JP2011121840A - Terbium oxide crystal for magneto-optic element - Google Patents
Terbium oxide crystal for magneto-optic element Download PDFInfo
- Publication number
- JP2011121840A JP2011121840A JP2009282699A JP2009282699A JP2011121840A JP 2011121840 A JP2011121840 A JP 2011121840A JP 2009282699 A JP2009282699 A JP 2009282699A JP 2009282699 A JP2009282699 A JP 2009282699A JP 2011121840 A JP2011121840 A JP 2011121840A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- magneto
- raw material
- terbium oxide
- terbium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 109
- 229910003451 terbium oxide Inorganic materials 0.000 title claims abstract description 18
- SCRZPWWVSXWCMC-UHFFFAOYSA-N terbium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Tb+3].[Tb+3] SCRZPWWVSXWCMC-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 30
- 239000002994 raw material Substances 0.000 claims abstract description 28
- 238000002834 transmittance Methods 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 229910052691 Erbium Inorganic materials 0.000 claims abstract description 5
- 229910052765 Lutetium Inorganic materials 0.000 claims abstract description 5
- 229910052775 Thulium Inorganic materials 0.000 claims abstract description 5
- 229910052769 Ytterbium Inorganic materials 0.000 claims abstract description 5
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 5
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 5
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 5
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 5
- 238000004519 manufacturing process Methods 0.000 claims description 15
- 239000000155 melt Substances 0.000 claims description 15
- 230000007704 transition Effects 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 8
- 210000003625 skull Anatomy 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 229910000510 noble metal Inorganic materials 0.000 claims description 6
- 229910000691 Re alloy Inorganic materials 0.000 claims description 2
- 229910052702 rhenium Inorganic materials 0.000 claims description 2
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 2
- DECCZIUVGMLHKQ-UHFFFAOYSA-N rhenium tungsten Chemical compound [W].[Re] DECCZIUVGMLHKQ-UHFFFAOYSA-N 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 238000002425 crystallisation Methods 0.000 claims 1
- 230000008025 crystallization Effects 0.000 claims 1
- 238000002844 melting Methods 0.000 abstract description 13
- 230000008018 melting Effects 0.000 abstract description 13
- 238000010438 heat treatment Methods 0.000 abstract description 10
- 150000002500 ions Chemical class 0.000 abstract description 5
- 238000005245 sintering Methods 0.000 abstract 1
- 229910052771 Terbium Inorganic materials 0.000 description 25
- -1 terbium ions Chemical class 0.000 description 13
- 150000002910 rare earth metals Chemical group 0.000 description 12
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 230000008033 biological extinction Effects 0.000 description 6
- 230000006698 induction Effects 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- 238000002109 crystal growth method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 239000002223 garnet Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000000411 transmission spectrum Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 150000001217 Terbium Chemical class 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- FNCIDSNKNZQJTJ-UHFFFAOYSA-N alumane;terbium Chemical compound [AlH3].[Tb] FNCIDSNKNZQJTJ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000008710 crystal-8 Substances 0.000 description 1
- 239000010987 cubic zirconia Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
本発明は、磁気光学素子用酸化テルビウム結晶、およびその製造方法に関する。本発明は、また、磁気光学素子として前記酸化テルビウム結晶が用いられた磁気光学デバイスに関する。 The present invention relates to a terbium oxide crystal for a magneto-optical element and a method for producing the same. The present invention also relates to a magneto-optical device using the terbium oxide crystal as a magneto-optical element.
磁気光学効果を利用した光アイソレータは、レーザーシステムに使用される磁気光学素子である。光アイソレータは、偏光子、ファラデー回転子、検光子および磁石からなる。磁場中におかれた材料中を偏光が通過するとその偏光面が回転する現象は、ファラデー効果として知られ、その回転角Θは、磁場の強さHと物質の長さLに対して、
Θ=VHL
で表される。比例係数のVはヴェルデ定数といい、材料に依存する特性値である。Vの大きな材料をファラデー回転子に用いると、ファラデー回転子と永久磁石が小さくても同等のアイソレーション性能を得ることができるため、素子の小型化が可能となる。光アイソレータの利用分野としては半導体の微細加工用レーザ、光ファイバ通信用の半導体レーザ、鋼材やセラミックスの切断及び熱処理用レーザ、医療用レーザメス等に組み込まれ、近年ではSHG(第二高調波)素子を用いて波長変換した可視のグリーンレーザやブルーレーザに組み込まれて利用することも行なわれている。
An optical isolator using the magneto-optical effect is a magneto-optical element used in a laser system. The optical isolator includes a polarizer, a Faraday rotator, an analyzer, and a magnet. The phenomenon that the plane of polarized light rotates when polarized light passes through a material placed in a magnetic field is known as the Faraday effect, and its rotation angle Θ depends on the strength H of the magnetic field and the length L of the substance.
Θ = VHL
It is represented by The proportional coefficient V is called the Verde constant and is a characteristic value depending on the material. When a material having a large V is used for the Faraday rotator, the same isolation performance can be obtained even if the Faraday rotator and the permanent magnet are small, so that the element can be miniaturized. The field of use of optical isolators includes lasers for microfabrication of semiconductors, semiconductor lasers for optical fiber communication, lasers for cutting and heat treatment of steel and ceramics, laser scalpels for medical use, etc. Recently, SHG (second harmonic) elements Incorporated into a visible green laser or blue laser that has been wavelength-converted using a laser is also being used.
