The phase teeth 62 are excited to the N pole, and the magnetic flux emitted from the W phase N pole on the back side passes through the magnetic pole 31 and the magnetic path forming member 4 in the vicinity of the opposing rotor 3b toward the rotor 3a. From the magnetic pole of the rotor 3a in the vicinity of the W-phase S pole toward the W-phase S pole on the front side of the stator 2.

このようにして、ステータ2とその表裏のロータ3a、3bとの間でモータ軸4方向に進む立体磁路が構成されてロータ3a、3bが回転してモータ軸4が回転し、アキシャルギャップモータ1が駆動される。   In this manner, a solid magnetic path is formed between the stator 2 and the front and back rotors 3a and 3b in the direction of the motor shaft 4, the rotors 3a and 3b rotate to rotate the motor shaft 4, and an axial gap motor. 1 is driven.

なお、本実施形態のアキシャルギャップモータ1は、磁束量を多くしてアキシャルギャップモータ1のトルクアップを図るため、ステータ2に、表裏毎に、または、表裏両面共通に、環状の界磁コイル12を備え、この界磁コイル12に適当な大きさの直流を給電して一定のバイアス磁束を発生するように構成される。   Note that the axial gap motor 1 of the present embodiment increases the amount of magnetic flux to increase the torque of the axial gap motor 1, so that the stator 2 has an annular field coil 12 for each front and back, or for both front and back surfaces. The field coil 12 is configured to supply a suitable amount of direct current to generate a constant bias magnetic flux.

つぎに、ステータ2の表裏の各相の励磁コイル8u〜8wの構造および、組み付けについて、さらに説明する。   Next, the structure and assembly of the excitation coils 8u to 8w for the respective phases on the front and back of the stator 2 will be further described.

ステータ2の表裏両面の各相の4個の励磁コイル8u〜8wは、いずれも例えば2個1組のカセットコイル81からなる。   Each of the four exciting coils 8u to 8w of each phase on the front and back surfaces of the stator 2 is composed of, for example, a set of two cassette coils 81.

図2は例えば表側のU相の90度間隔の2個の励磁コイル8uを形成するカセットコイル81を示し、このカセットコイル81は、1本の平角線13を集中巻きした2個の平角線コイル13aによりステータ2の半周分に位置する2個の集中巻きの励磁コイル8uを形成し、両励磁コイル8uの平角線コイル13aを渡り線82により繋いだ構成である。平角線コイル13aは、平角線を、いわゆるアルファ巻きしたものであり、幅の広い面がティース52の周面に対向する向きで、段毎に巻き方向を外周側から内周側、内周側から外周側に交互に変えて外周側から巻き始めて外周側で巻き終わるように巻回した構造である。   FIG. 2 shows, for example, a cassette coil 81 that forms two exciting coils 8u with a 90-degree interval on the U phase on the front side. The cassette coil 81 includes two rectangular wires coils in which one rectangular wire 13 is concentratedly wound. In this configuration, two concentrated winding exciting coils 8u positioned on a half circumference of the stator 2 are formed by 13a, and the flat wire coils 13a of both exciting coils 8u are connected by a jumper wire 82. The flat wire coil 13a is a so-called alpha winding of a flat wire, with the wide surface facing the peripheral surface of the tooth 52, and the winding direction from the outer peripheral side to the inner peripheral side and the inner peripheral side for each step. In this structure, the windings are alternately changed from the outer circumference side to the outer circumference side so as to start winding from the outer circumference side and finish winding on the outer circumference side.

図3は図2のカセットコイル81の平面図であり、図4の(a)、(b)は図3の励磁コイル8uのB−B線、A−A線の巻き線構造を示す切断面の模式図である。   3 is a plan view of the cassette coil 81 of FIG. 2, and FIGS. 4A and 4B are cross sections showing the winding structure of the BB line and the AA line of the exciting coil 8u of FIG. FIG.

