JP2011072175A - 電力変換装置、及びその制御方法 - Google Patents
電力変換装置、及びその制御方法 Download PDFInfo
- Publication number
- JP2011072175A JP2011072175A JP2010107517A JP2010107517A JP2011072175A JP 2011072175 A JP2011072175 A JP 2011072175A JP 2010107517 A JP2010107517 A JP 2010107517A JP 2010107517 A JP2010107517 A JP 2010107517A JP 2011072175 A JP2011072175 A JP 2011072175A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- srp
- stn
- voltage
- switching elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims description 8
- 230000002441 reversible effect Effects 0.000 claims abstract description 57
- 239000003990 capacitor Substances 0.000 claims description 29
- 230000001360 synchronised effect Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 45
- 239000011159 matrix material Substances 0.000 description 24
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 22
- 230000000903 blocking effect Effects 0.000 description 20
- 238000001514 detection method Methods 0.000 description 12
- 230000018199 S phase Effects 0.000 description 11
- 230000004048 modification Effects 0.000 description 11
- 238000012986 modification Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 7
- VGVRFARTWVJNQC-UHFFFAOYSA-N 2-(2,4-dichlorophenoxy)acetamide Chemical compound NC(=O)COC1=CC=C(Cl)C=C1Cl VGVRFARTWVJNQC-UHFFFAOYSA-N 0.000 description 5
- 230000000295 complement effect Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 2
- 230000010349 pulsation Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/02—Conversion of AC power input into DC power output without possibility of reversal
- H02M7/04—Conversion of AC power input into DC power output without possibility of reversal by static converters
- H02M7/12—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M7/219—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/02—Conversion of AC power input into DC power output without possibility of reversal
- H02M7/04—Conversion of AC power input into DC power output without possibility of reversal by static converters
- H02M7/12—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Rectifiers (AREA)
- Ac-Ac Conversion (AREA)
Abstract
【解決手段】コンバータ部(2)には、2つの直流リンク部(L1,L2)間に直列接続した2つのスイッチング素子(Srp,…,Stn)の組を3組設け、直列接続における各接続ノードに入力三相交流の相を1つずつ接続する。それぞれのスイッチング素子(Srp,…,Stn)は、バイポーラ構造を含んだトランジスタで構成する。また、制御部(5)は、入力三相交流の1つの相を基準相として、基準相と他のそれぞれの相との線間電圧が時分割で2つの直流リンク部(L1,L2)に出力されるように、それぞれのスイッチング素子(Srp,…,Stn)を制御する。そして、制御部(5)は、スイッチング素子(Srp,…,Stn)のうち、逆バイアスが印加されているものに所定のゲート電圧を印加する。
【選択図】図5
Description
2つの出力線(L1,L2)間に直列接続した2つのスイッチング素子(Srp,…,Stn)の組を3組有し、前記直列接続における各接続ノードに入力三相交流の相が1つずつ接続されたコンバータ部(2)と、
前記入力三相交流の1つの相を基準相として、前記基準相と他のそれぞれの相との線間電圧が時分割で前記2つの出力線(L1,L2)に出力されるように、スイッチング素子(Srp,…,Stn)のオンオフを制御する制御部(5)と、
を備え、
それぞれのスイッチング素子(Srp,…,Stn)は、バイポーラ構造を含んだトランジスタで構成され、
前記制御部(5)は、前記スイッチング素子(Srp,…,Stn)のうち、逆バイアスが印加されているスイッチング素子(Srp,…,Stn)に所定のゲート電圧を印加することを特徴とする。
第1の発明の電力変換装置において、
前記基準相は、前記入力三相交流を2つの相電圧が正で残りの相電圧が負となる期間であるセクターと、2つの相電圧が負で残りの相電圧が正となる期間であるセクターとに分けたそれぞれのセクターにおいて電圧の絶対値が最大となる相をセクター毎に選択したものであり、
前記基準相以外の相であって電圧の絶対値が大きい方の相を最大相とした場合に、
前記制御部(5)は、少なくとも前記最大相の順バイアスが印加されたスイッチング素子(Srp,…,Stn)を所定の通流比(drt,dst)でオンオフ制御することを特徴とする。
第2の発明の電力変換装置において、
前記制御部(5)における前記オンオフ制御の対象は、前記最大相のスイッチング素子(Srp,…,Stn)のみであることを特徴とする。
第2の発明の電力変換装置において、
前記基準相及び前記最大相以外の相を中間相とした場合に、
各セクターの一部の期間は、前記順バイアスが印加されているスイッチング素子(Srp,…,Stn)と、前記中間相に対応したスイッチング素子(Srp,…,Stn)のうち電流が流出する側のスイッチング素子(Srp,…,Stn)とを、所定の通流比(drt,dst)で相補的にオンオフ制御し、残りの期間は、前記順バイアスが印加されているスイッチング素子(Srp,…,Stn)のみを所定の通流比(drt,dst)でオンオフ制御することを特徴とする。
第4の発明の電力変換装置において、
前記入力三相交流の各相には、フィルタコンデンサ(C11,C12,C13)が設けられ、
前記一部の期間は、前記最大相に対応したフィルタコンデンサ(C11,C12,C13)の電圧よりも前記中間相に対応したフィルタコンデンサ(C11,C12,C13)の電圧の方が大きい期間を含む期間であることを特徴とする。
第4又は第5の発明の電力変換装置において、
前記一部の期間は、前記入力三相交流の位相角30度分に相当する期間であることを特徴とする。
第2の発明の電力変換装置において、
前記基準相及び前記最大相以外の相を中間相とした場合に、
前記制御部(5)は、前記順バイアスが印加されているスイッチング素子(Srp,…,Stn)と、前記中間相に対応したスイッチング素子(Srp,…,Stn)のうち電流が流出する側のスイッチング素子(Srp,…,Stn)とを、所定の通流比(drt,dst)で相補的にオンオフ制御することを特徴とする。
第1から第7の発明のうちの何れか一つの電力変換装置において、
前記制御部(5)は、前記入力三相交流に同期した電源同期信号(Vr)に基づいて、前記入力三相交流の各相に対応した台形波形状の電圧指令信号(Vr*,Vs*,Vt*)の傾斜領域を求める台形波状電圧指令生成部(11)を備え、
前記制御部(5)は、何れかの1つの相の前記電圧指令信号(Vr*,Vs*,Vt*)を用いて、それぞれのスイッチング素子(Srp,…,Stn)のゲート信号を生成することを特徴とする。
第1から第8の発明のうちの何れか1つの電力変換装置において、
前記出力線(L1,L2)に出力された電力を所定の単相交流又は多相交流に変換するインバータ部(3)を備えていることを特徴とする。
2つの出力線(L1,L2)間に直列接続した、バイポーラ構造を含んだトランジスタからなる2つのスイッチング素子(Srp,…,Stn)の組を3組有し、前記直列接続における各接続ノードに入力三相交流の相が1つずつ接続されたコンバータ部(2)を有した電力変換装置の制御方法であって、
前記入力三相交流の1つの相を基準相として選択する選択ステップと、
前記基準相と他のそれぞれの相との線間電圧が時分割で前記2つの出力線(L1,L2)に出力されるように、所定のスイッチング素子(Srp,…,Stn)のオンオフ制御を行う制御ステップと、
前記オンオフ制御の際に逆バイアスが印加されるスイッチング素子(Srp,…,Stn)を特定する逆バイアス素子特定ステップと、
前記逆バイアス素子特定ステップで特定したスイッチング素子(Srp,…,Stn)に、前記オンオフ制御の際に所定のゲート電圧を印加するゲート電圧印加ステップと、
を備えたことを特徴とする制御方法である。
《概要》
実施形態1では、本発明の電力変換装置の一例として、マトリックスコンバータの例を説明する。図1は、本発明の実施形態1に係るマトリックスコンバータ(1)の構成を示すブロック図である。このマトリックスコンバータ(1)は、コンバータ部(2)、インバータ部(3)、クランプ回路(4)、制御部(5)、及びLCフィルタ回路(6)を備えている。そして、マトリックスコンバータ(1)には、三相交流電源(7)とモータ(8)とが接続されており、三相交流電源(7)が出力する三相交流(以下、入力三相交流という)の相電圧(Vr,Vs,Vt)を、コンバータ部(2)によって、直流電圧成分に交流電圧成分が重畳した直流電圧に変換し、その直流電圧をインバータ部(3)によって三相交流(以下、出力三相交流という)に変換してモータ(8)に供給するようになっている。このモータ(8)は、例えば空気調和機の冷媒回路に設けられた圧縮機を駆動するものである。図1では、このモータ(8)を、3つのコイル(L21,L22,L23)と3つの抵抗(R21,R22,R23)が三相スター結合された負荷として表している。
以下では、マトリックスコンバータ(1)の各構成要素について詳述する。
LCフィルタ回路(6)は、前記入力三相交流のそれぞれの相に対応した3つのコイル(L11,L12,L13)と3つのフィルタコンデンサ(C11,C12,C13)とを備えたLCフィルタである。このLCフィルタ回路(6)は、コンバータ部(2)等のスイッチング素子(後述)のオンオフ動作によって生じる高周波電流が三相交流電源(7)側に流れ込むのを抑制するために設けている。具体的に、この例では、三相交流電源(7)の相電圧(Vr)がコイル(L11)に、相電圧(Vs)がコイル(L12)に、相電圧(Vt)がコイル(L13)にそれぞれ入力されている。
-概要-
コンバータ部(2)は、入力三相交流をスイッチング素子(後述)でスイッチングして、2レベルの直流電圧に変換して出力するようになっている。コンバータ部(2)におけるスイッチングは制御部(5)が制御する。
本実施形態のコンバータ部(2)は、具体的には図1に示すように、上アームを構成する3つのスイッチング素子(Srp,Ssp,Stp)と、下アームを構成する3つのスイッチング素子(Srn,Ssn,Stn)を備えている。本実施形態では、上及び下アームの各スイッチング素子(Srp,…,Stn)を単方向スイッチング素子によって構成している。より具体的には、各スイッチング素子(Srp,…,Stn)として、いわゆる逆阻止IGBTを採用している。なお、図1では、コンバータ部(2)の各スイッチング素子(Srp,…,Stn)のコレクタにダイオードのシンボルが記載されているが、実際にこれらのダイオードが別個に接続されているのではなく、この図は、各スイッチング素子(Srp,…,Stn)が逆方向の電圧を阻止することを模式的に示している(以下、他の図でも同様)。すなわち、コンバータ部(2)では、この逆阻止IGBTの採用により従来のコンバータ回路では必要であった逆阻止ダイオードが不要になり、コンバータ部(2)における導通損失の低減を期待できる。
クランプ回路(4)は、2つのコンデンサ(C1,C2)と、3つのダイオード(D1,D2,D3)を備えている。このクランプ回路(4)は、コンデンサ(C1)の一端を、第1直流リンク部(L1)に接続し、そのコンデンサ(C1)の他端にダイオード(D1)のアノードを接続している。そして、このダイオード(D1)のカソードにはコンデンサ(C2)の一端を接続し、そのコンデンサ(C2)の他端は第2直流リンク部(L2)に接続している。
インバータ部(3)は、コンバータ部(2)が出力した直流電圧を、相電圧がVu,Vv,Vwである出力三相交流に変換してモータ(8)に供給するようになっている。具体的には、本実施形態のインバータ部(3)は、図1に示すように、上アームを構成する3つのスイッチング素子(Sup,Svp,Swp)及び3つのダイオード(Dup,Dvp,Dwp)、下アームを構成する3つのスイッチング素子(Sun,Svn,Swn)及び3つのダイオード(Dun,Dvn,Dwn)を備えている。このインバータ部(3)では、上及び下アームの各スイッチング素子(Sup,…,Swn)に一般的なIGBTを採用している。
制御部(5)は、コンバータ部(2)とインバータ部(3)をPWM変調方式(Pulse Width Modulation)でそれぞれ制御する。例えばコンバータ部(2)に対しては、入力三相交流の1つの相を基準相として、基準相と他のそれぞれの相との線間電圧が時分割で第1及び第2直流リンク部(L1,L2)に出力されるように、スイッチング素子(Srp,…,Stn)のオンオフを制御する。
台形波状電圧指令生成部(11)は、電源同期信号(Vr)が入力され、該電源同期信号(Vr)に基づいて台形波状電圧指令信号(Vr*,Vs*,Vt*)の傾斜領域の値を、入力三相交流の各相に対応して生成するようになっている。なお、電源同期信号(Vr)は、入力三相交流の何れかの相に同期した信号である。
キャリヤ信号生成部(15)は、キャリヤ信号を生成するようになっている。このキャリヤ信号は三角波状の信号である。
比較部(12)は、台形波状電圧指令生成部(11)が生成した台形波状電圧指令信号(Vr*,Vs*,Vt*)と、キャリヤ信号生成部(15)が生成したキャリヤ信号とを比較する。
電流形ゲート論理変換部(13)は、比較部(12)における比較結果に基づいて、6つのゲート信号を出力する。これらのゲート信号は、コンバータ部(2)の6つのスイッチング素子(Srp,…,Stn)のゲートを制御するための信号である。
中間相検出部(14)は、前記台形波状電圧指令信号(Vr*,Vs*,Vt*)に基づいて、中間相の通流比(drt,dst)を検出する。
最大相素子検出部(16)は、電源同期信号(Vr)に基づいて、入力三相交流の各相電圧(Vr,Vs,Vt)のなかから前記最大相を検出する。
導通素子選択部(17)は、最大相素子検出部(16)の検出結果に基づいて、最大相に対応したスイッチング素子(Srp,…,Stn)のうち、順バイアスが印加されているスイッチング素子のゲート(制御端子)に対しては、電流形ゲート論理変換部(13)の出力をそのまま印加し、最大相のもう一方のスイッチング素子、中間相に対応したスイッチング素子、及び基準相に対応したスイッチング素子に対しては、電流形ゲート論理変換部(13)の出力にかかわらず、ゲートに所定のゲート電圧を印加する。すなわち、本実施形態の制御部(5)は、6つのスイッチング素子(Srp,…,Stn)のうち、逆バイアスが印加されているスイッチング素子に所定のゲート電圧を印加する。ここで、所定のゲート電圧とは、スイッチング素子のコレクタ・エミッタ間が導通する電圧と等しい電圧であるが、漏れ電流値に応じて、より低い電圧または高い電圧を適宜選択することも可能である。
出力電圧指令生成部(21)は、インバータ部(3)に対する出力電圧指令信号(Vu*,Vv*,Vw*)を生成する。
演算部(22)は、前記出力電圧指令信号(Vu*,Vv*,Vw*)と前記通流比(drt,dst)に基づいて、
drt+dstV* (V*:各相の電圧ベクトル)を出力する。
drt(1-V*) (V*:各相の電圧ベクトル)を出力する。
比較部(24)は、2つの演算部(22,23)におけるそれぞれの演算結果と、キャリヤ信号生成部(15)が生成したキャリヤ信号とを比較する。
論理和演算部(25)は、上記比較部(24)における比較結果に基づいて、ゲート信号を出力する。これらのゲート信号は、インバータ部(3)の6つのスイッチング素子(Sup,…,Swn)をオンオフ制御する信号である。
図5は、セクター1におけるコンバータ部(2)の状態を説明する図であり、(A)がコンバータ部(2)の主要部を模式的に表した等価回路図、(B)が位相角30〜60°の期間における状態を示す等価回路図、(C)が位相角60〜90°の期間における状態を示す等価回路図である。以下では、セクター1を位相角30〜60°の期間と位相角60〜90°の期間に分けて、マトリックスコンバータ(1)の動作を説明する。
図6は、セクター1の位相角30〜60°の期間において、マトリックスコンバータ(1)で行われるPWM変調を説明する図である。図6において、tsはキャリヤ周期、I(rt)は電流指令、I(st)は電流指令、drt、dstは通流比、IdcはDCリンク電流、V0,V4,V6は電圧指令、d0は電圧指令V0に対応する通流比、d4は電圧指令V4に対応する通流比である。
セクター1のこの期間でも、t相が基準相である(図2(A)を参照)。一方、この期間の最大相はs相であり、中間相はr相である。図7は、セクター1の位相角60〜90°の期間に、マトリックスコンバータ(1)で行われるPWM変調を説明する図である。この期間には、制御部(5)は図7に示すように、最大相、すなわちs相に対応したスイッチング素子(Ssp)のみを、上記通流比(drt,dst)に応じてオンオフ制御し、コンバータ部(2)におけるその他のスイッチング素子(Srp,Stp,Srn,Ssn,Stn)に所定のゲート電圧を印加する。この状態では、スイッチング素子(Ssp)以外の、コンバータ部(2)におけるスイッチング素子には逆バイアスが印加される。そして、コンバータ部(2)の各スイッチング素子(Srp,…,Stn)は単方向スイッチなので、逆バイアスが印加されたスイッチング素子のゲート電圧を印加しても電流は流れない。
図8は、セクター2におけるコンバータ部(2)の状態を説明する図であり、(A)がコンバータ部(2)の主要部を模式的に表した等価回路図、(B)が位相角90〜120°の期間における状態を示す等価回路図、(C)が位相角120〜150°の期間における状態を示す等価回路図である。このマトリックスコンバータ(1)は、セクター2では、各相電圧(Vr,Vs,Vt)の関係から、基準相の下アーム側のスイッチング素子を上記通流比(drt,dst)でオンオフ制御し、その他のスイッチング素子を、所定のゲート電圧が印加された状態に固定する。なお、このセクター2でも位相角30°ごとに、最大相となる相と中間相となる相のが入れ替わるので、セクター1で行ったのと同様に、30°ごとの期間に分けて制御を行う。そして、本実施形態のマトリックスコンバータ(1)では、上記と同様の動作が繰り返される。このときの各相のゲート信号、入力三相交流の電圧、及び入力電流の波形は図9のようになる。同図に示すように、本実施形態では、何れかの1相の一方のスイッチング素子が所定の通流比でオンオフ制御されている。
逆阻止IGBTはコレクタ・エミッタ間に逆バイアスが印加されると、比較的大きな漏れ電流を生ずるが、このように逆バイアスが印加された状態でゲート電圧を印加すると、漏れ電流が低減するという特性を有していることが知られている。その点、このマトリックスコンバータ(1)では、制御部(5)が、逆バイアスが印加されたスイッチング素子に、所定のゲート電圧が印加されるように制御しているので、各スイッチング素子(Srp,…,Stn)に逆阻止IGBTを採用しても、逆バイアスが印加された際の漏れ電流を低減させることが可能になる。そして、逆阻止IGBTを採用した結果、従来必要であった逆阻止ダイオードが不要になり、コンバータ部(2)における導通抵抗の低減も可能になる。
上記実施形態1の変形例として、制御部の他の例を説明する。図10は、本変形例にかかる制御部(30)の構成を示すブロック図である。制御部(30)は、上記実施形態1における制御部(5)のコンバータ制御部(5a)の構成を変更したものである。具体的に制御部(30)のコンバータ制御部(30a)は、比較部(12)、電流形ゲート論理変換部(13)及び導通素子選択部(17)に代えて、導通素子選択部(31)、比較部(32)を設けたものである。
実施形態2では、制御部の他の構成例を説明する。図12は、本発明の実施形態2に係る制御部(50)の構成を示すブロック図である。この制御部(50)は、コンバータ制御部(50a)とインバータ制御部(5b)とを備えている。すなわち、この制御部(50)は、コンバータ制御部(50a)の構成が実施形態1とは異なっている。本実施形態のコンバータ制御部(50a)は、台形波状電圧指令生成部(11)、中間相検出部(14),キャリヤ信号生成部(15)、第1ゲート信号生成部(51)、第2ゲート信号生成部(52)、セレクタ(53)、及びセレクタ制御部(54)を備えている。なお、中間相検出部(14)及びキャリヤ信号生成部(15)は、インバータ制御部(5b)と共用してる。
以下では、例としてモード0における動作を説明する。図13は、モード0における入力三相交流の各相の電圧の波形図である。モード0では、基準相はt相で、前半の期間ではr相が最大相、s相が中間相であり、後半の期間ではs相が最大相、r相が中間相である(図11を参照)。従前の図9では、例えば位相角30〜90°(セクター1)の期間が対応する。このモード0では、図13に示すように、位相角60°で中間相と最大相が入れ替わっている。
図15(本実施形態)を図9(実施形態1)とを比べると、本実施形態では、入力三相交流の電流の歪が改善していることが分かる。これは、次に説明する理由によるものである。
図18は、本発明の実施形態3に係る制御部(60)の構成を示すブロック図である。この制御部(60)は、コンバータ制御部(60a)とインバータ制御部(5b)とを備えている。すなわち、この制御部(60)は、コンバータ制御部(60a)の構成が実施形態1とは異なっている。本実施形態のコンバータ制御部(60a)は、台形波状電圧指令生成部(11)、電流形ゲート論理変換部(13)、中間相検出部(14),キャリヤ信号生成部(15)、マスク信号生成部(61)、及びマルチプレクサ(62)を備えている。なお、中間相検出部(14)及びキャリヤ信号生成部(15)は、インバータ制御部(5b)と共用してる。
図20は、実施形態3における各相のゲート信号、入力三相交流の電圧、及び入力電流の波形をそれぞれ示す図である。本実施形態のコンバータ制御部(60a)によれば、例えば、モード4では、スイッチング素子(Srp)とスイッチング素子(Stp)とが相補的に所定の通流比でオンオフ動作を行って、r相とt相とが変調される。すなわち、このマトリックスコンバータ(1)では、2相変調が行われるのである。このとき、r相の下アームのスイッチング素子(Srn)、t相の下アームのスイッチング素子(Stn)、及びs相の2つのスイッチング素子(Ssp,Ssn)のそれぞれのゲートには、マルチプレクサ(62)によってHレベルの信号が印加される。他のモードでも同様に2相変調を行いつつ、スイッチングを行っていないスイッチング素子(Srp,…,Stn)にHレベルの信号が印加される。
以上のように、本実施形態では、各モードの全域にわたって2相変調が行われるので、入力電流の歪を前記の各実施形態や変形例よりも、より小さくすることが可能になる。しかも、逆バイアス状態のスイッチング素子には所定のゲート電圧が印加されるので、漏れ電流の低減も可能になる。
なお、電力変換装置は、例えば、インバータ部(3)を省略し、コンバータ部(2)によって前記直流電圧を出力する装置として構成してもよい。
2 コンバータ部
3 インバータ部
5 制御部
11 台形波状電圧指令生成部
30 制御部
50 制御部
60 制御部
L1 第1直流リンク部(出力線)
L2 第2直流リンク部(出力線)
Srp,…,Stn スイッチング素子
Claims (10)
- 2つの出力線(L1,L2)間に直列接続した2つのスイッチング素子(Srp,…,Stn)の組を3組有し、前記直列接続における各接続ノードに入力三相交流の相が1つずつ接続されたコンバータ部(2)と、
前記入力三相交流の1つの相を基準相として、前記基準相と他のそれぞれの相との線間電圧が時分割で前記2つの出力線(L1,L2)に出力されるように、スイッチング素子(Srp,…,Stn)のオンオフを制御する制御部(5)と、
を備え、
それぞれのスイッチング素子(Srp,…,Stn)は、バイポーラ構造を含んだトランジスタで構成され、
前記制御部(5)は、前記スイッチング素子(Srp,…,Stn)のうち、逆バイアスが印加されているスイッチング素子(Srp,…,Stn)に所定のゲート電圧を印加することを特徴とする電力変換装置。 - 請求項1の電力変換装置において、
前記基準相は、前記入力三相交流を2つの相電圧が正で残りの相電圧が負となる期間であるセクターと、2つの相電圧が負で残りの相電圧が正となる期間であるセクターとに分けたそれぞれのセクターにおいて電圧の絶対値が最大となる相をセクター毎に選択したものであり、
前記基準相以外の相であって電圧の絶対値が大きい方の相を最大相とした場合に、
前記制御部(5)は、少なくとも前記最大相の順バイアスが印加されたスイッチング素子(Srp,…,Stn)を所定の通流比(drt,dst)でオンオフ制御することを特徴とする電力変換装置。 - 請求項2の電力変換装置において、
前記制御部(5)における前記オンオフ制御の対象は、前記最大相のスイッチング素子(Srp,…,Stn)のみであることを特徴とする電力変換装置。 - 請求項2の電力変換装置において、
前記基準相及び前記最大相以外の相を中間相とした場合に、
各セクターの一部の期間は、前記順バイアスが印加されているスイッチング素子(Srp,…,Stn)と、前記中間相に対応したスイッチング素子(Srp,…,Stn)のうち電流が流出する側のスイッチング素子(Srp,…,Stn)とを、所定の通流比(drt,dst)で相補的にオンオフ制御し、残りの期間は、前記順バイアスが印加されているスイッチング素子(Srp,…,Stn)のみを所定の通流比(drt,dst)でオンオフ制御することを特徴とする電力変換装置。 - 請求項4の電力変換装置において、
前記入力三相交流の各相には、フィルタコンデンサ(C11,C12,C13)が設けられ、
前記一部の期間は、前記最大相に対応したフィルタコンデンサ(C11,C12,C13)の電圧よりも前記中間相に対応したフィルタコンデンサ(C11,C12,C13)の電圧の方が大きい期間を含む期間であることを特徴とする電力変換装置。 - 請求項4又は請求項5の電力変換装置において、
前記一部の期間は、前記入力三相交流の位相角30度分に相当する期間であることを特徴とする電力変換装置。 - 請求項2の電力変換装置において、
前記基準相及び前記最大相以外の相を中間相とした場合に、
前記制御部(5)は、前記順バイアスが印加されているスイッチング素子(Srp,…,Stn)と、前記中間相に対応したスイッチング素子(Srp,…,Stn)のうち電流が流出する側のスイッチング素子(Srp,…,Stn)とを、所定の通流比(drt,dst)で相補的にオンオフ制御することを特徴とする電力変換装置。 - 請求項1から請求項7のうちの何れか一つの電力変換装置において、
前記制御部(5)は、前記入力三相交流に同期した電源同期信号(Vr)に基づいて、前記入力三相交流の各相に対応した台形波形状の電圧指令信号(Vr*,Vs*,Vt*)の傾斜領域を求める台形波状電圧指令生成部(11)を備え、
前記制御部(5)は、何れかの1つの相の前記電圧指令信号(Vr*,Vs*,Vt*)を用いて、それぞれのスイッチング素子(Srp,…,Stn)のゲート信号を生成することを特徴とする電力変換装置。 - 請求項1から請求項8のうちの何れか1つの電力変換装置において、
前記出力線(L1,L2)に出力された電力を所定の単相交流又は多相交流に変換するインバータ部(3)を備えていることを特徴とする電力変換装置。 - 2つの出力線(L1,L2)間に直列接続した、バイポーラ構造を含んだトランジスタからなる2つのスイッチング素子(Srp,…,Stn)の組を3組有し、前記直列接続における各接続ノードに入力三相交流の相が1つずつ接続されたコンバータ部(2)を有した電力変換装置の制御方法であって、
前記入力三相交流の1つの相を基準相として選択する選択ステップと、
前記基準相と他のそれぞれの相との線間電圧が時分割で前記2つの出力線(L1,L2)に出力されるように、所定のスイッチング素子(Srp,…,Stn)のオンオフ制御を行う制御ステップと、
前記オンオフ制御の際に逆バイアスが印加されるスイッチング素子(Srp,…,Stn)を特定する逆バイアス素子特定ステップと、
前記逆バイアス素子特定ステップで特定したスイッチング素子(Srp,…,Stn)に、前記オンオフ制御の際に所定のゲート電圧を印加するゲート電圧印加ステップと、
を備えたことを特徴とする電力変換装置の制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010107517A JP4626722B1 (ja) | 2009-08-26 | 2010-05-07 | 電力変換装置、及びその制御方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009195097 | 2009-08-26 | ||
JP2010107517A JP4626722B1 (ja) | 2009-08-26 | 2010-05-07 | 電力変換装置、及びその制御方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4626722B1 JP4626722B1 (ja) | 2011-02-09 |
JP2011072175A true JP2011072175A (ja) | 2011-04-07 |
Family
ID=43627474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010107517A Active JP4626722B1 (ja) | 2009-08-26 | 2010-05-07 | 電力変換装置、及びその制御方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8773870B2 (ja) |
EP (1) | EP2472708B1 (ja) |
JP (1) | JP4626722B1 (ja) |
KR (1) | KR101343189B1 (ja) |
CN (1) | CN102474192B (ja) |
AU (1) | AU2010288068B2 (ja) |
WO (1) | WO2011024351A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013106375A (ja) * | 2011-11-10 | 2013-05-30 | Mitsubishi Heavy Ind Ltd | モータ駆動装置 |
US10148201B2 (en) | 2017-02-10 | 2018-12-04 | Fanuc Corporation | Motor drive device |
WO2019159632A1 (ja) * | 2018-02-16 | 2019-08-22 | 本田技研工業株式会社 | インバータ発電機 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102185504A (zh) * | 2011-05-17 | 2011-09-14 | 成都芯源系统有限公司 | 电源电路及控制电源电路的方法 |
JP5229419B2 (ja) * | 2011-09-26 | 2013-07-03 | ダイキン工業株式会社 | 電力変換器制御方法 |
TWI568149B (zh) * | 2012-07-12 | 2017-01-21 | 台達電子工業股份有限公司 | 電能轉換裝置及其控制方法 |
US9270198B2 (en) * | 2013-03-12 | 2016-02-23 | University Of Tennessee Research Foundation | Control of parallel-connected current source rectifiers |
JP5946880B2 (ja) * | 2014-09-26 | 2016-07-06 | ファナック株式会社 | Lclフィルタ保護機能を有するモータ制御装置 |
EP3353374A4 (en) * | 2015-09-22 | 2019-05-22 | Services Petroliers Schlumberger | HOLE GENERATOR SYSTEM |
JP6330209B1 (ja) | 2017-10-30 | 2018-05-30 | フェニックス電機株式会社 | Ledランプ、およびそれを備える照明装置 |
JP7159227B2 (ja) * | 2018-02-07 | 2022-10-24 | 日立ジョンソンコントロールズ空調株式会社 | 電力変換装置、並びにそれを用いたモータ駆動装置および冷凍機器 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002209390A (ja) * | 2000-11-13 | 2002-07-26 | Denso Corp | 電力変換装置及び多相負荷の駆動制御方法 |
JP2003092888A (ja) * | 2001-09-20 | 2003-03-28 | Denso Corp | 電力変換装置及び多相負荷の駆動制御方法 |
JP2005210831A (ja) * | 2004-01-22 | 2005-08-04 | Fuji Electric Holdings Co Ltd | 電力制御装置 |
JP2006166582A (ja) * | 2004-12-07 | 2006-06-22 | Fuji Electric Holdings Co Ltd | 電力変換装置 |
JP2007028860A (ja) * | 2005-07-21 | 2007-02-01 | Hitachi Ltd | 電力変換装置及びこれを備えた鉄道車輌 |
WO2007123118A1 (ja) * | 2006-04-20 | 2007-11-01 | Daikin Industries, Ltd. | 電力変換装置および電力変換装置の制御方法 |
JP2009106111A (ja) * | 2007-10-24 | 2009-05-14 | Daikin Ind Ltd | 電力変換装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6324085B2 (en) | 1999-12-27 | 2001-11-27 | Denso Corporation | Power converter apparatus and related method |
DE10146527A1 (de) * | 2001-09-21 | 2003-04-24 | Siemens Ag | Umrichter mit einem netz- und lastseitigen selbstgeführten Pulsstromrichter |
JP3841282B2 (ja) * | 2002-03-20 | 2006-11-01 | 株式会社安川電機 | Pwmインバータ装置 |
US6995992B2 (en) * | 2003-06-20 | 2006-02-07 | Wisconsin Alumni Research Foundation | Dual bridge matrix converter |
JP4021431B2 (ja) * | 2004-08-10 | 2007-12-12 | ファナック株式会社 | コンバータ装置、インバータ装置及びdcリンク電圧の制御方法 |
US7518891B2 (en) * | 2005-08-02 | 2009-04-14 | Rockwell Automation Technologies, Inc. | Auxiliary circuit for use with three-phase drive with current source inverter powering a single-phase load |
JP4135026B2 (ja) | 2006-04-20 | 2008-08-20 | ダイキン工業株式会社 | 電力変換装置および電力変換装置の制御方法 |
JP4240141B1 (ja) * | 2007-10-09 | 2009-03-18 | ダイキン工業株式会社 | 直接形交流電力変換装置 |
JP5304192B2 (ja) * | 2008-03-28 | 2013-10-02 | ダイキン工業株式会社 | 電力変換装置 |
-
2010
- 2010-05-07 AU AU2010288068A patent/AU2010288068B2/en active Active
- 2010-05-07 CN CN201080035825.7A patent/CN102474192B/zh active Active
- 2010-05-07 US US13/392,132 patent/US8773870B2/en active Active
- 2010-05-07 KR KR1020127004898A patent/KR101343189B1/ko active IP Right Grant
- 2010-05-07 EP EP10811410.9A patent/EP2472708B1/en active Active
- 2010-05-07 WO PCT/JP2010/003144 patent/WO2011024351A1/ja active Application Filing
- 2010-05-07 JP JP2010107517A patent/JP4626722B1/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002209390A (ja) * | 2000-11-13 | 2002-07-26 | Denso Corp | 電力変換装置及び多相負荷の駆動制御方法 |
JP2003092888A (ja) * | 2001-09-20 | 2003-03-28 | Denso Corp | 電力変換装置及び多相負荷の駆動制御方法 |
JP2005210831A (ja) * | 2004-01-22 | 2005-08-04 | Fuji Electric Holdings Co Ltd | 電力制御装置 |
JP2006166582A (ja) * | 2004-12-07 | 2006-06-22 | Fuji Electric Holdings Co Ltd | 電力変換装置 |
JP2007028860A (ja) * | 2005-07-21 | 2007-02-01 | Hitachi Ltd | 電力変換装置及びこれを備えた鉄道車輌 |
WO2007123118A1 (ja) * | 2006-04-20 | 2007-11-01 | Daikin Industries, Ltd. | 電力変換装置および電力変換装置の制御方法 |
JP2009106111A (ja) * | 2007-10-24 | 2009-05-14 | Daikin Ind Ltd | 電力変換装置 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013106375A (ja) * | 2011-11-10 | 2013-05-30 | Mitsubishi Heavy Ind Ltd | モータ駆動装置 |
US10148201B2 (en) | 2017-02-10 | 2018-12-04 | Fanuc Corporation | Motor drive device |
DE102018000827B4 (de) | 2017-02-10 | 2023-03-16 | Fanuc Corporation | Motorantriebsvorrichtung |
WO2019159632A1 (ja) * | 2018-02-16 | 2019-08-22 | 本田技研工業株式会社 | インバータ発電機 |
CN111801882A (zh) * | 2018-02-16 | 2020-10-20 | 本田技研工业株式会社 | 逆变发电机 |
CN111801882B (zh) * | 2018-02-16 | 2024-01-12 | 本田技研工业株式会社 | 逆变发电机 |
Also Published As
Publication number | Publication date |
---|---|
US20120163045A1 (en) | 2012-06-28 |
KR101343189B1 (ko) | 2013-12-19 |
CN102474192B (zh) | 2014-09-10 |
EP2472708A1 (en) | 2012-07-04 |
AU2010288068A1 (en) | 2012-03-29 |
CN102474192A (zh) | 2012-05-23 |
JP4626722B1 (ja) | 2011-02-09 |
AU2010288068B2 (en) | 2014-10-02 |
US8773870B2 (en) | 2014-07-08 |
EP2472708A4 (en) | 2017-01-04 |
EP2472708B1 (en) | 2018-12-19 |
KR20120035945A (ko) | 2012-04-16 |
WO2011024351A1 (ja) | 2011-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4626722B1 (ja) | 電力変換装置、及びその制御方法 | |
JP4534007B2 (ja) | ソフトスイッチング電力変換装置 | |
US8885377B2 (en) | Matrix converter | |
JP5631499B2 (ja) | 電力変換装置 | |
CA2929041A1 (en) | Dc power-supply device and refrigeration cycle device | |
TWI660566B (zh) | 電力變換裝置 | |
JP2011120349A (ja) | 3相インバータ装置 | |
KR102387744B1 (ko) | Ac-ac 컨버터 회로 | |
AU2016234332A1 (en) | Inverter control method | |
JP4423950B2 (ja) | 交流交流直接変換器の制御装置 | |
JP6016836B2 (ja) | 電力変換装置、および電力変換制御方法 | |
CN113541569B (zh) | 电机驱动装置、方法、空调及计算机可读存储介质 | |
JP2020005462A (ja) | 電力変換装置の制御装置 | |
JP6440067B2 (ja) | 電力変換装置 | |
JP2007330023A (ja) | 電力変換装置及び圧縮機 | |
JP5849632B2 (ja) | 電力変換装置 | |
JP2008099508A (ja) | 電力変換装置およびこれを用いた空気調和機 | |
JP3296424B2 (ja) | 電力変換装置 | |
Klumpner | A new two-stage voltage source inverter with modulated DC-link voltage and reduced switching losses | |
JP2006158001A (ja) | インバータ装置 | |
JP3969021B2 (ja) | 電源装置及びスイッチング電源の制御方法 | |
JP2018093610A (ja) | 電力変換回路 | |
JP6575865B2 (ja) | 3レベルインバータの制御方法及び制御装置 | |
CN118137871A (zh) | 一种可变励磁双极性逆变器拓扑及控制系统 | |
JP2018023175A (ja) | 電流形電力変換装置の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101012 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101025 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131119 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4626722 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131119 Year of fee payment: 3 |