可視光から近赤外光用の光アイソレータには、3価のテルビウムイオンを含有した複合酸化物のTGG(テルビウム・ガリウム・ガーネット、化学式Tb3Ga5O12)単結晶が使われている。融点が1725℃のTGG単結晶は、原料融液と反応しない坩堝、例えば貴金属のイリジウム坩堝を用いて原料を融解させ、チョクラルスキー法によって大型結晶を作製することができる。TGG結晶のヴェルデ定数は、比較的に大きいとされる40rad/(T・m)であるが、通常、2から3cmの長さの結晶をファラデー回転子に必要とする。さらにファラデー回転子長を小さくするためには、大きいヴェルデ定数を有する単結晶材料が望まれている。 As an optical isolator for visible light to near infrared light, a complex oxide TGG (terbium gallium garnet, chemical formula Tb 3 Ga 5 O 12 ) single crystal containing trivalent terbium ions is used. A TGG single crystal having a melting point of 1725 ° C. can be prepared by melting a raw material using a crucible that does not react with the raw material melt, for example, a noble metal iridium crucible, and producing a large crystal by the Czochralski method. The Verde constant of a TGG crystal is 40 rad / (T · m), which is considered to be relatively large, but usually a crystal with a length of 2 to 3 cm is required for a Faraday rotator. Further, in order to reduce the Faraday rotator length, a single crystal material having a large Verde constant is desired.
一般に、ヴェルデ定数を大きくするには、3価のテルビウムイオンの単位体積あたり含有量を多くすれば良いことが非特許文献1に記載されている。例えば、TAG(テルビウム・アルミニウム・ガーネット、化学式Tb3Al5O12)は、TGGと同じ数のテルビウムイオンを小さな結晶単位格子に含む結果、単位体積当たりのテルビウム数がTGGよりも多いが、TAGは一致溶融しないために、チョクラルスキー法で大型単結晶を育成することができない。 In general, Non-Patent Document 1 describes that in order to increase the Verde constant, the content per unit volume of trivalent terbium ions should be increased. For example, TAG (terbium aluminum garnet, chemical formula Tb 3 Al 5 O 12 ) contains the same number of terbium ions as TGG in a small crystal unit cell, resulting in a higher number of terbium per unit volume than TGG. Since they do not melt together, large single crystals cannot be grown by the Czochralski method.
一方、ガリウムやアルミニウムを含まないテルビウムの単純酸化物であるTb2O3結晶は、その融点が約2400℃と高いために、TGG単結晶のように貴金属のイリジウム坩堝が使用できない。また、Tb2O3結晶は、結晶系が立方晶系のC型希土類構造以外に、高温での安定相として単斜晶系のB型希土類構造が存在する。そのため、融液から最初にB型希土類構造の結晶が晶出するとその冷却過程でC型希土類構造に相転移を起こす結果、結晶に多数の割れが入る。相転移による割れは、レーザ光を散乱し、透過率を著しく低くするために磁気光学素子用には不適となる。上記の理由によって、大きなTb2O3単結晶を工業的に生産することが困難であった。 On the other hand, Tb 2 O 3 crystal, which is a simple oxide of terbium that does not contain gallium or aluminum, has a melting point as high as about 2400 ° C., so that a iridium crucible made of noble metal cannot be used like a TGG single crystal. The Tb 2 O 3 crystal has a monoclinic B-type rare earth structure as a stable phase at a high temperature, in addition to a cubic C-type rare earth structure. Therefore, when a crystal having a B-type rare earth structure is first crystallized from the melt, a phase transition occurs in the C-type rare earth structure during the cooling process, resulting in numerous cracks in the crystal. Cracks due to phase transitions are unsuitable for magneto-optical elements because they scatter laser light and significantly reduce the transmittance. For the above reasons, it has been difficult to industrially produce large Tb 2 O 3 single crystals.
更に、テルビウムイオンは、室温の大気中では3価のテルビウムイオンだけから構成されるTb2O3よりも3価のテルビウムイオンと共に高酸化状態の4価のテルビウムイオンも含む酸化物が安定である。このような酸化物にはTb3+が50%とTb4+が50%のTb4O7を始め、Tb11O20、Tb24O44、Tb16O30など多くの組成がある。融液を単に固化させると黒褐色のTb4O7が得られるが、Tb4O7は近赤外から可視の波長の光を透過せず、当該波長用途の磁気光学素子には不適である。 Furthermore, terbium ions are more stable in the atmosphere at room temperature than oxides containing tetravalent terbium ions in a highly oxidized state together with trivalent terbium ions than Tb 2 O 3 composed only of trivalent terbium ions. . Such oxides have many compositions such as Tb 4 O 7 with 50% Tb 3+ and 50% Tb 4+ , Tb 11 O 20 , Tb 24 O 44 , Tb 16 O 30 and the like. When the melt is simply solidified, black-brown Tb 4 O 7 is obtained. However, Tb 4 O 7 does not transmit light having a visible wavelength from the near infrared, and is not suitable for a magneto-optical element for the wavelength application.
光アイソレータには、高い消光比が必要とされる。消光比が低いとレーザ光の偏光の制御性が悪く、その結果、戻り光の分離能(アイソレーション性能)が損なわれる。高融点の結晶材料では、適切な育成法をと育成条件を選ばないと冷却時の熱応力による歪複屈折によって消光比が低下する問題がある。
本発明が解決すべき課題は、従来のTGG単結晶に代表される磁気光学素子用結晶ではなく、立方晶系の結晶構造を安定化する副成分を添加することによって相転移による割れがなく、Tbイオンの価数が実質的に3価のみで構成されるTb2O3を主成分とする結晶を本分野に応用することによって、透過率が高く、高濃度に3価のTbイオンを含む磁気光学素子用酸化テルビウム結晶を提供することにある。
The problem to be solved by the present invention is not a crystal for a magneto-optical element typified by a conventional TGG single crystal, but there is no crack due to a phase transition by adding a subcomponent that stabilizes a cubic crystal structure, By applying a crystal mainly composed of Tb 2 O 3 whose valence of Tb ions is substantially only trivalent to this field, the transmittance is high and trivalent Tb ions are contained at a high concentration. The object is to provide a terbium oxide crystal for a magneto-optical element.
本発明は、
(1)組成式(Tb1−aMa)2O3(式中、MはEr、Tm、Yb、Lu、Sc、Mg、Zr、Hfから選択される一種以上の元素、0.01≦a<0.3)で示される結晶系が立方晶系の結晶体であって、1.06μmと532nmにおける3mm長さあたりの直線透過率がいずれも70%以上であることを特徴とする、磁気光学素子用透光性酸化テルビウム結晶。
(2)前記の酸化テルビウム結晶を磁気光学素子として用いたことを特徴とする磁気光学デバイス
(3)貴金属坩堝を用いずに還元性の雰囲気下で原料を加熱して融解し、この融液から結晶系が立方晶系の結晶体を晶出せしめ、相転移をおこさずに室温まで冷却することを特徴とする磁気光学素子用の酸化テルビウム結晶の製造方法
に関する。
The present invention
(1) Composition formula (Tb 1-a M a ) 2 O 3 (wherein M is one or more elements selected from Er, Tm, Yb, Lu, Sc, Mg, Zr, Hf, 0.01 ≦ The crystal system represented by a <0.3) is a cubic crystal body, and the linear transmittance per 3 mm length at 1.06 μm and 532 nm is 70% or more, Translucent terbium oxide crystal for magneto-optical element.
(2) A magneto-optical device using the terbium oxide crystal as a magneto-optical element. (3) The raw material is heated and melted in a reducing atmosphere without using a noble metal crucible. The present invention relates to a method for producing a terbium oxide crystal for a magneto-optical element, characterized by crystallizing a cubic crystal body and cooling to room temperature without causing a phase transition.
本発明により、着色原因となるテルビウムの高次酸化物を含まずに、実質的に3価のみのTbイオンを主成分とした結晶体を得ることができる。結晶育成の雰囲気に微量であっても酸素が含まれる場合、高次の酸化状態のテルビウムイオンに由来する幅広い吸収が可視光から近赤外光の波長領域に生じるために黒褐色に着色し、当該波長域のレーザ用の光アイソレータとして不適である。還元性の雰囲気で結晶育成すると3価のテルビウムイオンに起因する500nm付近の幅の狭い吸収以外は、400nmから1100nmの波長範囲に吸収は生ぜず、透明性に優れた結晶体を得ることができる。 According to the present invention, it is possible to obtain a crystal body containing substantially only trivalent Tb ions as a main component without containing a higher oxide of terbium that causes coloring. When oxygen is contained even in a trace amount in the atmosphere for crystal growth, a wide absorption derived from higher-order oxidation state terbium ions occurs in the wavelength region of visible light to near infrared light, so that the color is blackish brown. It is not suitable as an optical isolator for lasers in the wavelength range. When a crystal is grown in a reducing atmosphere, no absorption occurs in the wavelength range of 400 nm to 1100 nm except for a narrow absorption near 500 nm caused by trivalent terbium ions, and a crystal having excellent transparency can be obtained. .
更に、融液から立方晶系のC型希土類構造をとる結晶を最初から育成することによって、冷却過程に相転移を生ぜず、割れのない大きな単結晶を得ることができる。 Furthermore, by growing a crystal having a cubic C-type rare earth structure from the melt from the beginning, it is possible to obtain a large single crystal free from cracks without causing a phase transition in the cooling process.
相転移を抑止する副成分としてEr、Tm、Yb、Lu、Sc、Mg、Zr、Hfからなる群の少なくとも一種の元素の酸化物を1%以上30%未満のモル比で加えることによって、単斜晶系のB型希土類構造の結晶ではなく、立方晶系のC型希土類構造をとる結晶を融液から直接育成することが可能となる。この結晶は冷却過程での相転移がないから、相転移に起因する割れを生ぜず、大きな単結晶を得ることができる。添加量が30%以上ではテルビウムイオンの濃度が小さくなるためにヴェルデ係数が小さくなる。添加量が1%未満では、相転移が生じるために育成した結晶に多数の割れが入り、素子が作製できなくなる。 By adding an oxide of at least one element of the group consisting of Er, Tm, Yb, Lu, Sc, Mg, Zr, and Hf as a minor component that suppresses the phase transition at a molar ratio of 1% or more and less than 30%, It is possible to directly grow a crystal having a cubic C-type rare earth structure from a melt instead of an oblique B-type rare earth crystal. Since this crystal has no phase transition in the cooling process, a large single crystal can be obtained without causing cracks due to the phase transition. When the addition amount is 30% or more, the Verde coefficient becomes small because the concentration of terbium ions becomes small. If the addition amount is less than 1%, a phase transition occurs, so that the grown crystal has many cracks, and the device cannot be manufactured.
また、融液直上の温度勾配が大きな結晶製造法を採用することも効果がある。そのメカニズムの詳細は不明であるが、温度勾配が急峻であると融液の過冷却を大きくすることが可能となり、準安定相として低温相である立方晶系のC型希土類構造をとる結晶が晶出し易くなると考えられる。スカルメルト法やフローティングゾーン法を結晶製造法として選択すると、容易に大きな温度勾配を実現できる。 It is also effective to employ a crystal manufacturing method with a large temperature gradient immediately above the melt. Although details of the mechanism are unknown, if the temperature gradient is steep, it becomes possible to increase the supercooling of the melt, and a crystal having a cubic C-type rare earth structure which is a low temperature phase as a metastable phase can be obtained. It is thought that it becomes easy to crystallize. When the skull melt method or the floating zone method is selected as the crystal production method, a large temperature gradient can be easily realized.
本発明の酸化テルビウム結晶は、従来よりも高濃度に3価のテルビウムイオンを含むことによって、テルビウム・ガリウム・ガーネット(Tb3Ga5O12)よりも大きなヴェルデ定数を有する。従って、従来の材料よりも小さな結晶サイズでも大きなファラデー回転角が得られるため、アイソレータ素子の小型化を図ることができる。小型の光アイソレータはファイバーレーザに搭載するに適している。さらに、磁界を与えるための磁石を小さくすることができるため、周囲の電子部品への磁界への最小限に防ぐことができ、ファイバーレーザシステム及び被加工部品の安定化に貢献できる。 The terbium oxide crystal of the present invention has a higher Verde constant than terbium gallium garnet (Tb 3 Ga 5 O 12 ) by containing trivalent terbium ions at a higher concentration than conventional. Therefore, since a large Faraday rotation angle can be obtained even with a crystal size smaller than that of the conventional material, it is possible to reduce the size of the isolator element. A small optical isolator is suitable for mounting on a fiber laser. Furthermore, since the magnet for applying the magnetic field can be made small, it can be prevented to the minimum to the magnetic field to the surrounding electronic components, and can contribute to the stabilization of the fiber laser system and the workpiece.
本発明では、酸化テルビウム結晶の育成には高価な貴金属の坩堝を使用しない。更に、温度勾配の大きな融液から単結晶を育成することができるために、結晶の成長速度を速くすることが可能であり、コスト、量産、経済性の利点がある。 In the present invention, expensive noble metal crucibles are not used for growing terbium oxide crystals. Furthermore, since a single crystal can be grown from a melt with a large temperature gradient, the crystal growth rate can be increased, and there are advantages in cost, mass production, and economy.
以下に結晶の作製方法を説明する。 A method for manufacturing a crystal is described below.
結晶の原料には、純度99.9%以上のテルビウム酸化物、例えばTb4O7やTb2O3を用いることができる。融解温度までに酸化物と揮発性物質に分解するテルビウム塩を用いることもできる。 A terbium oxide having a purity of 99.9% or more, such as Tb 4 O 7 or Tb 2 O 3 , can be used as a raw material for the crystal. Terbium salts that decompose into oxides and volatile materials by the melting temperature can also be used.
Tb原料には、Er、Tm、Yb、Lu、Sc、Mg、Zr、Hfからなる群の少なくとも一種以上の元素の化合物を1%以上30%未満のモル比で加えることができる。これらの元素には、立方晶系のC型希土類構造をとる結晶を融液から直接、晶出させる効果がある。添加方法は、当該元素の酸化物を用いても良いし、当該元素の塩を用いても良い。各原料は目的の組成となるように秤量し、混合する。この粉末を一軸プレスまたはCIP(コールド・アイソスタティック・プレス)等で成形し、結晶育成用の原料とする。 A compound of at least one element selected from the group consisting of Er, Tm, Yb, Lu, Sc, Mg, Zr, and Hf can be added to the Tb raw material in a molar ratio of 1% or more and less than 30%. These elements have the effect of crystallizing crystals having a cubic C-type rare earth structure directly from the melt. As an addition method, an oxide of the element or a salt of the element may be used. Each raw material is weighed and mixed so as to have a target composition. This powder is formed by a uniaxial press or CIP (cold isostatic press) or the like, and used as a raw material for crystal growth.
上記の結晶育成用原料から本発明の結晶を得るためには、この結晶の融点が約2400℃と極めて高温であることから、貴金属の坩堝を用いずに融液を保持し、大きな温度勾配が設定可能な単結晶製造法を採用する。 In order to obtain the crystal of the present invention from the raw material for crystal growth, the melting point of the crystal is as high as about 2400 ° C. Therefore, the melt is held without using a noble metal crucible, and a large temperature gradient is generated. Adopt a configurable single crystal manufacturing method.
前記の単結晶製造法は複数あるが、磁気光学素子に必要とされる大きさの結晶が育成できること、結晶内部の残留歪が小さいこと、が必要であり、例えばスカルメルト法が好適である。 Although there are a plurality of methods for producing the single crystal, it is necessary that a crystal having a size required for the magneto-optical element can be grown and that the residual strain inside the crystal is small. For example, the skull melt method is suitable.
スカルメルト法とは、図1に示すように、水冷した容器1の中に、結晶育成用の原料2を充填し、原料の中央部を高温に加熱融解する。水冷容器に接する原料2の外側部分の外皮2aは溶融せず、スカル状に焼結緻密化して、坩堝の作用を果たす。原料を融解させる加熱源には、電子ビーム、アーク放電やレーザを利用することもできるが、大きな結晶を作るには高周波誘導加熱が適しており、本図には高周波誘導加熱コイル3を示している。原料2を充分溶融してから高周波パワーを減らし、容器1を下げて底から冷却して結晶化させる。このようにすると、柱状の結晶塊を得られる。あるいは、融体から結晶を引き上げることもできる。なお、冷却水を流す理由は、原料2の外皮2aを溶融させないためである。水冷容器と融液が近接しており、大きな温度勾配が容易に実現できる。 In the skull melt method, as shown in FIG. 1, a water-cooled container 1 is filled with a raw material 2 for crystal growth, and the central portion of the raw material is heated and melted to a high temperature. The outer skin 2a of the outer portion of the raw material 2 that is in contact with the water-cooled container is not melted, but is sintered and densified in a skull shape to serve as a crucible. An electron beam, arc discharge, or laser can be used as a heating source for melting the raw material, but high-frequency induction heating is suitable for forming a large crystal. In this figure, a high-frequency induction heating coil 3 is shown. Yes. After the raw material 2 is sufficiently melted, the high frequency power is reduced, and the container 1 is lowered and cooled from the bottom to be crystallized. In this way, a columnar crystal lump can be obtained. Alternatively, the crystal can be pulled up from the melt. The reason for flowing the cooling water is that the outer skin 2a of the raw material 2 is not melted. The water-cooled container and the melt are close to each other, and a large temperature gradient can be easily realized.
スカルメルト法は、大気雰囲気で溶融可能なキュービックジルコニアの結晶育成に用いられている。スカルメルト法をテルビウム酸化物の結晶育成に適用するには、各要素を密閉容器に納めて雰囲気の酸素分圧を厳密に制御し、高酸化状態のテルビウムイオンが生じないように還元雰囲気に保つ必要がある。 The skull melt method is used for crystal growth of cubic zirconia that can be melted in an air atmosphere. In order to apply the Skull Melt method to terbium oxide crystal growth, it is necessary to place each element in a sealed container and strictly control the oxygen partial pressure of the atmosphere, and keep it in a reducing atmosphere so as not to generate highly oxidized terbium ions. There is.
別の結晶育成法としてフローティングゾーン(FZ)法を採用することもできる。FZ法は、育成する原料を棒状に成形し、棒の一部分を加熱して部分溶融させ、この溶融帯を表面張力で保持しながら、溶融体をゆっくりと移動させて単結晶を得る結晶育成法である。高周波誘導電流やレーザを加熱源とする方法もあるが、高融点酸化物結晶には、集光加熱によるFZ法が適している As another crystal growth method, a floating zone (FZ) method can also be adopted. The FZ method is a crystal growth method in which a raw material to be grown is formed into a rod shape, a portion of the rod is heated to partially melt, and the melt is slowly moved while holding the melt zone with surface tension to obtain a single crystal. It is. Although there are methods using a high-frequency induction current or laser as a heating source, the FZ method by focused heating is suitable for high melting point oxide crystals.
図2は、集光加熱によるイメージ炉を用いたFZ法の概念図である。回転楕円鏡4の一焦点にランプ5を熱源として置き、もう一方の焦点の原料棒6を集光加熱する。原料棒6は上部シャフト10に固定される。種結晶7は下部シャフト11に固定され、原料棒6の下端を加熱融解してから上下シャフトを動かして種結晶7と接合させ、適当な長さの融液帯8が形成された後、両シャフトを相反する方向に回転させながら下方に移動して、単結晶9を得る。なお、種結晶7は、Tb2O3結晶または焼結された原料棒を用いてもよい。また、育成において、両シャフトの回転は必要に応じて停止して行うこともある。溶融帯は透明石英管によって隔離され、結晶育成雰囲気が自由に制御できるようになっている。焦点を集中的に加熱するために、大きな温度勾配を得ることができる。 FIG. 2 is a conceptual diagram of the FZ method using an image furnace by condensing heating. The lamp 5 is placed as a heat source at one focal point of the spheroid mirror 4, and the raw material rod 6 at the other focal point is condensed and heated. The raw material bar 6 is fixed to the upper shaft 10. The seed crystal 7 is fixed to the lower shaft 11, the lower end of the raw material rod 6 is heated and melted, the upper and lower shafts are moved to join the seed crystal 7, and a melt zone 8 having an appropriate length is formed. The single crystal 9 is obtained by moving downward while rotating the shaft in opposite directions. The seed crystal 7 may be a Tb 2 O 3 crystal or a sintered raw material rod. Further, in growing, the rotation of both shafts may be stopped when necessary. The melting zone is isolated by a transparent quartz tube so that the crystal growth atmosphere can be freely controlled. In order to heat the focus intensively, a large temperature gradient can be obtained.
坩堝を使う場合は、還元性雰囲気に耐える高融点金属であるタングステン金属またはレニウム金属、あるいはタングステンレニウム合金の坩堝を使うことができる。この場合の結晶育成法には、一般的な引き上げ法、ブリッジマン法、徐冷法、熱交換法などを採用すればよい。 When using a crucible, a crucible made of tungsten metal or rhenium metal, or a tungsten rhenium alloy, which is a high melting point metal that can withstand a reducing atmosphere, can be used. As a crystal growth method in this case, a general pulling method, Bridgman method, slow cooling method, heat exchange method, or the like may be employed.
以上の単結晶製造方法を用い、結晶育成雰囲気を高次の酸化状態のテルビウムイオンを生じないように厳密に制御することによって、Tbイオンの価数が実質的に3価のみで構成されるTb2O3を主成分とする立方晶系のC型希土類構造をとる結晶であって、相転移による割れがなく、1.06μmと532nmにおける3mm長さあたりの直線透過率がいずれも70%以上であることを特徴とする、磁気光学素子用酸化テルビウム結晶を得ることができる。 By using the above single crystal manufacturing method and strictly controlling the crystal growth atmosphere so as not to generate higher-order oxidized terbium ions, the valence of Tb ions is substantially composed of only three valences. A crystal having a cubic C-type rare earth structure containing 2 O 3 as a main component, free from cracks due to phase transition, and linear transmission per 3 mm length at 1.06 μm and 532 nm is 70% or more. Thus, a terbium oxide crystal for a magneto-optical element can be obtained.
実施例1
純度99.9%のTb2O3粉末を131.71gと純度99.9%のSc2O3粉末を5.51g秤量し(モル比で90:10)、混合した。その後、100MPaの圧力でCIP成形した。
Example 1
131.71 g of Tb 2 O 3 powder with a purity of 99.9% and 5.51 g of Sc 2 O 3 powder with a purity of 99.9% were weighed (molar ratio 90:10) and mixed. Thereafter, CIP molding was performed at a pressure of 100 MPa.
この成形体を水冷した容器1に充填した。更に成形体の上部に純度99.9%の金属テルビウムの小片を置き、高周波誘導加熱をおこなった。2500℃以上に誘導加熱した後、容器1を下げて底から冷却して固化させる。固化後に、高周波コイル3の電源を切って、冷却水を流しながら室温まで冷却する。その後、単結晶体を容器1から取り出し、外皮2aを剥がすことで、結晶塊を得た。X線回折分析したところ、育成した結晶は、立方晶系のC型希土類構造であった。得られた結晶塊から2mm×2mm×3mmの角柱を切り出し、対向する2mm×2mmの2面を鏡面研磨した試料を作製した。分光光度計日立U−4100を用いて3mm厚結晶の1.1μmから400nmの波長範囲の透過スペクトルを測定したところ、500nm付近の3価のテルビウムによる鋭い吸収帯のみが観測され、4価のテルビウムによる吸収帯は観測されなかった。近赤外光1.06μmと可視光532nmの波長における直線透過率は、70%以上であった。次に、試料を0.5Tの磁場中におき、グラントムソンプリズムで挟んで1.06μmにおけるヴェルデ係数を測定したところ同じ寸法のTGG単結晶よりも大きいことがわかった。同じ測定系で測った消光比は、30dBであった。
実施例2〜5
The molded body was filled in a water-cooled container 1. Furthermore, a small piece of metal terbium with a purity of 99.9% was placed on the upper part of the compact, and high frequency induction heating was performed. After induction heating to 2500 ° C. or higher, the container 1 is lowered and cooled from the bottom to be solidified. After solidification, the high frequency coil 3 is turned off and cooled to room temperature while flowing cooling water. Thereafter, the single crystal was taken out from the container 1 and the outer skin 2a was peeled off to obtain a crystal lump. X-ray diffraction analysis revealed that the grown crystal had a cubic C-type rare earth structure. A 2 mm × 2 mm × 3 mm prism was cut out from the obtained crystal lump, and a sample was prepared by mirror-polishing two opposing 2 mm × 2 mm surfaces. When a transmission spectrum in the wavelength range of 1.1 μm to 400 nm of a 3 mm thick crystal was measured using a spectrophotometer Hitachi U-4100, only a sharp absorption band due to trivalent terbium near 500 nm was observed, and tetravalent terbium was observed. The absorption band due to was not observed. The linear transmittance at wavelengths of near infrared light of 1.06 μm and visible light of 532 nm was 70% or more. Next, when the sample was placed in a magnetic field of 0.5 T and sandwiched between Glan-Thompson prisms and the Verde coefficient at 1.06 μm was measured, it was found that the sample was larger than a TGG single crystal of the same size. The extinction ratio measured with the same measurement system was 30 dB.
Examples 2-5
純度99.9%のTb2O3粉末と、純度99.9%の添加元素Mの酸化物粉末を合量50g秤量した。アルミナ乳鉢へそれぞれの粉末とエチルアルコール50ccを入れ2〜3時間、エチルアルコールが蒸発し混合物が液状ではなくなるまで、乳棒を用いて混合した。混合した粉末を、さらに自然乾燥させた。添加元素Mの種類とTbとのモル比は表1に示すとおりである。 A total amount of 50 g of the Tb 2 O 3 powder having a purity of 99.9% and the oxide powder of the additive element M having a purity of 99.9% were weighed. Each powder and 50 cc of ethyl alcohol were put into an alumina mortar and mixed using a pestle for 2 to 3 hours until the ethyl alcohol evaporated and the mixture was not liquid. The mixed powder was further air-dried. Table 1 shows the molar ratio of the kind of additive element M and Tb.
この粉末をラバーチューブに詰め、直径5mm、長さ100mmの棒状に形を整えた後、100MPaの圧力でCIPを用いて成形した。 This powder was packed in a rubber tube, shaped into a rod shape having a diameter of 5 mm and a length of 100 mm, and then molded using CIP at a pressure of 100 MPa.
この成形体を原料棒6および種結晶7として取り付け、ランプ5の出力を調整して原料棒6の下端を溶融させた後、種結晶7と接合させてから両シャフトを下方に10〜30mm/hrで移動させて(Tb1−aMa)2O3単結晶を得た。得られた単結晶は、相転移による割れのない透明体であった。 The molded body is attached as a raw material rod 6 and a seed crystal 7, the output of the lamp 5 is adjusted to melt the lower end of the raw material rod 6, and after joining the seed crystal 7, both shafts are moved downward by 10-30 mm / It was moved by hr to obtain a (Tb 1-a M a ) 2 O 3 single crystal. The obtained single crystal was a transparent body free from cracks due to phase transition.
得られた単結晶から厚さ3mmの試料を切断加工した。切断面は鏡面研磨を施した。採取した試料の隣接部分を粉末X線回折分析したところ、育成した結晶は、全て立方晶系のC型希土類構造であった。分光光度計日立U−4100を用いて3mm厚結晶の1.1μmから400nmの波長範囲の透過スペクトルを測定した。実施例2、3、5には500nm付近の3価のテルビウムによる鋭い吸収帯のみが観測された。実施例4には、これに加えてYbによる固有吸収が900nm〜1000nmにかけて存在した。何れの試料も、4価のテルビウムによる吸収帯は観測されなかった。近赤外光1.06μmと可視光532nmの波長における直線透過率は表1に示す通り、70%以上であった。これらの試料を0.5Tの磁場中におき、グラントムソンプリズムで挟んで1.06μmにおけるヴェルデ係数を測定したところ同じ寸法のTGG単結晶よりも大きかった。同じ測定系で測った消光比は、表1のとおりであった。 A sample having a thickness of 3 mm was cut from the obtained single crystal. The cut surface was mirror polished. When the adjacent portion of the collected sample was analyzed by powder X-ray diffraction analysis, all the grown crystals had a cubic C-type rare earth structure. Using a spectrophotometer Hitachi U-4100, a transmission spectrum of a 3 mm thick crystal in a wavelength range of 1.1 μm to 400 nm was measured. In Examples 2, 3, and 5, only a sharp absorption band due to trivalent terbium near 500 nm was observed. In Example 4, in addition to this, intrinsic absorption by Yb was present from 900 nm to 1000 nm. In any sample, an absorption band due to tetravalent terbium was not observed. As shown in Table 1, the linear transmittance at a wavelength of near infrared light of 1.06 μm and visible light of 532 nm was 70% or more. When these samples were placed in a 0.5 T magnetic field and sandwiched by Glan-Thompson prisms and the Verde coefficient at 1.06 μm was measured, they were larger than the TGG single crystal of the same size. Table 1 shows the extinction ratio measured with the same measurement system.
以上の試験結果に示すとおり、高いヴェルデ定数と消光比、直線透過率をもつ磁気光学素子に適した結晶体が得られていることが判る。
As shown in the above test results, it can be seen that a crystal suitable for a magneto-optical element having a high Verde constant, extinction ratio, and linear transmittance is obtained.
1 容器
2 原料
3 高周波コイル
4 回転楕円鏡
5 ランプ
6 原料棒
7 種結晶
8 融液帯
9 単結晶
10 上シャフト
11 下シャフト
DESCRIPTION OF SYMBOLS 1 Container 2 Raw material 3 High frequency coil 4 Spherical mirror 5 Lamp 6 Raw material rod 7 Seed crystal 8 Melt zone 9 Single crystal 10 Upper shaft 11 Lower shaft
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009282699A JP5337011B2 (en) | 2009-12-14 | 2009-12-14 | Terbium oxide crystals for magneto-optic elements |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009282699A JP5337011B2 (en) | 2009-12-14 | 2009-12-14 | Terbium oxide crystals for magneto-optic elements |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013020825A Division JP5717207B2 (en) | 2013-02-05 | 2013-02-05 | Terbium oxide crystals for magneto-optic elements |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2011121840A true JP2011121840A (en) | 2011-06-23 |
JP2011121840A5 JP2011121840A5 (en) | 2013-03-21 |
JP5337011B2 JP5337011B2 (en) | 2013-11-06 |
Family
ID=44286116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009282699A Active JP5337011B2 (en) | 2009-12-14 | 2009-12-14 | Terbium oxide crystals for magneto-optic elements |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5337011B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011121837A (en) * | 2009-12-14 | 2011-06-23 | Oxide Corp | Translucent terbium oxide sintered compact for magneto-optical element |
WO2012046755A1 (en) * | 2010-10-06 | 2012-04-12 | 信越化学工業株式会社 | Magneto-optical material, faraday rotator, and optical isolator |
JP2012083381A (en) * | 2010-10-06 | 2012-04-26 | Shin Etsu Chem Co Ltd | 1 μm BAND OPTICAL ISOLATOR |
EP2824505A1 (en) * | 2013-07-12 | 2015-01-14 | Shin-Etsu Chemical Co., Ltd. | An optical isolator |
JP2015054931A (en) * | 2013-09-12 | 2015-03-23 | 信越化学工業株式会社 | Scintillator material, radiation detector and radiation inspection apparatus |
CN111138192A (en) * | 2020-01-03 | 2020-05-12 | 上海应用技术大学 | Vacuum hot-pressing preparation method of lutetium terbium oxide magneto-optical transparent ceramic |