そして、励磁コイル8u〜8wは、それぞれ1段分がほぼ7ターンで、モータ軸4方向に平角線コイル13aを4段に重ねた構成である場合、平角線13の巻き回しを1個の励磁コイル8uで説明すると、図4の(a)、(b)に示すように、励磁コイル8uとしての平角線コイル13aは、1段目は外側から巻き始めて7ターン分巻回し、8ターン目を斜め上方向に巻いて2段目に進み、2段目は内側から巻き始めて14ターン目で外側に達すると、15ターン目を斜め上方向に巻いて3段目に進み、3段目は外側から巻き始めて21ターン目で内側に達すると、22ターン目を斜め上方向に巻いて4段目に進み、4段目は内側から巻き始めて29ターン目で外側に達すると、30ターン目の所定位置から引き出され、このようにして励磁コイル8uがアルファ巻きで形成される。図4(a)、(b)の数字1〜30はターン番号である。   When each of the exciting coils 8u to 8w has a configuration in which one stage is approximately 7 turns and the rectangular wire coils 13a are stacked in four stages in the direction of the motor shaft 4, the winding of the rectangular wire 13 is one excitation. The coil 8u will be described below. As shown in FIGS. 4A and 4B, the rectangular coil 13a as the exciting coil 8u starts winding from the outside in the first stage and winds it for 7 turns, and turns the 8th turn. Wind diagonally upward and proceed to the second stage. When the second stage begins to wind from the inside and reaches the outside at the 14th turn, wind the 15th turn diagonally upward and proceed to the third stage. When starting to wind and reaching the inner side at turn 21, the 22nd turn is wound obliquely upward and proceeding to the fourth step, the fourth step starting from the inner side and reaching the outer side at the 29th turn, predetermined 30th turn Pulled out of position and thus excited Yl 8u is formed by alpha winding. Numbers 1 to 30 in FIGS. 4A and 4B are turn numbers.

さらに、最初の励磁コイル8uの平角線コイル13aを巻き終わると、適当な長さの渡り線82を形成して次の励磁コイル8uの平角線コイル13aが同様にアルファ巻きで形成される。   Further, when the winding of the rectangular wire coil 13a of the first exciting coil 8u is finished, the connecting wire 82 having an appropriate length is formed, and the rectangular wire coil 13a of the next exciting coil 8u is similarly formed by alpha winding.

そして、相毎に各2個の励磁コイル8u〜8wそれぞれを渡り線82で繋いだ形状のカセットコイル81を必要数(本実施形態の場合は表裏それぞれ毎に1相当たり2個)用意すると、ステータ2の表裏それぞれにおいて、例えばU相から順に積み重ねるようにしてカセットコイル81の2個の励磁コイル8u〜8wをステータ2の該当する各2個のティース52、62にインシュレータ7を介して装着する。なお、各カセットコイル81は、例えばスピンドル巻きで生産性よく製造できる。   Then, if the necessary number of cassette coils 81 each having two excitation coils 8u to 8w connected for each phase by connecting wires 82 is prepared (in the case of this embodiment, two per phase for each front and back), The two exciting coils 8u to 8w of the cassette coil 81 are mounted on the corresponding two teeth 52 and 62 of the stator 2 via the insulator 7 so as to be stacked in order from the U phase, for example, on the front and back sides of the stator 2. . Each cassette coil 81 can be manufactured with high productivity by, for example, spindle winding.

つぎに、ステータ2の表側のカセットコイル81によって、ステータ2の表裏の各カセットコイル81の装着についてさらに説明する。なお、各相のカセットコイル81は各相1個ずつの半周分を装着し、つぎに残りの半周分を装着するものとする。また、ステータ2の裏側のカセットコイル81の装着も同様である。   Next, the mounting of the cassette coils 81 on the front and back of the stator 2 by the cassette coil 81 on the front side of the stator 2 will be further described. It is assumed that each phase of the cassette coil 81 is mounted for one half of each phase, and then the remaining half of the coil is mounted. The same applies to the mounting of the cassette coil 81 on the back side of the stator 2.

