[go: up one dir, main page]

JP2010277782A - 膜電極接合体及び燃料電池並びにそれらの製造方法 - Google Patents

膜電極接合体及び燃料電池並びにそれらの製造方法 Download PDF

Info

Publication number
JP2010277782A
JP2010277782A JP2009127885A JP2009127885A JP2010277782A JP 2010277782 A JP2010277782 A JP 2010277782A JP 2009127885 A JP2009127885 A JP 2009127885A JP 2009127885 A JP2009127885 A JP 2009127885A JP 2010277782 A JP2010277782 A JP 2010277782A
Authority
JP
Japan
Prior art keywords
catalyst layer
fuel
electrode assembly
membrane electrode
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009127885A
Other languages
English (en)
Inventor
Mitsuru Furuichi
満 古市
Hiroshi Suga
博史 菅
Toru Yajima
亨 矢嶋
Asako Sato
麻子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009127885A priority Critical patent/JP2010277782A/ja
Publication of JP2010277782A publication Critical patent/JP2010277782A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】出力性能が改善された膜電極接合体及び燃料電池を提供する。
【解決手段】カソード触媒層11を含むカソード6と、アノード触媒層8を含むアノード5と、前記カソード触媒層11と前記アノード触媒層8の間に配置された電解質膜7とを具備する膜電極接合体1であって、前記カソード触媒層11及び前記アノード触媒層8のうち少なくとも一方が、0.1μm〜10μmの範囲に細孔分布のピーク値を有する空孔32を備えることを特徴とする。
【選択図】 図1

Description

本発明は、膜電極接合体及び燃料電池に関し、特に液体燃料を用いた直接供給型燃料電池に関する。また、本発明は、膜電極接合体及び燃料電池の製造方法に関する。
近年、リチウムイオン二次電池に代わって、小型の燃料電池が注目を集めている。特に、メタノールを燃料として用いた直接メタノール型燃料電池(Direct Methanol Fuel Cell: DMFC)は、水素ガスを使用する燃料電池に比べ、水素ガスの取り扱いの困難さや、有機燃料を改質して水素を作り出す装置等が必要なく、小型化に優れている。
DMFCでは、アノード(例えば燃料極)においてメタノールの酸化分解反応(内部改質反応)が生じ、二酸化炭素、プロトンおよび電子が生成する。一方、カソード(例えば空気極)では、空気のような酸化ガスから得られる酸素と、電解質膜を経て燃料極から供給されるプロトン、および燃料極から外部回路を通じて供給される電子によって還元反応が生じ、水が生成する。また、この外部回路を通る電子によって、電力が供給される。上記の反応は、燃料極及び空気極のそれぞれの触媒層において生じる。
触媒層は、触媒とプロトン伝導性高分子電解質とが混合されて多くの空隙を有する状態となっている。燃料ガスや酸化ガスなどの反応物質は、その空隙から供給されて触媒上で反応する。反応により生成した電子は炭素担体などを介して伝導し、一方、反応により生成したプロトンはプロトン伝導性高分子電解質を介して伝導する。そのため、反応は、反応物質、触媒(電極表面)及び電解質の三つが接触する三相界面と呼ばれる領域で進行する。
従って、この三相界面に存在しない触媒は反応に寄与せず、触媒として全く機能しないことになる。一般に、触媒層には、プロトン伝導性高分子と接していない触媒や、ガスと接触しない触媒が存在し、触媒の利用率が低いという問題がある。
特許文献1には、触媒層における電子伝導性を向上させ、同時に触媒層におけるガス透過性を拡大させて触媒の利用率を高めるために、触媒層に触媒を担持するワイヤ状金属材料を備えることにより、触媒層平面に対して直角方向に電子伝導性を向上させた膜電極接合体が開示されている。
特許文献2には、フッ素樹脂、カーボンブラック、水及び界面活性剤を混合し、この混合物を乾燥して粉砕し、該粉砕物に粒子径1μm以上の無機塩粉末を添加して混合し、この混合物に有機溶剤を加えて成形し、乾燥して焼結し、該焼結物から無機塩粉末を溶剤により抽出して乾燥することからなるガス拡散電極の製造方法が開示されている。
特許文献3には、造孔剤を用いて電極触媒層を形成する方法では、細孔が電極触媒層中で均一に形成されるが、電極触媒層の電解質膜側からはガスが供給されないため、電解質膜側に存在する触媒は反応に寄与せず、触媒の有効利用率が十分でないと記載されている。このため、特許文献3では、空隙率を制御するためにグリセリンや界面活性剤を用いることが記載されている。
特開2007−173109号公報 特開平6−36771号公報 特開2007−250337号公報
本発明は、出力性能が改善された膜電極接合体及び燃料電池並びにそれらの製造方法を提供することを目的とする。
本発明に係る膜電極接合体及び燃料電池は、カソード触媒層を含むカソードと、アノード触媒層を含むアノードと、前記カソード触媒層と前記アノード触媒層の間に配置された電解質膜とを具備する膜電極接合体であって、前記カソード触媒層及び前記アノード触媒層のうち少なくとも一方が、0.1μm〜10μmの範囲に細孔分布のピーク値を有する空孔を備えることを特徴とする。
第1の実施形態に係る膜電極接合体及び燃料電池は、カソード触媒層を含むカソードと、アノード触媒層を含むアノードと、前記カソード触媒層と前記アノード触媒層の間に配置された電解質膜とを具備する膜電極接合体であって、前記カソード触媒層が、0.1μm〜10μmの範囲に細孔分布のピーク値を有する空孔を備えることを特徴とする。
第2の実施形態に係る膜電極接合体及び燃料電池は、カソード触媒層を含むカソードと、アノード触媒層を含むアノードと、前記カソード触媒層と前記アノード触媒層の間に配置された電解質膜とを具備する膜電極接合体であって、前記アノード触媒層が、0.1μm〜10μmの範囲に細孔分布のピーク値を有する空孔を備えることを特徴とする。
第3の実施形態に係る膜電極接合体及び燃料電池は、カソード触媒層を含むカソードと、アノード触媒層を含むアノードと、前記カソード触媒層と前記アノード触媒層の間に配置された電解質膜とを具備する膜電極接合体であって、前記カソード触媒層及び前記アノード触媒層が、0.1μm〜10μmの範囲に細孔分布のピーク値を有する空孔を備えることを特徴とする。
第4の実施形態に係る膜電極接合体及び燃料電池の製造方法は、触媒、プロトン伝導性高分子、及び、0.1μm〜10μmの範囲に細孔分布のピーク値を有するよう酸により溶出する空孔形成材料を混合してスラリーを調製する工程と、得られたスラリーを基材に塗布し、乾燥して触媒層を形成する工程と、得られた触媒層を酸で洗浄することにより前記空孔形成材料を除去し、前記触媒層に0.1μm〜10μmの範囲に細孔分布のピーク値を有する空孔を形成する工程とを含むことを特徴とする。
本発明によれば、出力性能が改善された膜電極接合体及び燃料電池並びにそれらの製造方法を提供することができる。
実施形態に係る膜電極接合体の拡大断面図。 実施形態に係る膜電極接合体で用いる空気極触媒層の断面模式図。 実施形態に係る燃料電池を示す内部透視断面図。 図3の燃料電池の燃料分配機構を示す斜視図。
以下、図面を参照して本発明に係る膜電極接合体及び燃料電池、並びにそれらの製造方法について説明する。
(第1実施形態)
第1実施形態に係る膜電極接合体及び燃料電池は、0.1μm〜10μmの範囲に細孔分布のピーク値を有する空孔を備える空気極触媒層を備えることを特徴とする。
図1は、膜電極接合体1の拡大断面図である。
膜電極接合体1は、アノード(燃料極)5と、カソード(空気極)6と、燃料極5及び空気極6の間に配置されたプロトン(水素イオン)伝導性の電解質膜7とから構成される。
燃料極5は、電解質膜7の一方の面と対向している燃料極触媒層8と、燃料極触媒層8に積層された燃料極ガス拡散層9とを有する。空気極6は、電解質膜7の他方の面と対向している空気極触媒層11と、空気極触媒層11に積層された空気極ガス拡散層12とを有する。
電解質膜7にはプロトン伝導性材料が含まれ、例えば、スルホン酸基を有するフッ素系樹脂(デュポン社製の商品名ナフィオン(登録商標)や旭硝子社製の商品名フレミオン(登録商標)のようなパーフルオロスルホン酸重合体等)、スルホン酸基を有する炭化水素系樹脂、無機物(例えば、タングステン酸、リンタングステン酸、硝酸リチウムなど)等が用いられるが、これらに限定されるものではない。
燃料極ガス拡散層9及び空気極ガス拡散層12は、例えば、カーボンや導電性高分子などの繊維からなるペーパー、不織布、織布、編物、又は、導電性の多孔質膜から形成されることができるが、カーボンペーパーから形成されることが好ましい。何れのガス拡散層にも、撥水性を付与しても良いし、撥水性を付与しなくてもよい。撥水処理には、ポリテトラフルオロエチレン(PTFE)のようなフッ素系樹脂を使用することができる。
燃料極ガス拡散層9は、燃料極触媒層8に燃料を均一に供給する役割を果たすと同時に、燃料極触媒層8の集電体も兼ねている。
空気極ガス拡散層12は、空気極触媒層11に酸化剤を均一に供給する役割を果たすと同時に、空気極触媒層11の集電体も兼ねている。
燃料極触媒層8および空気極触媒層11には、触媒及びプロトン伝導性材料が含まれる。触媒は、例えば、白金族元素である、Pt、Ru、Rh、Ir、Os、Pd等の単体金属、白金族元素を含有する合金などが用いられる。具体的には、燃料極側の触媒として、メタノールや一酸化炭素に対して強い耐性を有するPt−RuやPt−Moなど、空気極側の触媒として、白金やPt−Niなどが好適に用いられるが、これらに限定されるものではない。炭素材料のような導電性担持体を使用する担持触媒、あるいは無担持触媒のいずれを使用することもできる。担持体には例えばカーボン粒子などを用いることができる。触媒層に含まれるプロトン伝導性材料は、上記の電解質膜7に含まれるものと同様であってよい。触媒層において、プロトン伝導性材料は、触媒粒子をガス拡散層に結着させるとともに、電気化学反応によって発生するプロトンを伝導させるために用いられる。
本第1実施形態において、空気極触媒層11は、0.1μm〜10μmの範囲に細孔分布のピーク値を有する空孔を備える。ここで、空孔は、例えば、後述するように、酸により溶出する空孔形成材料を用いて触媒層を製造することによって形成される。
通常、触媒層は、触媒及びプロトン伝導性材料を溶媒に混合し、基材に塗布した後に乾燥させて製造されるが、乾燥する際に溶媒が蒸発することによって空隙が形成される。このようにして形成された空孔は、通常、0.1μm未満の大きさに細孔分布のピーク値を有するものである。一般に、触媒層中に空孔が存在するとプロトンの伝導が阻害されると考えられているため、ガス拡散層に気孔を設けることは行われているが、触媒層に意図的に0.1μm〜10μmの大きさに細孔分布のピーク値を有するような気孔を形成することは行われていない。
しかしながら、本発明者らは、0.1μm〜10μmの範囲に細孔分布のピーク値を有する空孔を備える触媒層は、触媒の利用効率が向上し、また、ガス拡散性も向上するため、高い出力を長期間維持することが可能であることを見出した。
空気極触媒層に本発明に規定する空孔が存在することにより、空気などの酸化ガスが取り込み易くなり、反応性が向上すると共に、相対的な放熱性能が向上するため、高い出力を長期間、安定して維持することが可能である。
空気極触媒層11に含まれる空孔の径は、0.1μm〜10μmの範囲である。細孔分布のピーク値が0.1 μm未満であると、反応に必要な空気が触媒層へ送られ難くなると同時に、生成した水が円滑に排出できずフラッディング状態になり易く、初期出力および出力維持率(繰り返し発電性能)が低下する。細孔分布のピーク値が10 μmを超えると、空気極触媒層内に存在する大きな空孔により、触媒層中の電解質によるプロトンを伝導するためのパスや導電性パスが切断されてしまい、発電性能が低下する。より好ましくは空孔の径は1μm〜5μmの範囲である。
ここで、触媒層中の空孔の径を測定する方法を説明する。まず、燃料電池から膜電極接合体を取り出す。そして、得られた膜電極接合体の電解質膜から空気極を剥離する。この際、空気極の小機極触媒層側に電解質膜が残留している場合には、その表面を研削し機械的に除去する。
得られた空気極を細孔分布測定装置による水銀圧入法により細孔分布を測定する。得られた細孔分布には、空気極として測定しているため空気極触媒層の細孔分布と空気極ガス拡散層の細孔分布も同時に得られる。ここで空気極として測定した試料は水銀圧入法により使用できないため、同じ電極の他の部分を用いて空気極触媒層を研削し空気極ガス拡散層のみの状態で同様に細孔分布測定装置による水銀圧入法により細孔分布を測定する。
得られた空気極ガス拡散層の細孔分布と空気極(空気極ガス拡散層と空気極触媒層)の細孔分布を比較し、空気極の細孔分布から空気極ガス拡散層の細孔分布を除くことで、空気極触媒層の細孔分布を得ることができる。一般には、空気極触媒層より空気極ガス拡散層の細孔分布のピーク値は大きい。
本発明においては、細孔分布は、島津社製細孔分布測定装置 オートポア 9520型を用いて、25mm×15mmの形状の試料を作成し、初期圧7kPaの条件で測定した。なお、製品から分解した際に電極が試料形状より小さい場合には、複数子を並置して使用しても良い。 本実施形態においては、さらに、空気極触媒層11は、67〜77%の範囲の気孔率を有することが好ましい。
ここで、気孔率とは、上記細孔分布測定装置による初期圧で細孔に水銀が圧入された時の元の試料堆積と水銀が圧入された試料体積との比により測定される。
気孔率が67〜77%の範囲内であることにより、プロトン伝導性を保ちつつ、空気を取り込み易い構造、かつ生成した水を円滑に移動することができフラッディングし難い構造を形成することができる。さらに、気孔率は74〜77%の範囲内であることがより好ましい。
空孔は、粒子形状又は繊維形状であることが好ましい。ここで繊維形状とは、任意の断面におけるアスペクト比(長さ/幅)が粒子形状と比較して大きいものを意味する。空孔の形状が繊維形状である場合、上述した空孔の径は、空孔の横断面、即ち、長手方向と直交する断面における径を指し、空孔の横断面の径が0.1μm〜10μmの範囲内であることを意味する。繊維形状の空孔の長手方向の長さは、任意の長さであってよい。
触媒層中の空孔の径を測定する場合、例えば、まず触媒層の断面において、測定対象となる空孔のアスペクト比を測定する。アスペクト比が所定の値以下である場合は、その測定対象は、粒子形状の空孔の断面であるか、或いは、繊維形状の空孔の横断面であると考えられる。よってこの場合は、上述した通りに径を測定すればよい。一方、測定対象となる空孔のアスペクト比が所定の値を超える場合は、その測定対象は繊維形状の空孔の長さ方向の断面であると考えられるため、径を測定する必要はない。
本実施形態において、空気極触媒層は、0.1μm〜10μmの範囲の径を有する粒子形状の空孔を備える。このような空孔を備えることにより、触媒とガスの接触面が増大し、空気極触媒層での反応性が改善され、高い出力が長期間にわたって安定に得られる膜電極接合体を提供することができる。
他の態様において、空気極触媒層は0.1μm〜10μmの範囲の径を有する繊維形状の空孔を備える。繊維形状の空孔を備えることにより、触媒層中のガス拡散性がより向上され、空気極触媒層での反応性が改善され、高い出力が長期間にわたって安定に得られる膜電極接合体を提供することができる。
さらに他の態様において、空気極触媒層11は粒子形状の空孔32a及び繊維形状の空孔32bを備える。図2に、粒子形状の空孔32a及び繊維形状の空孔32bを含む空気極触媒層11の模式図を示す。図2に示したように、粒子形状の空孔32a及び繊維形状の空孔32bの両方を含む触媒層11中では、繊維形状の空孔32bによって粒子形状の空孔32aが繋がれ、空孔が3次元的に連結される。これにより、外部と連結した空孔32の容積が大きくなり、ガスの流出入が可能な容積が大きくなる。これによって、触媒層中のガス拡散性がより向上され、空気極触媒層11での反応性が改善されて、高い出力が長期間にわたって安定に得られる膜電極接合体を提供することができる。
次に、第1実施形態に係る燃料電池について、図面を参照して説明する。図3は、本発明の実施形態に係る燃料電池の内部透視断面図であり、図4は、図3の燃料電池の燃料分配機構を示す斜視図である。
図3に示す燃料電池100は、上記で説明した膜電極接合体1と、この膜電極接合体1に燃料を供給する燃料分配機構2と、液体燃料Fを収容する燃料収容部3と、これら燃料分配機構2と燃料収容部3とを接続する流路4とから主として構成されている。
燃料電池100において、空気極ガス拡散層12及び燃料極ガス拡散層9には、必要に応じて導電層13がそれぞれ積層される。これら導電層13としては、例えば、金、ニッケルなどの金属材料からなる多孔質層(例えばメッシュ)または箔体、あるいはステンレス鋼(SUS)などの導電性金属材料に金などの良導電性金属を被覆した複合材などが用いられる。また、空気極の外側にはカバープレート14が積層される。
電解質膜7と導電層13との間には、それぞれゴム製のOリング15が介在されており、これらによって膜電極接合体(MEA)1からの燃料漏れや酸化剤漏れが防止されている。
図示を省略したが、カバープレート14は酸化剤である空気を取入れるための開口部を有している。カバープレート14と空気極6との間には、必要に応じて表面層が配置される。表面層は空気の取入れ量を調整するものであり、空気の取入れ量に応じて個数や大きさ等が調整された複数の空気導入口を有している。このようなカバープレート14を備えることにより、酸化剤を供給するためのブロワを用いることなく、酸化剤をカソード6に自然供給することができる。なお、酸化剤は、空気に限定されるものではなく、O2を含むガスを使用可能である。
燃料収容部3には、膜電極接合体1に対応した液体燃料Fが収容されている。液体燃料Fとしては、各種濃度のメタノール水溶液や純メタノール等のメタノール燃料が挙げられる。液体燃料Fは必ずしもメタノール燃料に限られるものではない。液体燃料Fは、例えばエタノール水溶液や純エタノール等のエタノール燃料、プロパノール水溶液や純プロパノール等のプロパノール燃料、グリコール水溶液や純グリコール等のグリコール燃料、ジメチルエーテル、ギ酸、その他の液体燃料であってもよい。いずれにしても、燃料収容部3には膜電極接合体1に応じた液体燃料Fが収容される。
液体燃料の種類や濃度は限定されるものではない。ただし、複数の燃料排出口22を有する燃料分配機構2の特徴がより顕在化するのは燃料濃度が濃い場合である。このため、燃料電池は、濃度が80%以上のメタノール水溶液もしくは純メタノールを液体燃料として用いた場合に、その性能や効果を特に発揮することができる。
膜電極接合体1の燃料極5側には、燃料分配機構2が配置されている。燃料分配機構2は配管のような液体燃料Fの流路4を介して燃料収容部3と接続されている。燃料分配機構2には燃料収容部3から流路4を介して液体燃料Fが導入される。流路4は燃料分配機構2や燃料収容部3と独立した配管に限られるものではない。例えば、燃料分配機構2と燃料収容部3とを積層して一体化する場合、これらを繋ぐ液体燃料Fの流路であってもよい。燃料分配機構2は流路4を介して燃料収容部3と接続されていればよい。
液体燃料Fを燃料収容部3から燃料分配機構2まで送る機構は特に限定されるものではない。例えば、使用時の設置場所が固定される場合には、重力を利用して液体燃料Fを燃料収容部3から燃料分配機構2まで落下させて送液することができる。また、多孔体等を充填した流路4を用いることによって、毛細管現象で燃料収容部3から燃料分配機構2まで送液することができる。さらに、燃料収容部3から燃料分配機構2への送液は、図4に示すように、ポンプ17で実施してもよい。あるいは、燃料分配機構2から膜電極接合体1への燃料供給が行われる構成であればポンプ17に代えて燃料遮断バルブを配置する構成とすることも可能である。この場合には、燃料遮断バルブは、流路による液体燃料Fの供給を制御するために設けられるものである。
燃料分配機構2は、図4に示すように、液体燃料Fが流路4を介して流入する少なくとも1個の燃料注入口21と、液体燃料Fやその気化成分を排出する複数個の燃料排出口22とを有する燃料分配板23を備えている。燃料分配板23の内部には図3に示すように、燃料注入口21から導かれた液体燃料の通路となる空隙部24が設けられている。複数の燃料排出口22は燃料通路として機能する空隙部24にそれぞれ直接接続されている。
燃料注入口21から燃料分配機構2に導入された液体燃料Fは空隙部24に入り、この燃料通路として機能する空隙部24を介して複数の燃料排出口22にそれぞれ導かれる。複数の燃料排出口22には、例えば液体燃料の気化成分のみを透過し、液体成分は透過させない気液分離体(図示せず)を配置してもよい。これによって、膜電極接合体1の燃料極5には液体燃料の気化成分が供給される。なお、気液分離体は燃料分配機構2と燃料極5との間に気液分離膜等として設置してもよい。液体燃料の気化成分は複数の燃料排出口22から燃料極5の複数個所に向けて排出される。
燃料排出口22は膜電極接合体1の全体に燃料を供給することが可能なように、燃料分配板23の燃料極5と対向する面に複数設けられている。燃料排出口22の個数は2個以上であればよいが、膜電極接合体1の面内における燃料供給量を均一化する上で、0.1〜10個/cm2の燃料排出口22が存在するように形成することが好ましい。燃料排出口22の個数が0.1個/cm2未満であると、膜電極接合体1に対する燃料供給量を十分に均一化することができない。燃料排出口22の個数を10個/cm2を超えて形成しても、それ以上の効果が得られない。
上述した燃料分配機構2に導入された液体燃料Fは空隙部24を介して複数の燃料排出口22に導かれる。燃料分配機構2の空隙部24はバッファとして機能するため、複数の燃料排出口22からそれぞれ規定濃度の燃料が排出される。そして、複数の燃料排出口22は膜電極接合体1の全面に燃料が供給されるように配置されているため、膜電極接合体1に対する燃料供給量を均一化することができる。
燃料分配機構2から均一に放出された燃料は、燃料極ガス拡散層9を拡散して燃料極触媒層8に供給される。燃料としてメタノール燃料を使用する場合には、次の式(A)に示すメタノールの内部改質反応を生じさせる必要がある。
CHOH+HO → CO+6H+6e …式(A)
内部改質反応で生成されたプロトン(H)は、電解質膜7を伝導し、空気極触媒層11に到達する。空気極ガス拡散層12から供給される気体燃料(たとえば空気)は、空気極ガス拡散層12を拡散して、空気極触媒に供給される。空気極触媒に供給された空気は、次の式(B)に示す反応を生じる。この反応によって、水が生成され、発電反応が生じる。
(3/2)O+6H+6e → 3HO …式(B)
発電反応により生じた水は、空気極6から電解質膜7を通して燃料極触媒層8に供給される。
本発明に適用可能な燃料電池は、その形態から、液体燃料と酸化剤の供給をポンプなどの補器を用いて行うアクティブ型燃料電池、液体燃料の気化成分をアノードに供給するパッシブ型(内部気化型)燃料電池、前述した図3に示すセミパッシブ型と称される型の燃料電池などが挙げられる。アクティブ型燃料電池では、メタノール水溶液からなる燃料について、その量が一定になるようにポンプで調整しながらMEAのアノードへ供給する一方、カソードに対しても空気をポンプで供給する方式が採られる。パッシブ型燃料電池では、MEAのアノードに気化したメタノールを自然供給で送り、一方カソードに対しても外部の空気を自然供給することで、ポンプなどの余計な機器を装備しない方式が採られる。セミパッシブ型の燃料電池は、燃料収容部から膜電極接合体に供給された燃料は発電反応に使用され、その後に循環して燃料収容部に戻されることはない。セミパッシブ型の燃料電池では、燃料を循環させないことから、アクティブ方式とは異なるものであり、装置の小型化等を損なうものではない。また、セミパッシブ型の燃料電池は、燃料の供給にポンプを使用しており、内部気化型のような純パッシブ方式とも異なる。なお、このセミパッシブ型の燃料電池では、燃料収容部から膜電極接合体への燃料供給が行われる構成であればポンプに代えて燃料遮断バルブを配置する構成とすることも可能である。この場合には、燃料遮断バルブは、流路による液体燃料の供給を制御するために設けられる。
本実施形態では、0.1μm〜10μmの範囲に細孔分布のピーク値の空孔を有する空気極触媒層11を備えた膜電極接合体を用いることにより、出力性能が向上され、高い出力が長期間にわたって安定に得られる燃料電池100を提供することができる。
(第2実施形態)
第2実施形態に係る膜電極接合体1及び燃料電池100は、0.1μm〜10μmの範囲に細孔分布のピーク値を有する空孔を備える燃料極触媒層8を備えることを特徴とする。本実施形態では、前述の範囲の大きさの空孔を有する燃料極触媒層を用い、前述の範囲の大きさの空孔を有さない空気極触媒層11を用いる他は、上記第1実施形態の膜電極接合体1及び燃料電池100と同様の構成を有する。
本実施形態においては、燃料極触媒層8に前述の範囲に細孔分布のピーク値を有する空孔が存在することにより、ガス拡散性が向上し、燃料ガスの流入が促進されると共に、反応によって生成されたCO2ガスの除去が促進される。また、空孔は水を貯蔵することができ、プロトン生成に必要な水の保管場所としても機能することができる。空孔に水が貯蔵されるために、プロトン伝導パスが阻害されることがなく、また、水の供給が円滑に行われることにより、反応がより促進される。
燃料極触媒層に含まれる空孔の細孔分布のピーク値は、0.1μm〜10μmの範囲である。細孔分布のピーク値が0.1 μm未満であると、燃料の拡散が劣化すると共に、反応により発生した二酸化炭素などの生成ガスの排気機能が劣化し、発電性能を発揮できず、初期出力および出力維持率(繰り返し発電性能)が低下する。細孔分布のピーク値が10 μmを超えると、燃料極触媒層内に存在する大きな空孔により、触媒層中の電解質によるプロトンを伝導するためのパスや導電性パスが切断されてしまい、発電性能が低下すると共に、クロスオーバー量も増加し、燃料消費が多くなる。より好ましくは空孔の径は1μm〜5μmの範囲である。ここで、細孔分布の測定方法は、上記第1実施形態で説明した内容を燃料極に置き換えることで可能である。
本実施形態においては、さらに、燃料極触媒層は、54〜69%の範囲の気孔率を有することが好ましい。ここで気孔率及びその測定方法は、上記第1実施形態で説明したとおりである。
気孔率が54〜69%の範囲内であることにより、プロトン伝導性を保ちつつ、燃料が細部まで行き届くと共に、反応により生成された二酸化炭素などの生成ガスを円滑に排出可能な機能を形成することができる。より好ましくは、気孔率は59〜64%範囲内である。
空孔は、粒子形状又は繊維形状であることが好ましい。ここで繊維形状及びその径の定義は、上記第1実施形態で説明したとおりである。
本実施形態において、燃料極触媒層は、0.1μm〜10μmの範囲に細孔分布のピーク値を有する粒子形状の空孔を備える。このような空孔を備えることにより、触媒とガスの接触面が増大し、燃料極触媒層での反応性が改善され、高い出力が長期間にわたって安定に得られる膜電極接合体を提供することができる。
他の態様において、燃料極触媒層は0.1μm〜10μmの範囲に細孔分布のピーク値を有する繊維形状の空孔を備える。繊維形状の空孔を備えることにより、触媒層中のガス拡散性がより向上され、燃料極触媒層での反応性が改善され、高い出力が長期間にわたって安定に得られる膜電極接合体を提供することができる。
さらに他の態様において、燃料極触媒層は粒子形状の空孔及び繊維形状の空孔を備える。粒子形状の空孔及び繊維形状の空孔を備えることにより、上記第1実施形態で説明したように、繊維形状の空孔によって粒子形状の空孔が繋がれ、空孔が3次元的に連結される。これにより、外部と連結した空孔の容積が大きくなり、ガスの流出入が可能な容積が大きくなる。これによって、触媒層中のガス拡散性がより向上され、燃料極触媒層での反応性が改善されて、高い出力が長期間にわたって安定に得られる膜電極接合体を提供することができる。
本実施形態では、0.1μm〜10μmの範囲に細孔分布のピーク値を有する空孔を有する燃料極触媒層8を備えた膜電極接合体を用いることにより、出力性能が向上され、高い出力が長期間にわたって安定に得られる燃料電池100を提供することができる。
(第3実施形態)
第3実施形態に係る膜電極接合体1及び燃料電池100は、0.1μm〜10μmの範囲に細孔分布のピーク値を有する空孔を備える空気極触媒層11並びに0.1μm〜10μmの範囲に細孔分布のピーク値を有する空孔を備える燃料極触媒層8を備えることを特徴とする。本実施形態では、空気極6及び燃料極5に何れも上記範囲の大きさの空孔を有する触媒層を用いる他は、上記第1実施形態の膜電極接合体1及び燃料電池100と同様の構成を有する。
本実施形態においては、空気極触媒層11に空孔が存在することにより、空気などの酸化ガスが取り込み易くなり、反応性が向上すると共に、相対的な放熱性能が向上する。また、燃料極触媒層8に空孔が存在することにより、ガス拡散性が向上し、燃料ガスの流入が促進されると共に、反応によって生成されたCO2ガスの除去が促進される。また、燃料極触媒層8における空孔は水を貯蔵することができ、プロトン生成に必要な水の保管場所としても機能することができる。燃料極触媒層8において、空孔に水が貯蔵されることにより、プロトン伝導パスが阻害されることがなく、また、反応に必要な水の供給が円滑に行われるため、反応がより促進されることができる。このように空気極及び燃料極の両方の触媒層で反応性が向上するため、高い出力が長期間にわたって安定に得られる膜電極接合体を提供することができる。
空気極触媒層11及び燃料極触媒層8に含まれる空孔の細孔分布の測定方法は、上記第1実施例で説明したとおりである。
本実施形態において、空気極触媒層11は、67〜77%の範囲の気孔率を有することが好ましい。気孔率が67〜77%以下の範囲であることにより、第1実施形態で説明した効果が得られる。気孔率は74〜77%であることがより好ましい。
一方、燃料極触媒層は、54〜64%の範囲の気孔率を有することが好ましい。気孔率が54〜64%の範囲内であることにより、第2実施形態で説明した効果が得られる。気孔率は59〜64%であることがより好ましい。なお、気孔率の説明とその測定方法は、上記第1実施形態で説明したとおりである。
本実施形態において、空気極触媒層及び燃料極触媒層は、それぞれ、0.1μm〜10μmの範囲の径を有する粒子形状の空孔を備える。このような空孔を備えることにより、触媒とガスの接触面が増大し、空気極触媒層及び燃料極触媒層のそれぞれにおいて反応性が改善され、高い出力が長期間にわたって安定に得られる膜電極接合体を提供することができる。
他の態様において、空気極触媒層及び燃料極触媒層はそれぞれ、0.1μm〜10μmの範囲の径を有する繊維形状の空孔を備える。繊維形状の空孔を備えることにより、触媒層中のガス拡散性がより向上され、空気極触媒層及び燃料極触媒層のそれぞれにおいて反応性が改善され、高い出力が長期間にわたって安定に得られる膜電極接合体を提供することができる。
さらに他の態様において、空気極触媒層及び燃料極触媒層は、それぞれ、0.1μm〜10μmの範囲の径を有する粒子形状の空孔及び0.1μm〜10μmの範囲の径を有する繊維形状の空孔を備える。粒子形状の空孔及び繊維形状の空孔を備えることにより、上記第1実施形態で説明したように、繊維形状の空孔によって粒子形状の空孔が繋がれ、空孔が3次元的に連結される。これにより、外部と連結した空孔の容積が大きくなり、ガスの流出入が可能な容積が大きくなる。これによって、触媒層中のガス拡散性がより向上され、両極の触媒層での反応性が改善されて、高い出力が長期間にわたって安定に得られる膜電極接合体を提供することができる。
(第4実施形態)
次に、第4実施形態に係る膜電極接合体及び燃料電池の製造方法について説明する。
燃料極及び空気極のそれぞれの触媒層について、それぞれの触媒と例えばナフィオンのようなプロトン伝導性高分子、及び酸により溶出する空孔形成材料を混合して、スラリーを調製する。このとき、触媒とプロトン伝導性高分子を分散したスラリーに、空孔形成材料を添加してもよく、或いは全ての材料を同時に混合してもよい。
次いで、得られたスラリーを、基材に塗布し、乾燥して触媒層を形成する。ここで、基材は、スラリーを塗布するのに適したシートであれば特に限定されるものではなく、例えばガス拡散層を使用することができる。基材に塗工後、乾燥して触媒層を形成する。得られた触媒層を、酸で洗浄して空孔形成材料を酸に溶出させることにより触媒層から除去する。洗浄は、例えば、触媒層を酸溶液中に浸漬し、煮沸処理することによって行うことができる。洗浄後、乾燥し、空孔を有する触媒層を得る。
空孔形成材料は、酸により溶解し、乾燥後の触媒層を酸で洗浄することにより触媒層から溶出されることができる材料であれば何れの材料であってもよく、例えばモリブデン・タングステン系化合物を用いることができる。
また、空孔形成材料は、粒子形状であるか繊維形状であることが好ましい。粒子形状の空孔形成材料を用いることにより、粒子形状の空孔を形成させることができる。また、繊維形状の空孔形成材料を用いることにより、繊維形状の空孔を形成させることができる。より好ましくは、粒子形状の空孔形成材料と繊維形状の空孔形成材料が組合せて用いられる。粒子形状及び繊維形状の空孔形成材料を組合せて用いることにより、繊維形状の空孔によって粒子形状の空孔同士が繋がれ、3次元的に連結した空孔を形成することができる。これにより、触媒層外部と連結した空孔の容積が大きく、ガス拡散性がより向上した触媒層を形成することができ、膜電極及び燃料電池の性能をさらに向上させることができる。
本実施形態においては、0.1μm〜10μmの範囲の径を有する空孔形成材料を用いる。該範囲の径を有する空孔形成材料を用いることにより、0.1μm〜10μmの範囲の径を有する空孔を備える触媒層を形成することができる。
ここで、空孔形成材料の径は、粒度分布測定装置によって測定することができる。
さらに、本実施形態における製造方法によれば、所望の気孔率を有する触媒層を製造することができる。気孔率は、触媒層スラリーを調製する際に、空孔形成材料の含有率を変化させることによって、調節することができる。
以上説明した本実施形態の製造方法によれば、酸により溶出する空孔形成材料を混合して触媒層を形成し、形成後の触媒層から該材料を酸による溶出で除去することにより、空孔の径及び気孔率を任意に制御することができ、最適な空孔の径や気孔率を持つ触媒層を得ることができる。従って、高い出力を長期間維持することが可能な触媒層を安定して製造することができる。このような触媒層を用いることにより、本第4実施形態では、優れた性能を有する膜電極接合体及び燃料電池を安定して製造することが可能である
以下、本発明の構成と効果を具体的に示す実施例等について説明する。
(実施例1)
<空気極の作製>
空気極ガス拡散層としてカーボンペーパー(東レ(株)製TGP-H-090)を、撥水処理して用いた。
白金微粒子を担持したカーボン粒子とナフィオン溶液DE2020(デュポン社製)と溶媒とをホモジナイザで混合して約15%固形分のスラリーを調製した。得られたスラリーを、上記カーボンペーパーの一方の面にダイコーターを用いて塗布し、常温乾燥することにより、空気極を製造した。空気極触媒層中に含まれる貴金属量は2.5mg/cmであった。
<燃料極の作製>
燃料極ガス拡散層としてカーボンペーパー(東レ(株)製TGP-H-120)を、撥水処理して用いた。
白金ルテニウム合金微粒子を担持したカーボン粒子とナフィオン溶液DE2020(デュポン社製)と溶媒をホモジナイザで混合し、さらに、酸に溶出する空孔形成材料として、
0.1μm〜10μmの範囲に細孔分布のピーク値を有するタングステン系化合物の粒子を、触媒層を構成する全固形分に対して5重量%混合して、固形分が15%のスラリーを調製した。これを上記のカーボンペーパーの一方の面にダイコーターを用いて塗布し、常温乾燥した。乾燥後、燃料極を60%濃度の硫酸により1時間煮沸処理し、空孔形成材料を除去した。これを乾燥し、燃料極を製造した。燃料極触媒層中に含まれる貴金属量は4.5mg/cmであった。
<膜電極接合体(MEA)の作製>
電解質膜として、固体電解質膜ナフィオン112(デュポン社製)を用いた。この電解質膜と上記で製造した空気極および上記で製造した燃料極を重ね合わせ、ホットプレスした。このようにして膜電極接合体(MEA)を作製した。なお、電極面積は、空気極、燃料極ともに12 cm2とした。
<燃料電池セルの組み立て>
膜電極接合体の空気極ガス拡散層及び燃料極ガス拡散層のそれぞれに、導電層として複数の開孔を有する金箔を重ねて積層体とし、樹脂製の2つのフレームで挟み込んだ。なお、膜電極接合体の電解質膜と空気極側及び燃料極側のそれぞれの導電層との間には、それぞれゴム製のOリングを挟持してシールを施した。
燃料極側のフレームは、気液分離膜を介して、液体燃料収容室にネジ止めによって固定した。気液分離膜には、厚さ0.2 mmのシリコーンシートを使用した。一方、空気極側のフレーム上には、空気取り入れのための空気導入口(口径4 mm、口数64個)が形成された厚さが2 mmのステンレス板(SUS304)を配置して表面カバー層を形成し、ネジ止めによって固定した。
(実施例2)
燃料極触媒層のためのスラリーを調製する際に、空孔形成材料として0.1μm〜10μmの範囲に細孔分布のピーク値を有する繊維形状のタングステン系化合物を、触媒層の全固形分に対して5重量%混合して燃料極触媒層を作製した他は、実施例1と同様に燃料電池セルを組み立てた。
(実施例3)
燃料極触媒層のためのスラリーを調製する際に、空孔形成材料として、0.1μm〜10μmの範囲に細孔分布のピーク値を有するタングステン系化合物の粒子と、0.1μm〜10μmの範囲に細孔分布のピーク値を有する繊維形状のタングステン系化合物を、触媒層の全固形分に対してそれぞれ2.5重量%混合して燃料極触媒層を作製した他は、実施例1と同様に燃料電池セルを組み立てた。
(実施例4)
空気極触媒層のためのスラリーを調製する際に、空孔形成材料として、0.1μm〜10μmの範囲に細孔分布のピーク値を有するタングステン化合物の粒子を、触媒層の全固形分に対して5重量%混合して空気極触媒層を作製した。また、空孔形成材料を用いずに燃料極触媒層を製造した。その他は、実施例1と同様に燃料電池セルを組み立てた。
(実施例5)
空気極触媒層のためのスラリーを調製する際に、0.1μm〜10μmの範囲に細孔分布のピーク値を有する繊維形状のタングステン系化合物を、触媒層の全固形分に対して5重量%混合して空気極触媒層を作製した。また、空孔形成材料を用いずに燃料極触媒層を製造した。その他は、実施例1と同様に燃料電池セルを組み立てた。
(実施例6)
空気極触媒層のためのスラリーを調製する際に、空孔形成材料として、0.1μm〜10μmの範囲に細孔分布のピーク値を有するタングステン系化合物の粒子と、0.1μm〜10μmの範囲に細孔分布のピーク値を有する繊維形状のタングステン系化合物を、触媒層の全固形分に対してそれぞれ2.5重量%混合して空気極触媒層を作製した。また、空孔形成材料を用いずに燃料極触媒層を製造した。その他は、実施例1と同様に燃料電池セルを組み立てた。
(実施例7)
空気極触媒層のためのスラリーを調製する際に、空孔形成材料として、0.1μm〜10μmの範囲に細孔分布のピーク値を有するタングステン系化合物の粒子と、0.1μm〜10μmの範囲に細孔分布のピーク値を有する繊維形状のタングステン系化合物を、触媒層の全固形分に対してそれぞれ1重量%混合して空気極触媒層を作製した。また、燃料極触媒層のためのスラリーを調製する際に、空気極触媒層と同様の粒子形状並びに繊維形状の空孔形成材料を、触媒層の全固形分に対してそれぞれ1重量%混合して燃料極触媒層を作製した。その他は、実施例1と同様に燃料電池セルを組み立てた。
(実施例8)
空気極触媒層のためのスラリーを調製する際に、空孔形成材料として、0.1μm〜10μmの範囲に細孔分布のピーク値を有するタングステン系化合物の粒子と、0.1μm〜10μmの範囲に細孔分布のピーク値を有する繊維形状のタングステン系化合物を、触媒層の全固形分に対してそれぞれ2.5重量%混合して空気極触媒層を作製した。また、燃料極触媒層のためのスラリーを調製する際に、空気極触媒層と同様の粒子形状並びに繊維形状の空孔形成材料を、触媒層の全固形分に対してそれぞれ2.5重量%混合して燃料極触媒層を作製した。その他は、実施例1と同様に燃料電池セルを組み立てた。
(実施例9)
空気極触媒層のためのスラリーを調製する際に、空孔形成材料として、0.1μm〜10μmの範囲に細孔分布のピーク値を有するタングステン系化合物の粒子と、0.1μm〜10μmの範囲に細孔分布のピーク値を有する繊維形状のタングステン系化合物を、触媒層の全固形分に対してそれぞれ5重量%混合して空気極触媒層を作製した。また、燃料極触媒層のためのスラリーを調製する際に、空気極触媒層と同様の粒子形状並びに繊維形状の空孔形成材料を、触媒層の全固形分に対してそれぞれ5重量%混合して燃料極触媒層を作製した。その他は、実施例1と同様に燃料電池セルを組み立てた。
(比較例)
燃料極及び空気極の両方の触媒層を、空孔形成材料を用いずに作製した他は、実施例1と同様に燃料電池セルを組み立てた。
(測定)
得られた実施例1〜実施例9の燃料極触媒層又は/及び空気極触媒層の空隙の細孔分布を前述の水銀圧入法によって測定したところ、空孔形成材料の細孔分布のピーク値を反映し、それらの細孔分布は0.1μm〜10μmの範囲に細孔分布のピーク値を有していた。
また、比較例の燃料極触媒層及び空気極触媒層の空隙の細孔分布を前述の水銀圧入法によって測定したところ、0.1μm未満に細孔分布のピーク値を有していた。
実施例1〜9及び比較例で作製した燃料電池セルについて、初期出力密度(mW/cm2)と一万時間発電後の出力劣化率を測定した。測定は、各燃料電池セルを評価装置に組み込み、燃料極側へはメタノールを直接供給し、温度25℃、相対湿度50%の空気雰囲気下で、空気極の温度55℃、電圧0.35Vで測定した。その結果を表1に示す。また、各触媒層の気孔率を上記で説明したように測定した。その結果を表1に示す。
Figure 2010277782
表1に示すように、実施例1〜9及び比較例は、初期出力密度は大きく相違しなかったが、実施例1〜9の1万時間後の出力劣化率は、比較例と比べて低かった。
燃料極触媒層に関する実施例1〜3においては、粒子形状の空孔を有する実施例1と比較して、繊維形状の空孔を有する実施例2の方が劣化率が低かった。さらに、粒子形状と繊維形状の両方の空孔を有する実施例3は、実施例1及び2よりも気孔率が高く、出力劣化率もより低かった。
空気極触媒層に関する実施例4〜6においても、粒子形状の空孔を有する実施例4と比較して、繊維形状の空孔を有する実施例5の方が劣化率が低かった。さらに、粒子形状と繊維形状の両方の空孔を有する実施例6は、実施例4及び5よりも気孔率が高く、出力劣化率もより低かった。
実施例7〜9は、燃料極及び空気極の両方の触媒層において、粒子形状及び繊維形状の空孔を有し、これらの実施例では出力劣化率が特に低かった。
比較例は燃料極及び空気極の両方の触媒層において出力劣化率が最も高かった。比較例は、空孔形成材料を用いずに形成された触媒層を用いている。この比較例の気孔率は、実施例と比較して低く、空孔形成材料を用いることによって、触媒層の気孔率が上昇されることが示された。また、気孔率を上昇させることによって、出力劣化率を低下させることができることが示された。
以上の結果から、触媒層に0.1μm〜10μmの範囲に細孔分布のピーク値の空孔を有することにより、高出力が長期間にわたって維持されることが示された。特に、粒子形状の空孔と繊維形状の空孔を組合せることにより、劣化率がより低下し、より高い出力が維持されることが示された。また、空孔を備えることによる効果は、燃料極よりも空気極においてより顕著に得られることが示された。
上記実施の形態ではパッシブ型DMFCを例に説明を行ったが、パッシブ型に限らず反応によって生成した水を燃料極側で利用する構造のものであれば、何らその燃料電池の方式について限定されるものではない。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。また、アクティブ型燃料電池及びセミパッシブ型の燃料電池においても、上記した説明と同様の作用効果が得られる。MEAへ供給される液体燃料の蒸気においても、全て液体燃料の蒸気を供給してもよいが、一部が液体状態で供給される場合であっても本発明を適用することができる。
1…膜電極接合体(MEA)、2…燃料分配機構、3…燃料収容部、4…流路、5…アノード(燃料極)、6…カソード(空気極)、7…電解質膜、8…燃料極触媒層、9…燃料極ガス拡散層、11…空気極触媒層、12…空気極ガス拡散層、13…導電層、14…カバープレート、15…Oリング、17…ポンプ、21…燃料注入口、22…燃料排出口、23…燃料分配板、24…空隙部、32a…粒子形状空孔、32b…繊維形状空孔。

Claims (8)

  1. カソード触媒層を含むカソードと、
    アノード触媒層を含むアノードと、
    前記カソード触媒層と前記アノード触媒層の間に配置された電解質膜と、
    を具備する膜電極接合体であって、
    前記カソード触媒層及び前記アノード触媒層のうち少なくとも一方が、0.1μm〜10μmの範囲に細孔分布のピーク値を有する空孔を備えることを特徴とする膜電極接合体。
  2. 前記カソード触媒層が前記空孔を備え、67〜77%の範囲の気孔率を有することを特徴とする、請求項1に記載の膜電極接合体。
  3. 前記アノード触媒層が前記空孔を備え、54〜69%の範囲の気孔率を有することを特徴とする、請求項1又は2に記載の膜電極接合体。
  4. 前記空孔が、粒子形状の空孔及び繊維形状の空孔から選択される一以上の空孔を含むことを特徴とする、請求項1〜3の何れか一項に記載の膜電極接合体。
  5. 請求項1〜4の何れか一項に記載の膜電極接合体を備えることを特徴とする燃料電池。
  6. 触媒、プロトン伝導性高分子、及び、0.1μm〜10μmの範囲に細孔分布のピーク値を有するよう酸により溶出する空孔形成材料を混合してスラリーを調製する工程と、
    得られたスラリーを基材に塗布し、乾燥して触媒層を形成する工程と、
    得られた触媒層を酸で洗浄することにより前記空孔形成材料を除去し、前記触媒層に0.1μm〜10μmの範囲に細孔分布のピーク値を有する空孔を形成する工程と、
    を含むことを特徴とする、膜電極接合体の製造方法。
  7. 前記空孔形成材料が、粒子形状及び繊維形状から選択される形状であることを特徴とする請求項6に記載の膜電極接合体の製造方法。
  8. 膜電極接合体を備える燃料電池の製造方法であって、前記膜電極接合体が請求項6又は7に記載の膜電極接合体の製造方法で得られることを特徴とする燃料電池の製造方法。
JP2009127885A 2009-05-27 2009-05-27 膜電極接合体及び燃料電池並びにそれらの製造方法 Withdrawn JP2010277782A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009127885A JP2010277782A (ja) 2009-05-27 2009-05-27 膜電極接合体及び燃料電池並びにそれらの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009127885A JP2010277782A (ja) 2009-05-27 2009-05-27 膜電極接合体及び燃料電池並びにそれらの製造方法

Publications (1)

Publication Number Publication Date
JP2010277782A true JP2010277782A (ja) 2010-12-09

Family

ID=43424579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009127885A Withdrawn JP2010277782A (ja) 2009-05-27 2009-05-27 膜電極接合体及び燃料電池並びにそれらの製造方法

Country Status (1)

Country Link
JP (1) JP2010277782A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138433A1 (ja) * 2018-12-28 2020-07-02 凸版印刷株式会社 電極触媒層、膜電極接合体、および、固体高分子形燃料電池
JP2020119630A (ja) * 2019-01-18 2020-08-06 凸版印刷株式会社 電極触媒層、膜電極接合体、および、固体高分子形燃料電池
JP2021051855A (ja) * 2019-09-24 2021-04-01 凸版印刷株式会社 電極触媒層、膜電極接合体、および、固体高分子形燃料電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138433A1 (ja) * 2018-12-28 2020-07-02 凸版印刷株式会社 電極触媒層、膜電極接合体、および、固体高分子形燃料電池
JP2020119630A (ja) * 2019-01-18 2020-08-06 凸版印刷株式会社 電極触媒層、膜電極接合体、および、固体高分子形燃料電池
JP7243208B2 (ja) 2019-01-18 2023-03-22 凸版印刷株式会社 電極触媒層、膜電極接合体、および、固体高分子形燃料電池
JP2021051855A (ja) * 2019-09-24 2021-04-01 凸版印刷株式会社 電極触媒層、膜電極接合体、および、固体高分子形燃料電池
JP7363266B2 (ja) 2019-09-24 2023-10-18 Toppanホールディングス株式会社 カソード側電極触媒層、膜電極接合体、および、固体高分子形燃料電池

Similar Documents

Publication Publication Date Title
JPWO2005112172A1 (ja) 燃料電池
JPWO2006101132A1 (ja) 燃料電池
US20110275003A1 (en) Fuel cell
JP2008210581A (ja) 燃料電池
JP2009076451A (ja) 燃料電池用電極膜接合体およびそれを用いた燃料電池
JP2010277782A (ja) 膜電極接合体及び燃料電池並びにそれらの製造方法
JP2011134600A (ja) 膜電極接合体及び燃料電池
JP2008235026A (ja) 燃料分布調整方法、燃料分布調整膜、燃料分布調整膜の製造方法、燃料電池、および燃料電池の製造方法
JPWO2006085619A1 (ja) 燃料電池
JP2011096460A (ja) 燃料電池用カソード電極および燃料電池
JP2011171301A (ja) 直接酸化型燃料電池
JP2006049115A (ja) 燃料電池
JPWO2008023632A1 (ja) 膜電極接合体及びその製造方法と燃料電池
US20090263688A1 (en) Fuel cell
WO2011052650A1 (ja) 燃料電池
WO2006104128A1 (ja) 燃料電池
JP2008276990A (ja) 燃料電池用電極および燃料電池
JP2007042600A (ja) 燃料電池
JP2009146864A (ja) 燃料電池
JPWO2008068887A1 (ja) 燃料電池
JP2011096468A (ja) 燃料電池
US20140147758A1 (en) Fuel cell system
WO2010035868A1 (ja) 燃料電池
JP4043451B2 (ja) 燃料電池用拡散層およびそれを用いた燃料電池
JP2009266676A (ja) 膜電極接合体及び燃料電池

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120807