CN114452708A (en) * | 2022-02-17 | 2022-05-10 | 安徽金三隆再生资源有限公司 | Impurity treatment device and method for terbium oxide recovery acid leaching reaction |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010143593A1 (en) * | 2009-06-09 | 2010-12-16 | 信越化学工業株式会社 | Oxide and magneto-optical device |
-
2009
- 2009-12-14 JP JP2009282699A patent/JP5337011B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010143593A1 (en) * | 2009-06-09 | 2010-12-16 | 信越化学工業株式会社 | Oxide and magneto-optical device |
JP2010285299A (en) * | 2009-06-09 | 2010-12-24 | Shin-Etsu Chemical Co Ltd | Oxides and magneto-optical devices |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011121837A (en) * | 2009-12-14 | 2011-06-23 | Oxide Corp | Translucent terbium oxide sintered compact for magneto-optical element |
WO2012046755A1 (en) * | 2010-10-06 | 2012-04-12 | 信越化学工業株式会社 | Magneto-optical material, faraday rotator, and optical isolator |
JP2012083381A (en) * | 2010-10-06 | 2012-04-26 | Shin Etsu Chem Co Ltd | 1 μm BAND OPTICAL ISOLATOR |
JP2012082079A (en) * | 2010-10-06 | 2012-04-26 | Shin-Etsu Chemical Co Ltd | Magneto-optical material, faraday rotator, and optical isolator |
US9482888B2 (en) | 2010-10-06 | 2016-11-01 | Shin-Etsu Chemical Co., Ltd. | Magneto-optical material, Faraday rotator, and optical isolator |
EP2824505A1 (en) * | 2013-07-12 | 2015-01-14 | Shin-Etsu Chemical Co., Ltd. | An optical isolator |
CN104280901A (en) * | 2013-07-12 | 2015-01-14 | 信越化学工业株式会社 | Optical isolator |
JP2015054931A (en) * | 2013-09-12 | 2015-03-23 | 信越化学工業株式会社 | Scintillator material, radiation detector and radiation inspection apparatus |
CN111138192A (en) * | 2020-01-03 | 2020-05-12 | 上海应用技术大学 | Vacuum hot-pressing preparation method of lutetium terbium oxide magneto-optical transparent ceramic |
CN114452708A (en) * | 2022-02-17 | 2022-05-10 | 安徽金三隆再生资源有限公司 | Impurity treatment device and method for terbium oxide recovery acid leaching reaction |
Also Published As
Publication number | Publication date |
---|---|
JP5337011B2 (en) | 2013-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102803582B (en) | Oxide compound and magnetooptics equipment | |
US9482888B2 (en) | Magneto-optical material, Faraday rotator, and optical isolator | |
JP5337011B2 (en) | Terbium oxide crystals for magneto-optic elements | |
EP2360511B1 (en) | Optical isolator based on a Faraday rotator consisting of ytterbium oxide and yttrium oxide | |
CA2778173C (en) | Single crystal, production process of same, optical isolator and optical processor using same | |
JP2011213552A (en) | Garnet crystal for magnetooptical element | |
CN105408530B (en) | The preparation method and purposes of cubic monocrystalline sesquichloride | |
JP2017137223A (en) | Garnet type single crystal, production method therefor, and optical isolator and optical processor using same | |
JP5377785B1 (en) | Bismuth-substituted rare earth iron garnet single crystal and method for producing the same | |
JP5276640B2 (en) | 1μm band optical isolator | |
Chen et al. | Czochralski growth of Sr2Tb8 (SiO4) 6O2 crystals for visible–near IR magneto-optical applications | |
JP5717207B2 (en) | Terbium oxide crystals for magneto-optic elements | |
Matkovskii et al. | Growth and properties of YAlO3: Tm single crystals for 2-μm laser operation | |
JP2011225400A (en) | Single crystal for magnetooptical element, and device using the single crystal | |
JP2002348196A (en) | Rare earth vanadate single crystal and method for producing the same | |
Zhao et al. | Optical and thermal properties of crystalline Tb: KLu (WO4) 2 | |
WO2025142801A1 (en) | Garnet type crystal, production method for same, optical isolator using same, and optical processing equipment | |
TWI481562B (en) | Oxide and magnetic optics | |
JPH0920599A (en) | Terbium-containing luminescent material and its production | |
JP2024171435A (en) | Terbium gallium garnet single crystal, its manufacturing method, and Faraday rotator | |
Chani | Crystal-chemistry and fiber crystal growth of optical oxide materials | |
Andreeta et al. | 13. Laser-Heated Laser-Heated Pedestal Growth of Oxide Fibers | |
Santo et al. | LiF, LiYF4, and Nd-and Er-Doped LiYF4 Fluoride Fibers | |
JP2004292281A (en) | Manufacturing method of single crystal and single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20121019 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20121019 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20121221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130508 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130508 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130725 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130730 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130802 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5337011 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |