[go: up one dir, main page]

JP2011130646A - Power supply device and power supply system using the same - Google Patents

Power supply device and power supply system using the same Download PDF

Info

Publication number
JP2011130646A
JP2011130646A JP2009289705A JP2009289705A JP2011130646A JP 2011130646 A JP2011130646 A JP 2011130646A JP 2009289705 A JP2009289705 A JP 2009289705A JP 2009289705 A JP2009289705 A JP 2009289705A JP 2011130646 A JP2011130646 A JP 2011130646A
Authority
JP
Japan
Prior art keywords
power supply
power
converter
unit
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009289705A
Other languages
Japanese (ja)
Other versions
JP5547958B2 (en
Inventor
Satoru Ueno
哲 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009289705A priority Critical patent/JP5547958B2/en
Priority to CN201080058593.7A priority patent/CN102714426B/en
Priority to TW099144702A priority patent/TWI419435B/en
Priority to KR1020127017291A priority patent/KR101424021B1/en
Priority to PCT/JP2010/073652 priority patent/WO2011078388A1/en
Publication of JP2011130646A publication Critical patent/JP2011130646A/en
Application granted granted Critical
Publication of JP5547958B2 publication Critical patent/JP5547958B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other DC sources, e.g. providing buffering with light sensitive cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/51Photovoltaic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00038Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange using passive battery identification means, e.g. resistors or capacitors
    • H02J7/00041Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange using passive battery identification means, e.g. resistors or capacitors in response to measured battery parameters, e.g. voltage, current or temperature profile
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply device which suppresses a power conversion loss in an apparatus side, and also to provide a power supply system using the same. <P>SOLUTION: The power supply device 1 is an apparatus equipped with a power feeding connector 15 connected to an electric vehicle C with a storage battery 84 and supplying desired DC power to the electric vehicle C upon receiving supply of the DC power from a DC power distribution panel 2. The device 1 has: a signal communication circuit 12 for acquiring power supply information about the power supply voltage and power supply current to which the electric vehicle C corresponds from the electric vehicle C; a power supply control circuit 11 for setting the power supply voltage and the power supply current to the electric vehicle C on the basis of the power supply information acquired in the signal communication circuit 12; and a DC/DC converter 13 for supplying to the electric vehicle C the power supply voltage and the power supply current which are set in the power supply control circuit 11. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、給電装置およびそれを用いた給電システムに関するものである。   The present invention relates to a power feeding device and a power feeding system using the power feeding device.

従来より、電気自動車用の充電装置が提供されている(例えば特許文献1参照)。この充電装置は、各住宅にそれぞれ供給される商用交流電源を充電用電源としたものであり、電気自動車側には商用交流電源を直流電源に変換するための交流・直流変換器が設けられている。そして、充電装置側に設けられた充電ケーブルのコネクタを自動車側コネクタに接続すると、上記の商用交流電源が電気自動車に供給され、供給された商用交流電源が交流・直流変換器で直流電源に変換されてバッテリに充電される。   Conventionally, a charging device for an electric vehicle has been provided (see, for example, Patent Document 1). This charging device uses a commercial AC power source supplied to each house as a charging power source, and an electric vehicle side is provided with an AC / DC converter for converting the commercial AC power source into a DC power source. Yes. Then, when the connector of the charging cable provided on the charging device side is connected to the vehicle side connector, the above-mentioned commercial AC power is supplied to the electric vehicle, and the supplied commercial AC power is converted into DC power by the AC / DC converter. And the battery is charged.

特開平8−33121号公報(段落[0012]−段落[0016]、及び、第1図−第3図)JP-A-8-33121 (paragraph [0012] -paragraph [0016] and FIGS. 1 to 3)

上述の特許文献1に示した充電装置は、住宅用の商用交流電源の供給を受け、供給された商用交流電源を、搭載するバッテリに対応した直流電圧に変換して充電を行うため、電気自動車側で交流・直流変換時のロスが発生するものであった。また、電気自動車の車種によって充電電流が異なることもあるが、この充電装置は充電電流の違いに対応できるものではなかった。   The charging device shown in Patent Document 1 described above is supplied with a commercial AC power source for residential use, and converts the supplied commercial AC power source into a DC voltage corresponding to a battery to be mounted. The loss at the time of AC / DC conversion occurred on the side. In addition, the charging current may vary depending on the type of electric vehicle, but this charging device cannot cope with the difference in charging current.

本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、機器側での電源変換ロスを抑えた給電装置およびそれを用いた給電システムを提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a power feeding device that suppresses power conversion loss on the device side and a power feeding system using the power feeding device.

請求項1の発明は、蓄電部を備えた機器に接続される給電用コネクタを具備し、直流電力の供給を受けて機器に所望の直流電力を供給する給電装置において、機器が対応する給電電圧および給電電流に関する給電情報を当該機器から取得する給電情報取得部と、当該給電情報取得部で取得した給電情報をもとに機器への給電電圧および給電電流を設定する制御部と、当該制御部で設定された給電電圧および給電電流を機器に供給するDC/DCコンバータとを備えることを特徴とする。   The invention of claim 1 includes a power supply connector connected to a device having a power storage unit, and a power supply device that receives the supply of DC power and supplies the device with the desired DC power. A power supply information acquisition unit that acquires power supply information regarding the power supply current from the device, a control unit that sets a power supply voltage and a power supply current to the device based on the power supply information acquired by the power supply information acquisition unit, and the control unit And a DC / DC converter that supplies the power supply voltage and power supply current set in step 1 to the device.

請求項2の発明は、請求項1の発明において、充電許可信号に応じた充電電流で充電を行う充電回路を機器に備え、給電装置の制御部は、機器に対して充電許可信号を出力して充電回路の充電電流を制御することを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the device includes a charging circuit that performs charging with a charging current corresponding to the charging permission signal, and the control unit of the power feeding device outputs the charging permission signal to the device. And controlling the charging current of the charging circuit.

請求項3の発明は、請求項1または2記載の給電装置と、当該給電装置に直流電力を供給する直流電源部と、当該直流電源部の給電能力を給電装置に送信する送信器とを備え、給電装置の制御部は、給電情報取得部で取得した給電情報と、送信器から送信された直流電源部の給電能力とに基づいて機器への給電電圧および給電電流を設定し、DC/DCコンバータは、制御部で設定された給電電圧および給電電流を機器に供給することを特徴とする。   A third aspect of the invention includes the power supply device according to the first or second aspect, a DC power supply unit that supplies DC power to the power supply device, and a transmitter that transmits the power supply capability of the DC power supply unit to the power supply device. The control unit of the power supply apparatus sets the power supply voltage and power supply current to the device based on the power supply information acquired by the power supply information acquisition unit and the power supply capability of the DC power supply unit transmitted from the transmitter, and the DC / DC The converter supplies the power supply voltage and power supply current set by the control unit to the device.

請求項4の発明は、請求項3の発明において、給電装置に交流電力を供給する交流電源部を備え、当該交流電源部から供給される交流電力を、制御部で設定された給電電圧および給電電流の直流電力に変換して機器に供給するAC/DCコンバータを給電装置に設けたことを特徴とする。   According to a fourth aspect of the present invention, in the third aspect of the invention, an AC power supply unit that supplies AC power to the power supply device is provided, and the AC power supplied from the AC power supply unit is supplied with a power supply voltage and a power supply set by the control unit. An AC / DC converter that converts the current into DC power to be supplied to the device is provided in the power supply apparatus.

請求項5の発明は、請求項3の発明において、給電装置に交流電力を供給する交流電源部を備え、機器側への給電ラインを介して供給する電力を、交流電源部の出力またはDC/DCコンバータの出力の何れかに切り替える切替部を給電装置に設け、制御部は、給電情報取得部で取得した機器からの選択信号に基づいて機器に供給する電力を選択し、選択した電力側に切替部を切り替えることを特徴とする。   According to a fifth aspect of the present invention, in the third aspect of the invention, an AC power supply unit that supplies AC power to the power supply device is provided, and the power supplied through the power supply line to the device side is output from the AC power supply unit or DC / A switching unit that switches to one of the outputs of the DC converter is provided in the power supply apparatus, and the control unit selects the power to be supplied to the device based on the selection signal from the device acquired by the power supply information acquisition unit, and on the selected power side The switching unit is switched.

請求項6の発明は、請求項1または2記載の給電装置と、当該給電装置に直流電力を供給する直流電源部と、当該直流電源部からの給電を制御する制御装置とを備えるとともに、直流電源部に直流電力を供給する電源として、太陽光発電装置と、当該太陽光発電装置の余剰電力を蓄電する蓄電池と、AC/DCコンバータとを備え、制御装置は、給電装置から送信される給電情報と、太陽光発電装置の発電状況と、蓄電池の残量と、AC/DCコンバータの給電状況とに応じて、太陽光発電装置、蓄電池およびAC/DCコンバータそれぞれの給電割合を設定することを特徴とする。   A sixth aspect of the invention includes the power supply device according to the first or second aspect, a DC power supply unit that supplies DC power to the power supply device, and a control device that controls power supply from the DC power supply unit. As a power supply for supplying DC power to the power supply unit, the power supply unit includes a solar power generation device, a storage battery that stores surplus power of the solar power generation device, and an AC / DC converter. According to the information, the power generation status of the solar power generation device, the remaining amount of the storage battery, and the power supply status of the AC / DC converter, the power supply ratio of each of the solar power generation device, the storage battery, and the AC / DC converter is set. Features.

請求項1の発明によれば、住宅用に供給される直流電源を充電用電源とした給電装置を実現できるとともに、機器側には従来例のような電力変換器を設けなくてもいいので、従来例に比べて機器側での電源変換ロスを抑えることができるという効果がある。また、機器の給電情報を給電装置に送信しているので、接続される機器に応じた直流電力を供給することができるという効果もある。   According to the invention of claim 1, it is possible to realize a power supply device using a DC power source supplied to a house as a charging power source, and it is not necessary to provide a power converter as in the conventional example on the device side. Compared to the conventional example, there is an effect that the power conversion loss on the device side can be suppressed. In addition, since the power supply information of the device is transmitted to the power supply apparatus, there is an effect that it is possible to supply DC power corresponding to the connected device.

請求項2の発明によれば、給電装置から送信される充電許可信号によって、接続される機器の充電電流を制御することができ、容量オーバーによる停電などを防止することができるという効果がある。   According to the second aspect of the present invention, the charging current of the connected device can be controlled by the charging permission signal transmitted from the power supply apparatus, and there is an effect that it is possible to prevent a power failure due to capacity over.

請求項3の発明によれば、機器側から送信される給電情報と、送信器から送信される直流電源部の給電能力とに基づいて機器への給電電力を設定しているので、直流電源部の給電能力を超えることがなく、しかも機器が必要とする電力に近づけた形で給電することができるという効果がある。   According to the invention of claim 3, since the power supply power to the device is set based on the power supply information transmitted from the device side and the power supply capability of the DC power supply unit transmitted from the transmitter, the DC power supply unit There is an effect that power can be supplied in a form close to the power required by the device without exceeding the power supply capability of the device.

請求項4の発明によれば、AC/DCコンバータを給電装置に設けることによって、交流電源部から供給される交流電力を直接直流電力に変換できるので、変換効率の低下を抑えることができ、またAC/DCコンバータおよびDC/DCコンバータの両方を備えているため、利便性の高い給電システムを提供することができるという効果がある。   According to the invention of claim 4, by providing the AC / DC converter in the power feeding device, the AC power supplied from the AC power supply unit can be directly converted into DC power, so that a reduction in conversion efficiency can be suppressed, and Since both the AC / DC converter and the DC / DC converter are provided, there is an effect that a highly convenient power supply system can be provided.

請求項5の発明によれば、切替部を切り替えることによって、給電ラインを介して機器に供給する電力として、交流電源部から出力される交流電力またはDC/DCコンバータから出力される直流電力の何れかを選択することができるので、利便性の高い給電システムを提供することができるという効果がある。   According to the invention of claim 5, by switching the switching unit, either the AC power output from the AC power source unit or the DC power output from the DC / DC converter as the power supplied to the device via the power supply line. Therefore, it is possible to provide a highly convenient power supply system.

請求項6の発明によれば、機器から送信される給電情報と、太陽光発電装置の発電状況と、蓄電池の残量と、AC/DCコンバータの給電状況とに応じて、太陽光発電装置、蓄電池およびAC/DCコンバータそれぞれの給電割合を設定するので、そのときに供給可能な直流電力を機器に供給することができるという効果がある。   According to the invention of claim 6, according to the power supply information transmitted from the device, the power generation status of the solar power generation device, the remaining amount of the storage battery, and the power supply status of the AC / DC converter, Since the power supply ratios of the storage battery and the AC / DC converter are set, there is an effect that DC power that can be supplied at that time can be supplied to the device.

実施形態1の給電システムを示し、(a)は模式図、(b)は要部詳細図である。The electric power feeding system of Embodiment 1 is shown, (a) is a schematic diagram, (b) is principal part detail drawing. 実施形態2の給電システムを示し、(a)は模式図、(b)は要部詳細図である。The electric power feeding system of Embodiment 2 is shown, (a) is a schematic diagram, (b) is principal part detail drawing. 実施形態3の給電システムを示し、(a)は模式図、(b)は要部詳細図である。The electric power feeding system of Embodiment 3 is shown, (a) is a schematic diagram, (b) is principal part detail drawing. 実施形態4の給電システムの模式図である。FIG. 6 is a schematic diagram of a power feeding system according to a fourth embodiment. 同上による充電状況を説明する説明図である。It is explanatory drawing explaining the charging condition by the same as the above.

以下に、本発明に係る給電装置および給電システムの実施形態を図面に基づいて説明する。本発明に係る給電装置は、住宅内の電気機器(直流電力により駆動される機器)に対して直流電力を配電する直流配電システムを利用したものであり、当該直流配電システムから配電される直流電力を充電用電源として、例えば電池自動車やプラグインハイブリット車のような電気自動車に所望の直流電力を供給する。そして、上記の直流配電システムを構成する後述の直流分電盤や、交流分電盤、制御装置とともに本発明に係る給電システムを構成する。   Hereinafter, embodiments of a power feeding device and a power feeding system according to the present invention will be described with reference to the drawings. The power supply device according to the present invention uses a DC power distribution system that distributes DC power to electrical equipment in a house (device driven by DC power), and the DC power distributed from the DC power distribution system. As a power source for charging, for example, a desired DC power is supplied to an electric vehicle such as a battery car or a plug-in hybrid car. And the electric power feeding system which concerns on this invention is comprised with the below-mentioned direct current distribution board which comprises said direct current distribution system, an alternating current distribution board, and a control apparatus.

(実施形態1)
図1(a)は実施形態1の給電システムの模式図であり、本給電システムは、住宅Hに隣接する形で設けられた給電装置1と、住宅H内に設けられて給電装置1に直流電力を供給する直流分電盤(直流電源部)2と、直流分電盤2の給電を制御する制御装置3と、コントロールパネル4とを備えている。
(Embodiment 1)
FIG. 1A is a schematic diagram of a power supply system according to the first embodiment. The power supply system includes a power supply device 1 provided adjacent to the house H and a direct current to the power supply device 1 provided in the house H. A DC distribution board (DC power supply unit) 2 that supplies electric power, a control device 3 that controls power supply of the DC distribution board 2, and a control panel 4 are provided.

給電装置1は、図1(a)に示すように電気自動車(機器)Cとの間で信号の授受を行う信号通信回路12と、信号通信回路12で取得した信号に含まれる情報に基づいて電気自動車Cへの供給電力を設定する電源制御回路11と、電源制御回路11で設定された供給電力を電気自動車Cに供給するDC/DCコンバータ13と、制御装置3と信号通信回路12との間に介装されて情報のやりとりを仲介するインターフェース回路14と、給電装置1から導出されたケーブルに設けられて、電気自動車Cの自動車側コネクタ85に接続するための給電用コネクタ15とを備えている。なお、DC/DCコンバータ13から出力される直流電圧値は、本実施形態ではDC300Vに設定されているものとして以下説明する。   As shown in FIG. 1A, the power supply device 1 is based on a signal communication circuit 12 that exchanges signals with an electric vehicle (device) C, and information included in a signal acquired by the signal communication circuit 12. A power supply control circuit 11 that sets power supplied to the electric vehicle C, a DC / DC converter 13 that supplies power supplied by the power supply control circuit 11 to the electric vehicle C, a control device 3, and a signal communication circuit 12. And an interface circuit 14 that mediates the exchange of information, and a power supply connector 15 that is provided on the cable led out from the power supply device 1 and is connected to the vehicle-side connector 85 of the electric vehicle C. ing. The DC voltage value output from the DC / DC converter 13 will be described below assuming that it is set to DC 300 V in this embodiment.

直流分電盤2は、図1(a)に示すように蓄電池7から供給される直流電力を所定の直流電力(例えばDC350V)に変換するDC/DCコンバータ21と、太陽光発電装置6から供給される直流電力を所定の直流電力(例えばDC350V)に変換するDC/DCコンバータ22と、商用交流電源ACから供給される交流電力を所定の直流電力(例えばDC350V)に変換するAC/DCコンバータ23と、各コンバータ21〜23の出力を協調させて負荷に供給する協調制御部24と、複数(図1(a)では6個)の直流ブレーカ25とを備えており、各コンバータ21〜23から供給される直流電力は、協調制御部24および直流ブレーカ25を介して給電装置1に供給される。   The DC distribution board 2 is supplied from a DC / DC converter 21 that converts DC power supplied from the storage battery 7 into predetermined DC power (for example, DC 350 V) and the solar power generator 6 as shown in FIG. DC / DC converter 22 that converts the DC power to be converted into predetermined DC power (for example, DC 350 V), and AC / DC converter 23 that converts AC power supplied from commercial AC power supply AC into predetermined DC power (for example, DC 350 V) And a cooperative control unit 24 that supplies the outputs of the converters 21 to 23 in cooperation with each other and a plurality (six in FIG. 1A) of DC breakers 25. The supplied DC power is supplied to the power feeding apparatus 1 via the cooperative control unit 24 and the DC breaker 25.

制御装置3は、直流分電盤2から出力される直流電力量を制御するための装置であり、上述のDC/DCコンバータ21,22およびAC/DCコンバータ23それぞれの給電割合を設定する。また、制御装置3は、直流分電盤2の給電能力を給電装置1に送信する機能も備えており、給電装置1では制御装置3から送信される直流分電盤2の給電能力を超えないように、DC/DCコンバータ13を制御して電気自動車Cに直流電力を供給する。ここに、本実施形態では、制御装置3により送信器が構成されている。   The control device 3 is a device for controlling the amount of direct-current power output from the direct-current distribution board 2, and sets the respective power supply ratios of the DC / DC converters 21 and 22 and the AC / DC converter 23 described above. The control device 3 also has a function of transmitting the power supply capability of the DC distribution board 2 to the power supply device 1. The power supply device 1 does not exceed the power supply capability of the DC distribution board 2 transmitted from the control device 3. As described above, the DC / DC converter 13 is controlled to supply DC power to the electric vehicle C. Here, in the present embodiment, a transmitter is configured by the control device 3.

コントロールパネル4は、例えばタッチパネルからなり、直流分電盤2の給電状況などが画面で確認できるとともに、タッチパネルを操作することで各種のモード設定が行えるようになっている。   The control panel 4 is composed of, for example, a touch panel, and the power supply status of the DC distribution board 2 can be confirmed on the screen, and various mode settings can be performed by operating the touch panel.

給電対象である電気自動車Cは、図1(a)(b)に示すように給電装置1の給電用コネクタ15が接続される自動車側コネクタ85を備えるとともに、給電装置1の信号通信回路12との間で情報(例えば後述の電気自動車Cが対応する給電電圧および給電電流に関する給電情報など)のやりとりを行う信号通信回路82と、給電装置1から供給される直流電力(本実施形態ではDC300V)を蓄電するための蓄電池(蓄電部)84と、蓄電池84を充電するための充電回路83と、信号通信回路82から入力される情報に基づいて充電回路83を制御する充電制御回路81とを備えている。   As shown in FIGS. 1A and 1B, the electric vehicle C that is a power supply target includes a vehicle-side connector 85 to which the power supply connector 15 of the power supply device 1 is connected, and the signal communication circuit 12 of the power supply device 1. Between the signal communication circuit 82 for exchanging information (for example, power supply information related to a power supply voltage and a current supplied by an electric vehicle C to be described later) and DC power supplied from the power supply apparatus 1 (DC 300 V in this embodiment). A storage battery (power storage unit) 84 for charging the battery, a charging circuit 83 for charging the storage battery 84, and a charging control circuit 81 for controlling the charging circuit 83 based on information input from the signal communication circuit 82. ing.

ここで、本実施形態の給電システムでは、電気自動車C側から当該電気自動車Cが対応する給電電圧および給電電流に関する給電情報が送信されるようになっており、給電装置1側では信号通信回路12によりこの給電情報を取得する。さらに、給電装置1では、信号通信回路12で取得した給電情報が電源制御回路11に入力され、電源制御回路11ではこの給電情報と、制御装置3から送信される直流分電盤2の給電能力とを比較して、電気自動車Cへの給電電圧および給電電流を設定する。そして、電源制御回路11は、設定した給電電圧および給電電流に基づいてDC/DCコンバータ13を制御し、所望の直流電力を電気自動車Cに供給するのである。例えば、電気自動車C側からDC300V、20Aの要求があった場合に、直流分電盤2の給電能力が3000VAの場合には、給電装置1は電気自動車Cに対してDC300V、10Aの給電を行うことになる。ここに、本実施形態では、信号通信回路12により給電情報取得部が構成され、また電源制御回路11により制御部が構成されている。   Here, in the power supply system of the present embodiment, power supply information related to the power supply voltage and current corresponding to the electric vehicle C is transmitted from the electric vehicle C side, and the signal communication circuit 12 is transmitted on the power supply device 1 side. The power supply information is acquired by Further, in the power supply device 1, the power supply information acquired by the signal communication circuit 12 is input to the power supply control circuit 11, and the power supply control circuit 11 supplies this power supply information and the power supply capability of the DC distribution board 2 transmitted from the control device 3. And the power supply voltage and power supply current to the electric vehicle C are set. The power supply control circuit 11 controls the DC / DC converter 13 based on the set power supply voltage and power supply current, and supplies desired DC power to the electric vehicle C. For example, when there is a request for DC300V, 20A from the electric vehicle C side, and the power supply capability of the DC distribution board 2 is 3000VA, the power supply device 1 supplies DC300V, 10A to the electric vehicle C. It will be. Here, in the present embodiment, a power supply information acquisition unit is configured by the signal communication circuit 12, and a control unit is configured by the power supply control circuit 11.

さらに、本実施形態の給電システムは、SAE(米国自動車技術者協会)(登録商標)規格に準拠しており、給電装置1の電源制御回路11から電気自動車Cの充電制御回路81に対してSAE信号(充電許可信号)を出力する。このSAE信号は、蓄電池に充電する際の充電電流を制限するための信号であり、電気自動車Cの充電回路83は、このSAE信号のオンデューティで決定される電流値に充電電流を制限することになる。   Furthermore, the power supply system of the present embodiment conforms to the SAE (American Automotive Engineers Association) (registered trademark) standard, and the SAE from the power supply control circuit 11 of the power supply apparatus 1 to the charge control circuit 81 of the electric vehicle C is SAE. A signal (charging permission signal) is output. The SAE signal is a signal for limiting the charging current when charging the storage battery, and the charging circuit 83 of the electric vehicle C limits the charging current to a current value determined by the on-duty of the SAE signal. become.

次に、本給電システムの動作について説明する。給電装置1の給電用コネクタ15を電気自動車Cの自動車側コネクタ85に接続すると、電気自動車Cから給電装置1に対して上記の給電情報が送信され、さらに制御装置3からは給電装置1に対して直流分電盤2の給電能力が送信される。上記の給電情報および直流分電盤2の給電能力を受け取った給電装置1では、電源制御回路11において両者が比較され、直流分電盤2の給電能力を超えない範囲で、供給する直流電力(給電電圧および給電電流)が設定される。そして、電源制御回路11は、DC/DCコンバータ13を制御して設定した給電電圧および給電電流の直流電力を電気自動車Cに供給する。なおこのとき、電源制御回路11は、電気自動車Cに対して上記のSAE信号を合わせて送信する。   Next, the operation of the power supply system will be described. When the power supply connector 15 of the power supply device 1 is connected to the vehicle-side connector 85 of the electric vehicle C, the above-described power supply information is transmitted from the electric vehicle C to the power supply device 1, and the control device 3 further supplies the power supply device 1. Thus, the power supply capability of the DC distribution board 2 is transmitted. In the power feeding apparatus 1 that has received the power feeding information and the power feeding capability of the DC distribution board 2, both are compared in the power supply control circuit 11, and the DC power supplied within a range not exceeding the power feeding capacity of the DC distribution board 2 ( (Feed voltage and feed current) are set. Then, the power supply control circuit 11 supplies the electric vehicle C with the power supply voltage and the direct current power of the power supply current set by controlling the DC / DC converter 13. At this time, the power supply control circuit 11 transmits the SAE signal to the electric vehicle C together.

一方、電気自動車Cでは、上記の直流電力が供給されるとともにSAE信号が送信され、充電制御回路81は、充電回路83を制御してSAE信号のオンデューティで決定される電流値以下の充電電流で蓄電池84を充電させる。そして、充電が完了した場合には、例えばコントロールパネル4の画面に充電が完了した旨を表示して利用者に報知し、充電が完了したことを知った利用者が給電用コネクタ15を自動車側コネクタ85から取り外すと、一連の給電動作が完了する。   On the other hand, in the electric vehicle C, the DC power is supplied and the SAE signal is transmitted, and the charging control circuit 81 controls the charging circuit 83 to charge current equal to or less than the current value determined by the on-duty of the SAE signal. To charge the storage battery 84. When the charging is completed, for example, the control panel 4 displays a message indicating that the charging is completed and notifies the user, and the user who knows that the charging is completed connects the power supply connector 15 to the vehicle side. When the connector 85 is removed, a series of power feeding operations is completed.

而して、本実施形態によれば、住宅H内で配電される直流電源を充電用電源とした給電装置1を実現できるとともに、電気自動車C側には従来例のような電力変換器を設けなくてもいいので、従来例に比べて電気自動車C側での電源変換ロスを抑えることができる。また、機器(本実施形態では電気自動車C)の給電情報を給電装置1に送信しているので、接続される機器に応じた直流電力を供給することもできる。   Thus, according to the present embodiment, it is possible to realize the power supply device 1 using a DC power source distributed in the house H as a charging power source, and the electric vehicle C side is provided with a power converter as in the conventional example. Since there is no need, the power conversion loss on the electric vehicle C side can be suppressed as compared with the conventional example. Moreover, since the power feeding information of the device (electric vehicle C in the present embodiment) is transmitted to the power feeding device 1, it is possible to supply DC power corresponding to the connected device.

さらに、本実施形態では、給電装置1から送信されるSAE信号(充電許可信号)によって、接続される機器(本実施形態では電気自動車C)に応じた充電電流に設定することができ、また機器側では設定された電流値に充電電流が制限されるので、容量オーバーによる停電などを防止することもできる。   Furthermore, in the present embodiment, the SAE signal (charging permission signal) transmitted from the power supply apparatus 1 can be set to a charging current corresponding to the connected device (electric vehicle C in the present embodiment). On the side, the charging current is limited to the set current value, so that it is possible to prevent a power outage or the like due to the capacity over.

また、電気自動車C側から送信される給電情報と、制御装置3から送信される直流分電盤2の給電能力とに基づいて電気自動車Cへの給電電力を設定しているので、直流分電盤2の給電能力を超えることがなく、しかも電気自動車Cが必要とする電力に近づけた形で給電することができる。   In addition, since the power supply to the electric vehicle C is set based on the power supply information transmitted from the electric vehicle C side and the power supply capability of the DC distribution board 2 transmitted from the control device 3, the DC distribution Power can be supplied in a form that does not exceed the power supply capability of the panel 2 and that is close to the power required by the electric vehicle C.

(実施形態2)
本発明に係る給電装置および給電システムの実施形態2を図2に基づいて説明する。本実施形態では、交流分電盤5から供給される交流電力を所定の直流電力に変換するAC/DCコンバータ16を給電装置1に設けた点で実施形態1と相違しており、それ以外の構成は実施形態1と同様であるから、同一の構成要素には同一の符号を付して説明は省略する。
(Embodiment 2)
Embodiment 2 of the electric power feeder which concerns on this invention and electric power feeding system is demonstrated based on FIG. The present embodiment is different from the first embodiment in that an AC / DC converter 16 that converts AC power supplied from the AC distribution board 5 into predetermined DC power is provided in the power feeding device 1. Since the configuration is the same as that of the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.

本実施形態の給電システムは、給電装置1と、直流分電盤2と、制御装置3と、コントロールパネル4と、住宅H内に設けられて給電装置1に交流電力を供給する交流分電盤(交流電源部)5とを備えている。   The power feeding system according to the present embodiment includes a power feeding device 1, a DC distribution board 2, a control device 3, a control panel 4, and an AC distribution board that is provided in a house H and supplies AC power to the power feeding device 1. (AC power supply unit) 5.

給電装置1は、図2(a)に示すように電源制御回路11と、信号通信回路12と、DC/DCコンバータ13と、インターフェース回路14と、給電用コネクタ15と、交流電源盤5から供給される交流電力を、電源制御回路11で設定された直流電力に変換して電気自動車Cに供給するAC/DCコンバータ16と、電気自動車Cへの給電線L1を介して供給する電力を、DC/DCコンバータ13の出力またはAC/DCコンバータ16の出力の何れかに切り替える切替器17とを備えている。なお、切替器17は、例えばコントロールパネル4からの指示内容に応じて、電源制御回路11によりDC/DCコンバータ13側またはAC/DCコンバータ16側の何れかに切り替えられる。   As shown in FIG. 2A, the power supply device 1 is supplied from a power supply control circuit 11, a signal communication circuit 12, a DC / DC converter 13, an interface circuit 14, a power supply connector 15, and an AC power supply panel 5. The AC power to be supplied to the electric vehicle C by converting the AC power to be converted into the DC power set by the power supply control circuit 11 and the electric power supplied to the electric vehicle C via the power supply line L1 is DC And a switch 17 for switching to either the output of the DC / DC converter 13 or the output of the AC / DC converter 16. Note that the switcher 17 is switched to either the DC / DC converter 13 side or the AC / DC converter 16 side by the power supply control circuit 11 in accordance with, for example, the instruction content from the control panel 4.

また、交流分電盤5は、図2(a)に示すように主幹ブレーカ51と、複数(図2(a)では10個)の分岐ブレーカ52とを備えており、給電装置1のAC/DCコンバータ16には、主幹ブレーカ51および分岐ブレーカ52を介して交流電力が供給される。なお、本実施形態においても、直流分電盤2および交流分電盤5の給電能力が制御装置3から給電装置1に送信される。   The AC distribution board 5 includes a main breaker 51 and a plurality of (10 in FIG. 2A) branch breakers 52 as shown in FIG. AC power is supplied to the DC converter 16 via the main breaker 51 and the branch breaker 52. In the present embodiment, the power feeding capabilities of the DC distribution board 2 and the AC distribution board 5 are transmitted from the control device 3 to the power feeding device 1.

ここで、上述の実施形態1では、直流分電盤2内にAC/DCコンバータ23が設けられており、このAC/DCコンバータ23で変換した直流電力を給電装置1に供給している。そして、AC/DCコンバータ23を介して供給された直流電力を、さらに給電装置1のDC/DCコンバータ13で変換しているため、変換効率が低下するものであった。そこで、本実施形態では、変換効率の低下を抑制すべく、AC/DCコンバータ16を給電装置1に設け、給電装置1において交流電力を直接直流電力に変換できるように構成している。   Here, in the above-described first embodiment, the AC / DC converter 23 is provided in the DC distribution board 2, and the DC power converted by the AC / DC converter 23 is supplied to the power feeding device 1. And since the direct-current power supplied via the AC / DC converter 23 is further converted by the DC / DC converter 13 of the power feeding device 1, the conversion efficiency is lowered. Therefore, in this embodiment, in order to suppress a decrease in conversion efficiency, the AC / DC converter 16 is provided in the power supply apparatus 1 so that AC power can be directly converted into DC power in the power supply apparatus 1.

次に、本給電システムの動作について説明する。まず最初に、コントロールパネル4からDC/DCコンバータ13またはAC/DCコンバータ16の何れか一方を選択する選択指示を行い、電源制御装置11がこの指示内容に応じたコンバータ側に切替器17を切り替える。その後、給電装置1の給電用コネクタ15を電気自動車Cの自動車側コネクタ85に接続すると、電気自動車Cから給電装置1に対して上記の給電情報が送信され、さらに制御装置3からは給電装置1に対して直流分電盤2(または交流分電盤5)の給電能力が送信される。上記の給電情報および直流分電盤2(または交流分電盤5)の給電能力を受け取った給電装置1では、電源制御回路11において両者が比較され、直流分電盤2(または交流分電盤5)の給電能力を超えない範囲で、供給する直流電力(給電電圧および給電電流)が設定される。そして、電源制御回路11は、DC/DCコンバータ13(またはAC/DCコンバータ16)を制御して設定した給電電圧および給電電流の直流電力を電気自動車Cに供給する。なおこのとき、電源制御回路11は、電気自動車Cに対して上記のSAE信号を合わせて送信する。   Next, the operation of the power supply system will be described. First, a selection instruction for selecting either the DC / DC converter 13 or the AC / DC converter 16 is given from the control panel 4, and the power supply control device 11 switches the switch 17 to the converter side according to the contents of the instruction. . Thereafter, when the power feeding connector 15 of the power feeding device 1 is connected to the car-side connector 85 of the electric vehicle C, the power feeding information is transmitted from the electric vehicle C to the power feeding device 1, and the power feeding device 1 is further transmitted from the control device 3. In contrast, the power supply capability of the DC distribution board 2 (or the AC distribution board 5) is transmitted. In the power feeding apparatus 1 that has received the power feeding information and the power feeding capability of the DC distribution board 2 (or the AC distribution board 5), the power supply control circuit 11 compares the two, and the DC distribution board 2 (or the AC distribution board). The direct current power (feed voltage and feed current) to be supplied is set within a range not exceeding the power feeding capability of 5). Then, the power supply control circuit 11 supplies the electric vehicle C with the feed voltage and the feed current DC power set by controlling the DC / DC converter 13 (or the AC / DC converter 16). At this time, the power supply control circuit 11 transmits the SAE signal to the electric vehicle C together.

一方、電気自動車Cでは、上記の直流電力が供給されるとともにSAE信号が送信され、充電制御回路81は、充電回路83を制御してSAE信号のオンデューティで決定される電流値以下の充電電流で蓄電池84を充電させる。そして、充電が完了した場合には、例えばコントロールパネル4の画面に充電が完了した旨を表示して利用者に報知し、充電が完了したことを知った利用者が給電用コネクタ15を自動車側コネクタ85から取り外すと、一連の給電動作が完了する。   On the other hand, in the electric vehicle C, the DC power is supplied and the SAE signal is transmitted, and the charging control circuit 81 controls the charging circuit 83 to charge current equal to or less than the current value determined by the on-duty of the SAE signal. To charge the storage battery 84. When the charging is completed, for example, the control panel 4 displays a message indicating that the charging is completed and notifies the user, and the user who knows that the charging is completed connects the power supply connector 15 to the vehicle side. When the connector 85 is removed, a series of power feeding operations is completed.

而して、本実施形態によれば、AC/DCコンバータ16を給電装置1に設けることによって、交流分電盤5から供給される交流電力を直接直流電力に変換できるので、変換効率の低下を抑えることができ、またAC/DCコンバータ16およびDC/DCコンバータ13の両方を備えているため、利便性の高い給電システムを提供することができる。   Thus, according to the present embodiment, the AC power supplied from the AC distribution board 5 can be directly converted into DC power by providing the AC / DC converter 16 in the power feeding device 1. In addition, since both the AC / DC converter 16 and the DC / DC converter 13 are provided, a highly convenient power supply system can be provided.

(実施形態3)
本発明に係る給電装置および給電システムの実施形態3を図3に基づいて説明する。上述の実施形態1,2では、電気自動車Cへの供給電力が直流電力のみである給電装置および給電システムについて説明したが、本実施形態では、接続される電気自動車C1〜C3に応じて直流電力または交流電力の何れか一方に切り替えられるようになっている。なお、それ以外の構成については実施形態2と同様であり、同一の構成要素には同一の符号を付して説明は省略する。
(Embodiment 3)
Embodiment 3 of the power supply apparatus and power supply system according to the present invention will be described with reference to FIG. In the first and second embodiments described above, the power supply device and the power supply system in which the power supplied to the electric vehicle C is only DC power has been described. However, in this embodiment, the DC power is determined according to the electric vehicles C1 to C3 to be connected. Alternatively, it can be switched to either AC power. In addition, about another structure, it is the same as that of Embodiment 2, and attaches | subjects the same code | symbol to the same component, and abbreviate | omits description.

本実施形態の給電システムは、給電装置1と、直流分電盤2と、制御装置3と、コントロールパネル4と、交流分電盤5とを備えている。   The power feeding system according to the present embodiment includes a power feeding device 1, a DC distribution board 2, a control device 3, a control panel 4, and an AC distribution board 5.

給電装置1は、電源制御回路11と、信号通信回路12と、DC/DCコンバータ13と、インターフェース回路14と、給電用コネクタ15と、電気自動車C1〜C3への給電線L1を介して供給する電力を、DC/DCコンバータ13の出力または交流分電盤5の出力の何れかに切り替える切替器(切替部)17とを備えている。ここにおいて、切替器17は、電気自動車C1〜C3側から送信される給電電圧(交流電圧または直流電圧)に応じて、電源制御回路11により切り替えられる。例えば、DC充電対応の電気自動車C1やAC/DC充電対応の電気自動車C3から送信される給電情報には給電電圧がDC(直流)である情報が含まれているため、切替器17はDC/DCコンバータ13側に切り替えられ、またAC充電対応の電気自動車C2から送信される給電情報には給電電圧がAC(交流)である情報が含まれているため、切替器17は交流分電盤5側に切り替えられる。   The power supply apparatus 1 supplies the power supply control circuit 11, the signal communication circuit 12, the DC / DC converter 13, the interface circuit 14, the power supply connector 15, and the power supply line L1 to the electric vehicles C1 to C3. A switch (switching unit) 17 that switches power to either the output of the DC / DC converter 13 or the output of the AC distribution board 5 is provided. Here, the switcher 17 is switched by the power supply control circuit 11 according to the power supply voltage (AC voltage or DC voltage) transmitted from the electric vehicles C1 to C3 side. For example, since the power supply information transmitted from the DC-compatible electric vehicle C1 or the AC / DC charging-compatible electric vehicle C3 includes information indicating that the power supply voltage is DC (direct current), the switch 17 is connected to the DC / DC. Since the power supply information that is switched to the DC converter 13 side and transmitted from the AC charging-compatible electric vehicle C2 includes information that the power supply voltage is AC (alternating current), the switch 17 is connected to the AC distribution board 5. Switched to the side.

次に、本給電システムの動作について説明する。なお、以下の説明では、DC充電対応の電気自動車C1の場合を例に説明する。給電装置1の給電用コネクタ15を電気自動車C1の自動車側コネクタ85に接続すると、電気自動車C1から給電装置1に対して上記の給電情報(給電電圧および給電電流)が送信され、さらに制御装置3からは給電装置1に対して直流分電盤2の給電能力が送信される。上記の給電情報および直流分電盤2の給電能力を受け取った給電装置1では、電源制御回路11において両者が比較され、直流分電盤2の給電能力を超えない範囲で、供給する直流電力(給電電圧および給電電流)が設定される。そして、電源制御回路11は、切替器17をDC/DCコンバータ13側に切り替えるとともに、DC/DCコンバータ13を制御して設定した給電電圧および給電電流の直流電力を電気自動車C1に供給する。なおこのとき、電源制御回路11は、電気自動車C1に対して上記のSAE信号を合わせて送信する。   Next, the operation of the power supply system will be described. In the following description, the case of the electric vehicle C1 compatible with DC charging will be described as an example. When the power supply connector 15 of the power supply device 1 is connected to the vehicle-side connector 85 of the electric vehicle C1, the power supply information (power supply voltage and power supply current) is transmitted from the electric vehicle C1 to the power supply device 1, and the control device 3 The power supply capability of the DC distribution board 2 is transmitted from the power supply device 1 to the power supply device 1. In the power feeding apparatus 1 that has received the power feeding information and the power feeding capability of the DC distribution board 2, both are compared in the power supply control circuit 11, and the DC power supplied within a range not exceeding the power feeding capacity of the DC distribution board 2 ( (Feed voltage and feed current) are set. Then, the power supply control circuit 11 switches the switcher 17 to the DC / DC converter 13 side, and controls the DC / DC converter 13 to supply the electric power supply voltage and the direct current of the electric power supply current to the electric vehicle C1. At this time, the power supply control circuit 11 transmits the SAE signal together with the electric vehicle C1.

一方、電気自動車C1では、上記の直流電力が供給されるとともにSAE信号が送信され、充電制御回路81は、充電回路83を制御してSAE信号のオンデューティで決定される電流値以下の充電電流で蓄電池84を充電させる。そして、充電が完了した場合には、例えばコントロールパネル4の画面に充電が完了した旨を表示して利用者に報知し、充電が完了したことを知った利用者が給電用コネクタ15を自動車側コネクタ85から取り外すと、一連の給電動作が完了する。   On the other hand, in the electric vehicle C1, the above-described DC power is supplied and the SAE signal is transmitted, and the charging control circuit 81 controls the charging circuit 83 to charge current equal to or less than the current value determined by the on-duty of the SAE signal. To charge the storage battery 84. When the charging is completed, for example, the control panel 4 displays a message indicating that the charging is completed and notifies the user, and the user who knows that the charging is completed connects the power supply connector 15 to the vehicle side. When the connector 85 is removed, a series of power feeding operations is completed.

なお、AC充電対応の電気自動車C2の場合には、切替器17は交流分電盤5側に切り替えられ、電気自動車C2には交流電力が供給される。そして、電気自動車C2内に設けたAC/DCコンバータ(図示せず)により所定の直流電力に変換され、充電回路83により蓄電池84に充電される。   In the case of the electric vehicle C2 that is compatible with AC charging, the switch 17 is switched to the AC distribution board 5 side, and AC power is supplied to the electric vehicle C2. Then, it is converted into predetermined DC power by an AC / DC converter (not shown) provided in the electric vehicle C <b> 2, and the storage battery 84 is charged by the charging circuit 83.

また、AC/DC充電対応の電気自動車C3の場合には、給電装置1から供給する電力は、交流分電盤5の出力、またはDC/DCコンバータ13の出力の何れでもいいが、変換回数に伴う変換ロスを考慮すると、DC/DCコンバータ13から直流電力を供給するほうが好ましく、この場合、上記の電気自動車C1と同じ動作となる。   In the case of the electric vehicle C3 that is compatible with AC / DC charging, the power supplied from the power supply device 1 may be either the output of the AC distribution board 5 or the output of the DC / DC converter 13, but the number of conversions In consideration of the accompanying conversion loss, it is preferable to supply DC power from the DC / DC converter 13, and in this case, the operation is the same as that of the electric vehicle C1.

而して、本実施形態によれば、切替器17を切り替えることによって、給電線L1を介して電気自動車C1〜C3に供給する電力として、交流分電盤5から出力される交流電力またはDC/DCコンバータ13から出力される直流電力の何れかを選択することができるので、利便性の高い給電システムを提供することができる。   Thus, according to the present embodiment, by switching the switch 17, the AC power output from the AC distribution board 5 or the DC / DC as the power supplied to the electric vehicles C1 to C3 via the feeder line L1. Since any DC power output from the DC converter 13 can be selected, a highly convenient power feeding system can be provided.

(実施形態4)
本発明に係る給電装置および給電システムの実施形態4を図4および図5に基づいて説明する。本実施形態では、給電装置1から送信される電気自動車Cの給電情報(給電電圧および給電電流)と、蓄電池7の残量と、太陽光発電装置6の発電状況と、AC/DCコンバータ23の給電状況に応じて、制御装置3が蓄電池7、太陽光発電装置6およびAC/DCコンバータ23それぞれの給電割合を設定し、設定した給電割合に応じた直流電力を給電装置1に供給するように構成されている。なお、それ以外の構成は実施形態1〜3と同様であり、同一の構成要素には同一の符号を付して説明は省略する。
(Embodiment 4)
Embodiment 4 of the electric power feeder which concerns on this invention and electric power feeding system is demonstrated based on FIG. 4 and FIG. In the present embodiment, the power supply information (power supply voltage and power supply current) of the electric vehicle C transmitted from the power supply device 1, the remaining amount of the storage battery 7, the power generation status of the solar power generation device 6, and the AC / DC converter 23 In accordance with the power supply status, the control device 3 sets power supply ratios of the storage battery 7, the solar power generation device 6, and the AC / DC converter 23, and supplies DC power corresponding to the set power supply ratio to the power supply device 1. It is configured. Other configurations are the same as those in the first to third embodiments, and the same components are denoted by the same reference numerals and description thereof is omitted.

本実施形態の給電システムは、給電装置1と、直流分電盤2と、制御装置3と、コントロールパネル4と、交流分電盤5とを備えている。   The power feeding system according to the present embodiment includes a power feeding device 1, a DC distribution board 2, a control device 3, a control panel 4, and an AC distribution board 5.

制御装置3には、給電装置1からインターフェース回路14を介して電気自動車Cの給電情報が送信されるとともに、蓄電池7の残量、太陽光発電装置6の発電状況、およびAC/DCコンバータ23の給電状況が入力される。そして、制御装置3では、これらの情報に基づいて蓄電池7、太陽光発電装置6およびAC/DCコンバータ23それぞれの給電割合を設定し、設定した給電割合に応じた各直流電力を、DC/DCコンバータ21,22およびAC/DCコンバータ23からそれぞれ給電装置1に向けて供給する。   The power supply information of the electric vehicle C is transmitted from the power supply device 1 to the control device 3 via the interface circuit 14, and the remaining amount of the storage battery 7, the power generation status of the solar power generation device 6, and the AC / DC converter 23 The power supply status is input. And in the control apparatus 3, based on these information, each power supply ratio of the storage battery 7, the solar power generation device 6, and the AC / DC converter 23 is set, and each direct current power according to the set power supply ratio is set to DC / DC. The power is supplied from the converters 21 and 22 and the AC / DC converter 23 to the power feeding device 1.

図5は、直流分電盤2から給電装置1への給電例を示したものであり、例えば電気自動車C側から給電電圧DC300V、給電電流20Aの要求があった場合について以下説明する。図5中の(a)はAC/DCコンバータ23からの供給がゼロ設定されている場合であり、この場合太陽光発電装置6からの供給電力を2000VA、蓄電池7からの供給電力を1000VAに設定すると、電気自動車Cに給電可能な電力はトータルで3000VAとなり、電気自動車CにはDC300V、10Aの直流電力を供給することができる。   FIG. 5 shows an example of power supply from the DC distribution board 2 to the power supply device 1. For example, a case where a request for a power supply voltage DC300V and a power supply current 20A is requested from the electric vehicle C side will be described below. (A) in FIG. 5 shows a case where the supply from the AC / DC converter 23 is set to zero. In this case, the supply power from the solar power generation device 6 is set to 2000 VA, and the supply power from the storage battery 7 is set to 1000 VA. Then, the electric power that can be supplied to the electric vehicle C is 3000 VA in total, and DC electric power of DC 300 V and 10 A can be supplied to the electric vehicle C.

図5中の(b)は、AC/DCコンバータ23および太陽光発電装置6からの供給がゼロ設定されている場合であり、この場合蓄電池7からの供給電力を1000VAに設定すると、電気自動車CにはDC300V、3.3Aの直流電力を供給することができる。さらに、図5中の(c)のように、AC/DCコンバータ23および蓄電池7からの供給電力を1000VA、太陽光発電装置6からの供給電力を2000VAに設定した場合には、電気自動車Cに給電可能な電力はトータルで4000VAとなり、電気自動車CにはDC300V、13.3Aの直流電力を供給することができる。また、図5中の(d)のように、太陽光発電装置6および蓄電池7からの供給をゼロ設定とし、AC/DCコンバータ23からの供給電力を1000VAに設定した場合には、電気自動車CにはDC300V、3.3Aの直流電力を供給することができる。   (B) in FIG. 5 is a case where the supply from the AC / DC converter 23 and the solar power generation device 6 is set to zero. In this case, when the supply power from the storage battery 7 is set to 1000 VA, the electric vehicle C Can be supplied with DC power of DC300V and 3.3A. Furthermore, as shown in (c) of FIG. 5, when the power supplied from the AC / DC converter 23 and the storage battery 7 is set to 1000 VA and the power supplied from the solar power generator 6 is set to 2000 VA, The total power that can be supplied is 4000 VA, and the electric vehicle C can be supplied with DC power of DC 300 V and 13.3 A. Further, as shown in (d) of FIG. 5, when the supply from the solar power generation device 6 and the storage battery 7 is set to zero and the supply power from the AC / DC converter 23 is set to 1000 VA, the electric vehicle C Can be supplied with DC power of DC300V and 3.3A.

なお、本給電システムの動作については上述の実施形態1〜3と同様であるから、ここでは説明を省略する。   Note that the operation of the power supply system is the same as that in the first to third embodiments, and thus the description thereof is omitted here.

而して、本実施形態によれば、電気自動車Cから送信される給電情報と、太陽光発電装置6の発電状況と、蓄電池7の残量と、AC/DCコンバータ23の給電状況とに応じて、太陽光発電装置6、蓄電池7およびAC/DCコンバータ23それぞれの給電割合を設定するので、そのときに供給可能な直流電力を電気自動車Cに供給することができる。   Thus, according to the present embodiment, according to the power supply information transmitted from the electric vehicle C, the power generation status of the solar power generation device 6, the remaining amount of the storage battery 7, and the power supply status of the AC / DC converter 23. In addition, since the respective power supply ratios of the solar power generation device 6, the storage battery 7, and the AC / DC converter 23 are set, the DC power that can be supplied at that time can be supplied to the electric vehicle C.

なお、上述した実施形態1〜4では、機器が電気自動車である場合について説明したが、機器は電気自動車に限定されるものではなく、蓄電部を備えているものであれば他のものでもよい。また、実施形態1〜4では、給電装置1と電気自動車Cとの間の通信を信号線L2を用いて行っているが、通信形態は実施形態1〜4に限定されるものではなく、例えば直流電力を供給する給電線L1に上記の信号を重畳させてもいいし、無線通信を用いてもよい。   In addition, in Embodiment 1-4 mentioned above, although the case where an apparatus was an electric vehicle was demonstrated, an apparatus is not limited to an electric vehicle, As long as it is provided with the electrical storage part, another thing may be used. . Moreover, in Embodiment 1-4, although communication between the electric power feeder 1 and the electric vehicle C is performed using the signal wire | line L2, a communication form is not limited to Embodiment 1-4, For example, The above signal may be superimposed on the power supply line L1 that supplies DC power, or wireless communication may be used.

1 給電装置
2 直流分電盤(直流電源部)
11 電源制御回路(制御部)
12 信号通信回路(給電情報取得部)
13 DC/DCコンバータ
15 給電用コネクタ
84 蓄電池(蓄電部)
C 電気自動車(機器)
1 Power feeder 2 DC distribution board (DC power supply)
11 Power supply control circuit (control unit)
12 Signal communication circuit (power supply information acquisition unit)
13 DC / DC converter 15 Power supply connector 84 Storage battery (power storage unit)
C Electric vehicle (equipment)

Claims (6)

蓄電部を備えた機器に接続される給電用コネクタを具備し、直流電力の供給を受けて前記機器に所望の直流電力を供給する給電装置において、
前記機器が対応する給電電圧および給電電流に関する給電情報を当該機器から取得する給電情報取得部と、当該給電情報取得部で取得した前記給電情報をもとに前記機器への給電電圧および給電電流を設定する制御部と、当該制御部で設定された給電電圧および給電電流を前記機器に供給するDC/DCコンバータとを備えることを特徴とする給電装置。
In a power supply apparatus that includes a power supply connector connected to a device including a power storage unit, and that supplies DC power to the device by receiving supply of DC power,
A power supply information acquisition unit that acquires power supply information about the power supply voltage and power supply current corresponding to the device from the device, and the power supply voltage and power supply current to the device based on the power supply information acquired by the power supply information acquisition unit. A power supply apparatus comprising: a control unit to be set; and a DC / DC converter that supplies the power supply voltage and power supply current set by the control unit to the device.
充電許可信号に応じた充電電流で充電を行う充電回路を前記機器に備え、前記給電装置の制御部は、前記機器に対して前記充電許可信号を出力して前記充電回路の充電電流を制御することを特徴とする請求項1記載の給電装置。   The device includes a charging circuit that performs charging with a charging current according to a charging permission signal, and the control unit of the power feeding device outputs the charging permission signal to the device to control the charging current of the charging circuit. The power feeding device according to claim 1. 請求項1または2記載の給電装置と、当該給電装置に直流電力を供給する直流電源部と、当該直流電源部の給電能力を前記給電装置に送信する送信器とを備え、前記給電装置の制御部は、前記給電情報取得部で取得した前記給電情報と、前記送信器から送信された前記直流電源部の給電能力とに基づいて前記機器への給電電圧および給電電流を設定し、前記DC/DCコンバータは、前記制御部で設定された給電電圧および給電電流を前記機器に供給することを特徴とする給電システム。   A power supply device according to claim 1, a DC power supply unit that supplies DC power to the power supply device, and a transmitter that transmits the power supply capability of the DC power supply unit to the power supply device. A power supply voltage and power supply current to the device based on the power supply information acquired by the power supply information acquisition unit and the power supply capability of the DC power supply transmitted from the transmitter; The DC converter supplies a power supply voltage and a power supply current set by the control unit to the device. 前記給電装置に交流電力を供給する交流電源部を備え、当該交流電源部から供給される交流電力を、前記制御部で設定された前記給電電圧および給電電流の直流電力に変換して前記機器に供給するAC/DCコンバータを前記給電装置に設けたことを特徴とする請求項3記載の給電システム。   An AC power supply unit that supplies AC power to the power supply device is provided, and the AC power supplied from the AC power supply unit is converted into DC power of the power supply voltage and power supply current set by the control unit to the device. The power supply system according to claim 3, wherein an AC / DC converter to be supplied is provided in the power supply apparatus. 前記給電装置に交流電力を供給する交流電源部を備え、前記機器側への給電ラインを介して供給する電力を、前記交流電源部の出力または前記DC/DCコンバータの出力の何れかに切り替える切替部を前記給電装置に設け、前記制御部は、前記給電情報取得部で取得した前記機器からの選択信号に基づいて前記機器に供給する電力を選択し、選択した電力側に前記切替部を切り替えることを特徴とする請求項3記載の給電システム。   A switching unit that includes an AC power supply unit that supplies AC power to the power supply device, and that switches power supplied through the power supply line to the device to either the output of the AC power supply unit or the output of the DC / DC converter. A power supply device, and the control unit selects power to be supplied to the device based on a selection signal from the device acquired by the power supply information acquisition unit, and switches the switching unit to the selected power side. The power feeding system according to claim 3. 請求項1または2記載の給電装置と、当該給電装置に直流電力を供給する直流電源部と、当該直流電源部からの給電を制御する制御装置とを備えるとともに、前記直流電源部に直流電力を供給する電源として、太陽光発電装置と、当該太陽光発電装置の余剰電力を蓄電する蓄電池と、AC/DCコンバータとを備え、前記制御装置は、前記給電装置から送信される前記給電情報と、前記太陽光発電装置の発電状況と、前記蓄電池の残量と、前記AC/DCコンバータの給電状況とに応じて、前記太陽光発電装置、蓄電池およびAC/DCコンバータそれぞれの給電割合を設定することを特徴とする給電システム。   A power supply device according to claim 1, a DC power supply unit that supplies DC power to the power supply device, and a control device that controls power supply from the DC power supply unit, and DC power to the DC power supply unit. As a power supply to be supplied, a solar power generation device, a storage battery that stores surplus power of the solar power generation device, and an AC / DC converter, the control device, the power supply information transmitted from the power supply device, According to the power generation status of the solar power generation device, the remaining amount of the storage battery, and the power supply status of the AC / DC converter, the respective power supply ratios of the solar power generation device, the storage battery, and the AC / DC converter are set. A power supply system characterized by
JP2009289705A 2009-12-21 2009-12-21 Power supply device and power supply system using the same Expired - Fee Related JP5547958B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009289705A JP5547958B2 (en) 2009-12-21 2009-12-21 Power supply device and power supply system using the same
CN201080058593.7A CN102714426B (en) 2009-12-21 2010-12-20 Electricity feeding device and electricity feeding system using the same
TW099144702A TWI419435B (en) 2009-12-21 2010-12-20 Electricity feeding device and electricity feeding system using the same
KR1020127017291A KR101424021B1 (en) 2009-12-21 2010-12-20 Electricity feeding device and electricity feeding system using the same
PCT/JP2010/073652 WO2011078388A1 (en) 2009-12-21 2010-12-20 Electricity feeding device and electricity feeding system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009289705A JP5547958B2 (en) 2009-12-21 2009-12-21 Power supply device and power supply system using the same

Publications (2)

Publication Number Publication Date
JP2011130646A true JP2011130646A (en) 2011-06-30
JP5547958B2 JP5547958B2 (en) 2014-07-16

Family

ID=44195910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009289705A Expired - Fee Related JP5547958B2 (en) 2009-12-21 2009-12-21 Power supply device and power supply system using the same

Country Status (5)

Country Link
JP (1) JP5547958B2 (en)
KR (1) KR101424021B1 (en)
CN (1) CN102714426B (en)
TW (1) TWI419435B (en)
WO (1) WO2011078388A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013031304A (en) * 2011-07-29 2013-02-07 Mitsubishi Heavy Ind Ltd Charging system, electric power managing device, charger, control method, and program
CN103036799A (en) * 2012-12-19 2013-04-10 南通天地通网络工程有限公司 Router using solar photovoltaic power generation system to supply power
CN103914963A (en) * 2014-04-08 2014-07-09 陈东 System for signal remote transmission and power supply of long-distance oil and gas transmission line instrument
CN104242392A (en) * 2014-09-11 2014-12-24 深圳供电局有限公司 Device for monitoring and balancing voltage of storage battery
JP2017038516A (en) * 2012-08-16 2017-02-16 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh DC building system with energy storage and control system
KR101775957B1 (en) * 2011-11-17 2017-09-07 엘지전자 주식회사 Power applying system for connecting photovoltaic power generating apparatus
JP2018033314A (en) * 2016-04-05 2018-03-01 三菱重工業株式会社 Electric car and charger
JP2020065394A (en) * 2018-10-18 2020-04-23 トヨタ自動車株式会社 Vehicle and charging system
JP2020074679A (en) * 2017-11-15 2020-05-14 三菱重工業株式会社 Power management method and charge management method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103259826B (en) * 2012-02-20 2016-06-01 伊顿公司 For the data transmission device between charger and electric motor car and method
CN103259299A (en) * 2012-02-20 2013-08-21 伊顿公司 Multi-standard compatible charger
JP5780269B2 (en) * 2013-07-12 2015-09-16 トヨタ自動車株式会社 Power supply system and power receiving equipment
CN103730933A (en) * 2013-12-23 2014-04-16 联想(北京)有限公司 Charging method and electronic devices
WO2015103164A1 (en) * 2013-12-31 2015-07-09 Ev4, Llc Direct current to direct current battery based fast charging system for an electric vehicle charging station
JP6452547B2 (en) * 2015-05-20 2019-01-16 シャープ株式会社 Electrical equipment
US10040363B2 (en) 2015-10-15 2018-08-07 Powin Energy Corporation Battery-assisted electric vehicle charging system and method
TWI654815B (en) 2017-05-23 2019-03-21 台達電子工業股份有限公司 Electric vehicle charging circuit and control method thereof
DE102017112944A1 (en) * 2017-06-13 2018-12-13 Wobben Properties Gmbh Wind turbine or wind farm for feeding electrical power
CN107351686A (en) * 2017-06-20 2017-11-17 东风神宇车辆有限公司 A kind of method for DC charging DC12V or DC24V identification conversion
CN107451611A (en) * 2017-07-28 2017-12-08 深圳普思英察科技有限公司 A kind of vehicle-mounted deep learning model update method of new energy unmanned vehicle
CN107241441A (en) * 2017-07-28 2017-10-10 深圳普思英察科技有限公司 A kind of new energy unmanned vehicle vehicular map update method and system
CN108638869A (en) * 2018-05-03 2018-10-12 成都雅骏新能源汽车科技股份有限公司 A kind of electric automobile during traveling collecting method
KR20210005396A (en) * 2019-07-04 2021-01-14 현대자동차주식회사 Charging apparatus and control method for the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000224770A (en) * 1999-02-03 2000-08-11 Misawa Homes Co Ltd Building
JP2007535282A (en) * 2003-07-10 2007-11-29 エアロヴァイロンメント インコーポレイテッド Battery charging system and method
JP2007336778A (en) * 2006-06-19 2007-12-27 Tokyo Electric Power Co Inc:The Charging system and control method thereof
JP2008042999A (en) * 2006-08-02 2008-02-21 Matsushita Electric Works Ltd Power supply device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3985390B2 (en) * 1999-06-17 2007-10-03 日産自動車株式会社 Power management system
CN1581662B (en) * 2003-08-01 2010-04-14 广达电脑股份有限公司 Electronic device capable of fully utilizing power of AC/DC converter
CN101063440A (en) * 2006-04-28 2007-10-31 上海森昌电气科技有限公司 Solar,wind energy and commercial power combined power supply without transformer device
JP4270236B2 (en) * 2006-07-31 2009-05-27 トヨタ自動車株式会社 Power system and AC power supply method
JP4487989B2 (en) * 2006-08-04 2010-06-23 トヨタ自動車株式会社 Power system and method for managing state of charge in power system
JP2008054439A (en) * 2006-08-25 2008-03-06 Toyota Motor Corp Power system
CN201113835Y (en) * 2007-09-26 2008-09-10 冯国隆 Grid-connected dwelling full-automatic solar energy power supply heating apparatus
CN201365195Y (en) * 2009-01-20 2009-12-16 叶明祥 Power conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000224770A (en) * 1999-02-03 2000-08-11 Misawa Homes Co Ltd Building
JP2007535282A (en) * 2003-07-10 2007-11-29 エアロヴァイロンメント インコーポレイテッド Battery charging system and method
JP2007336778A (en) * 2006-06-19 2007-12-27 Tokyo Electric Power Co Inc:The Charging system and control method thereof
JP2008042999A (en) * 2006-08-02 2008-02-21 Matsushita Electric Works Ltd Power supply device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167975A (en) * 2011-07-29 2016-09-15 三菱重工業株式会社 Electric car, control method and on-vehicle module
JP2013031304A (en) * 2011-07-29 2013-02-07 Mitsubishi Heavy Ind Ltd Charging system, electric power managing device, charger, control method, and program
KR101775957B1 (en) * 2011-11-17 2017-09-07 엘지전자 주식회사 Power applying system for connecting photovoltaic power generating apparatus
JP2017038516A (en) * 2012-08-16 2017-02-16 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh DC building system with energy storage and control system
CN103036799A (en) * 2012-12-19 2013-04-10 南通天地通网络工程有限公司 Router using solar photovoltaic power generation system to supply power
CN103914963A (en) * 2014-04-08 2014-07-09 陈东 System for signal remote transmission and power supply of long-distance oil and gas transmission line instrument
CN104242392A (en) * 2014-09-11 2014-12-24 深圳供电局有限公司 Device for monitoring and balancing voltage of storage battery
JP2018033314A (en) * 2016-04-05 2018-03-01 三菱重工業株式会社 Electric car and charger
JP2020074679A (en) * 2017-11-15 2020-05-14 三菱重工業株式会社 Power management method and charge management method
JP2020065394A (en) * 2018-10-18 2020-04-23 トヨタ自動車株式会社 Vehicle and charging system
CN111071080A (en) * 2018-10-18 2020-04-28 丰田自动车株式会社 Vehicles and Charging Systems
US11292350B2 (en) 2018-10-18 2022-04-05 Toyota Jidosha Kabushiki Kaisha Vehicle and charging system
JP7147457B2 (en) 2018-10-18 2022-10-05 トヨタ自動車株式会社 Vehicle and charging system
CN111071080B (en) * 2018-10-18 2024-01-30 丰田自动车株式会社 Vehicle and charging system
JP2021185739A (en) * 2020-01-22 2021-12-09 三菱重工業株式会社 Power and charging management apparatus
JP7260601B2 (en) 2020-01-22 2023-04-18 三菱重工業株式会社 Power/charging management device
JP2023083348A (en) * 2020-01-22 2023-06-15 三菱重工業株式会社 Power and charging management apparatus

Also Published As

Publication number Publication date
KR20120104278A (en) 2012-09-20
TW201136097A (en) 2011-10-16
TWI419435B (en) 2013-12-11
KR101424021B1 (en) 2014-07-28
CN102714426A (en) 2012-10-03
JP5547958B2 (en) 2014-07-16
CN102714426B (en) 2014-12-03
WO2011078388A1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP5547958B2 (en) Power supply device and power supply system using the same
TWI417203B (en) Power feed system for electric vehicle
US11072253B2 (en) Power circuit for power supply in an electrically driven vehicle and stationary energy supply system
US20140320083A1 (en) Power converter
JP2010213560A (en) Charging system for electric vehicle
CN102255347A (en) Chariging equipment
JP2013081289A (en) Power controller
JP5649440B2 (en) Power control system
JP5220078B2 (en) In-vehicle charging / discharging device
JP2013207871A (en) Charge/discharge control device
JP2015122862A (en) Electric power management system
WO2013076952A1 (en) Power conversion apparatus
CN217892528U (en) Direct current charging system for electric automobile
JP5909619B2 (en) Electric vehicle power supply system
JP2013034326A (en) Vehicle charge system, and vehicle charge cable
JP5971601B2 (en) Electric vehicle power supply system
WO2018029902A1 (en) Cradle device, electric instrument, and control method
CN203607897U (en) Charging system and charging station for electric automobile
JP2013219908A (en) In-district power supply system
CN205590101U (en) Elevator calling device and elevator control system thereof
EP4352850B1 (en) A method and apparatus for controlling a charging process for charging a vehicle battery of an electric vehicle
CN202260998U (en) Power conversion device
JP2014113008A (en) Electric vehicle, and battery charging method for electric vehicle

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140516

R151 Written notification of patent or utility model registration

Ref document number: 5547958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees