JP2011108951A - 半導体溶液の製造方法及びそれを用いた光電変換素子 - Google Patents
半導体溶液の製造方法及びそれを用いた光電変換素子 Download PDFInfo
- Publication number
- JP2011108951A JP2011108951A JP2009264343A JP2009264343A JP2011108951A JP 2011108951 A JP2011108951 A JP 2011108951A JP 2009264343 A JP2009264343 A JP 2009264343A JP 2009264343 A JP2009264343 A JP 2009264343A JP 2011108951 A JP2011108951 A JP 2011108951A
- Authority
- JP
- Japan
- Prior art keywords
- film
- solar cell
- group
- semiconductor
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Electroluminescent Light Sources (AREA)
- Photovoltaic Devices (AREA)
Abstract
【解決手段】p型半導体とn型半導体を含む半導体溶液であって、そのいずれか一方が少なくとも高分子化合物である半導体溶液を、自転攪拌及び公転攪拌を同時にすることを特徴とする半導体溶液の製造方法。
【選択図】 なし
Description
さらに、本発明者らの検討によれば、該半導体溶液を塗布した半導体層を含有する光電変換素子は、光電変換効率が十分ではなく、かつ耐久性が悪いという課題があった。
即ち、本発明の要旨は以下のとおりである。
とも高分子化合物である半導体溶液を、自転攪拌を行うと同時に公転攪拌を行うことを特徴とする半導体溶液の製造方法。
[2]自転攪拌の回転数が、毎分200回転以上2000回転以下である[1]に記載の半導体溶液の製造方法。
[3]公転攪拌の遠心力が、200G以上800G以下である[1]又は[2]に記載の半導体溶液の製造方法。
[4]高分子化合物がチオフェン骨格を主鎖に含むものである[1]から[3]のいずれか一項に記載の半導体溶液の製造方法。
[5]n型半導体がフラーレン化合物である[1]から[4]のいずれか一項に記載の半導体溶液の製造方法。
[6] 光電変換素子の製造方法において、
(1)基板上に電極を形成する工程、
(2)[1]〜[5]のいずれか一項に記載の製造方法により得られた半導体溶液を電極上に塗
布し、半導体膜を形成する工程、
(3)もう一方の電極を形成する工程
を行った後に、アニ−ル処理を行うことを特徴とする光電変換素子の製造方法。
[7]少なくとも、1対の電極、[1]〜[6]のいずれか一項に記載の製造方法により得られた半導体溶液を塗布して得られた半導体層、バッファー層を有することを特徴とする光電変換素子。
以下に記載する構成要件の説明は、本発明の実施形態の一例(代表例)であり、本発明のその要旨を超えない限り、これらの内容に特定はされない。
<半導体溶液>
本発明に係る半導体溶液にはp型半導体とn型半導体を含む。
材料は、蒸着法によって製膜したり、半導体の可溶性前駆体を塗布後、半導体に変換することで製膜する方法がある。本発明に係る半導体化合物前駆体とは、特段制限はないが、具体的には特開2007−324587に記載の化合物が用いられうる。
p型半導体としてはポリマー半導体を用いることが望ましい。これらは、有機溶媒に可溶な半導体であり、有機太陽電池素子の製造プロセスにおいて塗布法を使用できるため、好ましい。その中でも、好ましくはチオフェン骨格を主鎖に含むものであり、さらに好ましくはポリチオフェンであり、より好ましくはポリヘキシルチオフェンである。
ラーレン化合物が好ましい。
ーレンの炭素数は、通常6 0 〜 1 3 0 の偶数であれば何でも良い。フラーレンとしては、例えば、C 6 0 、C 7 0 、C 7 6 、C 7 8 、C 8 2 、C 8 4 、C 9 0 、C
9 4 、C 9 6 及びこれらよりも多くの炭素を有する高次の炭素クラスターなどが挙げられる。その中でも、C 6 0 もしくはC 7 0 が好ましい。フラーレンとしては、一部のフラーレン環上の炭素―炭素結合が切れていても良い。又、一部の炭素原子が、他の原子に置き換えられていても良い。さらに、金属原子、非金属原子あるいはこれらから構成される原子団をフラーレンケージ内に内包していても良い。
1〜3である。(I), (II), (III), (IV)中の付加基は、フラーレン骨格中の同一の五員環もしくは六員環に付加される。eは1〜8の整数である。eとして好ましくは1以上4以下の整数であり、さらに好ましくは1以上2以下の整数である。
一般式(I)中のR1は置換基を有していても良い炭素数1〜14のアルキル基、置換基
を有しても良い炭素数1〜14のアルコキシ基、置換基を有していても良い芳香族基である。アルキル基として好ましくは、炭素数1〜10のアルキル基であり、さらに好ましくはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基もしくはイソブチル基であり、特に好ましくはメチル基、エチル基である。アルコキシ基として好ましくは、炭素数1〜10のアルコキシ基であり、さらに好ましくは炭素数1〜6のアルコキシ基であり、特に好ましくはメトキシ基、エトキシ基である。芳香族基は、炭素数3〜10の芳香族炭化水素基あるいは芳香族複素環基であり、好ましくはフェニル基、チエニル基、フリル基、ピリジル基であり、さらに好ましくはフェニル基、チエニル基である。上記アルキル基に置換しても良い置換基とは、ハロゲン原子又はシリル基である。置換しても良いハロゲン原子として好ましくはフッ素原子である。置換しても良いシリル基とは、ジアリールアルキルシリル基、ジアルキルアリールシリル基、トリアリールシリル基、トリアルキルシリル基であり、好ましくは、ジアルキルアリールシリル基であり、さらに好ましくは、ジメチルアリールシリル基である。
14のフッ化アルキル基、炭素数1〜14のアルコキシ基であり、さらに好ましくは炭素数1〜14のアルコキシ基であり、さらに好ましくはメトキシ基である。置換基を有する場合、その数に限定は無いが、好ましくは1〜3であり、より好ましくは1である。置換基の種類は異なっていても良いが、好ましくは同一である。
素基あるいは芳香族複素環基であり、好ましくはフェニル基、ナフチル基、ビフェニル基、チエニル基、フリル基、ピリジル基,ピリミジル基、キノリル基、キノキサリル基であり、さらに好ましくはフェニル基、チエニル基、フリル基である。有していても良い置換基として限定は無いが、好ましくはフッ素原子、炭素数1〜14のアルキル基、フッ化アルキル基、アルコキシ基、エステル基、アルキルカルボニル基、アリールカルボニル基であり、さらに好ましくはフッ素原子、アルコキシ基、エステル基、アリールカルボニル基であり、さらに好ましくはメトキシ基、メチルエステル基、n−ブチルエステル基、ベンゾイル基である。置換基を有する場合、その数に限定は無いが、好ましくは1〜3であり、より好ましくは1〜2である。置換基が複数の場合、その種類は異なっていても良いが、好ましくは同一である。
を有しても良いアルキル基、置換基を有しても良いアミノ基、あるいは置換基を有しても良いアルコキシ基である。R10もしくはR11とR12もしくはR13との間で、あるいは、R10もしくはR11とR12もしくはR13のいずれか一方と(III)の骨格を形成する炭素原子
との間で結合し環を形成しても良い。環を形成する場合における構造は、例えば、芳香族基が縮合したビシクロ構造である一般式(V)で示すことができる。一般式(V)中におけるvはtと同様であり、Xは、酸素原子、硫黄原子、メチル基やエチル基等の炭素数1〜6のアルキル基で置換されていてもよいアミノ基、メトキシ基等の炭素数1〜6のアルコキシル基あるいは炭素数1〜5の炭化水素基もしくは炭素数3〜10の芳香族炭化水素
基あるいは芳香族複素環基で置換されていてもよい炭素数1又は2のアルキレン基又はフ
ェニレン基等のアリーレン基である。
アルコキシカルボニル基におけるアルコキシ基は、炭素数1〜12の炭化水素基あるいはフッ化アルキル基であり、より好ましくは炭素数1〜12の炭化水素基であり、より好ましくはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、n−ヘキシル基、オクチル基、2-プロピルペンチル基、2−エチルヘキシル基
、2-エチルヘキシル基、シクロヘキシルメチル基、ベンジル基であり、さらに好ましく
はメチル基、エチル基、イソプロピル基、n−ブチル基、イソブチル基、n−ヘキシル基である。
2−エチルヘキシル基、2-エチルヘキシル基、シクロヘキシルメチル基、ベンジル基で
あり、さらに好ましくはメチル基、n−ブチル基である。
なお、フラーレン化合物としては、上記一種の化合物でも複数種の化合物の混合物でもよい。
p型半導体に対するn型半導体の割合は、重量比で通常0.5以上、好ましくは0.8以上、一方、通常2以下、好ましくは1.2以下である。範囲外であると、良好なバルクヘテロ構造を形成することが困難となり、変換効率が低下する傾向がある。
本発明の半導体溶液の製造方法としては、自転攪拌を行うと同時に公転攪拌を行うことを特徴とする。
自転攪拌及び公転攪拌とは、自転と公転を同時に行いながら攪拌することで、従来から知られている自転のみもしくは公転のみの攪拌と比較して、溶液中により均質に半導体を短時間で攪拌することが可能である。自転攪拌及び公転攪拌を行うことができる手段としては、特段に制限はないが、具体的には、自転・公転ミキサー:ARE−310(シンキ
ー社製)等の自転攪拌及び公転攪拌装置が挙げられる。
公転攪拌の強度としては、通常20G以上、好ましくは、200G以上、一方、通常800G以下、好ましくは600G以下である。範囲外にあると攪拌が不均一となる傾向にある。
公転攪拌の回転数に対する自転攪拌の回転数の比としては、通常0.5以上、好ましくは0.8以上、一方、通常50以下、好ましくは40以下、より好ましくは30以下である。
は30分以下である。攪拌時間が少ないと均質な攪拌が困難となり、攪拌時間が多いとポリマーの側鎖の一部が分解する可能性がある。
また、該攪拌において、該半導体溶液が脱泡されていてもよく、マグネチックスターラー等の従来の攪拌を組み合わせて使用してもよい。
本発明に係る光電変換素子は、少なくとも1対の電極、活性層、及びバッファー層を有する。活性層、及びバッファー層は、電極間に配置されている。図1は一般的な有機薄膜太陽電池に用いられる光電変換素子を表すが,これに限るわけではない。
(活性層)
本発明に係る光電変換素子において、半導体層(以下、活性層と表現することもある)にはp型半導体と、n型半導体を含む。光電変換素子では、光が活性層に吸収され、p型半導体とn型半導体の界面で電気が発生し、発生した電気が電極から取り出される。
活性層の層構成は、p型半導体とn型半導体が混合したバルクヘテロ接合型、p型半導体とn型半導体が積層された薄膜積層型、薄膜積層型の中間層にp型半導体とn型半導体が混合した層(i層)を有する構造等が挙げられる。中でも、p型半導体とn型半導体が混合したバルクヘテロ接合型が好ましい。 活性層の作成方法としては、特段に制限はないが、塗布法が好ましい。塗布法については、以下の任意の方法で行うことができる。例えば、リバースロールコート法、グラビアコート法、キスコート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーバーコート法、パイプドクター法、含浸・コート法、カーテンコート法などが挙げられる。
バッファー層としては、正孔取り出し層や電子取り出し層が挙げられる。
(電子取り出し層) 電子取り出し層には,p半導体化合物とn半導体化合物を含む半導体層から電極(負極)へ電子の取り出し効率を向上させることが可能な材料であれば特に限定されない。具体的には、バソキュプロイン(BCP)または、バソフェナントレン(Bphen)、(8-ヒドロキシキノリナト)アルミニウム(Alq3)、ホウ素化合物、オキサ
ジアゾール化合物、ヘ゛ンソ゛イミタ゛ソ゛ール化合物、ナフタレンテトラカルボン酸無水物(NTCDA)、ペリレンテトラカルボン酸無水物(PTCDA)、ホスフィンオキサイド化合
物、ホスフィンスルフィド化合物が挙げられる。その中でも好ましくは、アリール基で置換されたホスフィンオキサイド化合物、アリール基で置換されたホスフィンスルフィド化合物であり、より好ましくは、トリアリールホスフィンオキサイド化合物、トリアリールホスフィンスルフィド化合物、ジアリールホスフィンオキシドユニットを2つ以上有する芳香族炭化水素化合物、ジアリールホスフィンスルフィドユニットを2つ以上有する芳香族炭化水素化合物、フッ素原子もしくはパーフルオロアルキル基で置換されたアリールからなるトリアリールホスフィンオキサイド化合物、ジアリールホスフィンオキシドユニットを2つ以上有する芳香族炭化水素化合物である。上記材料に加えてアルカリ金属又はアルカリ土類金属をドープしてもよい。
(正孔取り出し層)
正孔取り出し層の材料は、特に限定は無く活性層から電極へ正孔の取り出し効率を向上させることが可能な材料であれば特に限定されない。具体的には、ポリチオフェン、ポリピロール、ポリアセチレン、トリフェニレンジアミンポリピロールおよびポリアニリンなどにスルフォン酸及び/又はヨウ素などのドーピングした導電性ポリマー、アリールアミン等の導電性有機化合物や前述のp型半導体等が挙げられる。その中でも、好ましくは、スルフォン酸をドーピングした導電性ポリマーであり、より好ましくは、ポリチオフェン誘導体にポリスチレンスルフォン酸をドーピングしたPEDOT/PSSである。また、金、インジウム、銀、パラジウム等の金属等の薄膜も使用することができる。さらに、金属等の薄膜は、単独で形成してもよく、上記の有機材料と組み合わせて用いることもできる。
正孔取り出し層と電子取り出し層とは、1対の電極間に、活性層を挟むように配置される。すなわち、本発明に係る光電変換素子が正孔取り出し層と電子取り出し層の両者を含む場合、電極、正孔取り出し層、活性層、電子取り出し層、電極がこの順に配置されてい
る。本発明に係る光電変換素子が電子取り出し層を含み正孔取り出し層を含まない場合は、電極、活性層、電子取り出し層、電極がこの順に配置されている。正孔取り出し層と電子取り出し層とは積層順序が逆であってもよいし、また正孔取り出し層と電子取り出し層との少なくとも一方が異なる複数の膜により構成されていてもよい。
本発明に係る光電変換素子において、1対の電極は、いずれか一方が透光性であればよく、両方が透光性であっても構わない。透光性があるとは、太陽光が40%以上透過する程度のものでる。又、透明電極の太陽光線透過率が70%以上であることが、透明電極を透過させて活性層に光を到達させるためには、好ましい。なお、光の透過率は、通常の分光光度計で測定可能できる。
好ましくは200Ω/□ 以下である。
電極は、光吸収により生じた正孔及び電子を捕集する機能を有するものである。したがって、電極には、正孔及び電子を捕集するのに適した電極材料を用いることが好ましい。正孔の捕集に適した電極の材料を挙げると、例えば、Au、ITO等の高い仕事関数を有する材料が挙げられる。一方、電子の捕集に適した電極の材料を挙げると、例えば、Alのような低い仕事関数を有する材料が挙げられる。
さらに、電極は2層以上積層してもよく、表面処理による特性(電気特性やぬれ特性等
)を改良しても良い。
電極の形成方法にも制限はない。例えば、真空蒸着、電子線ビーム、スパッタリング、メッキ、CVD等のドライプロセスにより形成することができる。また、例えば、イオンプレーティングコーティング、ゾル−ゲル、スピンコート、インクジェット等のウェットプロセスにより形成することもできる。この際、導電性インクとしては任意のものを使用することができ、例えば、導電性高分子、金属粒子分散液等を用いることができる。さらに、電極は2層以上積層してもよく、表面処理により特性(電気特性やぬれ特性等)を改良してもよい。
本発明に係る光電変換素子は、通常は支持体となる基板を有する。すなわち、基板上に、電極と、活性層、バッファー層とが形成される。基板の材料(基板材料)は本発明の効果を著しく損なわない限り任意である。基板材料の好適な例を挙げると、石英、ガラス、サファイア、チタニア等の無機材料;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリイミド、ナイロン、ポリスチレン、ポリビニルアルコール、エチレンビニルアルコール共重合体、フッ素樹脂フィルム、塩化ビニル、ポリエチレン等のポリオレフィン、セルロース、ポリ塩化ビニリデン、アラミド、ポリフェニレンスルフィド、ポリウレタン、ポリカーボネート、ポリアリレート、ポリノルボルネン、エポキシ樹脂等の有機材料;紙、合成紙等の紙材料;ステンレス、チタン、アルミニウム等の金属に、絶縁性を付与するために表面をコート或いはラミネートしたもの等の複合材料等が挙げられる。
基板の形状に制限はなく、例えば、板、フィルム、シート等の形状を用いることができる。基板の厚みに制限はない。ただし、通常5μm以上、中でも20μm以上、また、通常20mm以下、中でも10mm以下に形成することが好ましい。基板が薄すぎると半導体デバイスの強度が不足する可能性があり、基板が厚すぎるとコストが高くなったり重量が重くなりすぎたりする可能性がある。又、基板がガラスの場合は、薄すぎると機械的強度が低下し,割れやすくなるため,好ましくは0.01mm以上。より好ましくは0.1mm以上がよい。また,厚すぎると重量が重くなるため,好ましくは1cm以下,0.5cm以下が好ましい。
本発明の光電変換素子の製造方法には特に制限はない。具体的にその一例を示すと、(1)基板上に電極を形成する工程、(2)前記半導体溶液を電極上に塗布し、半導体膜を形成する工程、(3)もう一方の電極を形成する工程を行い製造する。好ましくは、もう一方の電極を形成した後,当該光電変換素子を通常50℃以上、好ましくは80℃以上、一方
、通常250℃以下、好ましくは180℃以下の温度範囲において,アニール処理を行うことが好ましい。なお、温度操作については上記範囲内で段階的に加熱してもよい。
該アニール処理により,素子の熱安定性を向上させるとともに、電極とバッファー層との間の接合性を向上させる効果が得られる。また,活性層の自己組織化にもこのアニール処理は効果的である。
本発明の光電変換素子は、太陽電池素子として薄膜太陽電池として使用されることが好ましい。
図2は本発明の一実施形態としての薄膜太陽電池の構成を模式的に示す断面図である。図2に示すように、本実施形態の薄膜太陽電池14は、耐候性保護フィルム1と、紫外線カットフィルム2と、ガスバリアフィルム3と、ゲッター材フィルム4と、封止材5と、太陽電池素子6と、封止材7と、ゲッター材フィルム8と、ガスバリアフィルム9と、バックシート10とをこの順に備え、更に、耐候性保護フィルム1とバックシート10の縁部をシールするシール材11を備えている。そして、耐候性保護フィルム1が形成された側(図中下方)から光が照射されて、太陽電池素子6が発電するようになっている。なお、後述するバックシート10としてアルミ箔の両面にフッ素系樹脂フィルムを接着したシートなど防水性の高いシートを用いる場合は、用途によりゲッター材フィルム8及び/又はガスバリアフィルム9を用いなくてもよい。
耐候性保護フィルム1は天候変化から太陽電池素子6を保護するフィルムである。
太陽電池素子6の構成部品のなかには、温度変化、湿度変化、自然光、風雨による侵食などにより劣化するものがある。そこで、耐候性保護フィルム1で太陽電池素子6を覆うことにより、太陽電池素子6等を天候変化などから保護し、発電能力を高く維持するようにしている。
また、耐候性保護フィルム1は、太陽電池素子6の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360〜830nm)の光の透過率が80%以上であることが好ましく、90%以上であることがより好ましく、特に好ましくは95%である。
樹脂、ポリエチレンテレフタラート、ポリエチレンナフタレート等のポリエステル樹脂、フェノール樹脂、ポリアクリル系樹脂、各種ナイロン等のポリアミド樹脂、ポリイミド樹脂、ポリアミド−イミド樹脂、ポリウレタン樹脂、セルロース系樹脂、シリコーン系樹脂、ポリカーボネート樹脂などが挙げられる。
耐候性保護フィルム1の厚みは特に規定されないが、通常10μm以上、好ましくは15μm以上、より好ましくは20μm以上であり、また、通常200μm以下、好ましくは180μm以下、より好ましくは150μm以下である。厚みを厚くすることで機械的強度が高まる傾向にあり、薄くすることで柔軟性が高まる傾向にある。
耐候性保護フィルム1は、薄膜太陽電池14においてできるだけ外側に設けることが好ましい。薄膜太陽電池14の構成部材のうちより多くのものを保護できるようにするためである。
紫外線カットフィルム2は紫外線の透過を防止するフィルムである。
薄膜太陽電池14の構成部品のなかには紫外線により劣化するものがある。また、ガスバリアフィルム3,9などは種類によっては紫外線により劣化するものがある。そこで、紫外線カットフィルム2を薄膜太陽電池14の受光部分に設け、紫外線カットフィルム2で太陽電池素子6の受光面6aを覆うことにより、太陽電池素子6及び必要に応じてガスバリアフィルム3,9等を紫外線から保護し、発電能力を高く維持することができるようになっている。
また、紫外線カットフィルム2は、太陽電池素子6の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360〜830nm)の光の透過率が80%以上であることが好ましく、90%以上であることがより好ましく、特に好ましくは95%以上である。
であり、水蒸気や酸素をカットしうるものが好ましい。
紫外線カットフィルム2を構成する材料は、紫外線の強度を弱めることができるものであれば任意である。その材料の例を挙げると、エポキシ系、アクリル系、ウレタン系、エステル系の樹脂に紫外線吸収剤を配合して成膜したフィルムなどが挙げられる。また、紫外線吸収剤を樹脂中に分散あるいは溶解させたものの層(以下、適宜「紫外線吸収層」という)を基材フィルム上に形成したフィルムを用いても良い。
基材フィルムの材質は特に限定されないが、耐熱性、柔軟性のバランスが良好なフィルムが得られる点で、例えばポリエステルが挙げられる。
界面活性剤としては、公知の界面活性剤(カチオン系界面活性剤、アニオン系界面活性剤、ノニオン系界面活性剤)を用いることができる。中でも、シリコン系界面活性剤またはフッ素系界面活性剤が好ましい。なお、界面活性剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
紫外線カットフィルム2の具体的な商品の例を挙げると、カットエース(MKVプラスティック株式会社)などが挙げられる。
で形成されていても良い。また、紫外線カットフィルム2は単層フィルムにより形成されていても良いが、2層以上のフィルムを備えた積層フィルムであってもよい。
紫外線カットフィルム2の厚みは特に規定されないが、通常5μm以上、好ましくは10μm以上、より好ましくは15μm以上であり、また、通常200μm以下、好ましくは180μm以下、より好ましくは150μm以下である。厚みを厚くすることで紫外線の吸収が高まる傾向にあり、薄くすることで可視光の透過率を増加させられる傾向にある。
ただし、太陽電池素子6の受光面6aを覆う位置以外の位置にも紫外線カットフィルム2が設けられていてもよい。
[ガスバリアフィルム3]
ガスバリアフィルム3は水及び酸素の透過を防止するフィルムである。
ガスバリアフィルム3に要求される防湿能力の程度は、太陽電池素子6の種類などに応じて様々である。例えば、太陽電池素子6が化合物半導体系太陽電池素子である場合には、単位面積(1m2)の1日あたりの水蒸気透過率が、1×10−1g/m2/day以下であることが好ましく、1×10−2g/m2/day以下であることがより好ましく、1×10−3g/m2/day以下であることが更に好ましく、1×10−4g/m2/day以下であることが中でも好ましく、1×10−5g/m2/day以下であることがとりわけ好ましく、1×10−6g/m2/day以下であることが特に好ましい。また、太陽電池素子6が有機太陽電池素子である場合には、単位面積(1m2)の1日あたりの水蒸気透過率が、1×10−1g/m2/day以下であることが好ましく、1×10−2g/m2/day以下であることがより好ましく、1×10−3g/m2/day以下であることが更に好ましく、1×10−4g/m2/day以下であることが中でも好ましく、1×10−5g/m2/day以下であることがとりわけ好ましく、1×10−6g/m2/day以下であることが特に好ましい。水蒸気が透過しなければしないほど、太陽電池素子6及び当該素子6のZnO:Al等の透明電極の水分との反応に起因する劣化が抑えられるので、発電効率が上がると共に寿命が延びる。
ZnO:Al等の透明電極の酸化による劣化が抑えられる。
以下、ガスバリアフィルム3の構成について、例を挙げて説明する。
一つ目の例は、プラスチックフィルム基材に無機バリア層を配置したフィルムである。この際、無機バリア層は、プラスチックフィルム基材の片面のみに形成してもよいし、プラスチックフィルム基材の両面に形成してもよい。両面に形成するときは、両面に形成する無機バリア層の数が、それぞれ一致していていもよく、異なっていてもよい。
ガスバリアフィルム3に使用されるプラスチックフィルム基材は、上記の無機バリア層
及びポリマー層を保持しうるフィルムであれば特に制限はなく、ガスバリアフィルム3の使用目的等から適宜選択することができる。
プラスチックフィルム基材の材料の例を挙げると、ポリエステル樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、アクリロイル化合物が挙げられる。また、スピロビインダン、スピロビクロマンを含む縮合ポリマーを用いるのも好ましい。ポリエステル樹脂の中でも、二軸延伸を施したポリエチレンテレフタレート(PET)、同じく二軸延伸したポリエチレンナフタレート(PEN)は、熱的寸度安定性に優れるため、プラスチックフィルム基材として好ましく用いられる。
プラスチックフィルム基材の厚みは特に規定されないが、通常10μm以上、好ましくは15μm以上、より好ましくは20μm以上であり、また、通常200μm以下、好ましくは180μm以下、より好ましくは150μm以下である。厚みを厚くすることで機械的強度が高まる傾向にあり、薄くすることで柔軟性が高まる傾向にある。
(無機バリア層)
無機バリア層は通常は金属酸化物、窒化物もしくは酸化窒化物により形成される層である。なお、無機バリア層を形成する金属酸化物、窒化物及び酸化窒化物は、1種でもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
バリア性と高透明性とを両立させるために、酸化アルミニウムまたは酸化珪素を含むことが好ましく、特に水分の透過性、光線透過性の観点から、酸化珪素を含むことが好ましい。
いる場合には前記xの値は1.5〜1.8が特に好ましい。また、例えば金属酸化物
としてAlOxを用いる場合には前記xの値は1.0〜1.4が特に好ましい。
無機バリア層の成膜方法に制限は無いが、一般的にスパッタリング法、真空蒸着法、イオンプレーティング法、プラズマCVD法などで行うことができる。例えばスパッタリング法では1種類のあるいは複数の金属ターゲットと酸素ガスを原料とし、プラズマを用いた反応性スパッタ方式で形成することができる。
ポリマー層にはいずれのポリマーでも使用することができ、例えば真空チャンバー内で成膜できるものも用いることができる。なお、ポリマー層を構成するポリマーは、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
前記ポリマーを与える化合物としては多種多様なものを用いることができるが、例えば以下の(i)〜(vii)のようなものが例示される。なお、モノマーは1種を用いてもよ
く、2種以上を任意の組み合わせ及び比率で併用しても良い。
が挙げられる。これにより得られるポリマーは重付加ポリマーである。重付加ポリマーと
しては、例えば、ポリウレタン(ジイソシアナート/グリコール)、ポリ尿素(ジイソシアナート/ジアミン)、ポリチオ尿素(ジチオイソシアナート/ジアミン)、ポリチオエーテルウレタン(ビスエチレンウレタン/ジチオール)、ポリイミン(ビスエポキシ/第一アミン)、ポリペプチドアミド(ビスアゾラクトン/ジアミン)、ポリアミド(ジオレフィン/ジアミド)などが挙げられる。
また、単官能アクリレートモノマーとしては、例えば脂肪族アクリレートモノマー、脂環式アクリレートモノマー、エーテル系アクリレートモノマー、環状エーテル系アクリレートモノマー、芳香族系アクリレートモノマー、水酸基含有アクリレートモノマー、カルボキシ基含有アクリレートモノマー等があるが、いずれも用いることができる。
(vii)例えば、アクリル酸、メタクリル酸、エタクリル酸、フマル酸、マレイン酸、
イタコン酸、マレイン酸モノメチル、マレイン酸モノエチル、無水マレイン酸、無水イタコン酸などの不飽和カルボン酸などが挙げられる。これらは、エチレンとの共重合体を構成させ、この共重合体をポリマーとして使用できる。さらに、これらの混合物、あるいはグリシジルエーテル化合物を混合した混合物、さらにはエポキシ化合物との混合物もポリマーとして用いることができる。
塗布法でポリマー層を形成する場合、例えば、ロールコート、グラビアコート、ナイフコート、ディップコート、カーテンフローコート、スプレーコート、バーコート等の方法を用いることができる。また、ポリマー層形成用の塗布液をミスト状で塗布するようにしてもよい。この場合の液滴の平均粒径は適切な範囲に調整すればよく、例えば重合性モノマーを含有する塗布液をミスト状でプラスチックフィルム基材上に成膜して形成する場合には、液滴の平均粒径は5μm以下、好ましくは1μm以下である。
膜方法が挙げられる。
ポリマー層の厚みについては特に限定はないが、通常10nm以上であり、また、通常5000nm以下、好ましくは2000nm以下、より好ましくは1000nm以下である。ポリマー層の厚みを厚くすることで、厚みの均一性が得やすくなり無機バリア層の構造欠陥を効率よくポリマー層で埋めることができ、バリア性が向上する傾向にある。また、ポリマー層の厚みを薄くする事で、曲げ等の外力によりポリマー層自身がクラックを発生しにくくなるためバリア性が向上しうる。
なお、ガスバリアフィルム3は1種の材料で形成されていてもよく、2種以上の材料で形成されていても良い。また、ガスバリアフィルム3は単層フィルムにより形成されていても良いが、2層以上のフィルムを備えた積層フィルムであってもよい。
ゲッター材フィルム4は水分及び/又は酸素を吸収するフィルムである。太陽電池素子6の構成部品のなかには前記のように水分で劣化するものがあり、また、酸素によって劣化するものもある。そこで、ゲッター材フィルム4で太陽電池素子6を覆うことにより、太陽電池素子6等を水分及び/又は酸素から保護し、発電能力を高く維持するようにしている。
が、通常10mg/cm2以下である。
また、ゲッター材フィルム4が酸素を吸収することにより、ガスバリアフィルム3,9等で太陽電池素子6を被覆した場合に、ガスバリアフィルム3,9及びシール材11で形成される空間に僅かに浸入する酸素をゲッター材フィルム4が捕捉して酸素による太陽電池素子6への影響を排除できる。
なお、ゲッター材フィルム4は1種の材料で形成されていてもよく、2種以上の材料で形成されていても良い。また、ゲッター材フィルム4は単層フィルムにより形成されていても良いが、2層以上のフィルムを備えた積層フィルムであってもよい。
ゲッター材フィルム4は、ガスバリアフィルム3,9及びシール材11で形成される空間内であればその形成位置に制限は無いが、太陽電池素子6の正面(受光面側の面。図2では下側の面)及び背面(受光面とは反対側の面。図2では上側の面)を覆うことが好ましい。薄膜太陽電池14においてはその正面及び背面が他の面よりも大面積に形成されることが多いため、これらの面を介して水分及び酸素が浸入する傾向があるからである。この観点から、ゲッター材フィルム4はガスバリアフィルム3と太陽電池素子6との間に設けることが好ましい。本実施形態ではゲッター材フィルム4が太陽電池素子6の正面を覆い、後述するゲッター材フィルム8が太陽電池素子6の背面を覆い、ゲッター材フィルム4,8がそれぞれ太陽電池素子6とガスバリアフィルム3,9との間に位置するようにな
っている。なお、後述するバックシート10としてアルミ箔の両面にフッ素系樹脂フィルムを接着したシートなど防水性の高いシートを用いる場合は、用途によりゲッター材フィルム8及び/又はガスバリアフィルム9を用いなくてもよい。
封止材5は、太陽電池素子6を補強するフィルムである。太陽電池素子6は薄いため通常は強度が弱く、ひいては薄膜太陽電池の強度が弱くなる傾向があるが、封止材5により強度を高く維持することが可能である。
また、封止材5は、薄膜太陽電池14の強度保持の観点から強度が高いことが好ましい。
また、封止材5は、太陽電池素子6の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、可視光(波長360〜830nm)の光の透過率は、通常60%以上、好ましくは70%以上、より好ましくは75%以上、更に好ましくは80%以上、中でも好ましくは85%以上、とりわけ好ましくは90%以上、特に好ましくは95%以上、その中でも特に好ましくは97%以上である。太陽光をより多く電気エネルギーに変換するためである。
フィルムには通常は耐候性の向上のために架橋剤を配合して架橋構造を構成させる。この架橋剤としては、一般に、100℃以上でラジカルを発生する有機過酸化物が用いられる。このような有機過酸化物としては、例えば、2,5−ジメチルヘキサン;2,5−ジハイドロパーオキサイド;2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン;3−ジ−t−ブチルパーオキサイド等を用いることができる。これらの有機過酸化物の配合量は、EVA樹脂100重量部に対して、通常5重量部以下、好ましくは3重量部以下であり、通常1重量部以上である。なお、架橋剤は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
しかし、EVA樹脂の架橋処理には1〜2時間程度の比較的長時間を要するため、薄膜太陽電池14の生産速度および生産効率を低下させる原因となる場合がある。また、長期間使用の際には、EVA樹脂組成物の分解ガス(酢酸ガス)またはEVA樹脂自体が有する酢酸ビニル基が、太陽電池素子6に悪影響を与えて発電効率が低下させる場合がある。そこで、封止材5としては、EVAフィルムの他に、プロピレン・エチレン・α−オレフィン共重合体からなる共重合体のフィルムを用いることもできる。この共重合体としては、例えば、下記成分1および成分2が配合された熱可塑性樹脂組成物が挙げられる。
・成分2:軟質プロピレン系共重合体が、30重量部以上、好ましくは50重量部以上であり、また、通常100重量部以下、好ましくは90重量部以下。
なお、成分1および成分2の合計量は100重量部である。上記のように、成分1および成分2が好ましい範囲にあると、封止材5のシートへの成形性が良好であるとともに、得られる封止材5の耐熱性、透明性および柔軟性が良好となり、薄膜太陽電池14に好適である。
分以上であり、また、通常1000g/10分以下、好ましくは900g/10分以下、より好ましくは800g/10分以下である。
成分1および成分2が配合された熱可塑性樹脂組成物の融点は、通常100℃以上、好ましくは110℃以上である。また通常140℃以下、好ましくは135℃以下である。
/cm3以下が好ましく、0.95g/cm3以下がより好ましく、0.94g/cm3以下がさらに好ましい。
この封止材5においては、上記成分1および成分2に、プラスチックなどに対する接着促進剤としてカップリング剤を配合することが可能である。カップリング剤は、シラン系、チタネート系、クロム系の各カップリング剤が好ましく用いられ、特にシラン系のカップリング剤(シランカップリング剤)が好適に用いられる。
また、上記カップリング剤は、有機過酸化物を用いて、当該熱可塑性樹脂組成物にグラフト反応させてもよい。この場合、熱可塑性樹脂組成物(成分1および成分2の合計量)100重量部に対して、上記カップリング剤を0.1〜5重量部含むことが望ましい。シラングラフト化された熱可塑性樹脂組成物を用いても、ガラス、プラスチックに対して、シランカップリング剤ブレンドと同等以上の接着性が得られる。
また、封止材5としてエチレン・α−オレフィン共重合体からなる共重合体を用いることもできる。この共重合体としては、下記に示す成分Aおよび成分Bからなる封止材用樹脂組成物と基材とを積層してなる、ホットタック性が5〜25℃のラミネートフィルムが例示される。
・成分B:以下の(a)〜(d)の性状を有するエチレンとα−オレフィンとの共重合体。
(a)密度が0.86〜0.935g/cm3。
(b)メルトフローレート(MFR)が1〜50g/10分。
(d)温度上昇溶離分別(TREF)による積分溶出量が、90℃のとき90%以上である。
成分Aと成分Bとの配合割合(成分A/成分B)は、重量比で、通常50/50以上、好ましくは55/45以上、より好ましくは60/40以上であり、また、通常99/1以下、好ましくは90/10以下、より好ましくは85/15以下である。成分Bの配合量を多くすることで透明性やヒートシール性が高まる傾向にあり、成分Bの配合量を少な
くすることでフィルムの作業性が高まる傾向にある。
封止材用樹脂組成物の密度は、0.80g/cm3以上が好ましく、0.85g/cm3以上がより好ましく、また、0.98g/cm3以下が好ましく、0.95g/cm3以下がより好ましく、0.94g/cm3以下がさらに好ましい。なお、密度の測定と評価は、JIS K7112に準拠する方法によって実施することができる。
上述した封止材5は、材料由来の分解ガスを発生することがないため、太陽電池素子6への悪影響がなく、良好な耐熱性、機械強度、柔軟性(太陽電池封止性)および透明性を有する。また、材料の架橋工程を必要としないため、シート成形時および薄膜太陽電池100の製造時間が大きく短縮できるとともに、使用後の薄膜太陽電池14のリサイクルも容易となる。
封止材5の厚みは、通常2μm以上、好ましくは5μm以上、より好ましくは10μm以上であり、また、通常500μm以下、好ましくは300μm以下、より好ましくは100μm以下である。厚みを厚くすることで機械的強度が高まる傾向にあり、薄くすることで柔軟性が高まりまた光線透過率が高まる傾向にある。
[太陽電池素子6]
太陽電池素子6は、先日の光電変換素子と同様である。
太陽電池素子6は、薄膜太陽電池14の1個あたり1個だけを設けてもよいが、通常は2個以上の太陽電池素子6を設ける。具体的な太陽電池素子6の個数は任意に設定すればよい。太陽電池素子6を複数設ける場合、太陽電池素子6はアレイ状に並べて設けられていることが多い。
このように太陽電池素子6同士を接続する場合には、太陽電池素子6間の距離は小さい
ことが好ましく、ひいては、太陽電池素子6と太陽電池素子6との間の隙間は狭いことが好ましい。太陽電池素子6の受光面積を広くして受光量を増加させ、薄膜太陽電池14の発電量を増加させるためである。
封止材7は、上述した封止材5と同様のフィルムであり、配設位置が異なる他は封止材7と同様のものを同様に用いることができる。
また、太陽電池素子6よりも背面側の構成部材は必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。
ゲッター材フィルム8は、上述したゲッター材フィルム4と同様のフィルムであり、配設位置が異なる他はゲッター材フィルム4と同様のものを同様に必要に応じて用いることができる。
また、太陽電池素子6よりも背面側の構成部材は必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。また使用する水分あるいは酸素吸収剤をゲッター材フィルム4よりも多く含有するフィルムを用いることも可能となる。このような吸収剤としては、水分吸収剤としてCaO、BaO、Zr−Al−BaO、酸素の吸収剤として活性炭、モレキュラーシーブなどが挙げられる。
ガスバリアフィルム9は、上述したガスバリアフィルム3と同様のフィルムであり、配設位置が異なる他はガスバリアフィルム9と同様のものを同様に必要に応じて用いることができる。
また、太陽電池素子6よりも背面側の構成部材は必ずしも可視光を透過させる必要が無いため、可視光を透過させないものを用いることもできる。
バックシート10は、上述した耐候性保護フィルム1と同様のフィルムであり、配設位置が異なる他は耐候性保護フィルム1と同様のものを同様に用いることができる。また、このバックシート10が水及び酸素を透過させ難いものであれば、バックシート10をガスバリア層として機能させることも可能である。
(i)バックシート10としては、強度に優れ、耐候性、耐熱性、耐水性、耐光性に優れた各種の樹脂のフィルムないしシートを使用することができる。例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリルースチレン共重合体(AS樹脂)、アクリロニトリルーブタジエンースチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリエチレンテレフタレートまたはポリエチレンナフタレート等のポリエステル系樹脂、各種のナイロン等のポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアリールフタレート系樹脂、シリコーン系樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、ポリウレタン系樹脂、アセタール系樹脂、セルロース系樹脂、その他等の各種の樹脂のシートを使用することができる。これらの樹脂のシートの中でも、フッ素系樹脂、環状ポリオレフィン系樹脂、ポリカーボネート系樹脂、ポリ(メタ)アクリル系樹脂、ポリアミド系樹脂、ポリエス BR>eル系樹脂のシートを使用することが好ましい。なお、これらは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
(iii)バックシート10としては、例えばアルミ箔の両面にフッ素系樹脂フイルムを
接着した防水性の高いシートを用いても良い。フッ素系樹脂としては、例えば、一弗化エチレン(商品名:テドラー,デュポン社製)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレンとエチレン又はプロピレンとのコポリマー(ETFE)、フッ化ビニリデン系樹脂(PVDF)、フッ化ビニル系樹脂(PVF)等が挙げられる。なお、フッ素系樹脂は1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
基材フィルムとしては、基本的には、無機酸化物の蒸着膜等との密接着性に優れ、強度に優れ、耐候性、耐熱性、耐水性、耐光性に優れた各種の樹脂のフィルムを使用することができる。例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリルースチレン共重合体(AS樹脂)、アクリロニトリルーブタジエンースチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリエチレンテレフタレート又はポリエチレンナフタレート等のポリエステル系樹脂、各種のナイロン等のポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアリールフタレート系樹脂、シリコーン系樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、ポリウレタン系樹脂、アセタール系樹脂、セルロース系樹脂、その他等の各種の樹脂のフィルムを使用することができる。中でも、フッ素系樹脂、環状ポリオレフィン系樹脂、ポリカーボネート系樹脂、ポリ(メタ)アクリル系樹脂、ポリアミド系樹脂、または、ポリエステル系樹脂のフィルムを使用することが好ましい。
基材フィルムの膜厚としては、通常12μm以上、好ましくは20μm以上であり、また、通常300μm以下、好ましくは200μm以下である。
無機酸化物の蒸着膜としては、基本的に金属の酸化物を蒸着した薄膜であれば使用可能
である。例えば、ケイ素(Si)、アルミニウム(Al)、の酸化物の蒸着膜を使用することができる。この際、酸化ケイ素としては例えばSiOx(x=1.0〜2.0)を用いることができ、酸化アルミニウムとしては例えばAlOx(x=0.5〜1.5)を用いることができる。
無機酸化物の蒸着膜の膜厚としては、通常50Å以上、好ましくは100Å以上であり、また、通常4000Å以下、好ましくは1000Å以下である。
蒸着膜の作製方法としては、プラズマ化学気相成長法、熱化学気相成長法、光化学気相成長法等の化学気相成長法(Chemical Vapor Deposition法、CVD法)等を用いることができる。具体例を挙げると、基材フィルムの一方の面に、有機珪素化合物等の蒸着用モノマーガスを原料とし、キャリヤーガスとして、アルゴンガス、ヘリウムガス等の不活性ガスを使用し、更に、酸素供給ガスとして、酸素ガス等を使用し、低温プラズマ発生装置等を利用する低温プラズマ化学気相成長法を用いて酸化珪素等の無機酸化物の蒸着膜を形成することができる。
ポリプロピレン系樹脂としては、例えば、プロピレンの単独重合体;プロピレンと他のモノマー(例えばα−オレフィン等)との共重合体を使用することができる。また、ポリプロピレン系樹脂としては、アイソタクチック重合体を用いることもできる。
ポリプロピレン系樹脂の融点は通常164℃〜170℃であり、比重は通常0.90〜0.91であり、分子量は通常10万〜20万である。
・接着剤
基材フィルムにポリプロピレン系樹脂フィルムを積層する場合には、通常はラミネート用接着剤を用いる。これにより、基材フィルムとポリプロピレン系樹脂フィルムとはラミネート用接着剤層を介して積層されることになる。
上記の接着剤は、例えば、ロールコート法、グラビアロールコート法、キスコート法、その他等のコート法、あるいは、印刷法等によって施すことができる。そのコーティング量としては、乾燥状態で0.1g/m2〜10g/m2が望ましい。
シール材11は、上述した耐候性保護フィルム1、紫外線カットフィルム2、ガスバリ
アフィルム3、ゲッター材フィルム4、封止材5、封止材7、ゲッター材フィルム8、ガスバリアフィルム9及びバックシート10の縁部をシールして、これらのフィルムで被覆された空間内に湿気及び酸素が浸入しないようにシールする部材である。
なお、シール材11は1種の材料で形成されていてもよく、2種以上の材料で形成されていても良い。
シール材11は、少なくともガスバリアフィルム3,9の縁部をシールできる位置に設ける。これにより、少なくともガスバリアフィルム3,9及びシール材11で囲まれた空間を密閉し、この空間内に湿気及び酸素が侵入しないようにすることができる。
即ち、例えば封止材5の硬化が進行する途中で、半硬化状態の薄膜太陽電池14を前記ラミネート装置から取り出し、太陽電池素子6の外周部であって耐候性保護シート1とバックシート10との間の部分に液状のポリマーを注入し、このポリマーを封止材5と共に硬化させればよい。また、封止材5の硬化が終了した後にラミネート装置から取り出して単独で硬化させてもよい。なお、前記のポリマーを架橋・硬化させるための温度範囲は通常130℃以上、好ましくは140℃以上であり、通常180℃以下、好ましくは170℃以下である。
本実施形態の薄膜太陽電池14は、通常、膜状の薄い部材である。このように膜状の部材として薄膜太陽電池14を形成することにより、薄膜太陽電池14を建材、自動車、インテリア等に容易に設置できるようになっている。薄膜太陽電池14は、軽く、割れにくく、従って安全性の高い太陽電池が得られ、また曲面にも適用可能であるため更に多くの用途に使用しうる。薄くて軽いため輸送や保管など流通面でも好ましい。更に、膜状であるためロール・トゥ・ロール式の製造が可能であり大幅なコストカットが可能である。
[製造方法]
本実施形態の薄膜太陽電池14の製造方法に制限は無いが、例えば、耐候性保護フィル
ム1とバックシート10との間に、1個又は2個以上の太陽電池素子6を直列または並列接続したものを、紫外線カットフィルム2、ガスバリアフィルム3,9、ゲッター材フィルム4,8及び封止材5,7と共に一般的な真空ラミネート装置でラミネートすることで製造できる。この際、加熱温度は通常130℃以上、好ましくは140℃以上であり、通常180℃以下、好ましくは170℃以下である。また、加熱時間は通常10分以上、好ましくは20分以上であり、通常100分以下、好ましくは90分以下である。圧力は通常0.001MPa以上、好ましくは0.01MPa以上であり、通常0.2MPa以下、好ましくは0.1MPa以下である。圧力をこの範囲とすることで封止を確実に行い、かつ、端部からの封止材5,7がはみ出しや過加圧による膜厚低減を抑え、寸法安定性を確保しうる。
上述した薄膜太陽電池14の用途に制限はなく任意である。例えば、図3に模式的に示すように、何らかの基材12上に薄膜太陽電池14を設けた太陽電池ユニット13を用意し、これを使用場所に設置して用いればよい。具定例を挙げると、基材12として建材用板材を使用した場合、この板材の表面に薄膜太陽電池14を設けて太陽電池ユニット13として太陽電池パネルを作製し、この太陽電池パネルを建物の外壁等に設置して使用すればよい。
1.建築用途
1.1ハウス屋根材として太陽電池
基材として屋根用板材等を使用した場合、この板材の表面に薄膜太陽電池を設けて太陽電池ユニットとして太陽電池パネルを作製し、この太陽電池パネルをハウスの屋根の上に設置して使用すればよい。また、基材として瓦を直接用いることもできる。本発明の太陽電池が柔軟性を有するという特性を生かし、瓦の曲線に密着させることができるので好適である。
ビルの屋上に取り付けることもできる。基材上に薄膜太陽電池を設けた太陽電池ユニットを用意し、これをビルの屋上に設置することもできる。この時基材とともに防水シートを併用し、防水作用を有するのが望ましい。さらに、本発明の薄膜太陽電池が柔軟性を有するという特性を生かし、平面ではない屋根、例えば折半屋根に密着させることもできる。この場合も防水シートを併用するのが望ましい。
エントランスや吹き抜け部分に外装として本発明の薄膜太陽電池を用いることもできる。何らかのデザイン処理を施されたエントランス等は曲線が用いられている場合が多く、そのような場合において本発明の薄膜太陽電池の柔軟性が生かされる。またエントランス等ではシースルーである場合があり、このような場合には、有機太陽電池の緑色系の色合いが、環境対策が重要視される時代において意匠的な美観も得られるので好適である。
基材として建材用板材を使用した場合、この板材の表面に薄膜太陽電池を設けて太陽電池ユニットとして太陽電池パネルを作製し、この太陽電池パネルを建物の外壁等に設置して使用すればよい。また、カーテンウオールに設置することもできる。その他、スパンドレルや方立等への取り付けも可能である。
1.5窓
また、シースルーの窓に使用することもできる。有機太陽電池の緑色系の色合いが、環境対策が重要視される時代において意匠的な美観も得られるので好適である。
その他建築の外装としてひさし、ルーバー、手摺等にも使用できる。このような場合においても、本発明の薄膜太陽電池の柔軟性が、これら用途にとり好適である。
2.内装
本発明の薄膜太陽電池はブラインドのスラットに取り付けることもできる。本発明の薄膜太陽電池は軽量であり、柔軟性に富むことから、このような用途が可能となる。また、内容用窓についても有機太陽電池素子がシースルーである特性を生かし使用することができる。
蛍光灯などの照明光を活用する植物工場の設置件数は増えているが,照明に掛かる電気代や光源の交換費用などによって栽培コストを引き下げにくいというのが現状である。そこで本発明の薄膜太陽電池を野菜工場に設置し、LEDまたは蛍光灯と組み合わせた照明システムを作製することができる。
また、野菜等を一定温度で輸送するリーファー・コンテナ (reefer container)の屋根や側壁に本発明の太陽電池を用いることもできる。
本発明の薄膜太陽電池は、駐車場の外壁や高速道路の遮音壁や浄水場の外壁等にも用いることができる。
5.自動車
本発明の薄膜太陽電池は、自動車のボンネット、ルーフ、トランクリッド、ドア、フロントフェンダー、リアフェンダー、ピラー、バンパー、バックミラーなどの表面に用いることができる。得られた電力は走行用モータ、モータ駆動用バッテリー、電装品及び電装品用バッテリーのいずれに供給することができる。太陽電池パネルにおける発電状況と該走行用モータ、該モータ駆動用バッテリー、該電装品及び該電装品用バッテリーにおける
電力使用状況とに合わせて選択する制御手段とを備えることで、得られた電力が適正にかつ効率的に使用することができる
前記の場合、基材12の形状に制限はないが、通常は板材を使用する。また、基材12の材料、寸法等は、その使用環境に応じて任意に設定すればよい。
(合成例1)BINAPOの合成
<実施例1>
電子供与性分子構造を有するレジオレギュラーポリ−3−ヘキシルチオフェン(P3HT、Rieke Metals社製)及び電子受容性分子構造を有する1−(3−メトキシカルボニル)プロピル−1−フェニル(6,6)−C 61)(PCBM、フロンティアカーボン社
製)を重量比1:0.8で、2.1重量%の濃度でo−ジクロロベンゼンに溶解させた。得られた溶液を、40℃で窒素雰囲気中、4時間スターラーで攪拌混合した。その後、混合溶液を自転・公転ミキサー(シンキー製、ARE−310)で攪拌混合した。自転攪拌の回転数は毎分800回転、公転攪拌の強度(回転数)は約400G(毎分2000回転)、運転時間は30秒であった。撹拌後の溶液を0.45μmのポリテトラフルオロエチ
レン(PTFE)フィルターで濾過し、半導体溶液を作製した。
超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、120℃で大気中5分間加熱乾燥した。最後に紫外線オゾン洗浄を行なった。
洗浄したITO付透明基板上に、0.45μmのポリフッ化ビニリデン(PVDF)フィルターで濾過したポリ(3,4−エチレンジオキシチオフェン)ポリ(スチレンスルホン酸)水性分散液(エイチ・シー・スタルク社製 商品名「CLEVIOSTM P VP AI4083」)をスピンコートした後、120℃で大気中10分間加熱乾燥した。更に窒素雰囲気下で上記基板を180℃で3分間加熱処理を施し、正孔取り出し層を作成した。正孔取り出し層の膜厚は60nmであった。
理した後、照射光源としてエアマス(AM)1.5G、放射照度100mW/cm2のソ
ーラシミュレータを用い、ソースメーター(ケイスレー社製,2400型)により、作製した太陽電池の電流電圧特性を4mm角のメタルマスクを付けて窒素雰囲気下で電流電圧特性を測定し、その結果を表1に記載した。
実施例において、自転攪拌及び公転攪拌混合を行わず、マグネチックスターラー攪拌のみで半導体溶液を作製した以外は、同様にして、有機薄膜太陽電池を作製した。電流電圧特性の結果を表1に記載した。
実施例1において、アニール処理を以下のように行った以外は、同様にして、太陽電池を作製した。各温度ごとの電流電圧特性の結果を表2に記載した。
有機薄膜太陽電池を窒素雰囲気中で90℃、5分間及び100℃、5分間のアニール処
理した後、5分間、10℃刻みで温度を上昇させつつ、130℃までのさらなるアニール
処理を行った。
101 透明電極
102,104 バッファー層
103 p型半導体、n型半導体混合層
105 対向電極
1 耐候性保護フィルム
2 紫外線カットフィルム
3,9 ガスバリアフィルム
4,8 ゲッター材フィルム
5,7 封止材
6 太陽電池素子
10 バックシート
11 シール材
12 基材
13 太陽電池ユニット
14 薄膜太陽電池
Claims (7)
- p型半導体とn型半導体を含む半導体溶液であって、そのいずれか一方が少なくとも高分子化合物である半導体溶液を、自転攪拌を行うと同時に公転攪拌を行うことを特徴とする半導体溶液の製造方法。
- 自転攪拌の回転数が、毎分200回転以上2000回転以下である請求項1に記載の半導体溶液の製造方法。
- 公転攪拌の強度が、200G以上800G以下である請求項1又は2に記載の半導体溶液の製造方法。
- 高分子化合物がチオフェン骨格を主鎖に含むものである請求項1から3のいずれか一項に記載の半導体溶液の製造方法。
- n型半導体がフラーレン化合物である請求項1から4のいずれか一項に記載の半導体溶液の製造方法。
- 光電変換素子の製造方法において、
(1)基板上に電極を形成する工程、
(2)請求項1〜5のいずれか一項に記載の製造方法により得られた半導体溶液を電極上に
塗布し、半導体膜を形成する工程、
(3)もう一方の電極を形成する工程
を行った後に、アニ−ル処理を行うことを特徴とする光電変換素子の製造方法。 - 少なくとも、1対の電極、請求項1〜6のいずれか一項に記載の製造方法により得られた半導体溶液を塗布して得られた半導体層、バッファー層を有することを特徴とする光電変換素子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009264343A JP2011108951A (ja) | 2009-11-19 | 2009-11-19 | 半導体溶液の製造方法及びそれを用いた光電変換素子 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009264343A JP2011108951A (ja) | 2009-11-19 | 2009-11-19 | 半導体溶液の製造方法及びそれを用いた光電変換素子 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011108951A true JP2011108951A (ja) | 2011-06-02 |
Family
ID=44232103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009264343A Pending JP2011108951A (ja) | 2009-11-19 | 2009-11-19 | 半導体溶液の製造方法及びそれを用いた光電変換素子 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011108951A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014207321A (ja) * | 2013-04-12 | 2014-10-30 | 三菱化学株式会社 | 有機薄膜太陽電池素子 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004165474A (ja) * | 2002-11-14 | 2004-06-10 | Matsushita Electric Ind Co Ltd | 光電変換素子及びその製造方法 |
JP2005032793A (ja) * | 2003-07-08 | 2005-02-03 | Matsushita Electric Ind Co Ltd | 有機光電変換素子 |
JP2006057057A (ja) * | 2004-08-23 | 2006-03-02 | Bussan Nanotech Research Institute Inc | カーボンナノ構造体を含有する熱硬化性樹脂組成物およびその製造方法 |
WO2008004386A1 (fr) * | 2006-06-05 | 2008-01-10 | Tohoku University | Matériau composite hautement fonctionnel et procédé permettant de le fabriquer |
JP2008533210A (ja) * | 2005-03-11 | 2008-08-21 | 株式会社日本触媒 | ポリイミド溶液の製造方法および含フッ素ポリイミド溶液 |
WO2008111202A1 (ja) * | 2007-03-14 | 2008-09-18 | Pioneer Corporation | 有機太陽電池の製造方法、有機太陽電池の製造方法により製造された有機太陽電池及び、有機太陽電池 |
WO2008152889A1 (ja) * | 2007-06-11 | 2008-12-18 | Konica Minolta Holdings, Inc. | 光電変換素子、光電変換素子の製造方法、イメージセンサおよび放射線画像検出器 |
JP2009196965A (ja) * | 2008-02-25 | 2009-09-03 | Frontier Carbon Corp | フラーレン誘導体組成物及びその製造方法 |
-
2009
- 2009-11-19 JP JP2009264343A patent/JP2011108951A/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004165474A (ja) * | 2002-11-14 | 2004-06-10 | Matsushita Electric Ind Co Ltd | 光電変換素子及びその製造方法 |
JP2005032793A (ja) * | 2003-07-08 | 2005-02-03 | Matsushita Electric Ind Co Ltd | 有機光電変換素子 |
JP2006057057A (ja) * | 2004-08-23 | 2006-03-02 | Bussan Nanotech Research Institute Inc | カーボンナノ構造体を含有する熱硬化性樹脂組成物およびその製造方法 |
JP2008533210A (ja) * | 2005-03-11 | 2008-08-21 | 株式会社日本触媒 | ポリイミド溶液の製造方法および含フッ素ポリイミド溶液 |
WO2008004386A1 (fr) * | 2006-06-05 | 2008-01-10 | Tohoku University | Matériau composite hautement fonctionnel et procédé permettant de le fabriquer |
WO2008111202A1 (ja) * | 2007-03-14 | 2008-09-18 | Pioneer Corporation | 有機太陽電池の製造方法、有機太陽電池の製造方法により製造された有機太陽電池及び、有機太陽電池 |
WO2008152889A1 (ja) * | 2007-06-11 | 2008-12-18 | Konica Minolta Holdings, Inc. | 光電変換素子、光電変換素子の製造方法、イメージセンサおよび放射線画像検出器 |
JP2009196965A (ja) * | 2008-02-25 | 2009-09-03 | Frontier Carbon Corp | フラーレン誘導体組成物及びその製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014207321A (ja) * | 2013-04-12 | 2014-10-30 | 三菱化学株式会社 | 有機薄膜太陽電池素子 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5920677B2 (ja) | 新規コポリマー、有機半導体材料、及びこれを用いた有機電子デバイス、光電変換素子並びに太陽電池モジュール | |
JP2012064645A (ja) | 有機光電変換素子及びその製造方法 | |
JP2012199541A (ja) | 有機薄膜太陽電池素子、太陽電池及び太陽電池モジュール | |
JP2012216832A (ja) | 光電変換素子、太陽電池、太陽電池モジュール及びインク | |
JP2011119648A (ja) | 光電変換素子及びこれを用いた太陽電池 | |
JP2010021498A (ja) | 薄膜太陽電池、太陽電池ユニット及び太陽電池構造体 | |
JP5743301B2 (ja) | ポリマー、有機半導体材料、並びにこれを用いた有機電子デバイス、光電変換素子及び太陽電池モジュール | |
JPWO2012102390A1 (ja) | 光電変換素子、太陽電池及び太陽電池モジュール | |
JP5652712B2 (ja) | 光電変換素子及びその製造方法、並びにインク | |
JP2013168672A (ja) | 膜状太陽電池及び太陽電池パネル | |
JP5601039B2 (ja) | チアジアゾール含有高分子 | |
JP5822117B2 (ja) | 光電変換素子、フラーレン化合物の製造方法、及びフラーレン化合物 | |
JP5633184B2 (ja) | 光電変換素子 | |
JP2012191194A (ja) | 光電変換素子、太陽電池及び太陽電池モジュール並びにこれらの製造方法 | |
JP2010021502A (ja) | ブラインド用太陽電池パネル及び縦型ブラインド | |
JP2013179297A (ja) | 光学制御層を有する太陽電池セル | |
JP2010021499A (ja) | 車両用太陽電池パネル、太陽電池付き車両及び太陽電池シート | |
JP2010021501A (ja) | ブラインド用太陽電池パネル及びブラインド | |
JP5605299B2 (ja) | 新規コポリマー、有機半導体材料、及びこれを用いた有機電子デバイス並びに太陽電池モジュール | |
JP2013055322A (ja) | 光電変換素子、太陽電池及び太陽電池モジュール | |
JP5445200B2 (ja) | ビシクロポルフィリン化合物及び溶媒を含有する光電変換素子半導体層形成用組成物、それを用いて得られる光電変換素子。 | |
JP2010049998A (ja) | コンセント及び電源供給切替装置 | |
JP5569021B2 (ja) | 光電変換素子の製造方法 | |
JP2011192916A (ja) | 光電変換素子およびその素子の製造方法 | |
JP2010021500A (ja) | 電力供給システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120724 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130723 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130724 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130918 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131126 |