JP2011071925A - 移動体追尾装置および方法 - Google Patents
移動体追尾装置および方法 Download PDFInfo
- Publication number
- JP2011071925A JP2011071925A JP2009223463A JP2009223463A JP2011071925A JP 2011071925 A JP2011071925 A JP 2011071925A JP 2009223463 A JP2009223463 A JP 2009223463A JP 2009223463 A JP2009223463 A JP 2009223463A JP 2011071925 A JP2011071925 A JP 2011071925A
- Authority
- JP
- Japan
- Prior art keywords
- subject
- evaluation
- weight
- input image
- tracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 11
- 238000011156 evaluation Methods 0.000 claims abstract description 59
- 238000000605 extraction Methods 0.000 claims abstract description 16
- 210000000746 body region Anatomy 0.000 claims description 7
- 230000007423 decrease Effects 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Landscapes
- Image Processing (AREA)
- Studio Devices (AREA)
- Image Analysis (AREA)
Abstract
【課題】被写体の追尾における画像特徴量の重み付け評価に用いられる重みの更新を適切な入力画像から行えるようにし、被写体追尾の信頼性を向上する。
【解決手段】被写体認識部140は、入力画像において特定の被写体が存在する被写体領域を認識し、その認識の信頼度を出力する。追尾評価値算出部170は、入力画像から抽出した部分領域であって被写体領域を含む移動体領域と、後続の入力画像より抽出した抽出領域との間で、複数種類の画像特徴量について重み付け評価をする。移動体判定部180は、重み付け評価の結果に基づいて後続の入力画像における移動体領域に対応する領域を決定することにより、特定の被写体を追尾する。重み算出部150は、被写体認識部140により出力された信頼度が閾値を超えている場合に、上記重み付け評価に用いられる重みを、当該認識が行われた入力画像に基づいて更新する。
【選択図】 図1
【解決手段】被写体認識部140は、入力画像において特定の被写体が存在する被写体領域を認識し、その認識の信頼度を出力する。追尾評価値算出部170は、入力画像から抽出した部分領域であって被写体領域を含む移動体領域と、後続の入力画像より抽出した抽出領域との間で、複数種類の画像特徴量について重み付け評価をする。移動体判定部180は、重み付け評価の結果に基づいて後続の入力画像における移動体領域に対応する領域を決定することにより、特定の被写体を追尾する。重み算出部150は、被写体認識部140により出力された信頼度が閾値を超えている場合に、上記重み付け評価に用いられる重みを、当該認識が行われた入力画像に基づいて更新する。
【選択図】 図1
Description
本発明は、移動体追尾装置および方法に関し、より具体的には、撮像された画像において所定の対象物を追尾する移動体追尾装置および方法に関する。
一般に、移動被写体を撮影する際に自動的に被写体を追尾して、焦点検出や露出演算を行うデジタルカメラが知られている。デジタルカメラ等の撮像装置により入力された画像内で被写体を特定し追尾する技術に関しては様々な方法が提案されている。例えば移動物体の色やヒストグラムなどの特徴量に注目して追尾制御を行うものがある(特許文献2を参照)。また、この他にも、移動物体の一部をテンプレートとして記憶して追尾を行う方式や、動きベクトルに注目して追尾を行う方式などが知られている。
特定された被写体から抽出した特徴量に基づいて時間軸上でフレーム間のマッチングを取り、被写体を含む一定領域を切り出すことによって追尾を行う場合、輝度信号および色信号の差分の合計を追尾のための評価値として用いる方法がある。しかしながら同輝度の背景に対して輝度信号を用いたり、彩度の低い領域に対して色信号を用いたりして評価値を算出すると、追尾の精度が低下するという課題があった。そこで、被写体と背景に応じて適した重みを輝度信号および色信号に持たせることにより、すなわち、重み付け評価を行うことにより評価値の信頼性を向上することが提案されている。
特許文献1では、カメラから入力された画像を複数の領域に分割し、輝度や色などその領域の特徴量と背景の特徴量をフレーム毎に更新し比較することで移動物体を検出し追尾する構成が記載されている。また、特許文献2では、カメラから入力された画像から特定の被写体を抽出するために、被写体領域の色成分や明度成分などの重み付け加算量を特徴量として用いる構成が記載されている。
しかしながら、特許文献1、特許文献2に記載されている構成では、重み付け評価に用いられる重みを更新するタイミングについて考慮がなされていない。すなわち、重みを更新するための画像として適切か否かを判断することは考慮されていない。例えば、特許文献1に記載されている構成では、被写体領域を正しく認識できていないタイミングに色成分と明度成分に対するそれぞれの重みを更新する可能性がある。そして、そのような更新が行われると、その時点での被写体と背景に適した評価値を算出することができなくなり、追尾を行う場合に精度が低下してしまう。また、特許文献2に開示されている構成では、同様に輝度と彩度の重みを更新するタイミングが考慮されていないため、被写体領域と背景領域によっては追尾に適した評価値を算出することができない。以上のように、移動体の追尾において入力画像の一部領域と移動体領域から評価値を算出する際に、移動体とその背景に応じて適した重みを輝度信号および色信号に持たせることにより、評価値の信頼性を向上することは提案されている。しかしながら、重みを更新するタイミングによっては追尾の精度が低下してしまうという課題があり、このような課題については考慮されていない。
本発明は、上記の課題に鑑みてなされたものであり、被写体の追尾における画像特徴量の重み付け評価に用いられる重みの更新を適切な入力画像から行えるようにし、被写体追尾の信頼性を向上することを目的とする。
上記の目的を達成するための本発明の一態様による被写体追尾装置は以下の構成を備える。すなわち、
入力画像において特定の被写体が存在する被写体領域を認識し、その認識の信頼度を出力する認識手段と、
前記入力画像から抽出した部分領域であって前記被写体領域を含む移動体領域と、後続の入力画像より抽出した抽出領域との間で、複数種類の画像特徴量について重み付け評価をする評価手段と、
前記評価手段による評価の結果に基づいて前記移動体領域に対応する抽出領域を決定することにより、前記後続の入力画像において前記特定の被写体を追尾する追尾手段と、
前記認識手段が出力した信頼度が閾値を超えている場合に、前記評価手段が行う重み付け評価に用いられる重みを、当該認識が行われた前記入力画像に基づいて更新する更新手段とを備える。
入力画像において特定の被写体が存在する被写体領域を認識し、その認識の信頼度を出力する認識手段と、
前記入力画像から抽出した部分領域であって前記被写体領域を含む移動体領域と、後続の入力画像より抽出した抽出領域との間で、複数種類の画像特徴量について重み付け評価をする評価手段と、
前記評価手段による評価の結果に基づいて前記移動体領域に対応する抽出領域を決定することにより、前記後続の入力画像において前記特定の被写体を追尾する追尾手段と、
前記認識手段が出力した信頼度が閾値を超えている場合に、前記評価手段が行う重み付け評価に用いられる重みを、当該認識が行われた前記入力画像に基づいて更新する更新手段とを備える。
本発明によれば、被写体の追尾における画像特徴量の重み付け評価に用いられる重みの更新を適切な入力画像から行えるようになり、被写体追尾の信頼性が向上する。
以下、添付の図面を参照して本発明の実施形態を詳細に説明する。
まず、被写体の追尾について説明する。連続して撮影されるフレーム画像において移動体の位置を判定する際には、前フレームに移動体を含む領域と判定した領域に対して移動体に最も近いと思われる領域への動きベクトルを求める。このとき評価値として、入力された画像の一部の領域と特定の領域に対して輝度信号と色信号の差分値の合計を順次求めていき、入力画像においてその合計値が最小となる領域を移動体領域であると判定する。図5を用いてこれらを説明していく。
まず、被写体の追尾について説明する。連続して撮影されるフレーム画像において移動体の位置を判定する際には、前フレームに移動体を含む領域と判定した領域に対して移動体に最も近いと思われる領域への動きベクトルを求める。このとき評価値として、入力された画像の一部の領域と特定の領域に対して輝度信号と色信号の差分値の合計を順次求めていき、入力画像においてその合計値が最小となる領域を移動体領域であると判定する。図5を用いてこれらを説明していく。
図5の(a)は撮影されたフレーム画像800を示しており、サイズは1440×720であるとする。抽出領域810は、フレーム画像800から切り出した120×120のサイズを持つ部分領域である。図5の(b)の移動体領域700は、図5の(a)よりも前の時間に撮影されたフレーム画像から移動体の領域として判定された、サイズが120×120の画像である。撮影されたフレームにおける位置(X, Y )から120×120の抽出領域810を切り出して、移動体領域700と輝度および色差の差分の合計を求める。すなわち、評価値Eを以下の[数1]式により算出する。
ここで、Yinは撮影されたフレーム画像800から切り出した位置(x, y)における輝度信号、Yは移動体領域700の位置(x,y)における輝度信号である。同様に、UinおよびVinは撮影されたフレーム画像800から切り出した位置(x, y)における色差信号、UおよびVは移動体領域700の位置(x,y)における色差信号である。また、上記の[数1]式において、a、b、cは各差分値に付加される重みである。これを撮影されたフレーム画像に対して順次算出していき、値が最小となる位置(X, Y )を新たな移動体領域と判定する。
図1に、移動体追尾装置を備えた撮像装置の構成図を示す。撮像装置としては、デジタルスチルカメラ、デジタルビデオカメラ、携帯電話等が挙げられる。図1において、光学系100は、一枚または複数枚のレンズで構成され、フォーカスレンズも備える。撮像素子110は光学系100からの光信号を光電変換する。撮像素子110としては、例えばCCD(Charge Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)などが挙げられる。A/D変換部120は、撮像素子110からの電気信号をデジタル信号に変換する。信号処理部130は、A/D変換部120により得られたデジタル信号に色変換処理などを行い、撮影画像を生成する。
被写体認識部140は、信号処理部130で生成された撮影画像から人物の顔など主要な被写体を認識し、認識の信頼度と被写体が存在する被写体領域の位置を出力する。重み算出部150は、被写体領域と被写体領域の周辺である背景領域とにおいて輝度信号と色信号の平均値をそれぞれ算出し、輝度信号に対する重みと色信号に対する重みをそれぞれ算出する。なお、重み算出部150は、被写体認識部140が出力する被写体認識に対する信頼度に応じて、重みの算出を実行するか否か(重みを更新するか否か)を判断する。追尾評価値算出部170は、被写体を含む所定の大きさの移動領域の輝度信号および色信号と、撮影された後続の画像から抽出された抽出領域の輝度信号および色信号との差分をとり、追尾評価値Eを算出する。この評価値Eの算出において、追尾評価値算出部170は、[数1]式で示したように、重み算出部150が出力する重み(a,b,c)を、それぞれの上記差分に付加し、追尾評価値Eを算出する。移動体判定部180は、追尾評価値算出部170が出力する追尾評価値が最小となる抽出領域を判定し、その位置を出力する。表示部190は、移動体判定部180が出力した移動体領域に対応した移動体追尾枠を生成し、また被写体認識部140が出力した被写体領域に対応した被写体認識枠を生成し、撮影された画像にこれらを重ね合わせてLCDなどの画面に表示する。
図2は移動体追尾処理の流れを示すフローチャートである。S200では被写体認識部140が撮影された画像内から主要な被写体を認識し、認識された被写体が存在する領域(被写体領域)の位置とその認識結果の信頼度をスコアとして出力する。S210では、重み算出部150が、S200において得られた認識に対するスコアを予め定められた閾値と比較する。重み算出部150は、スコアが閾値よりも大きい値と判定した場合には、S220において、[数1]式における重みa、b、cの各値を新たに算出し、メモリ(不図示)に記憶する。一方、重み算出部150は、スコアが閾値以下であると判定した場合には、重みの各値は更新せず、メモリには直前の重み値が維持される。S230において、追尾評価値算出部170は、メモリに記憶されている重みの値(S220において新たに算出した重みの値かあるいは保持した重みの値)を用いて、[数1]式により評価値Eを算出する。S240において、移動体判定部180は、S230において算出された評価値Eが最小となる抽出領域の位置( X, Y )を決定する。これにより、後続の入力画像における、移動体領域に対応する領域(抽出領域)が決定される。S250において、表示部190は、S240で決定された位置( X, Y )を始点とした所定の大きさの枠を、撮影された画像に重ね合わせて表示する。ここで、所定の大きさの枠は、例えば抽出領域と同じ大きさにしてもよい。
次に、図3、図4を用いて、被写体として人物の顔を認識し追尾する場合の一例を説明する。図3において、300は信号処理部130から出力される連続するフレーム画像を時系列に番号を付して示したものであり、丸印のフレームは重みa、b、cを算出する際に参照されるフレームを示している。また、310は時間軸を表し、被写体認識のスコアを閾値と比較して決定された、重みを更新するタイミングを示したものである。ここでは、フレーム画像に対して顔を認識したときの信頼度のスコアは、その2フレーム後に出力されるようになっている。
図4において、400は信号処理部130が出力するフレーム画像であり、410は連続するフレームの番号であり、図3内の番号に対応している。背景420および背景430は画像における背景であるが、背景420は人物の顔と近い輝度値を有する領域である。440は被写体認識部140が生成する被写体認識枠であり、450は移動体判定部180が生成する移動体追尾枠である。
フレーム1では、被写体認識部140によって被写体である顔の領域が正しく認識されており、また移動体追尾枠も被写体を捉えている。フレーム3のタイミングで、認識のスコアが閾値よりも大きいと判定されるため、重み算出部150はフレーム1の画像を元に追尾評価値算出部170が用いる重みを更新する。このとき、移動体領域の被写体領域以外の領域(以下、背景領域)の輝度と色差の平均値(Yback、Uback、Vback)と、被写体領域の輝度と色差の平均値(Yobj、Uobj、Vobj)を求める。そして、それぞれの差分の絶対値|Yback- Yobj|、|Uback - Uobj|、|Vback - Vobj|を算出する。フレーム1では、移動体領域(被写体追尾枠450内の領域)において、上記3つの値は0に近い値にならないことから、顔と背景は十分に異なる輝度および色差の値をとっていることがわかる。この場合、上述の[数1]式において輝度値に付する重みaと色信号に付する重みb、cを同程度として差分の合計値を算出することにする。図6の(a)に輝度値に対する重みaの値と、被写体と背景領域との輝度値の差|Yback- Yobj|との関係の一例を示す。また、図6の(b)(c)に、色差に対する重みb、cの値と、被写体と背景領域との色差の差|Uback- Uobj|、|Vback- Vobj|との関係の一例を示す。図6の(a)〜(c)における602の区間においては、輝度値に付する重みaと色信号に付する重みb、cが同程度となっている。
しかしフレーム2では被写体が移動したことによって顔を正確に認識できなくなり、移動体追尾枠も被写体を正しく捉えられず被写体を除いた領域が枠の大部分を占めている。従って、フレーム4のタイミングでは、被写体と背景の位置関係が不明瞭であるフレーム2を元に追尾評価値算出のための重みa、b、cが算出されることになる。しかしながら、重み算出部150では、被写体認識部140から出力されるスコアが低いため、そのようなフレーム2の画像を元に重みの値を設定することはない(S210でNO)。すなわち、被写体と背景の位置関係が不明瞭であるようなフレーム4からは適切な重みの値を設定することは困難であるため、重みの算出および更新は行わないように制御される。フレーム4では顔の認識が再び正しく行われ、それとともに移動体追尾枠も被写体を捉えられており、フレーム6(非表示)のタイミングで認識のスコアが閾値よりも大きいと判定されるため、重みa、b、cが新たに算出され更新される。このとき、|Yback - Yobj|、|Uback - Uobj|、|Vback - Vobj|を算出すると、背景420が移動体領域の大きな領域を占めているため、|Yback- Yobj|の値は0に近い値になる。このことから顔(被写体)と背景の輝度値が近い値をとっていることがわかる。そのため輝度の差分は追尾の評価値としては適さないと考えられ、[数1]式において輝度に付する重みaを0とするか、あるいは輝度値の差分を求める演算を省略することによって評価値を算出する。
次に、色情報に関わる重みの更新について説明する。図4において、背景420は人物の顔と近い色差値を有する領域であるとする。フレーム1では被写体である顔の領域が正しく認識されており、また移動体追尾枠も被写体を捉えている。このため、フレーム3のタイミングで認識のスコアが閾値よりも大きいと判定され、重み算出部150はフレーム1の画像を元に重みa、b、cを更新する。また、重み算出部150は、顔と背景の位置関係が不明瞭であるフレーム2を元には重みの更新を行わず、顔の認識が正しく行われているフレーム4を元にフレーム6のタイミングで重みを更新する。このとき、移動体領域の大きな領域が背景420で占められるため、|Uback - Uobj|、|Vback - Vobj|の値はそれぞれ0に近い値になる。このことから、顔(被写体)と背景の色差値が近い値をとっていることがわかる。そのため色差の差分は追尾の評価値としては適さないと考えられ、[数1]式において色差に付する重みb、cを0とするか、あるいは色差値の差分を求める演算を省略することによって差分の合計値を算出する。
また、背景420が、輝度値および色差値がともに0に近い値を有する領域である場合を説明する。フレーム1に基づく重み値の更新は上述したとおりである。また、フレーム2に基づく重み値の更新が行われないことも上述のとおりである。フレーム4では顔の認識が正しく行われているためフレーム6のタイミングで重みが更新されることになる。このとき、移動体領域の大きな領域が背景420の画像(輝度値および色差値がともに0に近い画像)となっている。この場合、被写体と背景の輝度値と色差値がともに低く、ゲインアップした場合にノイズが多くのるため、ノイズの影響を受けやすい色信号については重みb、cを輝度信号の重みaよりも小さく設定して評価値を算出する。この状態は図6における区間601で示されている。
なお、実施形態では、人物の顔の認識および追尾について説明したが、被写体としてはこれに限られるものではない。また被写体の認識は毎フレーム行い、認識の結果が2フレーム後に出力される場合について説明したがこれに限られるものではない。認識が毎フレーム行われない場合や、認識の結果が0フレーム後、すなわち同じタイミングのフレームにおいて出力される場合であっても、本発明は実施可能であることは明らかである。
また、上記実施形態では、移動体領域700と抽出領域810とについて重み付け評価を行う複数種類の画像特徴量として輝度情報と色情報を用いたが、これに限られるものではない。例えば、移動体領域700と抽出領域810とのエッジ量などを用いて、これら領域間の評価を行うようにしても良い。
以上のように、本実施形態によれば、移動体追尾において被写体が正しく認識されたときに被写体とその背景の信号を見て追尾評価値の算出に用いるそれぞれの重みを適切な値に更新することができる。従って、被写体の背景の輝度および色などが変化するシーンにおいても精度が低下することなく被写体の追尾を実現することが可能となり、精度の高い移動体の追尾が可能となる。
Claims (7)
- 入力画像において特定の被写体が存在する被写体領域を認識し、その認識の信頼度を出力する認識手段と、
前記入力画像から抽出した部分領域であって前記被写体領域を含む移動体領域と、後続の入力画像より抽出した抽出領域との間で、複数種類の画像特徴量について重み付け評価をする評価手段と、
前記評価手段による評価の結果に基づいて前記移動体領域に対応する抽出領域を決定することにより、前記後続の入力画像において前記特定の被写体を追尾する追尾手段と、
前記認識手段が出力した信頼度が閾値を超えている場合に、前記評価手段が行う重み付け評価に用いられる重みを、当該認識が行われた前記入力画像に基づいて更新する更新手段とを備えることを特徴とする移動体追尾装置。 - 前記複数種類の画像特徴量は輝度情報と色情報を含むことを特徴とする請求項1に記載の移動体追尾装置。
- 前記更新手段は、前記認識手段が認識した前記被写体領域の輝度情報および色情報と、前記移動体領域における前記被写体領域以外の背景領域の輝度情報および色情報とに基づいて、前記重みを更新することを特徴とする請求項2に記載の移動体追尾装置。
- 前記更新手段は、前記被写体領域と前記背景領域の輝度情報の差分値が予め設定した閾値以下ならば、前記重み評価における輝度情報に対する重みを0とすることを特徴とする請求項3に記載の移動体追尾装置。
- 前記更新手段は、前記被写体領域と前記背景領域の色情報の差分値が予め設定した閾値以下ならば、前記重み評価における色情報に対する重みを0とすることを特徴とする請求項3または4に記載の移動体追尾装置。
- 前記更新手段は、前記背景領域の輝度情報および色情報が予め設定した閾値以下ならば、前記重み評価における輝度信号の重みを色信号の重みよりも大きくすることを特徴とする請求項3乃至5のいずれか1項に記載の移動体追尾装置。
- 入力画像において特定の被写体が存在する被写体領域を認識し、その認識の信頼度を出力する認識工程と、
前記入力画像から抽出した部分領域であって前記被写体領域を含む移動体領域と、後続の入力画像より抽出した抽出領域との間で、複数種類の画像特徴量について重み付け評価をする評価工程と、
前記評価工程における評価の結果に基づいて前記移動体領域に対応する抽出領域を決定することにより、前記後続の入力画像において前記特定の被写体を追尾する追尾工程と、
前記認識工程で出力された信頼度が閾値を超えている場合に、前記評価工程で行われる重み付け評価に用いられる重みを、当該認識が行われた前記入力画像に基づいて更新する更新工程とを有することを特徴とする移動体追尾装置の制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009223463A JP2011071925A (ja) | 2009-09-28 | 2009-09-28 | 移動体追尾装置および方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009223463A JP2011071925A (ja) | 2009-09-28 | 2009-09-28 | 移動体追尾装置および方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011071925A true JP2011071925A (ja) | 2011-04-07 |
JP2011071925A5 JP2011071925A5 (ja) | 2012-11-08 |
Family
ID=44016721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009223463A Abandoned JP2011071925A (ja) | 2009-09-28 | 2009-09-28 | 移動体追尾装置および方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011071925A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013001940A1 (ja) * | 2011-06-29 | 2013-01-03 | オリンパスイメージング株式会社 | 追尾装置及び追尾方法 |
JP2013200530A (ja) * | 2012-03-26 | 2013-10-03 | Canon Inc | 撮像装置およびその制御方法 |
JP2015119326A (ja) * | 2013-12-18 | 2015-06-25 | キヤノン株式会社 | 画像処理装置、方法及びプログラム |
KR101658472B1 (ko) * | 2015-04-23 | 2016-09-30 | 국방과학연구소 | 영상 분할 신뢰도 추출 기법을 이용한 표적 분류 장치 및 표적 분류 방법 |
WO2017042854A1 (ja) * | 2015-09-07 | 2017-03-16 | オリンパス株式会社 | 画像処理装置および画像処理方法 |
-
2009
- 2009-09-28 JP JP2009223463A patent/JP2011071925A/ja not_active Abandoned
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013001940A1 (ja) * | 2011-06-29 | 2013-01-03 | オリンパスイメージング株式会社 | 追尾装置及び追尾方法 |
JP5226903B1 (ja) * | 2011-06-29 | 2013-07-03 | オリンパスイメージング株式会社 | 追尾装置及び追尾方法 |
US8878940B2 (en) | 2011-06-29 | 2014-11-04 | Olympus Imaging Corp. | Tracking apparatus for tracking target subject in input image |
JP2013200530A (ja) * | 2012-03-26 | 2013-10-03 | Canon Inc | 撮像装置およびその制御方法 |
JP2015119326A (ja) * | 2013-12-18 | 2015-06-25 | キヤノン株式会社 | 画像処理装置、方法及びプログラム |
US9936158B2 (en) | 2013-12-18 | 2018-04-03 | Canon Kabushiki Kaisha | Image processing apparatus, method and program |
KR101658472B1 (ko) * | 2015-04-23 | 2016-09-30 | 국방과학연구소 | 영상 분할 신뢰도 추출 기법을 이용한 표적 분류 장치 및 표적 분류 방법 |
WO2017042854A1 (ja) * | 2015-09-07 | 2017-03-16 | オリンパス株式会社 | 画像処理装置および画像処理方法 |
US10264223B2 (en) | 2015-09-07 | 2019-04-16 | Olympus Corporation | Image processing device and image processing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8509482B2 (en) | Subject tracking apparatus, subject region extraction apparatus, and control methods therefor | |
JP5567853B2 (ja) | 画像認識装置および方法 | |
KR101130775B1 (ko) | 촬영 장치, 화상 영역의 존재 여부 판정 방법, 및 기록 매체 | |
US9036038B2 (en) | Information processing apparatus and method for extracting and categorizing postures of human figures | |
JP6049448B2 (ja) | 被写体領域追跡装置、その制御方法及びプログラム | |
CN111107276B (zh) | 信息处理设备及其控制方法、存储介质以及摄像系统 | |
JP5704905B2 (ja) | 画像処理装置及び画像処理方法、プログラム、並びに記憶媒体 | |
US20100053358A1 (en) | Image capturing apparatus and method for controlling the same | |
KR101686943B1 (ko) | 디지털 촬영 장치 및 이의 제어 방법 | |
US10013632B2 (en) | Object tracking apparatus, control method therefor and storage medium | |
CN101155263A (zh) | 图像处理装置、方法和程序以及图像拾取装置 | |
JP2009081714A (ja) | 撮像装置および撮像装置における顔領域決定方法 | |
US7397955B2 (en) | Digital camera and method of controlling same | |
US20210256713A1 (en) | Image processing apparatus and image processing method | |
JP2009123081A (ja) | 顔検出方法及び撮影装置 | |
JP2011071925A (ja) | 移動体追尾装置および方法 | |
US12096124B2 (en) | Subject tracking device, subject tracking method, and storage medium | |
JP5167236B2 (ja) | 被写体追跡装置及びその制御方法 | |
JP2010021916A (ja) | 画像処理装置 | |
JP5539565B2 (ja) | 撮像装置及び被写体追跡方法 | |
JP2008006149A (ja) | 瞳孔検出装置、及び虹彩認証装置、並びに瞳孔検出方法 | |
JP5451364B2 (ja) | 被写体追跡装置及びその制御方法 | |
JP5995610B2 (ja) | 被写体認識装置及びその制御方法、撮像装置、表示装置、並びにプログラム | |
JP5247419B2 (ja) | 撮像装置および被写体追跡方法 | |
JP5222429B2 (ja) | 被写体追跡装置及びその制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120925 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120925 |
|
A762 | Written abandonment of application |
Free format text: JAPANESE INTERMEDIATE CODE: A762 Effective date: 20130729 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130801 |