JP2011002217A - Refrigerating device and air conditioning apparatus - Google Patents
Refrigerating device and air conditioning apparatus Download PDFInfo
- Publication number
- JP2011002217A JP2011002217A JP2010010331A JP2010010331A JP2011002217A JP 2011002217 A JP2011002217 A JP 2011002217A JP 2010010331 A JP2010010331 A JP 2010010331A JP 2010010331 A JP2010010331 A JP 2010010331A JP 2011002217 A JP2011002217 A JP 2011002217A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- heat exchanger
- compressor
- passage area
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Lubricants (AREA)
Abstract
【課題】R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用いた場合でも、圧縮機の効率低下を抑制すると共に、室外熱交換器、室内熱交換器、及び接続管の圧力損失を低減して効率の高い冷暖房装置を提供すること。
【解決手段】圧縮機1、蒸発器、絞り装置4、及び凝縮器を順次接続管21、22で接続して環状の冷媒回路を構成した冷凍装置であって、冷媒回路に封入する冷媒として、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用い、圧縮機1の気筒容積を、R410A冷媒使用時の気筒容積より大きくし、ガス冷媒が流れる接続管22の通過面積を、R410A冷媒使用時のガス冷媒が流れる接続管22の通過面積より大きくしたことを特徴とする。
【選択図】 図1[PROBLEMS] To suppress a reduction in efficiency of a compressor and reduce pressure loss of an outdoor heat exchanger, an indoor heat exchanger, and a connecting pipe even when a refrigerant having a smaller refrigeration capacity per unit volume than that of an R410A refrigerant is used. To provide a cooling and heating device that is highly efficient.
A refrigerating apparatus in which a compressor 1, an evaporator, a throttling device 4, and a condenser are sequentially connected by connecting pipes 21 and 22 to form an annular refrigerant circuit, and the refrigerant enclosed in the refrigerant circuit is as follows: A refrigerant having a refrigerating capacity per unit volume smaller than that of the R410A refrigerant is used, the cylinder volume of the compressor 1 is made larger than the cylinder volume when the R410A refrigerant is used, and the passage area of the connecting pipe 22 through which the gas refrigerant flows is defined as the R410A refrigerant. It is characterized by being larger than the passage area of the connecting pipe 22 through which the gas refrigerant flows during use.
[Selection] Figure 1
Description
本発明は、冷媒を用いた冷凍装置および冷暖房装置に関する。 The present invention relates to a refrigeration apparatus and an air conditioning apparatus using a refrigerant.
冷凍装置に用いられている冷媒はフロンの使用によるオゾン層破壊が問題化した後は、代替冷媒としてHCFCが用いられ、現在ではHFC(R410A)が多く用いられている(特許文献1)。 As the refrigerant used in the refrigeration apparatus, HCFC is used as an alternative refrigerant after ozone layer destruction due to the use of Freon has become a problem. Currently, HFC (R410A) is often used (Patent Document 1).
しかし、R410A冷媒の地球温暖化係数(GWP)は2088と大きく、地球温暖化防止の観点から問題であった。
地球温暖化防止の観点からは、GWPの小さな冷媒として、例えばGWP4のHFO1234yfが提案されているが、本冷媒はR410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒である。
従って、この冷媒を従来の装置のまま適用してR410A冷媒と同一の能力を得ようとすると、圧縮機の回転数を上昇させて冷媒の体積循環量を増加させる必要があるが、R410A冷媒と同一の能力となるまで圧縮機の回転数を上昇させると、熱交換器を含む配管の圧力損失が大きくなり、また圧縮機の回転数の上昇と共に圧縮機の摺動損失が増加するため、性能低下を招いてしまう。
However, the global warming potential (GWP) of the R410A refrigerant is as large as 2088, which is a problem from the viewpoint of preventing global warming.
From the viewpoint of preventing global warming, for example, HFO1234yf of GWP4 has been proposed as a refrigerant having a small GWP, but this refrigerant is a refrigerant having a small refrigerating capacity per unit volume compared to the R410A refrigerant.
Therefore, if this refrigerant is applied as it is in the conventional apparatus to obtain the same capacity as the R410A refrigerant, it is necessary to increase the rotational speed of the compressor and increase the volume circulation amount of the refrigerant. If the rotation speed of the compressor is increased to the same capacity, the pressure loss of the piping including the heat exchanger increases, and the sliding loss of the compressor increases as the rotation speed of the compressor increases. It will cause a decline.
そこで、本発明は、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用いた場合でも、圧縮機の効率低下を抑制すると共に、室外熱交換器、室内熱交換器、及び接続管の圧力損失を低減して効率の高い冷暖房装置を提供することを目的とする。 Therefore, the present invention suppresses a reduction in the efficiency of the compressor even when a refrigerant having a refrigeration capacity per unit volume smaller than that of the R410A refrigerant is used, and the outdoor heat exchanger, the indoor heat exchanger, and the connection pipe An object of the present invention is to provide a highly efficient air conditioner by reducing pressure loss.
請求項1記載の本発明は、圧縮機、蒸発器、絞り装置、及び凝縮器を順次接続管で接続して環状の冷媒回路を構成した冷凍装置であって、前記冷媒回路に封入する冷媒として、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用い、前記圧縮機の気筒容積を、前記R410A冷媒使用時の気筒容積より大きくし、ガス冷媒が流れる前記接続管の通過面積を、前記R410A冷媒使用時のガス冷媒が流れる前記接続管の通過面積より大きくしたことを特徴とする。
請求項2記載の本発明は、請求項1に記載の冷凍装置において、前記ガス冷媒が流れる前記接続管の前記通過面積を、液冷媒が流れる前記接続管の通過面積より大きくしたことを特徴とする。
請求項3記載の本発明は、請求項1又は請求項2に記載の冷凍装置を用いた冷暖房装置であって、前記蒸発器を室外熱交換器、前記凝縮器を室内熱交換器とし、前記冷媒回路に四方弁を設け、前記四方弁の切り換えによって、前記室外熱交換器と前記室内熱交換器に流れる冷媒の向きを変えることを特徴とする。
請求項4記載の本発明は、請求項3に記載の冷暖房装置において、冷房運転時には前記室内熱交換器を構成する配管内の冷媒流速が6.2m/s以下となり、前記室内熱交換器の出口から前記圧縮機の吸入口までの前記接続管内の冷媒流速が10.6m/s以下となる通過面積としたことを特徴とする。
請求項5記載の本発明は、請求項3又は請求項4に記載の冷暖房装置において、前記室内熱交換器を構成する前記配管の内径をDmm、パス数をPとしたとき、(3.1415×D2×P)/4≧84.6mm2の条件を満たし、前記室内熱交換器の前記出口から前記圧縮機の前記吸入口までの前記接続管内の前記通過面積を49.3mm2以上としたことを特徴とする。
請求項6記載の本発明は、請求項3から請求項5のいずれかに記載の冷暖房装置において、暖房運転時には前記室外熱交換器を構成する前記配管内の冷媒流速が4.2m/s以下となり、前記室外熱交換器の前記出口から前記圧縮機の前記吸入口までの前記接続管内の冷媒流速が7.4m/s以下となる通過面積としたことを特徴とする。
請求項7記載の本発明は、請求項3から請求項6のいずれかに記載の冷暖房装置において、前記室外熱交換器を構成する前記配管の内径をDmm、パス数をPとしたとき、(3.1415×D2×P)/4≧169.3mm2の条件を満たし、前記室外熱交換器の前記出口から前記圧縮機の前記吸入口までの前記接続管内の前記通過面積を96.7mm2以上としたことを特徴とする。
請求項8記載の本発明は、請求項3から請求項7のいずれかに記載の冷暖房装置において、前記冷媒として、ハイドロフルオロオレフィンはテトラフルオロプロペンをベース成分とし、ジフルオロメタンとペンタフルオロエタンを、地球温暖化係数が5以上、750以下となるように、望ましくは350以下となるようにそれぞれ2成分混合もしくは3成分混合した冷媒を用いたことを特徴とする。
請求項9記載の本発明は、請求項3から請求項8のいずれかに記載の冷暖房装置において、前記圧縮機に用いる冷凍機油として、ポリオキシアルキレングリコール類、ポリビニルエーテル類、ポリ(オキシ)アルキレングリコールまたはそのモノエーテルとポリビニルエーテルの共重合体、ポリオールエステル類、及びポリカーボネート類のいずれかの含酸素化合物を主成分とする合成油か、アルキルベンゼン類やαオレフィン類を主成分とする合成油を用いることを特徴とする。
The present invention according to claim 1 is a refrigeration apparatus in which a compressor, an evaporator, a throttling device, and a condenser are sequentially connected by a connecting pipe to form an annular refrigerant circuit, and the refrigerant enclosed in the refrigerant circuit , Using a refrigerant having a small refrigeration capacity per unit volume compared to the R410A refrigerant, making the cylinder volume of the compressor larger than the cylinder volume when the R410A refrigerant is used, and the passage area of the connecting pipe through which the gas refrigerant flows, The passage area of the connecting pipe through which the gas refrigerant flows when the R410A refrigerant is used is larger.
According to a second aspect of the present invention, in the refrigeration apparatus according to the first aspect, the passage area of the connection pipe through which the gas refrigerant flows is larger than the passage area of the connection pipe through which the liquid refrigerant flows. To do.
The present invention according to claim 3 is an air conditioning apparatus using the refrigeration apparatus according to claim 1 or 2, wherein the evaporator is an outdoor heat exchanger, the condenser is an indoor heat exchanger, A four-way valve is provided in the refrigerant circuit, and the direction of the refrigerant flowing through the outdoor heat exchanger and the indoor heat exchanger is changed by switching the four-way valve.
According to a fourth aspect of the present invention, in the air conditioning apparatus according to the third aspect, during cooling operation, the refrigerant flow rate in the pipe constituting the indoor heat exchanger is 6.2 m / s or less, and the indoor heat exchanger The passage area is such that the refrigerant flow rate in the connecting pipe from the outlet to the suction port of the compressor is 10.6 m / s or less.
According to a fifth aspect of the present invention, in the air conditioning apparatus according to the third or fourth aspect, when the inner diameter of the pipe constituting the indoor heat exchanger is Dmm and the number of passes is P (3.1415) × D 2 × P) /4≧84.6 mm 2 is satisfied, and the passage area in the connection pipe from the outlet of the indoor heat exchanger to the suction port of the compressor is 49.3 mm 2 or more. It is characterized by that.
According to a sixth aspect of the present invention, in the air conditioning apparatus according to any one of the third to fifth aspects, a refrigerant flow rate in the pipe constituting the outdoor heat exchanger is 4.2 m / s or less during heating operation. Thus, the passage area is such that the refrigerant flow rate in the connecting pipe from the outlet of the outdoor heat exchanger to the suction port of the compressor is 7.4 m / s or less.
According to a seventh aspect of the present invention, in the air conditioning apparatus according to any one of the third to sixth aspects, when the inner diameter of the pipe constituting the outdoor heat exchanger is Dmm and the number of passes is P, 3.114 × D 2 × P) /4≧169.3 mm 2 is satisfied, and the passage area in the connecting pipe from the outlet of the outdoor heat exchanger to the suction port of the compressor is 96.7 mm. It is characterized by being 2 or more.
The present invention according to claim 8 is the cooling and heating apparatus according to any one of claims 3 to 7, wherein the refrigerant is a hydrofluoroolefin having tetrafluoropropene as a base component, difluoromethane and pentafluoroethane, It is characterized in that a refrigerant mixed with two or three components is used so that the global warming potential is 5 or more and 750 or less, preferably 350 or less.
According to a ninth aspect of the present invention, in the air conditioning apparatus according to any one of the third to eighth aspects, polyoxyalkylene glycols, polyvinyl ethers, poly (oxy) alkylene are used as the refrigerating machine oil used in the compressor. A synthetic oil mainly composed of an oxygen-containing compound of glycol or a copolymer of its monoether and polyvinyl ether, a polyol ester or a polycarbonate, or a synthetic oil mainly composed of an alkylbenzene or an α-olefin It is characterized by using.
本発明によれば、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用いた場合でも圧縮機の効率低下を抑制すると共に、室外熱交換器、室内熱交換器、及びガス接続管の圧力損失を低減することで冷暖房装置の効率向上ができる。 According to the present invention, even when a refrigerant having a small refrigeration capacity per unit volume compared to the R410A refrigerant is used, a reduction in the efficiency of the compressor is suppressed, and the outdoor heat exchanger, the indoor heat exchanger, and the gas connection pipe By reducing the pressure loss, the efficiency of the air conditioner can be improved.
本発明の第1の実施の形態による冷凍装置は、冷媒回路に封入する冷媒として、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用い、前記圧縮機の気筒容積を、前記R410A冷媒使用時の気筒容積より大きくし、ガス冷媒が流れる前記接続管の通過面積を、前記R410A冷媒使用時のガス冷媒が流れる前記接続管の通過面積より大きくしたものである。本実施の形態によれば、冷媒速度を抑えて圧力損失を低減できる。
本発明の第2の実施の形態は、第1の実施の形態による冷凍装置において、ガス冷媒が流れる接続管の通過面積を、液冷媒が流れる接続管の通過面積より大きくしたものである。本実施の形態によれば、ガス冷媒が流れる接続管での圧力損失を低減できる。
本発明の第3の実施の形態による冷暖房装置は、第1又は第2に記載の冷凍装置を用いた冷暖房装置であって、蒸発器を室外熱交換器、凝縮器を室内熱交換器とし、冷媒回路に四方弁を設け、四方弁の切り換えによって、室外熱交換器と室内熱交換器に流れる冷媒の向きを変えるものである。本実施の形態によれば、冷凍装置を冷暖房装置として用いることができる。
本発明の第4の実施の形態は、第3の実施の携帯の冷暖房装置において、冷房運転時には室内熱交換器を構成する配管内の冷媒流速が6.2m/s以下となり、室内熱交換器の出口から圧縮機の吸入口までの接続管内の冷媒流速が10.6m/s以下となる通過面積としたものである。本実施の形態によれば、冷房運転時において、圧力損失の大きなガス冷媒通過部位についてR410Aと同等の適切な圧力損失とすることができる。
本発明の第5の実施の形態は、第3又は第4の実施の形態による冷暖房装置において、室内熱交換器を構成する配管の内径をDmm、パス数をPとしたとき、(3.1415×D2×P)/4≧84.6mm2の条件を満たし、室内熱交換器の出口から圧縮機の吸入口までの接続管内の通過面積を49.3mm2以上としたものである。本実施の形態によれば、冷房運転時において、圧力損失の大きなガス冷媒通過部位についてR410Aと同等の適切な圧力損失とすることができる。
本発明の第6の実施の形態は、第3から第5の実施の形態による冷暖房装置において、暖房運転時には室外熱交換器を構成する配管内の冷媒流速が4.2m/s以下となり、室外熱交換器の出口から圧縮機の吸入口までの接続管内の冷媒流速が7.4m/s以下となる通過面積としたものである。本実施の形態によれば、暖房運転時においても、圧力損失の大きなガス冷媒通過部位についてR410Aと同等の適切な圧力損失とすることができる。
本発明の第7の実施の形態は、第3から第6の実施の形態による冷暖房装置において、室外熱交換器を構成する配管の内径をDmm、パス数をPとしたとき、(3.1415×D2×P)/4≧169.3mm2の条件を満たし、室外熱交換器の出口から圧縮機の吸入口までの接続管内の通過面積を96.7mm2以上としたものである。本実施の形態によれば、暖房運転時においても、圧力損失の大きなガス冷媒通過部位についてR410Aと同等の適切な圧力損失とすることができる。
本発明の第8の実施の形態は、第3から第7の実施の形態による冷暖房装置において、冷媒として、ハイドロフルオロオレフィンはテトラフルオロプロペンをベース成分とし、ジフルオロメタンとペンタフルオロエタンを、地球温暖化係数が5以上、750以下となるように、望ましくは350以下となるようにそれぞれ2成分混合もしくは3成分混合した冷媒を用いたものである。本実施の形態によれば、地球温暖化係数の小さな冷媒を用いることで、回収されない冷媒が大気に放出されても、地球温暖化に対しその影響を極少に保つことができる。
本発明の第9の実施の形態は、第3から第8の実施の形態による冷暖房装置において、圧縮機に用いる冷凍機油として、ポリオキシアルキレングリコール類、ポリビニルエーテル類、ポリ(オキシ)アルキレングリコールまたはそのモノエーテルとポリビニルエーテルの共重合体、ポリオールエステル類、及びポリカーボネート類のいずれかの含酸素化合物を主成分とする合成油か、アルキルベンゼン類やαオレフィン類を主成分とする合成油を用いるものである。本実施の形態によれば、R410Aと同等の能力を得ようとしたとき圧縮機の回転数を抑制できるので、摺動損失を低減でき、圧縮機の効率低下を防ぐことができるので、ガス状態の冷媒が通過する部位の圧力損失を低減できる。
In the refrigeration apparatus according to the first embodiment of the present invention, a refrigerant having a smaller refrigeration capacity per unit volume than the R410A refrigerant is used as the refrigerant enclosed in the refrigerant circuit, and the cylinder volume of the compressor is set to the R410A refrigerant. It is larger than the cylinder volume at the time of use, and the passage area of the connection pipe through which the gas refrigerant flows is larger than the passage area of the connection pipe through which the gas refrigerant flows when the R410A refrigerant is used. According to the present embodiment, the pressure loss can be reduced by suppressing the refrigerant speed.
In the refrigeration apparatus according to the first embodiment, the second embodiment of the present invention is such that the passage area of the connection pipe through which the gas refrigerant flows is larger than the passage area of the connection pipe through which the liquid refrigerant flows. According to the present embodiment, it is possible to reduce pressure loss in the connection pipe through which the gas refrigerant flows.
The air conditioning apparatus according to the third embodiment of the present invention is an air conditioning apparatus using the refrigeration apparatus according to the first or second aspect, wherein the evaporator is an outdoor heat exchanger, and the condenser is an indoor heat exchanger. A four-way valve is provided in the refrigerant circuit, and the direction of the refrigerant flowing through the outdoor heat exchanger and the indoor heat exchanger is changed by switching the four-way valve. According to the present embodiment, the refrigeration apparatus can be used as an air conditioner.
According to the fourth embodiment of the present invention, in the portable air-conditioning apparatus according to the third embodiment, the refrigerant flow rate in the pipe constituting the indoor heat exchanger becomes 6.2 m / s or less during the cooling operation, and the indoor heat exchanger The passage area is such that the refrigerant flow rate in the connecting pipe from the outlet to the compressor suction port is 10.6 m / s or less. According to the present embodiment, it is possible to set an appropriate pressure loss equivalent to that of R410A for the gas refrigerant passage portion having a large pressure loss during the cooling operation.
In the air conditioner according to the third or fourth embodiment, the fifth embodiment of the present invention is (3.1415) where the inner diameter of the pipe constituting the indoor heat exchanger is Dmm and the number of passes is P. × D 2 × P) /4≧84.6 mm 2 is satisfied, and the passage area in the connecting pipe from the outlet of the indoor heat exchanger to the suction port of the compressor is 49.3 mm 2 or more. According to the present embodiment, it is possible to set an appropriate pressure loss equivalent to that of R410A for the gas refrigerant passage portion having a large pressure loss during the cooling operation.
According to a sixth embodiment of the present invention, in the air conditioning apparatus according to the third to fifth embodiments, the refrigerant flow rate in the pipe constituting the outdoor heat exchanger is 4.2 m / s or less during the heating operation, and the outdoor The passage area is such that the refrigerant flow rate in the connecting pipe from the outlet of the heat exchanger to the suction port of the compressor is 7.4 m / s or less. According to the present embodiment, even during the heating operation, an appropriate pressure loss equivalent to that of R410A can be achieved for the gas refrigerant passage portion having a large pressure loss.
In the air conditioning apparatus according to the third to sixth embodiments, the seventh embodiment of the present invention is (3.1415) where the inner diameter of the pipe constituting the outdoor heat exchanger is Dmm and the number of passes is P. × D 2 × P) /4≧169.3 mm 2 is satisfied, and the passage area in the connecting pipe from the outlet of the outdoor heat exchanger to the suction port of the compressor is 96.7 mm 2 or more. According to the present embodiment, even during the heating operation, an appropriate pressure loss equivalent to that of R410A can be achieved for the gas refrigerant passage portion having a large pressure loss.
According to an eighth embodiment of the present invention, in the air-conditioning apparatus according to the third to seventh embodiments, as a refrigerant, hydrofluoroolefin has tetrafluoropropene as a base component, difluoromethane and pentafluoroethane, A refrigerant in which two components are mixed or three components are mixed so that the conversion factor is 5 or more and 750 or less, preferably 350 or less is used. According to the present embodiment, by using a refrigerant having a small global warming potential, even if an unrecovered refrigerant is released into the atmosphere, the influence on global warming can be kept to a minimum.
In the air conditioning apparatus according to the third to eighth embodiments, the ninth embodiment of the present invention uses polyoxyalkylene glycols, polyvinyl ethers, poly (oxy) alkylene glycols or the like as refrigerating machine oil used in the compressor. A synthetic oil mainly composed of an oxygen-containing compound of any of monoether and polyvinyl ether, polyol esters, and polycarbonates, or a synthetic oil mainly composed of alkylbenzenes and α-olefins. It is. According to the present embodiment, since it is possible to suppress the rotation speed of the compressor when trying to obtain the same capacity as R410A, the sliding loss can be reduced and the efficiency of the compressor can be prevented from being reduced. It is possible to reduce the pressure loss at the site where the refrigerant passes.
以下に、本発明を冷暖房装置の場合を例にして説明する。なお、この実施例によって本発明が限定されるものではない。
図1は本実施例による冷暖房装置の構成図である。
本実施例による冷暖房装置は、冷媒を圧縮する圧縮機1、冷房暖房運転時の冷媒回路を切り替える四方弁2、冷媒と外気の熱を交換する室外熱交換器3、冷媒を減圧する絞り装置4、冷媒と室内空気の熱を交換する室内熱交換器5で構成される。圧縮機1、四方弁2、室外熱交換器3、絞り装置4、及び室内熱交換器5は接続管で環状に接続されている。室外ユニット10には、圧縮機1、四方弁2、室外熱交換器3、絞り装置4を有し、室内ユニット11には室内熱交換器5を有している。そして室外ユニット10と室内ユニット11とは、液接続管21とガス接続管22とで接続されている。
冷房運転時には、圧縮機1によって圧縮された冷媒は高温高圧の冷媒となって四方弁2を通って室外熱交換器3に送られる。そして、室外熱交換器3は凝縮器として機能し、ガス冷媒は外気と熱交換して放熱し、高圧の液冷媒となり絞り装置4に送られる。絞り装置4では減圧されて低温低圧の二相冷媒となり、液接続管21を通って、室内熱交換器5に入る。室内熱交換器5は蒸発器として機能し、冷媒は室内空気と熱交換して吸熱し、蒸発気化して低温のガス冷媒となる。このとき室内空気は冷却されて室内を冷房する。さらに冷媒はガス接続管22を通って、四方弁2を経由して圧縮機1に戻される。
暖房運転時には、圧縮機1によって圧縮された冷媒は高温高圧の冷媒となって四方弁2を通ってガス接続管22に送られ、室内熱交換器5に入る。室内熱交換器5は凝縮器として機能し、ガス冷媒は室内空気と熱交換して放熱し、冷却され高圧の液冷媒となる。このとき室内空気は加熱されて室内を暖房する。その後、冷媒は液接続管21を通って絞り装置4に送られ、絞り装置4において減圧されて低温低圧の二相冷媒となり、室外熱交換器3に送られる。室外熱交換器3は蒸発器として機能し、冷媒は外気と熱交換して蒸発気化し、四方弁2を経由して圧縮機1へ戻される。
このようにして冷暖房運転がなされる。
Below, this invention is demonstrated taking the case of the air conditioning apparatus as an example. In addition, this invention is not limited by this Example.
FIG. 1 is a configuration diagram of an air conditioning apparatus according to the present embodiment.
The air conditioning apparatus according to the present embodiment includes a compressor 1 that compresses refrigerant, a four-way valve 2 that switches a refrigerant circuit during cooling and heating operation, an outdoor heat exchanger 3 that exchanges heat between the refrigerant and the outside air, and a throttle device 4 that decompresses the refrigerant. The indoor heat exchanger 5 is configured to exchange heat between the refrigerant and the room air. The compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion device 4, and the indoor heat exchanger 5 are connected in a ring shape with a connecting pipe. The outdoor unit 10 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, and an expansion device 4, and the indoor unit 11 includes an indoor heat exchanger 5. The outdoor unit 10 and the indoor unit 11 are connected by a liquid connection pipe 21 and a gas connection pipe 22.
During the cooling operation, the refrigerant compressed by the compressor 1 becomes a high-temperature and high-pressure refrigerant and is sent to the outdoor heat exchanger 3 through the four-way valve 2. The outdoor heat exchanger 3 functions as a condenser, and the gas refrigerant exchanges heat with the outside air to dissipate the heat, and becomes a high-pressure liquid refrigerant and is sent to the expansion device 4. In the expansion device 4, the pressure is reduced to form a low-temperature and low-pressure two-phase refrigerant, which enters the indoor heat exchanger 5 through the liquid connection pipe 21. The indoor heat exchanger 5 functions as an evaporator, and the refrigerant exchanges heat with room air to absorb heat and evaporate to become a low-temperature gas refrigerant. At this time, the room air is cooled to cool the room. Further, the refrigerant passes through the gas connection pipe 22 and returns to the compressor 1 through the four-way valve 2.
During the heating operation, the refrigerant compressed by the compressor 1 becomes a high-temperature and high-pressure refrigerant, passes through the four-way valve 2, is sent to the gas connection pipe 22, and enters the indoor heat exchanger 5. The indoor heat exchanger 5 functions as a condenser, and the gas refrigerant exchanges heat with room air to dissipate heat and is cooled to become a high-pressure liquid refrigerant. At this time, the room air is heated to heat the room. Thereafter, the refrigerant is sent to the expansion device 4 through the liquid connection pipe 21, and is decompressed in the expansion device 4 to become a low-temperature and low-pressure two-phase refrigerant and is sent to the outdoor heat exchanger 3. The outdoor heat exchanger 3 functions as an evaporator, and the refrigerant exchanges heat with outside air to evaporate and is returned to the compressor 1 via the four-way valve 2.
In this way, the air conditioning operation is performed.
本実施例による冷暖房装置を構成する冷媒回路には、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を封入している。この冷媒は、ハイドロフルオロオレフィンはテトラフルオロプロペンをベース成分とし、ジフルオロメタンとペンタフルオロエタンを、地球温暖化係数が5以上、750以下となるように、望ましくは350以下、更に望ましくは150以下となるようにそれぞれ2成分混合もしくは3成分混合したものである。
また、圧縮機1に用いる冷凍機油は、ポリオキシアルキレングリコール類、ポリビニルエーテル類、ポリ(オキシ)アルキレングリコールまたはそのモノエーテルとポリビニルエーテルの共重合体、ポリオールエステル類、及びポリカーボネート類のいずれかの含酸素化合物を主成分とする合成油か、アルキルベンゼン類やαオレフィン類を主成分とする合成油である。
In the refrigerant circuit constituting the air conditioning apparatus according to the present embodiment, a refrigerant having a small refrigerating capacity per unit volume compared to the R410A refrigerant is enclosed. In this refrigerant, the hydrofluoroolefin is based on tetrafluoropropene, and difluoromethane and pentafluoroethane are preferably 350 or less, more preferably 150 or less so that the global warming potential is 5 or more and 750 or less. In this way, two components are mixed or three components are mixed.
The refrigerating machine oil used for the compressor 1 is any one of polyoxyalkylene glycols, polyvinyl ethers, poly (oxy) alkylene glycols or their monoether and polyvinyl ether copolymers, polyol esters, and polycarbonates. It is a synthetic oil mainly composed of oxygen-containing compounds or a synthetic oil mainly composed of alkylbenzenes and α-olefins.
次に、本実施例による冷暖房装置を構成する圧縮機1の気筒容積について説明する。
図2は、R410A冷媒と、HFO1234yf冷媒との単位体積当たりの冷凍能力を実験値で比較したものである。
図2では、蒸発器入口での冷媒温度、蒸発器出口での冷媒温度、蒸発器出入口の平均飽和温度、蒸発器出入口の平均温度での蒸発潜熱、圧縮機吸入温度、圧縮機吸入温度での飽和ガス密度、及び蒸発器の単位体積当たりの冷凍能力(圧縮機吸入飽和ガス密度×蒸発潜熱)を示している。R410A冷媒については実験値を示し、HFO1234yf冷媒については実験値を示すとともに、蒸発器入口での冷媒温度、蒸発器出口での冷媒温度、及び圧縮機吸入温度がR410Aと同等の場合における蒸発器の単位体積当たりの冷凍能力を示している。
Next, the cylinder volume of the compressor 1 constituting the air conditioning apparatus according to the present embodiment will be described.
FIG. 2 compares the refrigeration capacity per unit volume of the R410A refrigerant and the HFO1234yf refrigerant with experimental values.
In FIG. 2, the refrigerant temperature at the evaporator inlet, the refrigerant temperature at the evaporator outlet, the average saturation temperature at the evaporator inlet / outlet, the latent heat of vaporization at the average temperature at the evaporator inlet / outlet, the compressor suction temperature, and the compressor suction temperature The saturation gas density and the refrigeration capacity per unit volume of the evaporator (compressor suction saturated gas density × evaporation latent heat) are shown. Experimental values are shown for the R410A refrigerant, experimental values are shown for the HFO1234yf refrigerant, and the evaporator temperature when the refrigerant temperature at the evaporator inlet, the refrigerant temperature at the evaporator outlet, and the compressor suction temperature are equivalent to the R410A. The refrigeration capacity per unit volume is shown.
図2に示すように、冷房運転時における単位体積当たりの冷凍能力は、R410Aでは10149.72kJ/m3、HFO1234yfでは3722.55kJ/m3であり、HFO1234yfはR410Aの約1/2.7倍となる。よって、圧縮機1の冷凍能力をR410Aと同程度にするためには気筒容積を約2.7倍にして、単位時間当たりの体積流量を増加する必要がある。
なお、圧縮機1の単位時間当たりの体積流量を増加する手段として回転数を増加させる方法が考えられるが、回転数を増加することにより圧縮機1の摺動損失の増加につながり、圧縮機1の効率が低下するために好ましくない。
一方、蒸発器の出口温度及び圧縮機の吸入口の飽和ガス温度はR410Aの実験値に比べてHFO1234yfの実験値は低くなっている。これは配管内の流速が増加したことによる圧力損失が増加して温度か低下したものと考えられ、蒸発器性能の低下や圧縮機の吸入密度の低下による性能低下を引き起こしていると考えられる。
さらに、HFO1234yfについて、R410Aと同等の圧力損失となり、更に蒸発器の出口温度及び圧縮機の吸入口の飽和ガス温度となったと仮定した場合の単位体積当たりの冷凍能力を計算した結果に示す通り、圧力損失をR410Aと同等とした場合に、蒸発器の蒸発潜熱の向上と圧縮機の吸入密度を大きくでき、単位体積当たりの冷凍能力は4529.78kJ/m3となり、実験値に比べて約20%向上している。従って、配管内での圧力損失の低減が重要である。
一方、暖房運転時においても、単位体積当たりの冷凍能力は、R410Aでは7229.43kJ/m3、HFO1234yfでは3098.59kJ/m3であり、HFO1234yfはR410Aの約1/2.3倍となる。よって、圧縮機1の冷凍能力をR410Aと同程度にするためには気筒容積を約2.3倍にして、単位時間当たりの体積流量を増加する必要がある。
以上のことから、圧縮機1の気筒容積は、R410A冷媒使用時の気筒容積の約2.7倍より大きくすることが好ましい。例えば、冷房能力ランクが4kWの場合には、R410A冷媒使用時の圧縮機の気筒容積は10ccから20ccであるため、本実施例による圧縮機1の気筒容積は、27ccから54ccとすることが好ましい。同様に、冷房能力ランクが2kWの場合には、R410A冷媒使用時の圧縮機の気筒容積は5ccから15ccであるため、本実施例による圧縮機1の気筒容積は、13.5ccから40.5ccとすることが好ましい。
また、例えばHFO1234yfとR32との混合冷媒を用いる場合には、後述する図8によって気筒容積を決定することができる。図8ではR410Aを1とした場合に、HFO1234yfとR32との混合冷媒についての単位体積当たりの冷凍能力を示している。従って、図8に示すように、HFO1234yfが50%(R32が50%)では、T=17℃冷房時には約0.66であるので、気筒容積を1.5倍以上とすることが好ましい。
As shown in FIG. 2, the refrigerating capacity per unit volume at the time of cooling operation is 10149.72kJ / m 3, 3722.55kJ / m 3 In HFO1234yf at R410A, about 1 / 2.7 times HFO1234yf is the R410A It becomes. Therefore, in order to make the refrigerating capacity of the compressor 1 comparable to that of R410A, it is necessary to increase the volumetric flow rate per unit time by increasing the cylinder volume by about 2.7 times.
In addition, although the method of increasing a rotation speed can be considered as a means to increase the volume flow rate per unit time of the compressor 1, it leads to the increase in the sliding loss of the compressor 1 by increasing a rotation speed, and the compressor 1 is increased. This is not preferable because the efficiency is reduced.
On the other hand, the experimental value of HFO1234yf is lower than the experimental value of R410A for the outlet temperature of the evaporator and the saturated gas temperature of the suction port of the compressor. This is thought to be due to an increase in pressure loss due to an increase in the flow velocity in the pipe, resulting in a decrease in temperature, and a decrease in evaporator performance and a decrease in compressor suction density.
Furthermore, for HFO1234yf, as shown in the result of calculating the refrigerating capacity per unit volume when it is assumed that the pressure loss is equal to that of R410A, and further the outlet temperature of the evaporator and the saturated gas temperature of the suction port of the compressor are obtained. When the pressure loss is equivalent to R410A, the latent heat of vaporization of the evaporator can be improved and the suction density of the compressor can be increased. The refrigeration capacity per unit volume is 4529.78 kJ / m 3 , which is about 20 compared with the experimental value. % Improvement. Therefore, it is important to reduce the pressure loss in the piping.
On the other hand, even during the heating operation, the refrigerating capacity per unit volume is 7229.43kJ / m 3, the HFO1234yf 3098.59kJ / m 3 In R410A, HFO1234yf is about 1 / 2.3 times the R410A. Therefore, in order to make the refrigerating capacity of the compressor 1 comparable to that of R410A, it is necessary to increase the volumetric flow rate per unit time by increasing the cylinder volume by about 2.3 times.
From the above, the cylinder volume of the compressor 1 is preferably larger than about 2.7 times the cylinder volume when the R410A refrigerant is used. For example, when the cooling capacity rank is 4 kW, the cylinder volume of the compressor when using the R410A refrigerant is 10 cc to 20 cc. Therefore, the cylinder volume of the compressor 1 according to the present embodiment is preferably 27 cc to 54 cc. . Similarly, when the cooling capacity rank is 2 kW, the cylinder volume of the compressor when the R410A refrigerant is used is 5 cc to 15 cc. Therefore, the cylinder volume of the compressor 1 according to this embodiment is 13.5 cc to 40.5 cc. It is preferable that
For example, when a mixed refrigerant of HFO1234yf and R32 is used, the cylinder volume can be determined according to FIG. FIG. 8 shows the refrigeration capacity per unit volume for the mixed refrigerant of HFO1234yf and R32 when R410A is 1. Therefore, as shown in FIG. 8, when the HFO 1234yf is 50% (R32 is 50%), T = 17 ° C., which is about 0.66, the cylinder volume is preferably 1.5 times or more.
ところで、圧力損失を△P、配管内の冷媒流速をVとすると、一般的に式(1)が成立する。
△P∝V2 ・・・(1)
従って、圧力損失を低減するには通過面積を大きくして冷媒流速を低くする必要がある。
図3は、R410A冷媒とHFO1234yf冷媒との配管内流速を実験値で比較したものである。
図3では、冷媒循環量、蒸発器出口飽和密度、蒸発器出口配管断面積(冷媒通過面積)、冷媒の配管内流速管内速度比を示している。
図3に示すように、冷房運転時における配管内流速は、R410A冷媒では約5.4m/s、HFO1234yf冷媒では約14.4m/sとなり、同一の通過面積の配管を使用した場合には、R410A冷媒に対してHFO1234yf冷媒の圧力損失は大きい。
従って、R410A同等の適切な圧力損失とするためには、通過面積を大きくして配管内流速をR410A冷媒と同等の5.4m/s以下とする必要がある。
圧力損失は、循環冷媒がガス状態で流れるときに大きくなるため、凝縮器、蒸発器、ガス接続管などガス冷媒が通過する部位について通過面積を適正化する必要がある。なお、凝縮器、蒸発器の冷媒通過面積は、パス数に配管1本当たりの通過面積を乗じた値となる。
By the way, when the pressure loss is ΔP and the refrigerant flow velocity in the pipe is V, the equation (1) is generally established.
△ P∝V 2 ... (1)
Therefore, in order to reduce the pressure loss, it is necessary to increase the passage area and lower the refrigerant flow rate.
FIG. 3 is a comparison of the in-pipe flow rates of the R410A refrigerant and the HFO1234yf refrigerant with experimental values.
FIG. 3 shows the refrigerant circulation amount, the evaporator outlet saturation density, the evaporator outlet pipe cross-sectional area (refrigerant passage area), and the refrigerant pipe flow velocity / pipe velocity ratio.
As shown in FIG. 3, the flow velocity in the pipe during the cooling operation is about 5.4 m / s for the R410A refrigerant and about 14.4 m / s for the HFO1234yf refrigerant, and when pipes having the same passage area are used, The pressure loss of HFO1234yf refrigerant is larger than that of R410A refrigerant.
Therefore, in order to obtain an appropriate pressure loss equivalent to R410A, it is necessary to increase the passage area and set the flow velocity in the pipe to 5.4 m / s or less, which is equivalent to that of the R410A refrigerant.
Since the pressure loss becomes large when the circulating refrigerant flows in a gas state, it is necessary to optimize the passage area for a portion through which the gas refrigerant passes, such as a condenser, an evaporator, and a gas connection pipe. In addition, the refrigerant passage area of the condenser and the evaporator is a value obtained by multiplying the number of passes by the passage area per pipe.
図4は、R410A冷媒を用いた場合の冷房運転での能力ランクと冷媒流速との関係を示す図、図5は、R410A冷媒を用いた場合の暖房運転での能力ランクと冷媒流速との関係を示す実験値による特性図である。
図4に示すように、能力ランク4kWでは室内熱交換器5から圧縮機1の吸入口までの最大の冷媒流速は10.6m/s、室内熱交換器5内の最大の冷媒流速は6.2m/sとなる。
また図5に示すように、能力ランク5kW(冷房運転時の能力ランク4kWに対応)では室外熱交換器3から圧縮機1の吸入口までの最大の冷媒流速は7.4m/s、室外熱交換器3の最大の冷媒流速は4.2m/sとなる。
FIG. 4 is a diagram showing the relationship between the capacity rank in the cooling operation when the R410A refrigerant is used and the refrigerant flow rate, and FIG. 5 is the relationship between the capacity rank and the refrigerant flow rate in the heating operation when using the R410A refrigerant. It is a characteristic view by the experimental value which shows.
As shown in FIG. 4, at the capacity rank of 4 kW, the maximum refrigerant flow rate from the indoor heat exchanger 5 to the suction port of the compressor 1 is 10.6 m / s, and the maximum refrigerant flow rate in the indoor heat exchanger 5 is 6. 2 m / s.
Further, as shown in FIG. 5, at a capacity rank of 5 kW (corresponding to a capacity rank of 4 kW during cooling operation), the maximum refrigerant flow rate from the outdoor heat exchanger 3 to the suction port of the compressor 1 is 7.4 m / s, and the outdoor heat The maximum refrigerant flow rate of the exchanger 3 is 4.2 m / s.
図6は、HFO1234yf冷媒使用時の各部位別冷媒通過面積を示している。ここで運転モードと各部位毎の冷媒通過面積は、R410A冷媒を用いて冷房運転能力ランクを4kWとしたときの冷媒流速以下とするために必要となる面積である。
図6に示すように、HFO1234yf冷媒使用時に、R410A冷媒を用いて冷房運転能力ランクを4kWとしたときの冷媒流速以下とするためには、冷房運転では、室内熱交換器5の冷媒通過面積は84.6mm2以上であり、室内熱交換器5から圧縮機1の吸入口までの冷媒通過面積は49.3mm2以上である。また、暖房運転では室外熱交換器2の冷媒通過面積は169.3mm2以上であり、室内熱交換器5から圧縮機1の吸入口までの冷媒通過面積は96.7mm2以上である。
FIG. 6 shows the refrigerant passage area for each part when the HFO1234yf refrigerant is used. Here, the refrigerant passage area for each operation mode and each part is an area necessary for setting the cooling operation capacity rank to 4 kW or less using the R410A refrigerant.
As shown in FIG. 6, when using HFO1234yf refrigerant, the refrigerant passage area of the indoor heat exchanger 5 is set to be equal to or lower than the refrigerant flow rate when the cooling operation capacity rank is 4 kW using the R410A refrigerant. It is 84.6 mm 2 or more, and the refrigerant passage area from the indoor heat exchanger 5 to the suction port of the compressor 1 is 49.3 mm 2 or more. In the heating operation, the refrigerant passage area of the outdoor heat exchanger 2 is 169.3 mm 2 or more, and the refrigerant passage area from the indoor heat exchanger 5 to the suction port of the compressor 1 is 96.7 mm 2 or more.
熱交換器である室内熱交換器5、室外熱交換器2において前述の冷媒通過面積Sはパス数P、配管内径D(mm)としたとき(2)式で定義される。
S=(3.1415×D2×P)/4 ・・・(2)
図7に代表的な配管について、管径、肉厚、管1本当たりの通過面積、及びパス数が増加したときの通過面積を示す。
例えば、室内熱交換器5の冷媒通過面積を84.6mm2以上確保するためには、外径7mmの配管において肉厚が0.3mmのときは3パス以上必要であることが判る。
In the indoor heat exchanger 5 and the outdoor heat exchanger 2 that are heat exchangers, the above-described refrigerant passage area S is defined by equation (2) when the number of passes is P and the inner diameter of the pipe is D (mm).
S = (3.1415 × D 2 × P) / 4 (2)
FIG. 7 shows the pipe diameter, the wall thickness, the passage area per pipe, and the passage area when the number of passes increases for a typical pipe.
For example, in order to ensure the refrigerant passage area of the indoor heat exchanger 5 of 84.6 mm 2 or more, it is understood that three or more passes are necessary when the thickness of the pipe having an outer diameter of 7 mm is 0.3 mm.
なお、R410A冷媒に比べて単位体積当たりの冷凍能力が小さく、冷媒地球温暖化係数が5以上で750以下となる冷媒としては、例えば、R32とHFO1234yfとを混合することで得ることができる。なお、R32のGWPは675でありHFO1234yfのGWPは4であるので、混合割合に関わらずその混合物のGWPは675以下となる。
図8にR32とHFO1234yfの混合割合と、R410Aを1としたときの単位体積当たりの冷凍能力比との関係を示す。
なお、図8では、冷房運転相当の17℃での単位体積当たりの冷凍能力冷凍比、暖房運転相当の3℃での単位体積当たりの冷凍能力冷凍比を示している。
図8に示すように、冷房運転相当の温度17℃でも暖房運転相当の温度3℃においても、HFO1234yfの混合割合が7wt%を超えると、単位体積当たりの冷凍能力冷凍比がR410Aに比べて小さくなることが判る。
従って、R32とHFO1234yfを混合した場合の混合割合の範囲は、HFO1234yfが7wt%以上(R32が93wt%以下)となる。
なお、上記実施例では、冷房能力ランクが4kWの場合で説明したが、異なる能力ランクにおいても同様である。
また、本発明は、冷媒の比容積が大きく、より流速が速い低圧側の熱交換器や配管の圧力損失について重要であるが、高圧側部位についてもR410A同等の流速として圧力損失の低減を図ることが望ましい。
In addition, as a refrigerant | coolant whose refrigerating capacity per unit volume is small compared with a R410A refrigerant | coolant and a refrigerant | coolant global warming coefficient is 5 or more and 750 or less, it can obtain by mixing R32 and HFO1234yf, for example. Since the GWP of R32 is 675 and the GWP of HFO1234yf is 4, the GWP of the mixture is 675 or less regardless of the mixing ratio.
FIG. 8 shows the relationship between the mixing ratio of R32 and HFO1234yf and the refrigeration capacity ratio per unit volume when R410A is 1.
FIG. 8 shows the refrigeration capacity refrigeration ratio per unit volume at 17 ° C. corresponding to the cooling operation and the refrigeration capacity refrigeration ratio per unit volume at 3 ° C. equivalent to the heating operation.
As shown in FIG. 8, when the mixing ratio of HFO1234yf exceeds 7 wt% at a temperature equivalent to 17 ° C. corresponding to cooling operation or 3 ° C. equivalent to heating operation, the refrigeration capacity refrigeration ratio per unit volume is smaller than that of R410A. It turns out that it becomes.
Therefore, the range of the mixing ratio when R32 and HFO1234yf are mixed is 7 wt% or more for HFO1234yf (R32 is 93 wt% or less).
In addition, although the said Example demonstrated the case where the cooling capability rank was 4 kW, it is the same also in a different capability rank.
Further, the present invention is important for the pressure loss of the low-pressure side heat exchanger and piping having a large specific volume of the refrigerant and a higher flow rate, but the pressure loss is also reduced for the high-pressure side part to a flow rate equivalent to R410A. It is desirable.
以上のように本発明は、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用い、R410A冷媒使用時に比べて気筒容積を大きくした圧縮機1を用いて、圧縮機1の効率低下を抑制すると共に、冷房運転では室内熱交換器5と室内熱交換器5から圧縮機1の吸入口までの圧力損失を、また暖房運転では室外熱交換器3と室外熱交換器3から圧縮機1の吸入口までの圧力損失を低減することで、効率の高い冷暖房装置を提供することができる。
なお、上記実施の形態では冷暖房装置として説明したが、四方弁を有しない加熱専用、例えば給湯機等の冷凍装置や、冷却専用、例えばクーラーや冷凍庫等の冷凍装置としても応用できるものであり、その場合には、室内熱交換器及び室外熱交換器は、凝縮器及び蒸発器となる。
As described above, the present invention reduces the efficiency of the compressor 1 by using the compressor 1 having a smaller refrigeration capacity per unit volume than the R410A refrigerant and using the compressor 1 having a larger cylinder volume than when the R410A refrigerant is used. In the cooling operation, the pressure loss from the indoor heat exchanger 5 and the indoor heat exchanger 5 to the inlet of the compressor 1 is suppressed, and in the heating operation, the compressor 1 is switched from the outdoor heat exchanger 3 and the outdoor heat exchanger 3 to the compressor 1. By reducing the pressure loss up to the suction port, it is possible to provide a highly efficient air conditioner.
Although the above embodiment has been described as a cooling / heating device, it is applicable only to a heating device that does not have a four-way valve, for example, a refrigeration device such as a water heater, or a cooling device such as a cooler or a freezer. In that case, the indoor heat exchanger and the outdoor heat exchanger become a condenser and an evaporator.
本発明によれば、例えばGWP4のHFO1234yfをはじめとする、GWPの小さな冷媒を利用することができる。 According to the present invention, it is possible to use a refrigerant having a small GWP, such as the HFO 1234yf of GWP4.
1 圧縮機
2 四方弁
3 室外熱交換器
4 絞り装置
5 室内熱交換器
10 室外ユニット
11 室内ユニット
21 液接続管
22 ガス接続管
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Throttle device 5 Indoor heat exchanger 10 Outdoor unit 11 Indoor unit 21 Liquid connection pipe 22 Gas connection pipe
Claims (9)
前記冷媒回路に封入する冷媒として、R410A冷媒に比べて単位体積当たりの冷凍能力が小さな冷媒を用い、
前記圧縮機の気筒容積を、前記R410A冷媒使用時の気筒容積より大きくし、
ガス冷媒が流れる前記接続管の通過面積を、前記R410A冷媒使用時のガス冷媒が流れる前記接続管の通過面積より大きくしたことを特徴とする冷凍装置。 A refrigerating apparatus in which a compressor, an evaporator, a throttling device, and a condenser are sequentially connected by a connecting pipe to form an annular refrigerant circuit,
As the refrigerant sealed in the refrigerant circuit, a refrigerant having a small refrigerating capacity per unit volume as compared with the R410A refrigerant is used.
The cylinder volume of the compressor is larger than the cylinder volume when the R410A refrigerant is used,
The refrigeration apparatus characterized in that a passage area of the connection pipe through which the gas refrigerant flows is larger than a passage area of the connection pipe through which the gas refrigerant flows when the R410A refrigerant is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010010331A JP2011002217A (en) | 2009-05-18 | 2010-01-20 | Refrigerating device and air conditioning apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009120197 | 2009-05-18 | ||
JP2010010331A JP2011002217A (en) | 2009-05-18 | 2010-01-20 | Refrigerating device and air conditioning apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011002217A true JP2011002217A (en) | 2011-01-06 |
Family
ID=43560305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010010331A Pending JP2011002217A (en) | 2009-05-18 | 2010-01-20 | Refrigerating device and air conditioning apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011002217A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013139990A (en) * | 2011-12-08 | 2013-07-18 | Panasonic Corp | Air conditioner |
JP2013228154A (en) * | 2012-04-26 | 2013-11-07 | Mitsubishi Electric Corp | Air conditioner |
EP2873936A2 (en) | 2013-11-13 | 2015-05-20 | Mitsubishi Heavy Industries, Ltd. | Heat pump system |
EP2916086A1 (en) | 2014-03-07 | 2015-09-09 | Mitsubishi Heavy Industries, Ltd. | Heat exchanger and air conditioner employing the same |
JP2015197254A (en) * | 2014-04-01 | 2015-11-09 | 東芝キヤリア株式会社 | Refrigeration cycle device |
JP2016099029A (en) * | 2014-11-19 | 2016-05-30 | シャープ株式会社 | Air conditioner |
WO2018142505A1 (en) * | 2017-02-01 | 2018-08-09 | 三菱電機株式会社 | Compressor |
WO2018150494A1 (en) * | 2017-02-15 | 2018-08-23 | 三菱電機株式会社 | Compressor |
JP2020003163A (en) * | 2018-06-29 | 2020-01-09 | 株式会社富士通ゼネラル | Air conditioner |
WO2022004895A1 (en) * | 2020-07-03 | 2022-01-06 | ダイキン工業株式会社 | Use as refrigerant in compressor, compressor, and refrigeration cycle apparatus |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07190517A (en) * | 1993-12-27 | 1995-07-28 | Toshiba Corp | Refrigeration cycle |
JPH11108480A (en) * | 1997-10-01 | 1999-04-23 | Daikin Ind Ltd | Air conditioner |
JPH11316067A (en) * | 1997-12-16 | 1999-11-16 | Matsushita Electric Ind Co Ltd | Air conditioner using flammable refrigerant |
JP2001082815A (en) * | 1999-09-14 | 2001-03-30 | Mitsubishi Electric Corp | Refrigeration airconditioning cycle device |
JP2001248941A (en) * | 1999-12-28 | 2001-09-14 | Daikin Ind Ltd | Refrigeration equipment |
JP2006183661A (en) * | 2004-10-14 | 2006-07-13 | Matsushita Electric Ind Co Ltd | Compressor and refrigeration equipment and refrigerator |
JP2008266423A (en) * | 2007-04-18 | 2008-11-06 | Idemitsu Kosan Co Ltd | Lubricating oil composition for refrigerator |
WO2009057475A1 (en) * | 2007-10-29 | 2009-05-07 | Nippon Oil Corporation | Refrigerator oil and working fluid composition for refrigerating machine |
-
2010
- 2010-01-20 JP JP2010010331A patent/JP2011002217A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07190517A (en) * | 1993-12-27 | 1995-07-28 | Toshiba Corp | Refrigeration cycle |
JPH11108480A (en) * | 1997-10-01 | 1999-04-23 | Daikin Ind Ltd | Air conditioner |
JPH11316067A (en) * | 1997-12-16 | 1999-11-16 | Matsushita Electric Ind Co Ltd | Air conditioner using flammable refrigerant |
JP2001082815A (en) * | 1999-09-14 | 2001-03-30 | Mitsubishi Electric Corp | Refrigeration airconditioning cycle device |
JP2001248941A (en) * | 1999-12-28 | 2001-09-14 | Daikin Ind Ltd | Refrigeration equipment |
JP2006183661A (en) * | 2004-10-14 | 2006-07-13 | Matsushita Electric Ind Co Ltd | Compressor and refrigeration equipment and refrigerator |
JP2008266423A (en) * | 2007-04-18 | 2008-11-06 | Idemitsu Kosan Co Ltd | Lubricating oil composition for refrigerator |
WO2009057475A1 (en) * | 2007-10-29 | 2009-05-07 | Nippon Oil Corporation | Refrigerator oil and working fluid composition for refrigerating machine |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013139990A (en) * | 2011-12-08 | 2013-07-18 | Panasonic Corp | Air conditioner |
JP2013228154A (en) * | 2012-04-26 | 2013-11-07 | Mitsubishi Electric Corp | Air conditioner |
EP2873936A2 (en) | 2013-11-13 | 2015-05-20 | Mitsubishi Heavy Industries, Ltd. | Heat pump system |
EP2916086A1 (en) | 2014-03-07 | 2015-09-09 | Mitsubishi Heavy Industries, Ltd. | Heat exchanger and air conditioner employing the same |
JP2015197254A (en) * | 2014-04-01 | 2015-11-09 | 東芝キヤリア株式会社 | Refrigeration cycle device |
JP2016099029A (en) * | 2014-11-19 | 2016-05-30 | シャープ株式会社 | Air conditioner |
CN110199121A (en) * | 2017-02-01 | 2019-09-03 | 三菱电机株式会社 | Compressor |
WO2018142505A1 (en) * | 2017-02-01 | 2018-08-09 | 三菱電機株式会社 | Compressor |
JPWO2018142505A1 (en) * | 2017-02-01 | 2019-11-07 | 三菱電機株式会社 | Compressor |
CZ309012B6 (en) * | 2017-02-01 | 2021-11-24 | Mitsubishi Electric Corporation | Compressor |
WO2018150494A1 (en) * | 2017-02-15 | 2018-08-23 | 三菱電機株式会社 | Compressor |
CN110249131A (en) * | 2017-02-15 | 2019-09-17 | 三菱电机株式会社 | Compressor |
JPWO2018150494A1 (en) * | 2017-02-15 | 2019-11-07 | 三菱電機株式会社 | Compressor |
JP2020003163A (en) * | 2018-06-29 | 2020-01-09 | 株式会社富士通ゼネラル | Air conditioner |
WO2022004895A1 (en) * | 2020-07-03 | 2022-01-06 | ダイキン工業株式会社 | Use as refrigerant in compressor, compressor, and refrigeration cycle apparatus |
JP2022013930A (en) * | 2020-07-03 | 2022-01-18 | ダイキン工業株式会社 | Use as refrigerant in compressors, compressors, and refrigeration cycle equipment |
CN115836182A (en) * | 2020-07-03 | 2023-03-21 | 大金工业株式会社 | Use as refrigerant in compressor, compressor and refrigeration cycle device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011002217A (en) | Refrigerating device and air conditioning apparatus | |
JP6065429B2 (en) | Air conditioner | |
US6550273B2 (en) | Air conditioner using flammable refrigerant | |
JP2017145975A (en) | Refrigeration cycle device, process of manufacture of refrigeration cycle device, drop-in method for refrigeration cycle device, and replace method for refrigeration cycle device | |
JP2011112327A (en) | Air conditioner and refrigerating device | |
JP5936785B1 (en) | Air conditioner | |
KR20040036874A (en) | Refrigerating cycle device | |
JP2010112693A (en) | Air conditioner | |
JP2000274789A (en) | Refrigerating air conditioner and method for controlling the refrigerating air conditioner | |
JPWO2019198175A1 (en) | Refrigeration cycle equipment | |
EP2578966A1 (en) | Refrigeration device and cooling and heating device | |
EP1696188A2 (en) | Refrigerating device and refrigerator | |
JP2011033289A (en) | Refrigerating cycle device | |
WO2020188756A1 (en) | Air conditioner | |
WO2023047440A1 (en) | Air conditioner | |
US6739143B1 (en) | Refrigerating device | |
JP2012057849A (en) | Heat transfer tube, heat exchanger, and refrigerating cycle device | |
KR20140103249A (en) | Heat exchanger and air conditioner provided with same | |
WO2013084431A1 (en) | Air conditioner | |
US12215897B2 (en) | Air conditioning apparatus and outdoor unit | |
JP7354271B2 (en) | Refrigeration cycle equipment | |
JP2011158177A (en) | Refrigeration cycle apparatus | |
JP2017161164A (en) | Air-conditioning hot water supply system | |
JP2014081119A (en) | Refrigerator | |
JP2010096486A (en) | Refrigerating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130111 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131031 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140318 |