図5(a)、(b)は、最初のU相の1個目(ステータ2の半周分)のカセットコイル81をステータ2に取り付けた状態を示し、同図(a)のC−C線の断面図である同図(b)に示すように、渡り線82は一方の内側係止体10cのガイド溝14cに沿って配設される。このとき、平角線13の始端、終端の引き出し線83は外側枠体9bの外周部に形成されたそれぞれのガイド溝91に沿って引き出される。   5 (a) and 5 (b) show a state in which the first U-phase cassette coil 81 of the first U phase (a half circumference of the stator 2) is attached to the stator 2, and the CC line in FIG. 5 (a). As shown in FIG. 2B, which is a cross-sectional view, the crossover wire 82 is disposed along the guide groove 14c of one inner locking body 10c. At this time, the leading and trailing lead lines 83 of the flat wire 13 are drawn along the respective guide grooves 91 formed on the outer peripheral portion of the outer frame body 9b.

図6(a)、(b)は、さらにV相の1個目のカセットコイル81をステータ2に取り付けた状態を示し、V相のカセットコイル81はU相のカセットコイル81の上にずらして重なるように装着され、同図(a)のD−D線の断面図である同図(b)に示すように、その渡り線82は一方の内側係止体10bのガイド溝14bに沿って配設され、平角線13の始端、終端の引き出し線83は外側枠体9bの外周部に形成されたそれぞれのガイド溝91に沿って引き出される。   FIGS. 6A and 6B show a state in which the first V-phase cassette coil 81 is attached to the stator 2, and the V-phase cassette coil 81 is shifted over the U-phase cassette coil 81. As shown in FIG. 7B, which is a cross-sectional view taken along the line D-D of FIG. 6A, the connecting wire 82 extends along the guide groove 14b of one inner locking body 10b. The leading and trailing lead wires 83 of the flat wire 13 are drawn out along respective guide grooves 91 formed on the outer peripheral portion of the outer frame 9b.

図7(a)、(b)は、さらにW相の1個目のカセットコイル81をステータ2に取り付けた状態を示し、W相のカセットコイル81はV相のカセットコイル81の上にU相、V相のカセットコイル81とずらして重なるように装着され、同図(a)のE−E線の断面図である同図(b)に示すように、その渡り線82は一方の内側係止体10aのガイド溝14aに沿って配設され、平角線13の始端、終端の引き出し線83は外側枠体9aの外周部に形成されたそれぞれのガイド溝91に沿って引き出される。   FIGS. 7A and 7B show a state in which the W-phase first cassette coil 81 is further attached to the stator 2, and the W-phase cassette coil 81 is placed on the V-phase cassette coil 81 on the U-phase. As shown in FIG. 5B, which is a cross-sectional view taken along the line E-E of FIG. 5A, the connecting wire 82 is connected to one inner side of the V-phase cassette coil 81. Arranged along the guide groove 14a of the stationary body 10a, the leading and trailing lead lines 83 of the flat wire 13 are drawn out along the respective guide grooves 91 formed on the outer peripheral portion of the outer frame body 9a.

図8(a)、(b)は、さらに残りの半周の最初のU相のカセットコイル81をステータ2に取り付けた状態を示し、同図(a)のF−F線の断面図である同図(b)に示すように、渡り線82は他方の内側係止体10cのガイド溝14cに沿って配設され、平角線13の始端、終端の引き出し線83は外側枠体9aの外周部に形成されたそれぞれのガイド溝91に沿って1番目のU相のカセットコイル81の引き出し位置とほぼ同じ位置に引き出される。なお、残りの半周の各相の2本の引き出し線83は外側枠体9bの左右それぞれの方向から引き回されるので、外側枠体9aのガイド溝91の数は外側枠体9bの半分の3本である。   8 (a) and 8 (b) show a state in which the first U-phase cassette coil 81 of the remaining half circumference is attached to the stator 2, and is a cross-sectional view taken along line FF in FIG. 8 (a). As shown in FIG. 2B, the crossover wire 82 is disposed along the guide groove 14c of the other inner locking body 10c, and the leading end and the end leading line 83 of the flat wire 13 are the outer peripheral portion of the outer frame body 9a. The first U-phase cassette coil 81 is pulled out to substantially the same position as the first U-phase cassette coil 81. Since the two lead lines 83 of each phase of the remaining half circumference are routed from the left and right directions of the outer frame body 9b, the number of guide grooves 91 of the outer frame body 9a is half that of the outer frame body 9b. There are three.

図9(a)、(b)は、さらに残りの半周のV相のカセットコイル81をステータ2に取り付けた状態を示し、このV相のカセットコイル81は前記した残りの半周U相のカセットコイル81の上にU相のカセットコイル81とずらして重なるように装着され、同図(a)のG−G線の断面図である同図(b)に示すように、渡り線82は他方の内側係止体10bのガイド溝14bに沿って配設され、平角線13の始端、終端の引き出し線83は外側枠体9aの外周部に形成されたそれぞれのガイド溝91に沿って1番目のV相のカセットコイル81の引き出し位置とほぼ同じ位置に引き出される。   FIGS. 9A and 9B show a state in which the remaining half-circular V-phase cassette coil 81 is attached to the stator 2, and this V-phase cassette coil 81 is the remaining half-circular U-phase cassette coil. As shown in FIG. 5B, which is a cross-sectional view taken along line GG in FIG. 4A, the connecting wire 82 is connected to the other side of the U-phase cassette coil 81. Arranged along the guide groove 14b of the inner locking body 10b, the lead wire 83 at the start and end of the flat wire 13 is the first along each guide groove 91 formed on the outer periphery of the outer frame 9a. The V-phase cassette coil 81 is pulled out to almost the same position.

図10(a)、(b)は、さらに残りの半周のW相のカセットコイル81をステータ2に取り付けた状態を示し、このW相のカセットコイル81は前記した残りの半周のV相のカセットコイル81のさらに上にU相、V相のカセットコイル81とずらして重なるように装着され、同図(a)のH−H線の断面図である同図(b)に示すように、渡り線82は他方の内側係止体10aのガイド溝14aに沿って配設され、平角線13の始端、終端の引き出し線83は外側枠体9aの外周部に形成されたそれぞれのガイド溝91に沿って1番目のW相のカセットコイル81の引き出し位置とほぼ同じ位置に引き出される。   FIGS. 10A and 10B show a state in which the remaining half-circular W-phase cassette coil 81 is attached to the stator 2, and this W-phase cassette coil 81 is the above-mentioned remaining half-circular V-phase cassette. The coil 81 is mounted on the U-phase and V-phase cassette coils 81 so as to overlap with the U-phase and V-phase cassette coils 81. As shown in FIG. The wire 82 is disposed along the guide groove 14a of the other inner locking body 10a, and the leading and trailing lead lines 83 of the flat wire 13 are formed in the respective guide grooves 91 formed on the outer peripheral portion of the outer frame 9a. The first W-phase cassette coil 81 is pulled out to substantially the same position.

そして、外側枠体9a、9bに引き出された各相の半周分ずつの端子部が直列または並列に接続され、ステータ2の表側のカセットコイル81の装着が終了し、ステータ2の裏側についても同様にして各相のカセットコイル81が装着される。   Then, the terminal portions corresponding to the half circumferences of the respective phases drawn out to the outer frame bodies 9a and 9b are connected in series or in parallel, the mounting of the cassette coil 81 on the front side of the stator 2 is finished, and the same applies to the back side of the stator 2 as well. Thus, the cassette coil 81 for each phase is mounted.

このようにして組み付けられたアキシャルギャップモータ1の場合、(1)ステータ2の表裏の励磁コイル8u〜8wが平角線13のいわゆるアルファ巻きで集中巻きして形成されるので、ノズル巻きの丸線のコイル体で励磁コイルを形成する場合のようなノズル隙間を設ける必要がなく、ステータ2の面積に対する励磁コイル8u〜8wの占有率が高くなる。また、平角線13のアルファ巻きのコイル体は丸線のコイル体のように内周側および外周側に膨らまず、とくにステータ2の内周側とモータ軸4との空間を狭くしてアキシャルギャップモータ1の体格を小さくできる。   In the case of the axial gap motor 1 assembled in this way, (1) the exciting coils 8u to 8w on the front and back of the stator 2 are formed by concentrated winding with a so-called alpha winding of a flat wire 13, so that a round wire of nozzle winding There is no need to provide a nozzle gap as in the case where the exciting coil is formed of the coil body, and the occupation ratio of the exciting coils 8u to 8w with respect to the area of the stator 2 is increased. Further, the alpha-wound coil body of the rectangular wire 13 does not swell toward the inner peripheral side and the outer peripheral side like the round wire coil body, and in particular, the space between the inner peripheral side of the stator 2 and the motor shaft 4 is narrowed to reduce the axial gap. The physique of the motor 1 can be reduced.

(2)各励磁コイル8u〜8wがカセットコイル81で形成されてステータ2の表裏の各ティースに簡単に装着できるので、アキシャルギャップモータ1の組み付け性が向上して生産性が高まる。   (2) Since each of the exciting coils 8u to 8w is formed by the cassette coil 81 and can be easily attached to each of the teeth on the front and back of the stator 2, the assembly of the axial gap motor 1 is improved and the productivity is increased.

(3)各カセットコイル81の平角線13の巻き始めと巻き終りがいずれも外周側の位置になるので、巻き終わった平角線13をステータ2の内周側から外周側に引き回す必要がなく、そのため、モータ軸4方向の平角線13の引き回しが不要で、モータ軸4方向にアキシャルギャップモータ1の体格が大きくなることがない。具体的には、平角線13をステータ2の内周側から外周側に引き回すのであれば、ステータ2とロータ3a、3bとのギャップ(隙間)を平角線13の厚み分大きくする必要があり、また、ステータ2の外周側にも平角線13の厚み分の隙間を確保する必要があるが、本実施形態の場合は平角線13をステータ2の内周側から外周側に引き回す必要がないので、その分モータ軸方向にも径方向にもモータ2の体格が小さくなる。   (3) Since the winding start and end of the flat wire 13 of each cassette coil 81 are both on the outer peripheral side, there is no need to route the wound flat wire 13 from the inner peripheral side of the stator 2 to the outer peripheral side. Therefore, it is not necessary to route the rectangular wire 13 in the direction of the motor shaft 4, and the size of the axial gap motor 1 does not increase in the direction of the motor shaft 4. Specifically, if the rectangular wire 13 is routed from the inner peripheral side to the outer peripheral side of the stator 2, the gap (gap) between the stator 2 and the rotors 3a and 3b needs to be increased by the thickness of the rectangular wire 13, Further, it is necessary to secure a gap corresponding to the thickness of the flat wire 13 on the outer peripheral side of the stator 2, but in the present embodiment, it is not necessary to route the flat wire 13 from the inner peripheral side of the stator 2 to the outer peripheral side. Therefore, the physique of the motor 2 is reduced both in the motor axial direction and in the radial direction.

(4)平角線13をアルファ巻きして各カセットコイル81の励磁コイル8u〜8wを形成するので、励磁コイル8u〜8wのコーナー部分や渡り線82、引き出し線83の折り曲げ等が容易で厚みも厚くならず、励磁コイル8u〜w等の形成が容易で、しかも、アキシャルギャップモータ1が一層小型、軽量になる。   (4) Since the rectangular wire 13 is alpha-wound to form the exciting coils 8u to 8w of the cassette coils 81, the corner portions of the exciting coils 8u to 8w, the crossover wire 82, the lead wire 83, etc. can be easily bent and thickened. The exciting coils 8u to 8w and the like can be easily formed without increasing the thickness, and the axial gap motor 1 is further reduced in size and weight.

(5)各相の半周部の2個ずつの磁極の励磁コイル8u〜8wが、同じ平角線13の1個のカセットコイル81でそれぞれ継ぎ目なく連続的に形成されるので、バスリングは部分的なものでよく、スリーブ等も削減でき、場合によってはそれらを省略可能であり、部品点数が一層少なくなってアキシャルギャップモータ1は小型、軽量になるとともに、コストダウンを図ることができる。   (5) Since the exciting coils 8u to 8w of the two magnetic poles in the half circumference of each phase are continuously formed by one cassette coil 81 of the same rectangular wire 13, respectively, the bus ring is partially However, the number of parts can be further reduced, and the axial gap motor 1 can be reduced in size and weight, and cost can be reduced.

(6)各カセットコイル81の励磁コイル8u〜8wはインシュレータ7により絶縁が図られる。また、渡り線82、引き出し線83はステータ2の内周側、外周側において相毎に異なる径方向、モータ軸4方向の位置にガイド溝14a〜14c、91の隔壁によって絶縁しつつ保持される。この場合、異なる相の渡り線82、引き出し線83どうし、渡り線82、引き出し線83と他相の励磁コイル8u〜8Wの十分な空間距離および沿面距離を確保でき、相間の確実な絶縁が行なえる。なお、渡り線82の絶縁は前記の隔壁によって行なわれるのでコンパクトであり、ステータ2の内周側に十分なスペースを確保でき、本実施形態の場合、軸磁路材11のスペースを確保できる。また、渡り線82等の振動等による損傷を防止でき絶縁の信頼性を向上できるとともに耐久性を向上できる利点もある。   (6) The exciting coils 8 u to 8 w of each cassette coil 81 are insulated by the insulator 7. Further, the connecting wire 82 and the lead wire 83 are held while being insulated by the partition walls of the guide grooves 14a to 14c and 91 at different positions in the radial direction and the motor shaft 4 direction on the inner and outer peripheral sides of the stator 2. . In this case, a sufficient space distance and creepage distance can be secured between the connecting wires 82 and the lead wires 83 of different phases, and between the connecting wires 82 and the lead wires 83 and the excitation coils 8u to 8W of the other phases, and reliable insulation between the phases can be performed. The In addition, since the insulation of the crossover 82 is performed by the said partition, it is compact, and sufficient space can be ensured in the inner peripheral side of the stator 2, and the space of the axial magnetic path material 11 can be ensured in this embodiment. Further, there is an advantage that damage due to vibration or the like of the crossover 82 can be prevented, insulation reliability can be improved, and durability can be improved.

(7)ステータ2の内周側に渡り線82を設けることにより各カセットコイル81の線長を短くでき、その保持部としての内側係止体10a〜10cも小型化する。   (7) By providing the crossover wire 82 on the inner peripheral side of the stator 2, the wire length of each cassette coil 81 can be shortened, and the inner locking bodies 10 a to 10 c as the holding portions are also downsized.

したがって、アキシャルギャップモータ1の小型、軽量化およびコストダウンに寄与する従来にない画期的な励磁コイル構造を提供することができる。   Therefore, it is possible to provide an unprecedented and exciting excitation coil structure that contributes to the reduction in size, weight and cost of the axial gap motor 1.

そして、本発明は上記した各実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行なうことが可能であり、例えば、各相の励磁コイル8u〜8wは、3個、4個(全部)を1個のカセットコイル82の1本の平角線13で形成してもよく、その場合には、十分な空間距離および沿面距離を確保するように、ガイド溝10a〜10c、91の個数等を適宜増やす等すればよい。   The present invention is not limited to the above-described embodiments, and various modifications other than those described above can be made without departing from the spirit of the present invention. 8w may be formed by one flat wire 13 of three cassettes and four (all) in one cassette coil 82, and in that case, in order to ensure sufficient space distance and creepage distance, What is necessary is just to increase the number of guide grooves 10a-10c, 91, etc. suitably.

ステータ2の駆動相の数やステータ2、ロータ3a、3bの磁極数等は前記実施形態の3相、12極等に限るものではなく、4相以上の多相駆動、18極、24極等であってもよい。   The number of driving phases of the stator 2 and the number of magnetic poles of the stator 2 and the rotors 3a and 3b are not limited to the three-phase, 12-pole, etc. of the above-described embodiment. It may be.

つぎに、ステータ2は表または裏の片面にのみ磁極面が形成される片面磁極構成であってもよく、その場合は、例えばそれぞれ1個のステータ2とロータ3aによってアキシャルギャップモータ1が形成される。   Next, the stator 2 may have a single-sided magnetic pole configuration in which a magnetic pole surface is formed only on one side of the front or back. In that case, for example, the axial gap motor 1 is formed by one stator 2 and a rotor 3a, respectively. The

つぎに、本発明は、アキシャルギャップモータ1とはステータ2やロータ3a、3bの磁極構造が異なる種々のアキシャルギャップモータ、例えば、ステータ2の周方向の各相の磁極がS極とN極を交互に形成する磁極構造のアキシャルギャップモータに同様に適用することができ、さらには、磁極面がステータ2の周側面に配設されるラジアルギャップモータの集中巻きの励磁コイル構造にも同様に適用することができる。   Next, according to the present invention, various axial gap motors having different magnetic pole structures of the stator 2 and the rotors 3a and 3b from the axial gap motor 1, for example, the magnetic poles of each phase in the circumferential direction of the stator 2 have S and N poles. The present invention can be similarly applied to an axial gap motor having a magnetic pole structure formed alternately, and also applied to a concentrated winding excitation coil structure of a radial gap motor in which the magnetic pole surface is disposed on the peripheral side surface of the stator 2. can do.

そして、本発明は、電気自動車の駆動モータ等の種々の用途のアキシャルギャップモータ、ラジアルギャップモータのステータの励磁コイル構造に適用することができる。   The present invention can be applied to an axial gap motor for various uses such as a drive motor for an electric vehicle, and an exciting coil structure for a stator of a radial gap motor.

1 アキシャルギャップモータ
2 ステータ
8u〜8w 励磁コイル
13 平角線
13a 平角線コイル
52、62 ティース
81 カセットコイル
DESCRIPTION OF SYMBOLS 1 Axial gap motor 2 Stator 8u-8w Excitation coil 13 Flat wire 13a Flat wire coil 52, 62 Teeth 81 Cassette coil

Claims (1)

励磁コイルが集中巻きされる複数の磁極のティースを周方向に配設したステータにおいて、
前記励磁コイルは平角線コイルにより形成され、
前記平角線コイルは、平角線を、幅の広い面が前記各ティースの周面に対向する向きで、段毎に巻き方向を外周側から内周側、内周側から外周側に交互に変えて外周側から巻き始めて外周側で巻き終わるように巻回した構造であり、
かつ、前記各磁極の前記励磁コイルとしての前記平角線コイルは、少なくとも一部ずつが同じ平角線で連続して形成されたものであることを特徴とするステータ。
In a stator in which teeth of a plurality of magnetic poles around which excitation coils are concentrated are arranged in the circumferential direction,
The exciting coil is formed by a rectangular coil,
The rectangular wire coil is configured so that the winding direction of the rectangular wire is alternately changed from the outer peripheral side to the inner peripheral side and from the inner peripheral side to the outer peripheral side, with the wide surface facing the peripheral surface of each tooth. It is structured to start winding from the outer peripheral side and finish winding on the outer peripheral side,
And the said rectangular wire coil as said exciting coil of each said magnetic pole is formed at least one part continuously by the same rectangular wire, The stator characterized by the above-mentioned.
JP2010049234A 2010-03-05 2010-03-05 Stator Expired - Fee Related JP5626758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010049234A JP5626758B2 (en) 2010-03-05 2010-03-05 Stator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010049234A JP5626758B2 (en) 2010-03-05 2010-03-05 Stator

Publications (2)

Publication Number Publication Date
JP2011188587A true JP2011188587A (en) 2011-09-22
JP5626758B2 JP5626758B2 (en) 2014-11-19

Family

ID=44794228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010049234A Expired - Fee Related JP5626758B2 (en) 2010-03-05 2010-03-05 Stator

Country Status (1)

Country Link
JP (1) JP5626758B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080720A1 (en) * 2011-12-02 2013-06-06 株式会社 日立製作所 Axial-gap dynamoelectric machine and method of manufacturing thereof
WO2018180721A1 (en) * 2017-03-28 2018-10-04 Ntn株式会社 Electric motor
JP2019080453A (en) * 2017-10-26 2019-05-23 株式会社神戸製鋼所 Axial flux type dynamo-electric machine
WO2023048269A1 (en) * 2021-09-27 2023-03-30 株式会社デンソー Rotating electrical machine
WO2024041602A1 (en) * 2022-08-25 2024-02-29 上海盘毂动力科技股份有限公司 Stator winding structure, electric motor with axial magnetic field, and forming method
WO2024048343A1 (en) * 2022-08-30 2024-03-07 株式会社デンソー Rotating electrical machine
EP4412063A4 (en) * 2021-09-27 2025-01-22 Denso Corp ELECTRIC LATHE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003164088A (en) * 2001-11-28 2003-06-06 Nissan Motor Co Ltd Stator structure of electric motor
JP2004336984A (en) * 2003-04-18 2004-11-25 Denso Corp Coil, its manufacturing method and apparatus, tees, core, and rotary electric machine
JP2006060880A (en) * 2004-08-17 2006-03-02 Denso Corp Armature for rotary electric machine, armature winding, and winding method of wire
JP2008010743A (en) * 2006-06-30 2008-01-17 Hokkaido Coil component, and its manufacturing method
JP2010529828A (en) * 2007-06-07 2010-08-26 ノヴァトークー インコーポレイテッド Foil coil structure for axial type electrodynamic device and winding method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003164088A (en) * 2001-11-28 2003-06-06 Nissan Motor Co Ltd Stator structure of electric motor
JP2004336984A (en) * 2003-04-18 2004-11-25 Denso Corp Coil, its manufacturing method and apparatus, tees, core, and rotary electric machine
JP2006060880A (en) * 2004-08-17 2006-03-02 Denso Corp Armature for rotary electric machine, armature winding, and winding method of wire
JP2008010743A (en) * 2006-06-30 2008-01-17 Hokkaido Coil component, and its manufacturing method
JP2010529828A (en) * 2007-06-07 2010-08-26 ノヴァトークー インコーポレイテッド Foil coil structure for axial type electrodynamic device and winding method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080720A1 (en) * 2011-12-02 2013-06-06 株式会社 日立製作所 Axial-gap dynamoelectric machine and method of manufacturing thereof
JP2013118750A (en) * 2011-12-02 2013-06-13 Hitachi Ltd Axial gap type rotary electric machine and manufacturing method thereof
WO2018180721A1 (en) * 2017-03-28 2018-10-04 Ntn株式会社 Electric motor
JP2019080453A (en) * 2017-10-26 2019-05-23 株式会社神戸製鋼所 Axial flux type dynamo-electric machine
WO2023048269A1 (en) * 2021-09-27 2023-03-30 株式会社デンソー Rotating electrical machine
EP4412063A4 (en) * 2021-09-27 2025-01-22 Denso Corp ELECTRIC LATHE
WO2024041602A1 (en) * 2022-08-25 2024-02-29 上海盘毂动力科技股份有限公司 Stator winding structure, electric motor with axial magnetic field, and forming method
WO2024048343A1 (en) * 2022-08-30 2024-03-07 株式会社デンソー Rotating electrical machine

Also Published As

Publication number Publication date
JP5626758B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5306411B2 (en) Rotating electric machine
JP5805346B2 (en) Rotating electric machine
JP5626758B2 (en) Stator
WO2013145976A1 (en) Stator structure for rotary electric machine
JP6247595B2 (en) Armature, armature manufacturing method, rotating electric machine, rotating electric machine manufacturing method
US7944109B2 (en) Stator of motor having an insulator with lead out guide portions
WO2013145977A1 (en) Rotating electric machine
JPWO2015029579A1 (en) Rotating electric machine
WO2017110760A1 (en) Rotating electrical machine and method of manufacturing same
US9385568B2 (en) Stator and electric motor having the same
CN100495861C (en) motor stator
JP2010124636A (en) Coil unit and stator
CN108370184B (en) Rotating electrical machine
JP6293576B2 (en) Stator for rotating electrical machine
JP2009118636A (en) Rotating electric machine and method of manufacturing rotating electric machine
JP2005312182A (en) Concentrated winding stator coil of rotary electric machine
US11114913B2 (en) Rotating electric machine
JP2019037103A (en) Stator and motor
JP2008131780A (en) Armature of dc motor and dc motor
JP2004096992A (en) Stator of internally rotating motor and its manufacturing method
JP2006345655A (en) Coil winding structure of rotary electric machine
TWI548180B (en) Variable frequency motor device
JP5172439B2 (en) Rotating electric machine stator and rotating electric machine
JP6582973B2 (en) Rotating electric machine and manufacturing method thereof
JP2020150753A (en) Stator and brushless motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140924

R150 Certificate of patent or registration of utility model

Ref document number: 5626758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees