[go: up one dir, main page]

JP2011044369A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2011044369A
JP2011044369A JP2009192682A JP2009192682A JP2011044369A JP 2011044369 A JP2011044369 A JP 2011044369A JP 2009192682 A JP2009192682 A JP 2009192682A JP 2009192682 A JP2009192682 A JP 2009192682A JP 2011044369 A JP2011044369 A JP 2011044369A
Authority
JP
Japan
Prior art keywords
outer peripheral
layer
electrode layer
battery
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009192682A
Other languages
Japanese (ja)
Inventor
Mitsuyasu Ogawa
光靖 小川
Kentaro Yoshida
健太郎 吉田
Taku Kamimura
卓 上村
Ryoko Kanda
良子 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009192682A priority Critical patent/JP2011044369A/en
Publication of JP2011044369A publication Critical patent/JP2011044369A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

【課題】充放電を繰り返しても放電容量が低下し難い非水電解質電池を提供する。
【解決手段】正極層1、負極層2、およびこれら電極層の間に配される固体電解質層3を備える非水電解質電池100である。この電池100に備わる固体電解質層3は、その外周縁部を含む外周領域3tと、外周領域3tに囲まれる内方領域3rとを備え、外周領域3tにおけるLiイオン伝導度は、内方領域3rにおけるLiイオン伝導度よりも低い。このような構成とすることで、電池100の充電時に負極層2の外周縁部にLiイオンが集中することを抑制できるので、当該外周縁部の劣化を防止できる。その結果、繰り返しの充放電にも放電容量が低下し難い電池100となる。
【選択図】図1
Disclosed is a nonaqueous electrolyte battery in which the discharge capacity is unlikely to decrease even after repeated charging and discharging.
A non-aqueous electrolyte battery 100 includes a positive electrode layer 1, a negative electrode layer 2, and a solid electrolyte layer 3 disposed between the electrode layers. The solid electrolyte layer 3 included in the battery 100 includes an outer peripheral region 3t including an outer peripheral portion thereof, and an inner region 3r surrounded by the outer peripheral region 3t, and the Li ion conductivity in the outer peripheral region 3t is determined by the inner region 3r. Lower than the Li ion conductivity. By setting it as such a structure, since it can suppress that Li ion concentrates on the outer periphery part of the negative electrode layer 2 at the time of charge of the battery 100, the deterioration of the said outer periphery part can be prevented. As a result, the battery 100 is less likely to have a reduced discharge capacity even during repeated charging and discharging.
[Selection] Figure 1

Description

本発明は、正極層、負極層、およびこれら電極層の間に配される固体電解質層を備える非水電解質電池に関するものである。特に、本発明は、繰り返しの充放電にも放電容量が低下し難い非水電解質電池に関するものである。   The present invention relates to a non-aqueous electrolyte battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between these electrode layers. In particular, the present invention relates to a non-aqueous electrolyte battery in which the discharge capacity does not easily decrease even during repeated charge and discharge.

携帯機器といった比較的小型の電気機器の電源に、正極集電体と正極活物質層を有する正極層、負極集電体と負極活物質層を有する負極層、および、これら電極層の間に配される電解質層を備える非水電解質電池が利用されている。非水電解質電池のなかでも特に、正・負極層間のLiイオンの移動により充放電を行うLiイオン電池は、小型でありながら高い放電容量を備える(例えば、特許文献1を参照)。   A power source of a relatively small electric device such as a portable device is provided with a positive electrode layer having a positive electrode current collector and a positive electrode active material layer, a negative electrode layer having a negative electrode current collector and a negative electrode active material layer, and a gap between these electrode layers. A non-aqueous electrolyte battery having an electrolyte layer is used. Among nonaqueous electrolyte batteries, in particular, a Li ion battery that performs charge and discharge by movement of Li ions between the positive and negative electrode layers has a high discharge capacity while being small (see, for example, Patent Document 1).

特開平8−180904号公報JP-A-8-180904

しかし、特許文献1の電池では、充放電を繰り返すうちに放電容量が低下し易いという問題、即ち、サイクル特性が悪いという問題があった。これは、電池の充電時に負極層の外周縁部近傍にLiイオンが集中し易く、充放電を繰り返すうちに、当該近傍において負極層や固体電解質層が劣化するからではないかと推察される。特に、負極層が固体電解質層よりも小さい場合、電池の充電時に、固体電解質層における負極層よりも大きな部分を移動するLiイオンの殆どが負極層の外周縁部に集中するため、上述したような負極層や固体電解質層の劣化が顕著である。   However, the battery of Patent Document 1 has a problem that the discharge capacity tends to decrease while charging and discharging are repeated, that is, the cycle characteristic is poor. This is presumably because Li ions tend to concentrate in the vicinity of the outer peripheral edge of the negative electrode layer when the battery is charged, and the negative electrode layer and the solid electrolyte layer deteriorate in the vicinity as charging and discharging are repeated. In particular, when the negative electrode layer is smaller than the solid electrolyte layer, most of the Li ions that move in a larger portion of the solid electrolyte layer than the negative electrode layer are concentrated on the outer peripheral edge of the negative electrode layer when the battery is charged. The deterioration of the negative electrode layer and the solid electrolyte layer is remarkable.

本発明は上記事情に鑑みてなされたものであり、その目的の一つは、充放電を繰り返しても放電容量が低下し難い非水電解質電池、即ち、サイクル特性に優れる非水電解質電池を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a nonaqueous electrolyte battery in which the discharge capacity does not easily decrease even after repeated charge and discharge, that is, a nonaqueous electrolyte battery excellent in cycle characteristics. There is to do.

(1)本発明非水電解質電池は、正極層、負極層、およびこれら電極層の間に配される固体電解質層を備える非水電解質電池である。この本発明非水電解質電池に備わる固体電解質層は、その外周縁部を含む外周領域と、外周領域に囲まれる内方領域とを備え、外周領域におけるLiイオン伝導度は、内方領域におけるLiイオン伝導度よりも低いことを特徴とする。 (1) The nonaqueous electrolyte battery of the present invention is a nonaqueous electrolyte battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between these electrode layers. The solid electrolyte layer provided in the nonaqueous electrolyte battery of the present invention includes an outer peripheral region including an outer peripheral edge portion thereof, and an inner region surrounded by the outer peripheral region, and Li ion conductivity in the outer peripheral region is determined by the Li ion conductivity in the inner region. It is characterized by being lower than ionic conductivity.

本発明非水電解質電池の構成によれば、外周領域において内方領域よりもLiイオンの移動が制限される。その結果、電池の充電時に負極層の外周縁部近傍にLiイオンが集中し難くでき、当該部分の劣化を抑制できる。つまり、電池の充放電に伴い負極層の外周縁部近傍が劣化することを防止できるため、サイクル特性に優れた電池となる。   According to the configuration of the nonaqueous electrolyte battery of the present invention, the movement of Li ions is limited in the outer peripheral region than in the inner region. As a result, Li ions can be less likely to concentrate in the vicinity of the outer peripheral edge of the negative electrode layer during battery charging, and deterioration of the portion can be suppressed. That is, since it is possible to prevent the vicinity of the outer peripheral edge of the negative electrode layer from being deteriorated as the battery is charged and discharged, the battery has excellent cycle characteristics.

(2)本発明非水電解質電池の一形態として、外周領域と内方領域との境界線は、非水電解質電池を平面視したときに負極層の外周縁部で形成される輪郭線の内側に位置することが好ましい。 (2) As one form of the nonaqueous electrolyte battery of the present invention, the boundary line between the outer peripheral region and the inner region is inside the contour line formed at the outer peripheral edge of the negative electrode layer when the nonaqueous electrolyte battery is viewed in plan view. It is preferable to be located at.

上記構成であれば、負極層の外周縁部近傍におけるLiイオンの集中をより効果的に抑制できる。特に、電池を平面視したときに、固体電解質層よりも面積の小さな負極層を形成した場合に有効である。   If it is the said structure, concentration of Li ion in the outer periphery part vicinity of a negative electrode layer can be suppressed more effectively. This is particularly effective when a negative electrode layer having a smaller area than the solid electrolyte layer is formed when the battery is viewed in plan.

(3)本発明非水電解質電池の一形態として、外周領域は、さらにその厚み方向にLiイオン伝導度の異なる複数の領域から構成することができる。ここで、外周領域中に形成される複数の領域の一部は、内方領域よりもLiイオン伝導度が高くても良く、外周領域全体でLiイオン伝導度を平均したときに、外周領域が内方領域よりもLiイオン伝導度が低くなっていれば良い。 (3) As one form of this invention nonaqueous electrolyte battery, an outer peripheral area | region can further be comprised from the several area | region from which Li ion conductivity differs in the thickness direction. Here, some of the plurality of regions formed in the outer peripheral region may have higher Li ion conductivity than the inner region, and when the Li ion conductivity is averaged over the entire outer peripheral region, the outer peripheral region is It is sufficient that the Li ion conductivity is lower than that of the inner region.

上記構成のようにLiイオン伝導度が高い領域と低い領域とを混在させておけば、外周領域におけるLiイオン伝導度が低くなりすぎることを防止できる。   If a region having a high Li ion conductivity and a region having a low Li ion conductivity are mixed as in the above configuration, the Li ion conductivity in the outer peripheral region can be prevented from becoming too low.

(4)本発明非水電解質電池の一形態として、外周領域をさらに複数の領域で構成する場合、それらの領域のうち、最も正極層側に位置する領域のLiイオン伝導度が、その他の領域のLiイオン伝導度よりも低いことが好ましい。 (4) As one form of the nonaqueous electrolyte battery of the present invention, when the outer peripheral region is further composed of a plurality of regions, the Li ion conductivity of the region located closest to the positive electrode layer among these regions is the other region. It is preferable that it is lower than Li ion conductivity.

正極層側でLiイオン伝導度が低い領域によりLiイオンの移動を抑制すると、外周領域の負極層側の領域におけるLiイオンの量を少なくすることができる。その結果、効果的に負極層の外周縁部近傍の劣化を抑制することができる。   When the movement of Li ions is suppressed by the region where the Li ion conductivity is low on the positive electrode layer side, the amount of Li ions in the region on the negative electrode layer side in the outer peripheral region can be reduced. As a result, it is possible to effectively suppress deterioration in the vicinity of the outer peripheral edge portion of the negative electrode layer.

(5)本発明非水電解質電池の一形態として、外周領域はLiイオン伝導性物質として酸化物を含有し、内方領域はLiイオン伝導性物質として硫化物を含有することが好ましい。 (5) As one form of this invention nonaqueous electrolyte battery, it is preferable that an outer peripheral area | region contains an oxide as a Li ion conductive substance, and an inner area | region contains a sulfide as a Li ion conductive substance.

一般に、Liイオン伝導性を有する固体電解質としては、LiPON(リン酸リチウムオキシナイトライドガラス)などの酸化物と、LiS−Pなどの硫化物を挙げることができる。そして、これら酸化物系の固体電解質と硫化物系の固体電解質のLiイオン伝導度を比較した場合、硫化物系の固体電解質の方が高いLiイオン伝導度を有する傾向にある。そのため、内方領域の材料として硫化物系、外周領域の材料として酸化物系が好適である。 In general, examples of the solid electrolyte having Li ion conductivity include oxides such as LiPON (lithium phosphate oxynitride glass) and sulfides such as Li 2 S—P 2 S 5 . When the Li ion conductivity of the oxide-based solid electrolyte and the sulfide-based solid electrolyte is compared, the sulfide-based solid electrolyte tends to have a higher Li ion conductivity. Therefore, a sulfide-based material is preferable as the inner region material, and an oxide-based material is preferable as the outer peripheral material.

(6)本発明非水電解質電池の一形態として、酸化物系の固体電解質は、LiPONとすることが好ましく、硫化物系の固体電解質は、LiS−Pとすることが好ましい。 (6) As one form of the nonaqueous electrolyte battery of the present invention, the oxide-based solid electrolyte is preferably LiPON, and the sulfide-based solid electrolyte is preferably Li 2 S—P 2 S 5. .

硫化物系と酸化物系の固体電解質の組み合わせを上記のように選択すると、高い放電容量を維持した状態で効果的に負極層の劣化を防止することができる。   When the combination of the sulfide-based and oxide-based solid electrolyte is selected as described above, the negative electrode layer can be effectively prevented from being deteriorated while maintaining a high discharge capacity.

(7)本発明非水電解質電池の一形態として、固体電解質に硫化物を使用する場合、固体電解質層と正極層との間に、Liイオンの偏りを緩衝する緩衝層を設けることが好ましい。 (7) As one form of the nonaqueous electrolyte battery of the present invention, when a sulfide is used for the solid electrolyte, it is preferable to provide a buffer layer for buffering the deviation of Li ions between the solid electrolyte layer and the positive electrode layer.

硫化物系の固体電解質はLiイオン伝導性に優れるものの、正極層との接触界面の近傍でLiイオンの偏りが生じ易く、その結果として電池の放電容量が低下することがある。緩衝層はこのLiイオンの偏りを緩衝して、電池の放電容量の低下を抑制することができる。緩衝層の材料については、実施形態で詳述する。   Although the sulfide-based solid electrolyte is excellent in Li ion conductivity, Li ions are likely to be biased in the vicinity of the contact interface with the positive electrode layer, and as a result, the discharge capacity of the battery may be reduced. The buffer layer can buffer the deviation of Li ions and suppress a decrease in the discharge capacity of the battery. The material of the buffer layer will be described in detail in the embodiment.

本発明非水電解質電池は、充放電を繰り返しても負極層に劣化が生じ難く、放電容量が低下し難い。そのため、本発明非水電解質電池を、例えば、携帯電話やモバイルパソコンなどの携帯機器の電源として利用した場合、商用電源に接続しない状態での携帯機器の長時間の使用を長期に亘って保証することができる。   In the non-aqueous electrolyte battery of the present invention, even when charging and discharging are repeated, the negative electrode layer hardly deteriorates and the discharge capacity does not easily decrease. Therefore, when the nonaqueous electrolyte battery of the present invention is used as a power source of a portable device such as a mobile phone or a mobile personal computer, the long-term use of the portable device without being connected to a commercial power source is guaranteed for a long time. be able to.

実施例に記載の非水電解質電池の概略構成図であって、(A)は縦断面図、(B)は上面図である。It is a schematic block diagram of the nonaqueous electrolyte battery as described in an Example, (A) is a longitudinal cross-sectional view, (B) is a top view. 比較例に記載の非水電解質電池の概略構成図であって、縦断面図である。It is a schematic block diagram of the nonaqueous electrolyte battery as described in a comparative example, and is a longitudinal cross-sectional view.

以下、本発明の実施形態を図1を参照しつつ説明する。なお、参照する図1は、後述する実施例の非水電解質電池100の概略構成図であり、あくまで本発明非水電解質電池の一形態に過ぎない。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1 to be referred to is a schematic configuration diagram of a nonaqueous electrolyte battery 100 of an embodiment described later, and is merely one form of the nonaqueous electrolyte battery of the present invention.

[全体構成]
図1に示すように、本発明非水電解質電池(Liイオン電池)100は、正極層1と、負極層2と、これら電極層1,2の間に配される固体電解質層3とを有する。この電池100は、正極層1と負極層2との間でLiイオンの遣り取りをすることで電池として機能する。そして、この本発明電池100の最も特徴とするところは、固体電解質層3の構成にある。以下、電池100に備わる各構成について説明する。
[overall structure]
As shown in FIG. 1, the nonaqueous electrolyte battery (Li ion battery) 100 of the present invention includes a positive electrode layer 1, a negative electrode layer 2, and a solid electrolyte layer 3 disposed between the electrode layers 1 and 2. . The battery 100 functions as a battery by exchanging Li ions between the positive electrode layer 1 and the negative electrode layer 2. The most characteristic feature of the battery 100 of the present invention is the configuration of the solid electrolyte layer 3. Hereinafter, each configuration provided in the battery 100 will be described.

<正極層>
正極層1は、集電機能を有する正極集電体11と、その一面側に形成される正極活物質層12とを備える。正極集電体11としては、例えば、AlやCu、Niなどの単体金属や、ステンレスなどの合金を利用できる。また、正極活物質層12に含まれる正極活物質としては、例えば、LiCoOやLiNiO、LiMnO、LiCo0.5Fe0.5などを利用できる。
<Positive electrode layer>
The positive electrode layer 1 includes a positive electrode current collector 11 having a current collecting function and a positive electrode active material layer 12 formed on one surface side thereof. As the positive electrode current collector 11, for example, a single metal such as Al, Cu, or Ni, or an alloy such as stainless steel can be used. As the positive electrode active material contained in the positive electrode active material layer 12, for example, LiCoO 2 and LiNiO 2, LiMnO 2, LiCo 0.5 Fe 0.5 O 2 , etc. can be utilized.

<負極層>
図1の負極層2は、集電体を兼ねる負極活物質層からなる。もちろん、負極層2は、負極集電体を別個に備えていても良い。この負極層2に含まれる負極活物質としては、金属Liなどを挙げることができる。
<Negative electrode layer>
The negative electrode layer 2 in FIG. 1 is composed of a negative electrode active material layer that also serves as a current collector. Of course, the negative electrode layer 2 may include a negative electrode current collector separately. Examples of the negative electrode active material contained in the negative electrode layer 2 include metal Li.

また、図1に示す負極層2は、電池100を平面視したとき、正極層1と後述する固体電解質層3よりも一回り小さく形成されている。これは、電池100の構成要素を正極層1から順に気相法で積層する際、電池100の側面の部分で負極層2が正極層1と接触した状態で形成されないように、固体電解質層3の外周縁部にマスクをする場合があるからである。もちろん、マスクの配置を工夫することで、負極層2を固体電解質層3と同じ面積で形成することもできる。   Further, the negative electrode layer 2 shown in FIG. 1 is formed to be slightly smaller than the positive electrode layer 1 and a solid electrolyte layer 3 described later when the battery 100 is viewed in plan. This is because the solid electrolyte layer 3 is not formed so that the negative electrode layer 2 is not in contact with the positive electrode layer 1 at the side portion of the battery 100 when the constituent elements of the battery 100 are sequentially laminated from the positive electrode layer 1 by the vapor phase method. This is because the outer peripheral edge of the mask may be masked. Of course, the negative electrode layer 2 can be formed in the same area as the solid electrolyte layer 3 by devising the arrangement of the mask.

<固体電解質層>
固体電解質層3は、その外周縁部を含む外周領域3tと、外周領域3tに囲まれる内方領域3rとに区分できる。外周領域3tと内方領域3rの相違点は、それぞれの領域におけるLiイオン伝導度が異なることであり、内方領域3rに比べて外周領域3tのLiイオン伝導度が低くなっている。具体的には、内方領域3rのLiイオン伝導度は1.0×10−6S/cm以上、外周領域3tのLiイオン伝導度は1.0×10−8S/cm以上とし、内方領域3rと外周領域3tとのLiイオン伝導度の差は2倍以上とすると良い。
<Solid electrolyte layer>
The solid electrolyte layer 3 can be divided into an outer peripheral region 3t including its outer peripheral edge and an inner region 3r surrounded by the outer peripheral region 3t. The difference between the outer region 3t and the inner region 3r is that the Li ion conductivity in each region is different, and the Li ion conductivity in the outer region 3t is lower than that in the inner region 3r. Specifically, the Li ion conductivity of the inner region 3r is 1.0 × 10 −6 S / cm or more, and the Li ion conductivity of the outer region 3t is 1.0 × 10 −8 S / cm or more. The difference in Li ion conductivity between the lateral region 3r and the outer peripheral region 3t is preferably at least twice.

上記のように固体電解質層3の外周領域3tにおけるLiイオン伝導度を低く抑え、充電時に正極層1から負極層2に向かうLiイオンの移動を制限することで、電池100の充電時に負極層2の外周縁部近傍にLiイオンが集中することを緩和できる。特に、図1(A)に黒矢印で示すように、正極層1と固体電解質層3に比べて負極層2が小さい場合、負極層2の外周縁部近傍には、当該部分の鉛直下方からのLiイオンに加えて、当該部分よりも外側からもLiイオンが移動してくる。しかし、本発明の構成によれば、外周領域3tのLiイオン伝導度が低いため、当該部分に移動してくるLiイオンの絶対量が少なく、当該部分におけるLiイオンの集中を抑制できる。   As described above, the Li ion conductivity in the outer peripheral region 3t of the solid electrolyte layer 3 is kept low, and the movement of Li ions from the positive electrode layer 1 toward the negative electrode layer 2 is limited during charging, whereby the negative electrode layer 2 is charged during charging of the battery 100. Concentration of Li ions in the vicinity of the outer peripheral edge of can be alleviated. In particular, as shown by a black arrow in FIG. 1A, when the negative electrode layer 2 is smaller than the positive electrode layer 1 and the solid electrolyte layer 3, the vicinity of the outer peripheral edge of the negative electrode layer 2 is from the vertically lower part of the portion. In addition to the Li ions, Li ions also move from the outside of the portion. However, according to the configuration of the present invention, since the Li ion conductivity in the outer peripheral region 3t is low, the absolute amount of Li ions moving to the part is small, and the concentration of Li ions in the part can be suppressed.

外周領域3tを内方領域3rよりも低Liイオン伝導度とするための最も単純な構成は、図1には例示していないが、両領域を異なる組成の固体電解質で構成することである。例えば、固体電解質にはLiPONなどの酸化物系の固体電解質や、LiS−Pなどの硫化物系の固体電解質などを挙げることができる。一般に、硫化物系の固体電解質の方が酸化物系の固体電解質よりもLiイオン伝導度が高いので、内方領域3rには硫化物系を、外周領域3tには酸化物系を含有させるようにすると良い。 Although not illustrated in FIG. 1, the simplest configuration for setting the outer peripheral region 3t to a lower Li ion conductivity than the inner region 3r is to configure both regions with solid electrolytes having different compositions. For example, the solid electrolyte may include an oxide-based solid electrolyte such as LiPON, and a sulfide-based solid electrolyte such as Li 2 S—P 2 S 5 . In general, since the sulfide-based solid electrolyte has higher Li ion conductivity than the oxide-based solid electrolyte, the inner region 3r contains a sulfide-based material and the outer peripheral region 3t contains an oxide-based material. It is good to make it.

上記のように内方領域3rと外周領域3tはそれぞれ、一様な材料で構成しても良いが、さらに厚み方向にLiイオン伝導度の異なる複数の領域が形成されるように部分的に異なる材質で構成しても良い。特に、外周領域3tでは、Liイオン伝導度が低くなりすぎることを防止するために、図1に示すように外周領域3tをその厚さ方向に複数の領域で構成し、その一部のみを低Liイオン伝導性の物質で構成することが好ましい。この場合、外周領域3tを構成する領域のうち、最も正極層1側に位置する領域(図中、後述する符号31の部分)のLiイオン伝導度を、その他の領域(図中、外周領域3tにおける後述する符号32の部分)のそれよりも低くすることが好ましい。このように外周領域3tをさらに複数の小領域で構成する場合、各小領域のLiイオン伝導度を平均した値を外周領域3t(内方領域3r)のLiイオン伝導度とする。   As described above, the inner region 3r and the outer peripheral region 3t may be made of a uniform material, but are partially different so that a plurality of regions having different Li ion conductivity are formed in the thickness direction. You may comprise with a material. In particular, in the outer peripheral region 3t, in order to prevent the Li ion conductivity from becoming too low, the outer peripheral region 3t is composed of a plurality of regions in the thickness direction as shown in FIG. It is preferable to use a Li ion conductive material. In this case, the Li ion conductivity of the region (the portion of reference numeral 31 described later in the figure) located closest to the positive electrode layer 1 among the regions constituting the outer peripheral region 3t is set to other regions (the outer peripheral region 3t in the drawing). It is preferable to make it lower than that of the part 32 described later. When the outer peripheral region 3t is further composed of a plurality of small regions, the value obtained by averaging the Li ion conductivity of each small region is defined as the Li ion conductivity of the outer peripheral region 3t (inner region 3r).

一方、外周領域3tと内方領域3rとの境界線の位置にも好ましい位置が存在する。具体的には、前記境界線は、電池100を平面視したときに負極層2の外周縁部で形成される境界線の内側に位置することが好ましい。その場合、固体電解質層3のうち、負極層2よりも広い部分から負極層2に向かうLiイオンの流れを抑制できるため、負極層2の外周縁部近傍にLiイオンが集中することを抑制できる。   On the other hand, there is a preferable position also at the position of the boundary line between the outer peripheral region 3t and the inner region 3r. Specifically, the boundary line is preferably located inside the boundary line formed at the outer peripheral edge of the negative electrode layer 2 when the battery 100 is viewed in plan. In that case, since the flow of Li ions from the portion wider than the negative electrode layer 2 to the negative electrode layer 2 in the solid electrolyte layer 3 can be suppressed, the concentration of Li ions in the vicinity of the outer peripheral edge of the negative electrode layer 2 can be suppressed. .

ここで、前記境界線が、負極層2の輪郭線よりもあまり内側にあると、固体電解質層3の大部分が低Liイオン伝導度となるため好ましくない。そこで、境界線は、輪郭線から2〜3mm内側の範囲までに設けるようにする。あるいは、電池100を平面視したときに、内方領域3rの面積が、負極層2の面積の40%以上を占めるように境界線を設定する。   Here, it is not preferable that the boundary line is too much inside the contour line of the negative electrode layer 2 because most of the solid electrolyte layer 3 has low Li ion conductivity. Therefore, the boundary line is provided within a range of 2 to 3 mm inside from the contour line. Alternatively, the boundary line is set so that the area of the inner region 3r occupies 40% or more of the area of the negative electrode layer 2 when the battery 100 is viewed in plan.

<緩衝層>
非水電解質電池100は、正極層1、負極層2、固体電解質層3を基本とするが、正極層1と固体電解質層3との間に緩衝層4を備えていても良い。緩衝層4は、固体電解質層3に硫化物を用いた場合に必要となるものであり、正極層1と固体電解質層3との界面近傍におけるLiイオンの偏りを緩和するためのものである。当該界面においてLiイオンの偏りが生じると、その偏りに起因して空乏層が形成され、電池100の放電容量を低下させる。そのため、緩衝層4を設けて、緩衝層4で当該界面でのLiイオンの偏りを緩和することで、充放電に伴う電池100の放電容量の低下を抑制できる。このような緩衝層4の材料としては、例えば、LiNbOや、LiTaOなどを利用することができる。
<Buffer layer>
The nonaqueous electrolyte battery 100 basically includes a positive electrode layer 1, a negative electrode layer 2, and a solid electrolyte layer 3, but a buffer layer 4 may be provided between the positive electrode layer 1 and the solid electrolyte layer 3. The buffer layer 4 is necessary when a sulfide is used for the solid electrolyte layer 3, and is for reducing the bias of Li ions in the vicinity of the interface between the positive electrode layer 1 and the solid electrolyte layer 3. When Li ions are biased at the interface, a depletion layer is formed due to the bias, and the discharge capacity of the battery 100 is reduced. Therefore, by providing the buffer layer 4 and relaxing the unevenness of Li ions at the interface by the buffer layer 4, it is possible to suppress a decrease in the discharge capacity of the battery 100 due to charge / discharge. For example, LiNbO 3 or LiTaO 3 can be used as the material of the buffer layer 4.

図1に示す本発明非水電解質電池100を実際に作製し、そのサイクル特性を評価した。また、比較例として図2に示す非水電解質電池200を作製し、同様にサイクル特性を評価した。   The nonaqueous electrolyte battery 100 of the present invention shown in FIG. 1 was actually produced and its cycle characteristics were evaluated. Moreover, the nonaqueous electrolyte battery 200 shown in FIG. 2 was produced as a comparative example, and the cycle characteristics were similarly evaluated.

[実施例の非水電解質電池]
<作製手順>
まず、電池100の作製にあたり、直径16mmのSUS基板を用意した。このSUS基板は、電池100の正極集電体11を構成するものである。
[Nonaqueous Electrolyte Battery of Example]
<Production procedure>
First, in manufacturing the battery 100, a SUS substrate having a diameter of 16 mm was prepared. This SUS substrate constitutes the positive electrode current collector 11 of the battery 100.

用意したSUS基板上にPLD(Pulsed Laser Deposition)法を用いて平均厚さ5μmのLiCoOからなる正極活物質層12を形成した。平均厚さは、異なる3点以上の測定値の平均である。この平均厚さの定義は、以降の説明においても同様である。 A positive electrode active material layer 12 made of LiCoO 2 having an average thickness of 5 μm was formed on the prepared SUS substrate by using a PLD (Pulsed Laser Deposition) method. The average thickness is the average of three or more different measured values. This definition of the average thickness is the same in the following description.

正極活物質層12の上にエキシマレーザーアブレーション法により平均厚さ0.02μmのLiNbOからなる緩衝層4を形成した。この緩衝層4は、既に述べたように、正極活物質層12と後述する硫化物系の固体電解質層3(硫化物層32)との境界近傍でLiイオンの偏りを緩衝するためのものである。 A buffer layer 4 made of LiNbO 3 having an average thickness of 0.02 μm was formed on the positive electrode active material layer 12 by excimer laser ablation. As described above, the buffer layer 4 is for buffering the deviation of Li ions in the vicinity of the boundary between the positive electrode active material layer 12 and the sulfide-based solid electrolyte layer 3 (sulfide layer 32) described later. is there.

次に、緩衝層4の上に固体電解質層3を形成した。この固体電解質層3は、酸化物系の固体電解質からなる部分(酸化物層31)と、硫化物系の固体電解質からなる部分(硫化物層32)とを備える。このような固体電解質層3は以下のように形成した。   Next, the solid electrolyte layer 3 was formed on the buffer layer 4. The solid electrolyte layer 3 includes a portion made of an oxide-based solid electrolyte (oxide layer 31) and a portion made of a sulfide-based solid electrolyte (sulfide layer 32). Such a solid electrolyte layer 3 was formed as follows.

まず、緩衝層4の中心部分に直径8mmのマスクを施し、マスクされていない緩衝層4の上に、スパッタリング法を用いて平均厚さ1μmのLiPON(Liイオン伝導度:1×10−6S/cm)からなる酸化物層31を形成した。緩衝層4にマスクをした状態で形成された酸化物層31は、内径8mm、外径16mmの環状に形成される。 First, a mask having a diameter of 8 mm is applied to the central portion of the buffer layer 4, and LiPON (Li ion conductivity: 1 × 10 −6 S) having an average thickness of 1 μm is formed on the unmasked buffer layer 4 using a sputtering method. / Cm) of the oxide layer 31 was formed. The oxide layer 31 formed with the buffer layer 4 masked is formed in an annular shape having an inner diameter of 8 mm and an outer diameter of 16 mm.

次いで、何らマスクをしない状態で、酸化物層31とこの電解質層31の環の中心から露出する緩衝層4の上に、PLD法を用いてLiS−P(Liイオン伝導度:5×10−5S/cm)からなる硫化物層32を形成した。緩衝層4上に形成される酸化物層31の平均厚さは1μm、酸化物層31上に形成される硫化物層32の厚さは9μmであり、酸化物層31と硫化物層32とを含む固体電解質層3全体の平均厚さは10μmであった。ここで、電池100を平面視したときに酸化物層31の存在する部分が外周領域3t、それ以外が内方領域3rとなる。 Next, Li 2 S—P 2 S 5 (Li ion conductivity) is formed on the oxide layer 31 and the buffer layer 4 exposed from the center of the ring of the electrolyte layer 31 by using the PLD method without masking. : 5 × 10 −5 S / cm) was formed. The average thickness of the oxide layer 31 formed on the buffer layer 4 is 1 μm, the thickness of the sulfide layer 32 formed on the oxide layer 31 is 9 μm, and the oxide layer 31, the sulfide layer 32, The average thickness of the solid electrolyte layer 3 as a whole was 10 μm. Here, when the battery 100 is viewed in plan, the portion where the oxide layer 31 exists is the outer peripheral region 3t, and the other portion is the inner region 3r.

固体電解質層3の形成が終了したら、次に負極層2の形成を行う。まず、固体電解質層3の中心部分が直径12mmの大きさで露出するように固体電解質層3の上にマスクを施し、この露出した部分に真空蒸着法を用いて厚さ1μmの金属Liからなる負極層2を形成した。この負極層2は、負極集電体を兼ねる。   When the formation of the solid electrolyte layer 3 is completed, the negative electrode layer 2 is then formed. First, a mask is applied on the solid electrolyte layer 3 so that the central portion of the solid electrolyte layer 3 is exposed with a diameter of 12 mm, and the exposed portion is made of metal Li having a thickness of 1 μm using a vacuum deposition method. A negative electrode layer 2 was formed. The negative electrode layer 2 also serves as a negative electrode current collector.

最後に、負極層2の形成が終了した積層体をアルミラミネートパックに封止し、正極集電体11と負極層2(集電体を兼ねる)からタブリードを引き出して電池100を完成した。   Finally, the laminate after the formation of the negative electrode layer 2 was sealed in an aluminum laminate pack, and tab leads were drawn from the positive electrode current collector 11 and the negative electrode layer 2 (also serving as a current collector) to complete the battery 100.

<充放電試験とその結果>
上述のようにして完成した電池について、0.05mAの定電流で4.2Vまで充電し、3Vまで放電する操作を1サイクルとする充放電を100サイクル繰り返し、100サイクル目の放電容量を測定した。そして、測定した100サイクル目の放電容量を1サイクル目の放電容量で除し、100をかけることで容量維持率(%)を求めた。容量維持率が高いほど、充放電を開始する当初の放電容量を維持できる非水電解質電池、即ち、サイクル特性に優れた電池と言える。
<Charge / discharge test and results>
The battery completed as described above was charged up to 4.2 V at a constant current of 0.05 mA and charged and discharged with one cycle of the operation of discharging to 3 V for 100 cycles, and the discharge capacity at the 100th cycle was measured. . Then, the measured discharge capacity at the 100th cycle was divided by the discharge capacity at the 1st cycle and multiplied by 100 to obtain the capacity retention rate (%). It can be said that the higher the capacity retention rate is, the non-aqueous electrolyte battery that can maintain the initial discharge capacity at which charging / discharging starts, that is, the battery with excellent cycle characteristics.

上記条件の充放電試験を実施例の構成を有する10個のサンプルについて行った結果、これらサンプルの平均の容量維持率は91%であった。   As a result of conducting the charge / discharge test under the above conditions on 10 samples having the configuration of the example, the average capacity retention rate of these samples was 91%.

[比較例の非水電解質電池]
<作製手順>
次に、比較例の電池として、図2に示すような構成の非水電解質電池200を作製した。この電池200は、次の点で実施例の電池(図1の電池100)と相違する。
[Nonaqueous electrolyte battery of comparative example]
<Production procedure>
Next, a non-aqueous electrolyte battery 200 having a configuration as shown in FIG. 2 was produced as a comparative battery. This battery 200 is different from the battery of the embodiment (battery 100 of FIG. 1) in the following points.

まず、実施例と同様に、正極層1上に緩衝層4を形成し、その緩衝層4の上に固体電解質層3を形成する際、緩衝層4の上にマスクを施すことなく、平均厚さ10μmの硫化物からなる固体電解質層3を形成した。つまり、比較例の電池200における固体電解質層3は、一様なLiイオン伝導度を有する構成である。以降は、実施例と同様にして負極層2を形成し、パッケージングして電池200を完成した。   First, as in the example, when the buffer layer 4 is formed on the positive electrode layer 1 and the solid electrolyte layer 3 is formed on the buffer layer 4, the average thickness is not applied to the buffer layer 4 without applying a mask. A solid electrolyte layer 3 made of sulfide having a thickness of 10 μm was formed. That is, the solid electrolyte layer 3 in the battery 200 of the comparative example has a configuration having uniform Li ion conductivity. Thereafter, the negative electrode layer 2 was formed and packaged in the same manner as in Example, and the battery 200 was completed.

<充放電試験とその結果>
上述した比較例の構成を備える10個のサンプルについて、実施例と同様の充放電試験を行った結果、これらサンプルの平均の容量維持率は48%であった。
<Charge / discharge test and results>
As a result of conducting the same charge / discharge test as that of the ten samples having the configuration of the comparative example described above, the average capacity retention rate of these samples was 48%.

[まとめ]
以上説明したように、実施例の非水電解質電池100は、比較例の非水電解質電池200よりも容量維持率に優れることが明らかとなった。
[Summary]
As described above, it has been clarified that the nonaqueous electrolyte battery 100 of the example is superior in capacity retention rate than the nonaqueous electrolyte battery 200 of the comparative example.

なお、本発明の実施形態は、上述した実施形態に限定されるわけではなく、本発明の要旨を逸脱しない範囲で適宜変更して実施することができる。例えば、図1の非水電解質電池100において、外周領域3tと内方領域3rとの境界線は、負極層2を平面視したときの外周縁部の輪郭線と一致していても良いし、当該輪郭線の一部に重複していても良い。その他、内方領域3rをその厚さ方向に複数の領域に区分しても良い。   Note that the embodiment of the present invention is not limited to the above-described embodiment, and can be appropriately modified and implemented without departing from the gist of the present invention. For example, in the nonaqueous electrolyte battery 100 of FIG. 1, the boundary line between the outer peripheral region 3t and the inner region 3r may coincide with the contour line of the outer peripheral edge when the negative electrode layer 2 is viewed in plan view. It may overlap with a part of the contour line. In addition, the inner region 3r may be divided into a plurality of regions in the thickness direction.

本発明非水電解質電池は、サイクル特性に優れるので、例えば携帯電話やモバイルパソコンなどの携帯機器の電源として好適に利用可能である。   Since the nonaqueous electrolyte battery of the present invention is excellent in cycle characteristics, it can be suitably used as a power source for portable devices such as mobile phones and mobile personal computers.

100,200 非水電解質電池
1 正極層
11 正極集電体 12 正極活物質層
2 負極層
3 固体電解質層 3t 外周領域 3r 内方領域
31 酸化物層 32 硫化物層
4 緩衝層
DESCRIPTION OF SYMBOLS 100,200 Nonaqueous electrolyte battery 1 Positive electrode layer 11 Positive electrode collector 12 Positive electrode active material layer 2 Negative electrode layer 3 Solid electrolyte layer 3t Outer peripheral region 3r Inner region 31 Oxide layer 32 Sulfide layer 4 Buffer layer

Claims (7)

正極層、負極層、およびこれら電極層の間に配される固体電解質層を備える非水電解質電池であって、
前記固体電解質層は、
その外周縁部を含む外周領域と、外周領域に囲まれる内方領域とを備え、
前記外周領域におけるLiイオン伝導度は、内方領域におけるLiイオン伝導度よりも低いことを特徴とする非水電解質電池。
A non-aqueous electrolyte battery comprising a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between these electrode layers,
The solid electrolyte layer is
An outer peripheral region including the outer peripheral edge, and an inner region surrounded by the outer peripheral region,
The non-aqueous electrolyte battery characterized in that the Li ion conductivity in the outer peripheral region is lower than the Li ion conductivity in the inner region.
前記外周領域と内方領域との境界線は、非水電解質電池を平面視したときに負極層の外周縁部で形成される輪郭線の内側に位置することを特徴とする請求項1に記載の非水電解質電池。   The boundary line between the outer peripheral region and the inner region is located inside a contour line formed at the outer peripheral edge portion of the negative electrode layer when the nonaqueous electrolyte battery is viewed in plan. Non-aqueous electrolyte battery. 前記外周領域は、さらにその厚み方向にLiイオン伝導度の異なる複数の領域からなることを特徴とする請求項1または2に記載の非水電解質電池。   The non-aqueous electrolyte battery according to claim 1, wherein the outer peripheral region further includes a plurality of regions having different Li ion conductivity in the thickness direction. 前記外周領域を構成する領域のうち、最も正極層側に位置する領域のLiイオン伝導度が、その他の領域のLiイオン伝導度よりも低いことを特徴とする請求項3に記載の非水電解質電池。   4. The nonaqueous electrolyte according to claim 3, wherein a Li ion conductivity of a region located closest to the positive electrode layer among regions constituting the outer peripheral region is lower than a Li ion conductivity of another region. 5. battery. 前記外周領域は、Liイオン伝導性物質として酸化物を含有し、
前記内方領域は、Liイオン伝導性物質として硫化物を含有することを特徴とする請求項1〜4のいずれか一項に記載の非水電解質電池。
The outer peripheral region contains an oxide as a Li ion conductive material,
The non-aqueous electrolyte battery according to claim 1, wherein the inner region contains a sulfide as a Li ion conductive material.
前記酸化物は、LiPONであり、
前記硫化物は、LiS−Pであることを特徴とする請求項5に記載の非水電解質電池。
The oxide is LiPON;
The non-aqueous electrolyte battery according to claim 5, wherein the sulfide is Li 2 S—P 2 S 5 .
前記固体電解質層と正極層との間に、Liイオンの偏りを緩衝する緩衝層を備えることを特徴とする請求項5または6に記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 5, further comprising a buffer layer that buffers a deviation of Li ions between the solid electrolyte layer and the positive electrode layer.
JP2009192682A 2009-08-24 2009-08-24 Nonaqueous electrolyte battery Pending JP2011044369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009192682A JP2011044369A (en) 2009-08-24 2009-08-24 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009192682A JP2011044369A (en) 2009-08-24 2009-08-24 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2011044369A true JP2011044369A (en) 2011-03-03

Family

ID=43831630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009192682A Pending JP2011044369A (en) 2009-08-24 2009-08-24 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2011044369A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018134485A1 (en) * 2017-01-23 2018-07-26 Picodeon Ltd Oy Method for the manufacture of cathode materials for nanostructured li ion batteries utilising short-term laser pulses
US20190088982A1 (en) * 2017-09-20 2019-03-21 Kabushiki Kaisha Toshiba Solid electrolyte separator, secondary battery, battery pack, and vehicle
JP2022069941A (en) * 2020-10-26 2022-05-12 日産自動車株式会社 Secondary battery
CN115428222A (en) * 2020-04-17 2022-12-02 松下知识产权经营株式会社 Battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018134485A1 (en) * 2017-01-23 2018-07-26 Picodeon Ltd Oy Method for the manufacture of cathode materials for nanostructured li ion batteries utilising short-term laser pulses
US20190088982A1 (en) * 2017-09-20 2019-03-21 Kabushiki Kaisha Toshiba Solid electrolyte separator, secondary battery, battery pack, and vehicle
CN109524710A (en) * 2017-09-20 2019-03-26 株式会社东芝 Solid electrolyte spacer body, secondary cell, battery pack and vehicle
JP2019057399A (en) * 2017-09-20 2019-04-11 株式会社東芝 Solid electrolyte separator, secondary battery, battery pack, and vehicle
US10854910B2 (en) 2017-09-20 2020-12-01 Kabushiki Kaisha Toshiba Solid electrolyte separator, secondary battery, battery pack, and vehicle
EP3460895B1 (en) * 2017-09-20 2021-03-24 Kabushiki Kaisha Toshiba Secondary battery with a solid electrolyte separator, battery pack and vehicle
CN109524710B (en) * 2017-09-20 2022-01-04 株式会社东芝 Solid electrolyte separator, secondary battery, battery pack, and vehicle
CN115428222A (en) * 2020-04-17 2022-12-02 松下知识产权经营株式会社 Battery
JP2022069941A (en) * 2020-10-26 2022-05-12 日産自動車株式会社 Secondary battery
JP7695782B2 (en) 2020-10-26 2025-06-19 日産自動車株式会社 secondary battery

Similar Documents

Publication Publication Date Title
JP5310996B2 (en) Lithium battery
US20130059209A1 (en) Positive-electrode body for nonaqueous-electrolyte battery, method for producing the positive-electrode body, and nonaqueous-electrolyte battery
KR101664244B1 (en) Method forming electrode surface pattern and the electrode manufactured by the method and secondary battery including the same
JPWO2009063747A1 (en) Lithium battery and manufacturing method thereof
JP2011044368A (en) Nonaqueous electrolyte battery
US20120177998A1 (en) Nonaqueous electrolyte battery
JP2011086554A (en) Nonaqueous electrolyte battery
CN110858663B (en) All-solid-state battery
JP2010040439A (en) Lithium battery
JP2009152077A (en) Lithium battery
JP2012243644A (en) Electrode and all-solid state nonaqueous electrolyte battery
JP2016025078A (en) Thin film battery structure and manufacturing method thereof
CN102024934A (en) Electrode assembly and secondary battery including the same
JP2011044369A (en) Nonaqueous electrolyte battery
JP2011086555A (en) Nonaqueous electrolyte battery, and manufacturing method thereof
JP2013054949A (en) Nonaqueous electrolyte battery
JP2012054151A (en) Solid electrolyte battery
CN105742690B (en) Lithium ion secondary battery
JP2015018670A (en) Bipolar battery
US11652242B2 (en) Solid-state battery electrolyte layers
KR101905167B1 (en) Bipolar All Solid-State Battery
JP2012248454A (en) Positive electrode, and all-solid nonaqueous electrolyte battery
US20170155166A1 (en) Composite lithium secondary battery
JP2009032597A (en) Lithium battery
JP2011159467A (en) Nonaqueous electrolyte battery