[go: up one dir, main page]

JP2010268579A - Permanent magnet synchronous electric motor system and magnetic field control method therefor - Google Patents

Permanent magnet synchronous electric motor system and magnetic field control method therefor Download PDF

Info

Publication number
JP2010268579A
JP2010268579A JP2009116872A JP2009116872A JP2010268579A JP 2010268579 A JP2010268579 A JP 2010268579A JP 2009116872 A JP2009116872 A JP 2009116872A JP 2009116872 A JP2009116872 A JP 2009116872A JP 2010268579 A JP2010268579 A JP 2010268579A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet synchronous
synchronous motor
speed
axis current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009116872A
Other languages
Japanese (ja)
Inventor
Fumio Asahide
文雄 朝日出
Nobuo Ikisu
信雄 伊規須
Tetsuo Kono
哲雄 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E I M CONTROL SYSTEMS CO Ltd
SYSTEM GIKEN KK
Original Assignee
E I M CONTROL SYSTEMS CO Ltd
SYSTEM GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E I M CONTROL SYSTEMS CO Ltd, SYSTEM GIKEN KK filed Critical E I M CONTROL SYSTEMS CO Ltd
Priority to JP2009116872A priority Critical patent/JP2010268579A/en
Publication of JP2010268579A publication Critical patent/JP2010268579A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent magnet synchronous electric motor system which is simple in constitution, high in accuracy, low in cost, and capable of controlling a magnetic field in a wide range, and to provide a magnetic field control method for the motor system. <P>SOLUTION: The permanent magnet synchronous electric motor system 10 includes a control device 12 which has a power supply 15 variable in voltage and frequency, and performs control for weakening the magnetic field, by making a d-axis current flow from the stator side of a permanent magnet synchronous electric motor 11 toward an orientation in which the magnetic flux of a permanent magnet of the permanent magnet synchronous electric motor 11 is weakened, when the permanent magnet synchronous electric motor 11 is operated at a high speed exceeding the basic speed. The magnetic flux of the permanent magnet is set to a value smaller than a rated magnetic flux corresponding to the basic speed. The control device 12 includes: a first speed control system 13, which generates a required torque characteristic by setting the value of a q-axis current crossing the d-axis current at right angles to be larger than a value of a rated q-axis current, corresponding to the rated magnetic flux in a low-speed region equal to or lower than the basic speed; and a second speed control system 14 which generates a required output characteristic, by adjusting the values of the d-axis current and the q-axis current respectively in a high-speed region. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、界磁制御によって定出力特性及び逓減出力特性を得る永久磁石同期電動機システム及びその界磁制御方法に関する。 The present invention relates to a permanent magnet synchronous motor system that obtains constant output characteristics and step-down output characteristics by field control and a field control method thereof.

例えば、特許文献1に記載のように、永久磁石同期電動機を、他励直流分巻電動機の界磁制御のように、電圧をほぼ一定にして、界磁弱めによって高速運転を行うには、永久磁石の磁束を弱める電流を固定子側から供給して磁束を弱め、永久磁石同期電動機の速度を大きくする方法が取られている。このために、直流電動機のように、速度増加に反比例して界磁電流を小さく制御すると云う方法は採用できず、速度増加にほぼ比例して大きくなる磁束弱め電流を電源から供給しなければならない。従って、界磁制御範囲が広い場合、例えば、定出力特性の要求に対して固定子電流がかなり大きくなるという問題があった。特に、可変電圧、可変周波数電源の必要電圧が、直流電動機の界磁弱め制御の場合に比べ非常に大きくなるという問題があった。このため、永久磁石同期電動機の広範囲の界磁制御には、標準化された電圧定格のインバータは、その適用が困難となっていた。そこで、インバータ電圧を昇圧する手段や、電動機の逆起電力を小さくするように永久磁石同期電動機の巻線を切替える方法(例えば、特許文献2参照)が提案され、実用に供されている。 For example, as described in Patent Document 1, a permanent magnet synchronous motor can be operated at high speed by field weakening with a substantially constant voltage as in field control of a separately excited DC shunt motor. A method of increasing the speed of the permanent magnet synchronous motor by supplying a current that weakens the magnetic flux from the stator side to weaken the magnetic flux is used. For this reason, the method of controlling the field current to be small in inverse proportion to the speed increase as in the case of a DC motor cannot be adopted, and a magnetic flux weakening current that increases substantially in proportion to the speed increase must be supplied from the power source. . Therefore, when the field control range is wide, for example, there is a problem that the stator current becomes considerably large with respect to the requirement of constant output characteristics. In particular, there is a problem that the required voltage of the variable voltage and variable frequency power supply becomes very large as compared with the field weakening control of the DC motor. For this reason, it has been difficult to apply a standardized voltage rated inverter to a wide field control of a permanent magnet synchronous motor. Therefore, means for boosting the inverter voltage and a method of switching the winding of the permanent magnet synchronous motor so as to reduce the back electromotive force of the motor (for example, see Patent Document 2) have been proposed and put into practical use.

特開2004−129381号公報Japanese Patent Application Laid-Open No. 2004-129381 特開2005−354807号公報JP-A-2005-354807

しかしながら、電動機の巻線を切替える方法では、巻線切替回路とその制御装置が必要になるため、永久磁石同期電動機を駆動するインバータと永久磁石同期電動機の間に巻線切替回路とその制御装置を配置するスペースを確保しなければならないという問題が生じる。また、永久磁石同期電動機から巻線切替に必要な本数の動力線が引出されるので、配線数が増加するという問題も生じる。 However, since the method of switching the windings of the motor requires a winding switching circuit and its control device, a winding switching circuit and its control device are provided between the inverter that drives the permanent magnet synchronous motor and the permanent magnet synchronous motor. There arises a problem that a space to be arranged must be secured. In addition, since the number of power lines necessary for switching the winding is drawn from the permanent magnet synchronous motor, there is a problem that the number of wirings increases.

本発明はかかる事情に鑑みてなされたもので、簡単な構成で高精度かつ低コストで広範囲の界磁制御が可能な永久磁石同期電動機システム及びその界磁制御方法を提供する。 The present invention has been made in view of such circumstances, and provides a permanent magnet synchronous motor system and a field control method thereof capable of performing a wide range of field control with a simple configuration with high accuracy and low cost.

前記目的に沿う本発明に係る永久磁石同期電動機システムは、電圧及び周波数が可変な電源を備え、永久磁石同期電動機の基底速度を超えた高速運転の際に、該永久磁石同期電動機の回転子に装着された永久磁石の磁束を弱める向きに、該永久磁石同期電動機の固定子側からd軸電流を流して界磁弱め制御を行う制御装置を有する永久磁石同期電動機システムにおいて、
前記永久磁石同期電動機の永久磁石の磁束は、前記基底速度に対応する定格磁束より小さい値に設計され、
前記制御装置は、前記基底速度以下の低速度領域で、前記d軸電流と直交するq軸電流の値を前記定格磁束に対応する定格q軸電流の値より大きくして、該永久磁石同期電動機に要求されるトルク特性を発生させる第1の速度制御系と、前記基底速度を超える高速度領域で、前記d軸電流及び前記q軸電流の値をそれぞれ調整して前記永久磁石同期電動機に要求される出力特性を発生させる第2の速度制御系とを有している。
A permanent magnet synchronous motor system according to the present invention that meets the above-mentioned object is provided with a power source having a variable voltage and frequency, and the rotor of the permanent magnet synchronous motor is used during high-speed operation exceeding the base speed of the permanent magnet synchronous motor. In a permanent magnet synchronous motor system having a control device that controls field weakening by flowing a d-axis current from the stator side of the permanent magnet synchronous motor in a direction to weaken the magnetic flux of the installed permanent magnet,
The magnetic flux of the permanent magnet synchronous motor is designed to be smaller than the rated magnetic flux corresponding to the base speed,
The control device increases the value of the q-axis current orthogonal to the d-axis current in a low speed region equal to or lower than the base speed to be larger than the value of the rated q-axis current corresponding to the rated magnetic flux. The permanent magnet synchronous motor is requested by adjusting the values of the d-axis current and the q-axis current in a first speed control system that generates torque characteristics required for the motor and a high speed region exceeding the base speed. And a second speed control system for generating the output characteristics to be generated.

本発明に係る永久磁石同期電動機システムにおいて、前記第1の速度制御系は、前記永久磁石同期電動機の固定子相電流が該永久磁石同期電動機の発生トルクに対して最小となるときの特性負荷角を演算し、該永久磁石同期電動機の負荷角を該特性負荷角に一致させることが好ましい。 In the permanent magnet synchronous motor system according to the present invention, the first speed control system has a characteristic load angle when a stator phase current of the permanent magnet synchronous motor becomes a minimum with respect to a torque generated by the permanent magnet synchronous motor. And the load angle of the permanent magnet synchronous motor is preferably matched with the characteristic load angle.

本発明に係る永久磁石同期電動機システムにおいて、前記第2の速度制御系は、前記永久磁石同期電動機の速度が予め設定された臨界速度以下の速度領域では、前記d軸電流を0又は前記永久磁石同期電動機の固定子相電流が該永久磁石同期電動機の発生トルクに対して最小となる特性負荷角に相当する値に保持して、前記q軸電流の値及び固定子相電圧を調整し、前記臨界速度を超える速度領域では、前記d軸電流の値を調整して界磁制御を行いながら前記q軸電流の値を調整することが好ましい。 In the permanent magnet synchronous motor system according to the present invention, the second speed control system may reduce the d-axis current to 0 or the permanent magnet in a speed region where the speed of the permanent magnet synchronous motor is equal to or lower than a preset critical speed. Holding the stator phase current of the synchronous motor at a value corresponding to the characteristic load angle that minimizes the torque generated by the permanent magnet synchronous motor, adjusting the q-axis current value and the stator phase voltage, In the speed region exceeding the critical speed, it is preferable to adjust the value of the q-axis current while adjusting the value of the d-axis current and performing field control.

前記目的に沿う本発明に係る永久磁石同期電動機システムの界磁制御方法は、電圧及び周波数が可変な電源を用いて、永久磁石同期電動機の基底速度を超えた高速運転の際に、該永久磁石同期電動機の回転子に装着された永久磁石の磁束を弱める向きに、該永久磁石同期電動機の固定子側からd軸電流を流して界磁弱め制御を行う永久磁石同期電動機システムの界磁制御方法において、
前記永久磁石同期電動機の永久磁石の磁束を、前記基底速度に対応する定格磁束より小さい値に設計し、
前記基底速度以下の低速度領域では、前記d軸電流と直交するq軸電流の値を前記定格磁束に対応する定格q軸電流の値より大きくして、該永久磁石同期電動機に要求されるトルク特性を発生させ、前記基底速度を超える高速度領域では、前記d軸電流及び前記q軸電流の値をそれぞれ調整して前記永久磁石同期電動機に要求される出力特性を発生させる。
A field control method for a permanent magnet synchronous motor system according to the present invention that meets the above-described object is provided by using a power source having a variable voltage and frequency at the time of high-speed operation exceeding the base speed of the permanent magnet synchronous motor. In a field control method of a permanent magnet synchronous motor system for performing field weakening control by flowing a d-axis current from the stator side of the permanent magnet synchronous motor in a direction to weaken the magnetic flux of the permanent magnet mounted on the rotor of the permanent magnet,
The permanent magnet synchronous motor magnetic flux of the permanent magnet is designed to be smaller than the rated magnetic flux corresponding to the base speed,
In the low speed region below the base speed, the torque required for the permanent magnet synchronous motor is set by making the q-axis current value orthogonal to the d-axis current larger than the rated q-axis current value corresponding to the rated magnetic flux. In the high speed region exceeding the base speed, the values of the d-axis current and the q-axis current are adjusted to generate the output characteristics required for the permanent magnet synchronous motor.

本発明に係る永久磁石同期電動機システムの界磁制御方法において、前記低速度領域では、前記永久磁石同期電動機の固定子相電流が該永久磁石同期電動機の発生トルクに対して最小となるときの特性負荷角を演算し、該永久磁石同期電動機の負荷角を該特性負荷角に一致させることが好ましい。 In the field control method for a permanent magnet synchronous motor system according to the present invention, the characteristic load angle when the stator phase current of the permanent magnet synchronous motor is minimum with respect to the torque generated by the permanent magnet synchronous motor in the low speed region. And the load angle of the permanent magnet synchronous motor is preferably matched with the characteristic load angle.

本発明に係る永久磁石同期電動機システムの界磁制御方法において、前記高速度領域では、前記永久磁石同期電動機の速度が予め設定された臨界速度以下の場合、前記d軸電流を0又は前記永久磁石同期電動機の固定子相電流が該永久磁石同期電動機の発生トルクに対して最小となる特性負荷角に相当する値に保持しながら前記q軸電流の値及び固定子相電圧を調整し、前記臨界速度を超える場合、前記d軸電流の値を調整して界磁制御を行いながら前記q軸電流の値を調整することが好ましい。 In the field control method for a permanent magnet synchronous motor system according to the present invention, in the high speed region, when the speed of the permanent magnet synchronous motor is equal to or lower than a preset critical speed, the d-axis current is set to 0 or the permanent magnet synchronous motor. The q-axis current value and the stator phase voltage are adjusted while maintaining the stator phase current at a value corresponding to the characteristic load angle at which the stator phase current is minimum with respect to the torque generated by the permanent magnet synchronous motor. When exceeding, it is preferable to adjust the value of the q-axis current while adjusting the value of the d-axis current and performing field control.

本発明に係る永久磁石同期電動機システム及びその界磁制御方法においては、永久磁石同期電動機の永久磁石の磁束を基底速度に対応する定格磁束より小さい値に設計しているので、電圧及び周波数が可変な電源を用いて永久磁石同期電動機の基底速度を超えた高速運転で界磁制御を行う際の最大電圧を低下させることが可能となり、例えば、電圧及び周波数が可変な電源の電圧を昇圧する昇圧装置又は電動機の巻線を切替える巻線切替回路及びその制御装置を付加する必要がなくなり、永久磁石同期電動機システムの構成が簡単になり、信頼性向上及びコスト低減が可能になる。
また、永久磁石同期電動機の永久磁石の磁束を定格磁束より小さい値に設計することで、例えば、高価な磁性材料であるレアメタルの使用を低減することができ、永久磁石同期電動機のコストを低減することができると共に、最近の脱レアメタルの要求にも合致できる。
In the permanent magnet synchronous motor system and its field control method according to the present invention, the magnetic flux of the permanent magnet of the permanent magnet synchronous motor is designed to be smaller than the rated magnetic flux corresponding to the base speed. It is possible to reduce the maximum voltage when performing field control at high speed operation exceeding the base speed of the permanent magnet synchronous motor using, for example, a booster or a motor for boosting the voltage of a power source whose voltage and frequency are variable There is no need to add a winding switching circuit for switching windings and a control device therefor, the configuration of the permanent magnet synchronous motor system is simplified, and reliability can be improved and costs can be reduced.
Further, by designing the permanent magnet magnetic flux of the permanent magnet synchronous motor to a value smaller than the rated magnetic flux, for example, the use of rare metal, which is an expensive magnetic material, can be reduced, and the cost of the permanent magnet synchronous motor can be reduced. It can meet the recent requirements for derare metal.

本発明に係る永久磁石同期電動機システム及びその界磁制御方法において、永久磁石同期電動機の固定子相電流が永久磁石同期電動機の発生トルクに対して最小となるときの特性負荷角を求め、永久磁石同期電動機の負荷角を特性負荷角に一致させる場合、磁石磁束を定格値より小さく設計したことに起因する固定子相電流の増加を抑制することができる。 In the permanent magnet synchronous motor system and the field control method thereof according to the present invention, the characteristic load angle when the stator phase current of the permanent magnet synchronous motor becomes the minimum with respect to the torque generated by the permanent magnet synchronous motor is obtained, and the permanent magnet synchronous motor When the load angle is matched with the characteristic load angle, it is possible to suppress an increase in stator phase current caused by designing the magnet magnetic flux to be smaller than the rated value.

本発明に係る永久磁石同期電動機システム及びその界磁制御方法において、永久磁石同期電動機の高速速度領域に臨界速度を予め設定し、臨界速度以下の速度領域では、d軸電流を0又は永久磁石同期電動機の固定子相電流が永久磁石同期電動機の発生トルクに対して最小となる特性負荷角に相当する値に保持して、q軸電流の値及び固定子相電圧を調整し、臨界速度を超える速度領域では、d軸電流の値を調整して界磁制御を行いながらq軸電流の値を調整する場合、磁石磁束を定格値より小さく設計したことに起因する固定子相電流の増加を抑制することができる。その結果、永久磁石同期電動機の基底速度を超えた高速運転での効率を向上できる。 In the permanent magnet synchronous motor system and the field control method thereof according to the present invention, a critical speed is preset in the high speed region of the permanent magnet synchronous motor, and the d-axis current is set to 0 or zero in the permanent magnet synchronous motor. Maintaining the stator phase current at a value corresponding to the characteristic load angle that minimizes the torque generated by the permanent magnet synchronous motor, adjusting the q-axis current value and stator phase voltage, and exceeding the critical speed range Then, when adjusting the value of the q-axis current while adjusting the value of the d-axis current and performing the field control, it is possible to suppress an increase in the stator phase current caused by designing the magnetic flux to be smaller than the rated value. . As a result, the efficiency at high speed operation exceeding the base speed of the permanent magnet synchronous motor can be improved.

本発明の一実施の形態に係る永久磁石同期電動機システムの説明図である。It is explanatory drawing of the permanent-magnet synchronous motor system which concerns on one embodiment of this invention. 本発明の一実施の形態に係る永久磁石同期電動機システムの界磁制御方法における固定子相電流とトルク及び負荷角の関係を示す説明図である。It is explanatory drawing which shows the relationship between a stator phase current, a torque, and a load angle in the field control method of the permanent magnet synchronous motor system which concerns on one embodiment of this invention. 同永久磁石同期電動機システムの界磁制御方法と負荷角90°一定の従来方法における負荷角とトルクの関係を示す説明図である。It is explanatory drawing which shows the relationship between the load angle and torque in the field control method of the permanent magnet synchronous motor system, and the conventional method with a constant load angle of 90 °. 同永久磁石同期電動機システムの界磁制御方法における速度とd軸電流指令及びq軸電流指令の関係を示す説明図である。It is explanatory drawing which shows the relationship between the speed, d-axis current command, and q-axis current command in the field control method of the permanent magnet synchronous motor system. 同永久磁石同期電動機システムの界磁制御方法における運転速度をパラメータとした際のq軸電流とトルクの関係を示す説明図である。It is explanatory drawing which shows the relationship between q-axis current and a torque at the time of setting the operating speed in the field control method of the permanent magnet synchronous motor system as a parameter. 変形例に係る永久磁石同期電動機システムの界磁制御方法における速度とトルク、電圧、及び相電流の関係を示す説明図である。It is explanatory drawing which shows the relationship between the speed, torque, voltage, and phase current in the field control method of the permanent magnet synchronous motor system which concerns on a modification. 臨界速度以下の高速度領域で固定子相電圧の調整を行わない場合の速度とトルク、電圧、及び相電流の関係を示す説明図である。It is explanatory drawing which shows the relationship between the speed when not adjusting a stator phase voltage in the high speed area | region below a critical speed, a torque, a voltage, and a phase current. 従来の界磁制御方法における速度とトルク、電圧、及び相電流の関係を示す説明図であるIt is explanatory drawing which shows the relationship between the speed, torque, voltage, and phase current in the conventional field control method. 本発明の一実施の形態に係る永久磁石同期電動機システムの界磁制御方法と従来の界磁制御方法における永久磁石同期電動機の効率の比較を示す説明図である。It is explanatory drawing which shows the comparison of the efficiency of the permanent magnet synchronous motor in the field control method of the permanent magnet synchronous motor system which concerns on one embodiment of this invention, and the conventional field control method. 本発明の一実施の形態に係る永久磁石同期電動機システムの界磁制御方法で固定子抵抗を小さく設計した場合と従来の界磁制御方法における永久磁石同期電動機の効率を示す説明図である。It is explanatory drawing which shows the efficiency of the permanent magnet synchronous motor in the case where a stator resistance is designed small by the field control method of the permanent magnet synchronous motor system which concerns on one embodiment of this invention, and the conventional field control method.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1に示すように、本発明の一実施の形態に係る永久磁石同期電動機システム10は、永久磁石同期電動機11と、ベクトル制御による永久磁石同期電動機11の界磁制御を行う制御装置12を有している。ここで、永久磁石同期電動機11の永久磁石の磁束は、定格磁束より小さい値、例えば75%に設計されている。ここで、永久磁石の磁束設計の推奨値は、定格磁束の50%以上75%以下である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIG. 1, a permanent magnet synchronous motor system 10 according to an embodiment of the present invention includes a permanent magnet synchronous motor 11 and a control device 12 that performs field control of the permanent magnet synchronous motor 11 by vector control. Yes. Here, the magnetic flux of the permanent magnet of the permanent magnet synchronous motor 11 is designed to be smaller than the rated magnetic flux, for example, 75%. Here, the recommended value of the magnetic flux design of the permanent magnet is 50% or more and 75% or less of the rated magnetic flux.

そして、制御装置12は、永久磁石同期電動機11の速度(回転速度)が基底速度(定格回転速度)以下の低速度領域にある場合において、永久磁石同期電動機11で要求されるトルク特性が得られるように、d軸電流と直交するq軸電流の値を定格磁束に対応する定格q軸電流の値より大きくする運転制御を行う第1の速度制御系13と、永久磁石同期電動機11の回転速度が基底速度を超える高速度領域にある場合において、永久磁石同期電動機11で要求される出力特性、例えば定出力特性が得られるように、d軸電流及びq軸電流の値をそれぞれ調整する運転制御を行う第2の速度制御系14とを有している。以下詳細に説明する。 Then, the control device 12 can obtain the torque characteristics required for the permanent magnet synchronous motor 11 when the speed (rotational speed) of the permanent magnet synchronous motor 11 is in a low speed region below the base speed (rated rotational speed). As described above, the first speed control system 13 that performs operation control for making the value of the q-axis current orthogonal to the d-axis current larger than the value of the rated q-axis current corresponding to the rated magnetic flux, and the rotational speed of the permanent magnet synchronous motor 11 Control in which the values of the d-axis current and the q-axis current are adjusted so that the output characteristics required by the permanent magnet synchronous motor 11, for example, the constant output characteristics, can be obtained in the high speed region exceeding the base speed. And a second speed control system 14 for performing This will be described in detail below.

第1、第2の速度制御系13、14は、永久磁石同期電動機11を運転する電圧及び周波数が可変な電源の一例であるPWMインバータ15と、運転中の永久磁石同期電動機11の負荷を検出する負荷検出器の一例である第1の絶対値エンコーダ16と、運転中の永久磁石同期電動機11の磁極位置(回転角度)θを検出する磁極位置検出器の一例である第2の絶対値エンコーダ16aと、第2の絶対値エンコーダ16aの出力から永久磁石同期電動機11の回転速度ωrnを演算する速度検出器17と、永久磁石同期電動機システム10の図示しない運転操作盤から出力される速度指令ωrn と速度検出器17から出力される回転速度ωrnを比較し、その偏差をPI増幅して原トルク指令Tecを生成する速度制御用のPI制御器18を有している。 The first and second speed control systems 13 and 14 detect a load of the PWM inverter 15 which is an example of a power source having a variable voltage and frequency for operating the permanent magnet synchronous motor 11 and the operating permanent magnet synchronous motor 11. The first absolute value encoder 16 that is an example of a load detector that performs the operation and the second absolute value that is an example of a magnetic pole position detector that detects the magnetic pole position (rotation angle) θ r of the permanent magnet synchronous motor 11 that is in operation. The speed output from the encoder 16a, the speed detector 17 for calculating the rotational speed ω rn of the permanent magnet synchronous motor 11 from the output of the second absolute value encoder 16a, and the speed output from the operation control panel (not shown) of the permanent magnet synchronous motor system 10 The speed control PI controller 18 that compares the command ω rn * with the rotational speed ω rn output from the speed detector 17 and PI-amplifies the deviation to generate the original torque command T ec. have.

第1の速度制御系13は、PI制御器18から出力された原トルク指令Tecからトルク指令Ten を生成するリミッタ19と、リミッタ19から出力されるトルク指令Ten に基づいて原相電流指令isnv 及び原負荷角指令δ をそれぞれ生成する関数発生器20、21とを有している。ここで、リミッタ19は、原トルク指令Tec(トルク要求)に対するトルク指令Ten を許容値に制限するもので、例えば、トルク指令Ten は−2.0p.u.〜+2.0p.u.の範囲にリミットされる。 The first speed control system 13 generates a torque command T en * from the original torque command T ec output from the PI controller 18, and the original speed control system 13 based on the torque command T en * output from the limiter 19. And function generators 20 and 21 for generating the phase current command i snv * and the original load angle command δ v * , respectively. Here, the limiter 19 is intended to limit the torque command T en * to the allowable value for the original torque command T ec (torque demand), for example, the torque command T en * is -2.0P. u. ~ +2.0 p. u. It is limited to the range.

ここで、関数発生器20、21では、永久磁石同期電動機11の固定子相電流が永久磁石同期電動機11の発生トルクに対して最小となるときの(発生トルク/固定子相電流の比が最大になるときの)の特性負荷角を演算し、永久磁石同期電動機11の負荷角が特性負荷角に一致するように、トルク指令Ten から原相電流指令isnv 及び原負荷角指令δ を決定している。これによって、固定子相電流の増加を抑制しながら、永久磁石同期電動機11の永久磁石の磁束を定格磁束より小さい値に設計したことによるトルク低下を補うことができる。 Here, in the function generators 20 and 21, when the stator phase current of the permanent magnet synchronous motor 11 becomes the minimum with respect to the generated torque of the permanent magnet synchronous motor 11, the ratio of the generated torque / stator phase current is the maximum. Characteristic load angle of the permanent magnet synchronous motor 11 is calculated from the torque command T en * to the original phase current command i snv * and the original load angle command δ so that the load angle of the permanent magnet synchronous motor 11 matches the characteristic load angle. v * is determined. As a result, it is possible to compensate for the torque reduction caused by designing the permanent magnet magnetic flux of the permanent magnet synchronous motor 11 to a value smaller than the rated magnetic flux while suppressing an increase in the stator phase current.

第2の速度制御系14は、電圧及び界磁制御範囲にて、PI制御器18の出力である原トルク指令Tecと、速度検出器17の出力である回転速度ωrnに基づいて、永久磁石同期電動機11が要求される定出力特性となるように速度上昇に比例してq軸電流成分を低下せしめるように原q軸電流指令iqsn を演算するq軸電流成分演算器22と、速度検出器17の出力である回転速度ωrnに基づいて、永久磁石同期電動機11の永久磁石の磁束を界磁制御中に弱めるd軸電流成分を決める指令信号を生成する原d軸電流指令idsn を演算するd軸電流成分演算器23と、原q軸電流指令iqsn 及び原d軸電流指令idsn からベクトル演算により原相電流指令isnF 及び原負荷角指令δ をそれぞれ生成する電圧及び界磁制御相電流演算器24とを有している。これによって、永久磁石同期電動機11の速度が、予め設定された速度、例えば基底速度の150%に相当する臨界速度以下の速度領域では、例えば、d軸電流を永久磁石同期電動機11の固定子相電流が永久磁石同期電動機11の発生トルクに対して最小となる特性負荷角に相当する値に保持して、q軸電流の値及び固定子相電圧を調整することができ、臨界速度を超える速度領域では、d軸電流の値を調整して界磁制御を行いながらq軸電流の値を調整することができる。 The second speed control system 14 synchronizes the permanent magnet in the voltage and field control range based on the original torque command T ec output from the PI controller 18 and the rotational speed ω rn output from the speed detector 17. A q-axis current component calculator 22 for calculating the original q-axis current command i qsn * so as to decrease the q-axis current component in proportion to the speed increase so that the electric motor 11 has a required constant output characteristic; An original d-axis current command i dsn * that generates a command signal that determines a d-axis current component that weakens the magnetic flux of the permanent magnet of the permanent magnet synchronous motor 11 during field control is calculated based on the rotational speed ω rn that is the output of the generator 17. the d-axis current component computing unit 23, generates original q-axis current command i QSN * and the vector operation from the original d-axis current command i dsn * original phase current command i SNF * and the original load angle command [delta] F *, respectively And a voltage and field control phase current computing unit 24. Accordingly, in the speed region where the speed of the permanent magnet synchronous motor 11 is a preset speed, for example, a critical speed or less corresponding to 150% of the base speed, for example, the d-axis current is changed to the stator phase of the permanent magnet synchronous motor 11. The value of the q-axis current and the stator phase voltage can be adjusted while maintaining a value corresponding to the characteristic load angle at which the current is minimum with respect to the torque generated by the permanent magnet synchronous motor 11, and the speed exceeds the critical speed. In the region, the value of the q-axis current can be adjusted while performing field control by adjusting the value of the d-axis current.

また、第1、第2の速度制御系13、14は、永久磁石同期電動機11の回転速度が基底速度以下では関数発生器20からの出力である原相電流指令isnv を相電流指令isn とし、永久磁石同期電動機11の回転速度が基底速度を超える場合に電圧及び界磁制御相電流演算器24からの出力である原相電流指令isnF を相電流指令isn とする相電流指令選定器25と、永久磁石同期電動機11の回転速度が基底速度以下では関数発生器21からの出力である原負荷角指令δ を負荷角指令δとし、永久磁石同期電動機11の回転速度が基底速度を超える場合に電圧及び界磁制御相電流演算器24からの出力である原負荷角指令δ を負荷角指令δとする負荷角指令選定器26とを有している。 The first, second speed control system 13 and 14, which is the output original phase current command from the function generator 20 the rotational speed is below base speed of the permanent magnet synchronous motor 11 i SNV * phase current command i and sn *, phase current voltage and field control phase current computing unit which is the output original phase current command from the 24 i SNF * and the phase current command i sn * when the rotational speed of the permanent magnet synchronous motor 11 exceeds the base speed When the rotational speed of the command selector 25 and the permanent magnet synchronous motor 11 is lower than the base speed, the original load angle command δ v * , which is an output from the function generator 21, is used as the load angle command δ *, and the rotation of the permanent magnet synchronous motor 11 is performed. A load angle command selector 26 that uses the original load angle command δ F * , which is an output from the voltage and field control phase current calculator 24 when the speed exceeds the base speed, as a load angle command δ * is provided.

更に、第1、第2の速度制御系13、14は、負荷角指令選定器26から出力される負荷角指令δと第2の絶対値エンコーダ16aの出力である永久磁石同期電動機11の回転角度θとの和として求まる位相角指令θ 及び相電流指令選定器25から出力される相電流指令isn を、三相a、b、c座標の固定子相電流指令ias 、ibs 、ics に変換してPWMインバータ15に入力する電流指令器27を有している。 Further, the first and second speed control systems 13 and 14 rotate the permanent magnet synchronous motor 11 which is the output of the load angle command δ * output from the load angle command selector 26 and the second absolute value encoder 16a. The phase angle command θ s * obtained as the sum of the angle θ r and the phase current command i sn * output from the phase current command selector 25 are used as the stator phase current command i as * of the three-phase a, b, and c coordinates . , i bs *, and a current command unit 27 to be input to the PWM inverter 15 converts the i cs *.

ここで、PWMインバータ15から永久磁石同期電動機11に入力される固定子相電流ias、ibs、icsの中で、例えば、固定子相電流ics及びibsは電流センサ28、29でそれぞれ検出され、PWMインバータ15に入力される。一方、固定子相電流iasは、ics、ibsから公知のベクトル演算によって求める。そして、PWMインバータ15は、得られた固定子相電流ias、ibs、icsと電流指令器27から入力された固定子相電流指令ias 、ibs 、ics を比較して、その偏差がゼロになるように電流制御を行う。 Here, among the stator phase currents i as , i bs , and i cs input from the PWM inverter 15 to the permanent magnet synchronous motor 11, for example, the stator phase currents i cs and i bs are current sensors 28 and 29. Each is detected and input to the PWM inverter 15. On the other hand, the stator phase current i as is obtained from i cs and i bs by a known vector operation. The PWM inverter 15 compares the obtained stator phase currents i as , i bs , i cs with the stator phase current commands i as * , i bs * , i cs * inputted from the current command device 27. Then, current control is performed so that the deviation becomes zero.

続いて、本発明の一実施の形態に係る永久磁石同期電動機システム10の界磁制御方法について説明する。
永久磁石同期電動機システム10の界磁制御方法は、電圧及び周波数が可変な電源の一例であるPWMインバータ15を用いて、永久磁石同期電動機11の基底速度を超えた高速運転の際に、永久磁石同期電動機11の回転子に装着された永久磁石の磁束を弱める向きに、永久磁石同期電動機11の固定子側からd軸電流を流して界磁弱め制御を行うもので、永久磁石同期電動機11の永久磁石の磁束を、基底速度に対応する定格磁束より小さい値に設計し、基底速度以下の低速度領域では、d軸電流と直交するq軸電流の値を定格磁束に対応する定格q軸電流の値より大きくして、永久磁石同期電動機11に要求されるトルク特性を発生させ、基底速度を超える高速度領域では、d軸電流及びq軸電流の値をそれぞれ調整して永久磁石同期電動機11に要求される出力特性を発生させている。以下、詳細に説明する。
Then, the field control method of the permanent magnet synchronous motor system 10 which concerns on one embodiment of this invention is demonstrated.
The field control method of the permanent magnet synchronous motor system 10 uses a PWM inverter 15 which is an example of a power source having a variable voltage and frequency, and performs permanent magnet synchronous motor during high speed operation exceeding the base speed of the permanent magnet synchronous motor 11. The permanent magnet synchronous motor 11 performs field weakening control by flowing a d-axis current from the stator side of the permanent magnet synchronous motor 11 in the direction of weakening the magnetic flux of the permanent magnet mounted on the rotor of the permanent magnet 11. Is designed to be smaller than the rated magnetic flux corresponding to the base speed, and in the low speed region below the base speed, the q-axis current value orthogonal to the d-axis current is the rated q-axis current value corresponding to the rated magnetic flux. The torque characteristic required for the permanent magnet synchronous motor 11 is generated to be larger, and in the high speed region exceeding the base speed, the values of the d-axis current and the q-axis current are adjusted to change the permanent magnet synchronous power. The output characteristics required for the motive 11 are generated. Details will be described below.

低速度領域では、永久磁石同期電動機11に要求トルクを発生させるためにq軸電流の値を大きくしなければならないが、このとき、PWMインバータ15の負荷を小さくするために、固定子相電流の増加を抑制する必要がある。ここで、永久磁石同期電動機11の固定子相電流は、d軸電流とq軸電流のベクトル和となるので、永久磁石同期電動機11の固定子相電流が永久磁石同期電動機11の発生トルクに対して最小となるとき、すなわち、発生トルク/固定子相電流の比が最大になるときの特性負荷角を求め、永久磁石同期電動機11の負荷角が特性負荷角に一致するようにd軸電流及びq軸電流を制御(永久磁石同期電動機11のベクトル制御)する。 In the low speed region, the value of the q-axis current must be increased in order to cause the permanent magnet synchronous motor 11 to generate the required torque. At this time, in order to reduce the load of the PWM inverter 15, the stator phase current It is necessary to suppress the increase. Here, since the stator phase current of the permanent magnet synchronous motor 11 is the vector sum of the d-axis current and the q-axis current, the stator phase current of the permanent magnet synchronous motor 11 is in relation to the torque generated by the permanent magnet synchronous motor 11. Characteristic load angle when the generated torque / stator phase current ratio is maximized, and the d-axis current and the load angle of the permanent magnet synchronous motor 11 match the characteristic load angle. The q-axis current is controlled (vector control of the permanent magnet synchronous motor 11).

いま、永久磁石同期電動機11の三相a、b、c座標の固定子相電流をias、ibs、icsとする。各固定子相電流は、
as=isin(ωt+δ) ・・・・・(1)
bs=isin(ωt+δ−2π/3) ・・・・・(2)
cs=isin(ωt+δ+2π/3) ・・・・・(3)
で与えられる。ここで、iは固定子相電流の振幅値(A)、ωは回転子速度(rad/sec)、δは負荷角(トルク角)で回転子磁界と固定子電流の各位相(rad)、tは時間(sec)である。
Now, let the stator phase currents of the three-phase a, b, and c coordinates of the permanent magnet synchronous motor 11 be i as , i bs , and i cs . Each stator phase current is
i as = is s sin (ω r t + δ) (1)
i bs = i s sin (ω r t + δ−2π / 3) (2)
i cs = i s sin (ω r t + δ + 2π / 3) (3)
Given in. Here, i s is the amplitude value of the stator phase current (A), omega r is the rotor speed (rad / sec), [delta] is the load angle (torque angle) rotor field and the phase of the stator current (rad ) And t are time (sec).

固定子相電流をias、ibs、icsの回転子基準座標d、q座標に於けるd軸電流ids、q軸電流iqsは、(4)式で与えられる。 The d-axis current i ds and the q-axis current i qs at the rotor reference coordinates d and q coordinates of the stator phase currents i as , i bs , and i cs are given by equation (4).

Figure 2010268579
Figure 2010268579

(4)式に(1)、(2)、(3)式を代入することにより、(5)式が得られる。 By substituting the equations (1), (2), and (3) into the equation (4), the equation (5) is obtained.

Figure 2010268579
Figure 2010268579

他方、回転子基準座標d、q軸で表した永久磁石同期電動機11の電圧Vds(V)、Vqs(V)は、(6)式によって与えられる。 On the other hand, the voltages V ds (V) and V qs (V) of the permanent magnet synchronous motor 11 expressed by the rotor reference coordinate d and the q axis are given by the equation (6).

Figure 2010268579
Figure 2010268579

また、トルクTe(N−m)は(7)式によって与えられる。
Te=(3/2)・(P/2)・〔λafqs+(L−L)iqsds〕 ・・・・・(7)
なお、Rは、q軸、d軸の固定子巻線抵抗(Ω)、L、Lは、q軸、d軸インダクタンス(H)、λafは回転子磁束鎖交(Wb−turn)、pは微分演算子=d/dt、Pは極数である。
The torque Te (N−m) is given by the equation (7).
Te = (3/2) · (P / 2) · [λ af i qs + (L d −L q ) i qs ids ] (7)
Note that RS is q-axis and d-axis stator winding resistance (Ω), L q and L d are q-axis and d-axis inductance (H), and λaf is rotor flux linkage (Wb-turn). ), P is the differential operator = d / dt, and P is the number of poles.

ここで、発明の記述を簡明にするために、電圧、電流、速度、トルク、固定子巻線抵抗、d軸インダクタンス、及びq軸インダクタンスを単位法(p.u.法)で表す。
いま、ベース電圧をV(V)、ベース電流をI(A)、ベース速度(基底速度)をω(rad/sec)、ベース回転子磁束鎖交をλafB(Wb−turn)とすると、ベース抵抗RはV/I(Ω)、ベースインダクタンスLはV/(ω・I)(H)となり、単位法で表した固定子巻線抵抗RSnはR/R(p.u.)、単位法で表したd軸インダクタンスLdn及びq軸インダクタンスLdnはそれぞれL/L(p.u.)、L/L(p.u.)と決定できる。また、単位法で表したq軸電圧Vqsn及びd軸電圧VdsnはそれぞれVqs/V(p.u.)、Vds/V(p.u.)となり、単位法で表した回転子速度ωrnはω/ω(p.u.)、単位法で表した回転子磁束鎖交λafnはλaf/λafBとなる。
Here, in order to simplify the description of the invention, voltage, current, speed, torque, stator winding resistance, d-axis inductance, and q-axis inductance are expressed by a unit method (pu method).
Now, the base voltage is V B (V), the base current is I B (A), the base speed (base speed) is ω B (rad / sec), and the base rotor flux linkage is λ afB (Wb-turn). Then, the base resistance R B becomes V B / I B (Ω), the base inductance L B becomes V B / (ω B · I B ) (H), and the stator winding resistance R Sn expressed by the unit method is R S / R B (p.u.), respectively d-axis inductance L dn and the q-axis inductance L dn expressed in unit normal L d / L B (p.u. ), L q / L B (p.u .). Further, the q-axis voltage V qsn and the d-axis voltage V dsn expressed by the unit method are V qs / V B (pu) and V ds / V B (pu), respectively, and are expressed by the unit method. The rotor speed ω rn is ω r / ω B (pu), and the rotor flux linkage λ afn expressed in the unit method is λ af / λ afB .

ここで、ベーストルクT(N−m)を、T(N−m)=(3/2)・(P/2)・λafB・Iと定義する。そうすると、トルクのp.u.値はTen=T/Tで表される。その結果、(6)式は(8)式のように単位法で表すことができる。 Here, the base torque T B (N-m), is defined as T B (N-m) = (3/2) · (P / 2) · λ afB · I B. Then, the torque p. u. The value is expressed as T en = T e / T B. As a result, equation (6) can be expressed by the unit method as equation (8).

Figure 2010268579
Figure 2010268579

また、(7)式は(9)式のように単位法で表すことができる。
en=isn〔λafnsinδ+(1/2)(Ldn−Lqn)isnsin2δ〕 ・・・(9)
Moreover, (7) Formula can be represented by a unit method like (9) Formula.
T en = i snafn sin δ + (1/2) (L dn −L qn ) i sn sin 2δ] (9)

本実施の形態の永久磁石同期電動機システム10の界磁制御方法では、単位法で表した回転子磁束鎖交λafnを1.0p.u.より小さく、例えば、0.75p.u.に設計するので、1.0p.u.トルクを発生する固定子相電流isnが1.0p.u.より大きくなる。このため、固定子相電流isnが1.0p.u.より大きくなるのを抑制するため、Ten/isnの比が最大になる負荷角δを演算し、この負荷角δを指令値として永久磁石同期電動機11の負荷角がこの値δに一致するように、固定子相電流isnの位相角を制御する。この場合、固定子相電流isnと負荷角δ(rad)の関係は、(9)式を、Ten/isnの形にして、d(Ten/isn)/dδ=0として求めることができる。その結果は、(10)式のようになる。ここで、a=Ldn−Lqn である。
δ=cos−1〔(−(λafn/4asn)−((λafn/4asn
+(1/2))1/2) ・・・(10)
従って、Ten/isnを最大にする負荷角δは、Ldn、Lqn、λafnが既知であれば、isnに対して決定できることになる。
In the field control method of the permanent magnet synchronous motor system 10 of the present embodiment, the rotor flux linkage λ afn expressed in the unit method is set to 1.0 p. u. Smaller, for example, 0.75 p. u. 1.0 p. u. The stator phase current i sn that generates torque is 1.0 p. u. Become bigger. Therefore, the stator phase current i sn is 1.0 p. u. In order to suppress the increase, the load angle δ at which the ratio of T en / i sn is maximized is calculated, and the load angle of the permanent magnet synchronous motor 11 matches this value δ using this load angle δ as a command value. Thus, the phase angle of the stator phase current i sn is controlled. In this case, the relationship of the stator phase current i sn the load angle [delta] (rad), the expression (9), in the form of a T en / i sn, determined as d (T en / i sn) / dδ = 0 be able to. The result is as shown in equation (10). Here, a 1 = L dn −L qn .
δ = cos −1 [(− (λ afn / 4a 1 i sn ) − ((λ afn / 4a 1 i sn ) 2
+ (1/2)) 1/2 ) (10)
Therefore, the load angle δ that maximizes T en / i sn can be determined for i sn if L dn , L qn , and λ afn are known.

図2に、Ldn=0.4347p.u.、Lqn=0.6988p.u.、λafn=1.0と0.75p.u.として、固定子相電流isnに対する負荷角δを(10)式から、トルクTenを(9)式からそれぞれ計算した結果を示す。図2に示すように、λafnが0.75p.u.の場合、1.0p.u.のトルクを発生するには、約1.3p.u.の固定子相電流、2.0p.u.トルクを発生するには、約2.3p.u.の固定子相電流を要することが判る。λafnを1.0p.u.に設計し、Ten/isnを最大にする制御を採用した比較例に比べ、確かに性能が低下している。 In FIG. 2, L dn = 0.4347 p. u. , L qn = 0.6988 p. u. , Λ afn = 1.0 and 0.75 p. u. As the load angle δ with respect to the stator phase current i sn from equation (10) shows a result of calculation, respectively torque T en from (9). As shown in FIG. 2, λ afn is 0.75 p. u. In the case of 1.0 p. u. Of about 1.3 p. u. Stator phase current of 2.0 p. u. To generate torque, approximately 2.3 p. u. It can be seen that the stator phase current is required. 1.0p the λ afn. u. Compared with the comparative example which designed and adopted control which maximizes T en / i sn , the performance is certainly lowered.

しかしながら、通常採用されている負荷角が90°(π/2rad)一定制御に比べた場合、Ten/isnを最大にする制御を採用することによって、性能が改善されていることが説明できる。すなわち、負荷角=π/2(rad)一定の従来方法では、1.0p.u.のトルクに対して、1.0p.u.の固定子電流、2.0p.u.のトルクに対して2.0p.u.の固定子電流となるが、永久磁石の磁束を0.75p.u.と小さく設計したにもかかわらず、本発明の方法では、2.0p.u.トルクでは必要な固定子相電流は、2.67p.u.ではなくて、約2.3p.u.となって固定子相電流が小さくなっている。もし、a=Ldn−Lqn =−0.2641p.u.ではなくて、−0.3169p.u.であれば、2.0p.u.トルクに必要な固定子電流は、約2.2p.u.とすることができる。 However, it can be explained that the performance is improved by adopting the control that maximizes T en / i sn when the load angle is usually 90 ° (π / 2 rad) constant control. . That is, in the conventional method in which the load angle = π / 2 (rad) is constant, 1.0 p. u. 1.0 p. u. Stator current of 2.0 p. u. 2.0 p. u. The permanent magnet magnetic flux is 0.75 p. u. In spite of the small design, 2.0 p. u. The required stator phase current for torque is 2.67 p. u. Rather, about 2.3 p. u. And the stator phase current is small. If a 1 = L dn −L qn = −0.2641 p. u. Not -0.3169 p. u. Then 2.0 p. u. The stator current required for torque is about 2.2 p. u. It can be.

なお、図2に示す特性から、トルクTenに対する固定子相電流isnと負荷角δを求めることができるので、(10)式の関数を関数発生器20に設定すると、トルク指令Ten に基づいて原相電流指令isnv を生成することができ、(9)式の関数を関数発生器21に設定すると、トルク指令Ten に基づいて原負荷角指令δ を生成することができる。 Note that the characteristics shown in FIG. 2, it is possible to determine the load angle δ stator phase currents i sn for the torque T en, set to function generator 20 functions (10), the torque command T en * Can generate the original phase current command i snv *, and when the function of the equation (9) is set in the function generator 21, the original load angle command δ v * is generated based on the torque command T en *. be able to.

図3に、Ldn=0.4347p.u.、Lqn=0.6988p.u.、λafn=0.75p.u.として、固定子相電流isnが2.3p.u.及び1.3p.u.の場合における(10)式で表される負荷角δと(9)式で表されるトルクTenの関係を示す。また、図3には、負荷角90°一定の従来方法における固定子相電流isnが2.0p.u.及び1.0p.u.の場合におけるトルクと負荷角の関係も併せて示している。図3は、2.0p.u.トルクを発生させるためには、負荷角90°一定の従来方法に比べて、固定子相電流isnを2.3p.u.に増加し、負荷角を90°のB点からB’点の角度まで大きくすることで、トルクはA点をA‘点に移動し、同一トルクが発生可能であることを示している。 In FIG. 3, L dn = 0.4347 p. u. , L qn = 0.6988 p. u. , Λ afn = 0.75 p. u. The stator phase current i sn is 2.3 p. u. And 1.3 p. u. It shows the (10) the relationship of the torque T en represented by load angle δ and (9) of the formula in the case of. FIG. 3 shows that the stator phase current i sn in the conventional method with a constant load angle of 90 ° is 2.0 p. u. And 1.0 p. u. The relationship between torque and load angle in the case of is also shown. FIG. 3 shows 2.0 p. u. In order to generate the torque, the stator phase current i sn is set to 2.3 p. u. By increasing the load angle from 90 ° B point to B ′ point, the torque moves from point A to point A ′, indicating that the same torque can be generated.

一方、高速度領域では、永久磁石同期電動機11の速度が、予め設定された速度、例えば基底速度の150%に相当する臨界速度以下の速度領域では、d軸電流を永久磁石同期電動機11の固定子相電流が永久磁石同期電動機11の発生トルクに対して最小となる特性負荷角に相当する値に保持しながらq軸電流の値及び固定子相電圧を調整し、臨界速度を超えた速度領域では、d軸電流の値を調整して界磁制御を行いながらq軸電流の値を調整している。ここで、界磁制御の方法としては、永久磁石の磁束弱め電流成分であるd軸電流を永久磁石同期電動機11の速度だけの関数として与える直接界磁弱め制御方式と、永久磁石同期電動機11の速度及びトルクの関数として磁束弱め電流成分を与える間接界磁弱め制御方式の二つがある。ここでは、最も簡単な直接界磁弱め制御方式の場合について説明する。 On the other hand, in the high speed region, the d-axis current is fixed to the permanent magnet synchronous motor 11 in a speed region where the speed of the permanent magnet synchronous motor 11 is a predetermined speed or less, for example, a critical speed corresponding to 150% of the base speed. While maintaining the value corresponding to the characteristic load angle at which the child phase current is minimum with respect to the torque generated by the permanent magnet synchronous motor 11, the value of the q-axis current and the stator phase voltage are adjusted, and the speed region exceeding the critical speed Then, the value of the q-axis current is adjusted while performing field control by adjusting the value of the d-axis current. Here, as a field control method, a direct field weakening control method in which a d-axis current, which is a magnetic flux weakening current component of a permanent magnet, is given as a function of only the speed of the permanent magnet synchronous motor 11, the speed of the permanent magnet synchronous motor 11, and There are two indirect field weakening control schemes that provide a flux weakening current component as a function of torque. Here, the simplest direct field weakening control method will be described.

ある速度で運転中の永久磁石同期電動機11の電圧は、(8)式でp=0とおいて(11)、(12)式のようになる。
qsn=Rsnqsn+ωrn(Ldndsn+λafn) ・・・(11)
dsn=−ωrnqnqsn+Rsndsn ・・・(12)
ここで、iqsn=0の場合の相電圧Vsnは、(13)式で求まる。
sn =Vqsn +Vdsn
=ωrn (Ldndsn+λafn+Rsn dsn ・・・(13)
The voltage of the permanent magnet synchronous motor 11 operating at a certain speed is as shown in the equations (11) and (12) when p = 0 in the equation (8).
V qsn = R sn i qsn + ω rn (L dn i dsn + λ afn ) (11)
V dsn = −ω rn L qn i qsn + R sn i dsn (12)
Here, the phase voltage V sn in the case of i qsn = 0 is obtained by the equation (13).
V sn 2 = V qsn 2 + V dsn 2
= Ω rn 2 (L dn i dsn + λ afn ) 2 + R sn 2 i dsn 2 (13)

(13)式から、界磁弱め制御で達成可能な最大速度ωrn(max)が(14)式として求まり、最大許容界磁弱めd軸電流成分idsnが(15)式として求まる。
ωrn(max)=(Vsn −Rsn dsn 1/2/(λafn+Ldndsn)・・・(14)
dsn<−λafn/Ldn ・・・(15)
すなわち、直接界磁制御では、(15)式の制限を満足し、永久磁石同期電動機11の速度の関数としてidsnの指令値を発生せしめることになる。従って、図1のd軸電流成分演算器23では、(14)、(15)式に基づいてidsnの指令値を演算して出力する。
From the equation (13), the maximum speed ω rn (max) achievable by the field weakening control is obtained as the equation (14), and the maximum allowable field weakening d-axis current component i dsn is obtained as the equation (15).
ω rn (max) = (V sn 2 −R sn 2 i dsn 2 ) 1/2 / (λ afn + L dn i dsn ) (14)
i dsn <−λ afn / L dn (15)
That is, in the direct field control, the limit of the equation (15) is satisfied, and the command value of i dsn is generated as a function of the speed of the permanent magnet synchronous motor 11. Accordingly, the d-axis current component calculator 23 in FIG. 1 calculates and outputs a command value for i dsn based on the equations (14) and (15).

図4は、永久磁石同期電動機11の速度の関数として求めた、永久磁石の磁束を弱めるd軸電流指令idsn の特性の例を示している。この場合、臨界速度(基底速度より1.5倍の速度)までは、トルク/電流比を最大にする負荷角となるd軸電流成分idsnを、例えばidsn=−0.4p.u.に設定する。図4に示すように、速度に対するd軸電流指令idsn が決定されると、定出力特性を得るためのトルクからq軸電流指令iqsn が計算できる。これは、iqsnb×(1/ωrn)を最初の近似値iqsn1として採用し、idsn とのベクトル和でisn1を求め(9)式でトルクTenを計算する。 FIG. 4 shows an example of the characteristic of the d-axis current command i dsn * that weakens the magnetic flux of the permanent magnet, which is obtained as a function of the speed of the permanent magnet synchronous motor 11. In this case, up to a critical speed (1.5 times the base speed), the d-axis current component i dsn, which is the load angle that maximizes the torque / current ratio, is set to i dsn = −0.4 p. u. Set to. As shown in FIG. 4, when the d-axis current command i dsn * with respect to the speed is determined, the q-axis current command i qsn * can be calculated from the torque for obtaining the constant output characteristics. For this, i qsnb × (1 / ω rn ) is adopted as the first approximate value i qsn1 , i sn1 is obtained from a vector sum with i dsn *, and torque T en is calculated by equation (9).

ここに、iqsnb1は、臨界速度のq軸電流である。この値と定出力特性のトルクを比較し、その差が小さくなるように収束計算を行ってisnnnを求め、求まったisnnnを、iqsn として決定する。図4のiqsn は、永久磁石の磁束が定格の75%に設計した場合の100%出力に対するiqsn を以上に述べた手順で計算したものである。図4では、基底速度で定格トルクを発生するために、基底速度以下で電流が100%以上の値となっている。 Here, i qsnb1 is a critical axis q-axis current. This value is compared with the torque of the constant output characteristic, and convergence calculation is performed so that the difference is reduced to obtain i snnn , and the obtained i snnn is determined as i qsn * . I qsn * in FIG. 4 is calculated by the procedure described above for i qsn * for 100% output when the magnetic flux of the permanent magnet is designed to be 75% of the rating. In FIG. 4, in order to generate the rated torque at the base speed, the current is 100% or more below the base speed.

qsn の演算は、図1のq軸電流成分演算器22によって行われる。この関係を、運転速度をパラメータとして、トルクとq軸電流特性として求めたものが図5である。図5から、界磁電流が大きくなる高速運転では、同一トルク要求に対して、q軸電流指令iqsn が若干小さくなっている。なお、q軸電流成分演算器22では、図5に示す特性の中で、例えばωrnを4.0p.u.に固定して、図4のiqsn の近似値を発生するようにしてもよい。また、図5の特性から決まる正確なiqsn をq軸電流成分演算器22で発生することもできる。 The calculation of i qsn * is performed by the q-axis current component calculator 22 of FIG. FIG. 5 shows this relationship obtained as the torque and q-axis current characteristics using the operation speed as a parameter. From Figure 5, in the high-speed operation field current is increased, for the same torque request, q-axis current command i QSN * is slightly smaller. In the q-axis current component calculator 22, among the characteristics shown in FIG. 5, for example, ω rn is set to 4.0 p. It is also possible to generate an approximate value of i qsn * in FIG. Also, the accurate i qsn * determined from the characteristics of FIG. 5 can be generated by the q-axis current component calculator 22.

このようにして、界磁制御においては、永久磁石の磁束の弱めに対応して小さくなる永久磁石同期電動機11のトルクを界磁電流指令から計算し、速度制御器の制御偏差をPI増幅したトルク要求トルクTecに一致するq軸電流指令iqsn を演算して設定している。ここで、idsn とiqsn が求まると、電圧及び界磁制御相電流演算器24によって、原相電流指令isnF と原負荷角指令δ が次式で計算される。
snF =(idsn *2+iqsn *21/2 ・・・(16)
δ =tan−1(iqsn /idsn ) ・・・(17)
In this way, in the field control, the torque of the permanent magnet synchronous motor 11 which becomes smaller corresponding to the weakening of the magnetic flux of the permanent magnet is calculated from the field current command, and the torque required torque obtained by PI amplification of the control deviation of the speed controller. A q-axis current command i qsn * coinciding with T ec is calculated and set. Here, when i dsn * and i qsn * are obtained, the voltage and field control phase current calculator 24 calculates the original phase current command i snF * and the original load angle command δ F * by the following equations.
i snF * = (i dsn * 2 + i qsn * 2 ) 1/2 (16)
δ F * = tan −1 (i qsn * / i dsn * ) (17)

電圧及び界磁制御相電流演算器24の出力であるisnF とδ は、電流指令器27に与えられ、基底速度を超える高速度領域での電圧及び界磁制御のベクトル制御を遂行する。但し、求めた原相電流指令isnF がPWMインバータ15の最大許容電流を超える場合には、isnF を許容電流に制限する。ここで、この機能は、電圧及び界磁制御相電流演算器24に設けられている。なお、図4のidsn の最大値、すなわち、(15)式が与える界磁制御最大電流は、idsn<−0.75/0.4.347=−1.725p.u.を満足している。 The outputs of the voltage and field control phase current calculator 24, i snF * and δ F *, are given to the current command unit 27, and perform vector control of voltage and field control in a high speed region exceeding the base speed. However, when the obtained original phase current command i snF * exceeds the maximum allowable current of the PWM inverter 15, i snF * is limited to the allowable current. Here, this function is provided in the voltage and field control phase current calculator 24. The maximum value of i dsn * in FIG. 4, that is, the maximum field control current given by the equation (15) is i dsn <−0.75 / 0.4.347 = −1.725 p. I am satisfied with u.

図6は、変形例に係る永久磁石同期電動機システム10の界磁制御方法であって、1:6と云う広範囲の界磁制御の要求に対して、永久磁石の磁束を定格磁束の75%、電圧制御範囲1:1.5、界磁制御範囲1:4として設計した場合で、Ldn=0.4p.u.、Lqn=0.616p.u.、Rsn=0.042p.u.であるときの、電圧、トルク、相電流と速度の関係を示したものである。 FIG. 6 shows a field control method of the permanent magnet synchronous motor system 10 according to the modification, and the magnetic flux of the permanent magnet is set to 75% of the rated magnetic flux and the voltage control range 1 in response to the request for a wide field control of 1: 6. : 1.5, field control range 1: 4, L dn = 0.4 p. u. , L qn = 0.616 p. u. , R sn = 0.042 p. u. The relationship between voltage, torque, phase current, and speed is shown.

図7は、1:6と云う広範囲の界磁制御の要求に対して、永久磁石の磁束を定格磁束の75%、電圧制御範囲1:1.5、界磁制御範囲1:4として設計した場合で、Ldn=0.4p.u.、Lqn=0.616p.u.、Rsn=0.042p.u.であるときに、臨界速度以下の高速度領域で固定子相電圧の調整を行わない場合の速度とトルク、電圧、及び相電流の関係を示す説明図である。 FIG. 7 shows a case where the magnetic flux of the permanent magnet is designed to be 75% of the rated magnetic flux, the voltage control range is 1: 1.5, and the field control range is 1: 4 in response to the wide field control requirement of 1: 6. dn = 0.4 p. u. , L qn = 0.616 p. u. , R sn = 0.042 p. u. FIG. 8 is an explanatory diagram showing the relationship between the speed, torque, voltage, and phase current when the stator phase voltage is not adjusted in the high speed region below the critical speed.

図6に示すように、基底速度の6倍と云う高速運転を行うにもかかわらず、必要電圧の最大値は、ベース電圧の約250%に抑えられている。しかも、最高速度に於ける相電流が、図7に示す1:1.5の電圧制御を行わない場合の特性より若干低下している。但し、この場合、電圧は、250%以下である。 As shown in FIG. 6, the maximum value of the necessary voltage is suppressed to about 250% of the base voltage despite the high speed operation of 6 times the base speed. Moreover, the phase current at the maximum speed is slightly lower than the characteristic when the voltage control of 1: 1.5 shown in FIG. 7 is not performed. However, in this case, the voltage is 250% or less.

図8は、永久磁石の磁束を定格磁束の100%として、界磁制御範囲1:6とする従来方法の界磁制御を行った場合の特性を求めたものである。最高速度に於ける電圧は、約350%と高くなっている。確かに、図6の場合では、基底速度以下の電流が100%を超えているが、界磁制御範囲においては、磁石磁束を100%に設計した場合の図8の電流より小さくなっている。このことは、界磁制御最高速度での永久磁石同期電動機11の効率が改善されることを意味する。 FIG. 8 shows the characteristics obtained when the conventional field control is performed with the magnetic flux of the permanent magnet as 100% of the rated magnetic flux and the field control range of 1: 6. The voltage at maximum speed is as high as about 350%. Indeed, in the case of FIG. 6, the current below the base speed exceeds 100%, but in the field control range, it is smaller than the current of FIG. 8 when the magnet magnetic flux is designed to be 100%. This means that the efficiency of the permanent magnet synchronous motor 11 at the maximum field control speed is improved.

図9は、鉄損を無視し、機械損を定格容量の1%、風損を最高速度で定格容量の2%と仮定した場合の効率特性を計算したものである。図示のように、基底速度以下では、磁束を定格以下に設計したため銅損の増加よって効率が低下しているが、速度が4p.uを超える最高速度側では、本発明の効率が従来方法より高くなっている。 Fig. 9 shows the calculated efficiency characteristics when the iron loss is ignored, the mechanical loss is assumed to be 1% of the rated capacity, and the windage loss is assumed to be 2% of the rated capacity at the maximum speed. As shown in the figure, below the base speed, the magnetic flux was designed below the rated value, so the efficiency decreased due to the increase in copper loss, but the speed was 4 p. On the maximum speed side exceeding u, the efficiency of the present invention is higher than that of the conventional method.

以上説明したように、本実施の形態では、永久磁石の磁束を定格値の100%より小さく設計して界磁制御での電圧上昇を抑制すると共に、同一トルク特性を得るための電流の増加を抑制するために、基底速度以下の低速度領域では、トルク/電流比が最大になる負荷角を演算指令する。また、臨界速度以下の高速度領域では、トルク/電流比が最大になる負荷角を演算指令すると共に固定子相電圧を調整して定出力特性を実現することにより電流増加を抑制する。更に、臨界速度を超える高速度領域では、d軸電流を調整して界磁制御を行いながらq軸電流を調整する。 As described above, in the present embodiment, the magnetic flux of the permanent magnet is designed to be smaller than 100% of the rated value to suppress the voltage increase in the field control and to suppress the increase in current for obtaining the same torque characteristics. For this reason, in the low speed region below the base speed, an operation command is given for the load angle at which the torque / current ratio is maximized. Further, in the high speed region below the critical speed, the load angle at which the torque / current ratio is maximized is commanded, and the stator phase voltage is adjusted to achieve constant output characteristics, thereby suppressing an increase in current. Further, in the high speed region exceeding the critical speed, the q-axis current is adjusted while adjusting the d-axis current and performing field control.

このように制御することによって、PWMインバータ15の最大電圧を定格電圧以下に抑えることが可能になり、広範囲の定出力、界磁制御を実現することが可能になる。つまり、ハイブリッドカーで要求される1:6という界磁制御による広範囲な定出力制御において、PWMインバータ15の電圧を昇圧する手段やあるいは、モータの巻線を切替え使用する等の手段が必要でなくなる。それだけ、制御装置12が簡単になり、ハイブリッドカー用として信頼性が向上し、コストが低下する利点がある。 By controlling in this way, it becomes possible to suppress the maximum voltage of the PWM inverter 15 below the rated voltage, and it is possible to realize a wide range of constant output and field control. That is, in the wide range constant output control by the field control of 1: 6 required for the hybrid car, there is no need for means for boosting the voltage of the PWM inverter 15 or means for switching and using the motor windings. Therefore, the control device 12 is simplified, and there is an advantage that the reliability is improved and the cost is reduced for a hybrid car.

また、永久磁石の磁束を定格値以下に設計した場合の基底速度以下での電流増加の問題を、トルク/電流比が最大になる負荷角を演算して指令することによって、必要トルクに対する電流を極力小さくする対策を説明した。勿論、電流増加に起因する永久磁石同期電動機11の温度上昇を低減する対策としては、永久磁石同期電動機11の冷却能力の増加や永久磁石同期電動機11の固定子抵抗を小さく設計するという公知の対策が採用できる。永久磁石同期電動機11の固定子抵抗を小さく設計する対策を採用すれば、図10に示すように、速度制御全範囲において、従来方法よりも効率が優れた特性が得られる。なお、図10には、図9と同じ条件で固定子抵抗を60%に設計した場合を示している。 In addition, the problem of current increase below the base speed when the magnetic flux of the permanent magnet is designed to be below the rated value is commanded by calculating the load angle at which the torque / current ratio is maximized. Explained how to make it as small as possible. Of course, as a measure for reducing the temperature rise of the permanent magnet synchronous motor 11 due to the increase in current, a known measure of increasing the cooling capacity of the permanent magnet synchronous motor 11 or designing the stator resistance of the permanent magnet synchronous motor 11 to be small. Can be adopted. If a measure for designing the stator resistance of the permanent magnet synchronous motor 11 to be small is adopted, as shown in FIG. 10, characteristics that are more efficient than the conventional method can be obtained in the entire speed control range. FIG. 10 shows a case where the stator resistance is designed to be 60% under the same conditions as in FIG.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
例えば、界磁制御方式として、直接界磁弱め制御方式による場合で説明したが、間接界磁弱め制御方式にも適用可能であることは当然である。この場合には、公知のように、相互磁束鎖交と永久磁石同期電動機の最大トルクがほぼ直線の関係になることを利用して、界磁制御時の最適なd軸電流指令idsn を試行錯誤的に求め、次に、必要なq軸電流指令iqsn をトルクから逆算して決定する方法が取られる。図1の関数発生器が、このような手順で求めた電流を発生するようにすれば、間接界磁弱め制御方式による永久磁石同期電動機システム及びその界磁制御方法が実現できることは明らかである。
また、永久磁石同期電動機の速度が臨界速度以下の速度領域では、d軸電流を0とし、q軸電流の値及び固定子相電圧を調整し、臨界速度を超えた速度領域で、d軸電流の値を調整して界磁制御を行いながらq軸電流の値を調整するようにしてもよい。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included.
For example, although the direct field weakening control method has been described as the field control method, it is naturally applicable to the indirect field weakening control method. In this case, as is well known, the optimum d-axis current command i dsn * at the time of field control is determined by trial and error by utilizing the fact that the mutual flux linkage and the maximum torque of the permanent magnet synchronous motor have a substantially linear relationship. Next, a method is employed in which the necessary q-axis current command i qsn * is determined by calculating back from the torque. If the function generator of FIG. 1 generates the current obtained by such a procedure, it is clear that the permanent magnet synchronous motor system by the indirect field weakening control method and its field control method can be realized.
In the speed range where the speed of the permanent magnet synchronous motor is lower than the critical speed, the d-axis current is set to 0, the q-axis current value and the stator phase voltage are adjusted, and the d-axis current is exceeded in the speed range exceeding the critical speed. The q-axis current value may be adjusted while performing field control by adjusting the value of.

10:永久磁石同期電動機システム、11:永久磁石同期電動機、12:制御装置、13:第1の速度制御系、14:第2の速度制御系、15:PWMインバータ、16:第1の絶対値エンコーダ、16a:第2の絶対値エンコーダ、17:速度検出器、18:PI制御器、19:リミッタ、20、21:関数発生器、22:q軸電流成分演算器、23:d軸電流成分演算器、24:電圧及び界磁制御相電流演算器、25:相電流指令選定器、26:負荷角指令選定器、27:電流指令器、28、29:電流センサ 10: permanent magnet synchronous motor system, 11: permanent magnet synchronous motor, 12: control device, 13: first speed control system, 14: second speed control system, 15: PWM inverter, 16: first absolute value Encoder, 16a: second absolute encoder, 17: speed detector, 18: PI controller, 19: limiter, 20, 21: function generator, 22: q-axis current component calculator, 23: d-axis current component Calculator: 24: Voltage and field control phase current calculator, 25: Phase current command selector, 26: Load angle command selector, 27: Current commander, 28, 29: Current sensor

Claims (6)

電圧及び周波数が可変な電源を備え、永久磁石同期電動機の基底速度を超えた高速運転の際に、該永久磁石同期電動機の回転子に装着された永久磁石の磁束を弱める向きに、該永久磁石同期電動機の固定子側からd軸電流を流して界磁弱め制御を行う制御装置を有する永久磁石同期電動機システムにおいて、
前記永久磁石同期電動機の永久磁石の磁束は、前記基底速度に対応する定格磁束より小さい値に設計され、
前記制御装置は、前記基底速度以下の低速度領域で、前記d軸電流と直交するq軸電流の値を前記定格磁束に対応する定格q軸電流の値より大きくして、該永久磁石同期電動機に要求されるトルク特性を発生させる第1の速度制御系と、前記基底速度を超える高速度領域で、前記d軸電流及び前記q軸電流の値をそれぞれ調整して前記永久磁石同期電動機に要求される出力特性を発生させる第2の速度制御系とを有することを特徴とする永久磁石同期電動機システム。
The permanent magnet is provided with a power supply having a variable voltage and frequency so that the magnetic flux of the permanent magnet attached to the rotor of the permanent magnet synchronous motor is weakened during high-speed operation exceeding the base speed of the permanent magnet synchronous motor. In a permanent magnet synchronous motor system having a control device that controls field weakening by flowing d-axis current from the stator side of the synchronous motor,
The magnetic flux of the permanent magnet synchronous motor is designed to be smaller than the rated magnetic flux corresponding to the base speed,
The control device increases the value of the q-axis current orthogonal to the d-axis current in a low speed region equal to or lower than the base speed to be larger than the value of the rated q-axis current corresponding to the rated magnetic flux. The permanent magnet synchronous motor is requested by adjusting the values of the d-axis current and the q-axis current in a first speed control system that generates torque characteristics required for the motor and a high speed region exceeding the base speed. And a second speed control system for generating the output characteristics to be output.
請求項1記載の永久磁石同期電動機システムにおいて、前記第1の速度制御系は、前記永久磁石同期電動機の固定子相電流が該永久磁石同期電動機の発生トルクに対して最小となるときの特性負荷角を演算し、該永久磁石同期電動機の負荷角を該特性負荷角に一致させることを特徴とする永久磁石同期電動機システム。 2. The permanent magnet synchronous motor system according to claim 1, wherein the first speed control system has a characteristic load when a stator phase current of the permanent magnet synchronous motor becomes a minimum with respect to a torque generated by the permanent magnet synchronous motor. A permanent magnet synchronous motor system characterized in that an angle is calculated and a load angle of the permanent magnet synchronous motor is matched with the characteristic load angle. 請求項1及び2のいずれか1項に記載の永久磁石同期電動機システムにおいて、前記第2の速度制御系は、前記永久磁石同期電動機の速度が予め設定された臨界速度以下の速度領域では、前記d軸電流を0又は前記永久磁石同期電動機の固定子相電流が該永久磁石同期電動機の発生トルクに対して最小となる特性負荷角に相当する値に保持して、前記q軸電流の値及び固定子相電圧を調整し、前記臨界速度を超える速度領域では、前記d軸電流の値を調整して界磁制御を行いながら前記q軸電流の値を調整することを特徴とする永久磁石同期電動機システム。 3. The permanent magnet synchronous motor system according to claim 1, wherein the second speed control system is configured such that the speed of the permanent magnet synchronous motor is in a speed region equal to or lower than a preset critical speed. The d-axis current is kept at 0 or a value corresponding to a characteristic load angle at which the stator phase current of the permanent magnet synchronous motor is minimum with respect to the torque generated by the permanent magnet synchronous motor, A permanent magnet synchronous motor system that adjusts the value of the q-axis current while performing field control by adjusting the value of the d-axis current in a speed region exceeding the critical speed by adjusting a stator phase voltage. . 電圧及び周波数が可変な電源を用いて、永久磁石同期電動機の基底速度を超えた高速運転の際に、該永久磁石同期電動機の回転子に装着された永久磁石の磁束を弱める向きに、該永久磁石同期電動機の固定子側からd軸電流を流して界磁弱め制御を行う永久磁石同期電動機システムの界磁制御方法において、
前記永久磁石同期電動機の永久磁石の磁束を、前記基底速度に対応する定格磁束より小さい値に設計し、
前記基底速度以下の低速度領域では、前記d軸電流と直交するq軸電流の値を前記定格磁束に対応する定格q軸電流の値より大きくして、該永久磁石同期電動機に要求されるトルク特性を発生させ、前記基底速度を超える高速度領域では、前記d軸電流及び前記q軸電流の値をそれぞれ調整して前記永久磁石同期電動機に要求される出力特性を発生させることを特徴とする永久磁石同期電動機システムの界磁制御方法。
In the direction of weakening the magnetic flux of the permanent magnet mounted on the rotor of the permanent magnet synchronous motor during high speed operation exceeding the base speed of the permanent magnet synchronous motor using a power source with variable voltage and frequency, In the field control method of a permanent magnet synchronous motor system that controls field weakening by flowing d-axis current from the stator side of the magnet synchronous motor,
The permanent magnet synchronous motor magnetic flux of the permanent magnet is designed to be smaller than the rated magnetic flux corresponding to the base speed,
In the low speed region below the base speed, the torque required for the permanent magnet synchronous motor is set by making the q-axis current value orthogonal to the d-axis current larger than the rated q-axis current value corresponding to the rated magnetic flux. And generating output characteristics required for the permanent magnet synchronous motor by adjusting the values of the d-axis current and the q-axis current in a high speed region exceeding the base speed, respectively. Field control method for permanent magnet synchronous motor system.
請求項4記載の永久磁石同期電動機システムの界磁制御方法において、前記低速度領域では、前記永久磁石同期電動機の固定子相電流が該永久磁石同期電動機の発生トルクに対して最小となるときの特性負荷角を演算し、該永久磁石同期電動機の負荷角を該特性負荷角に一致させることを特徴とする永久磁石同期電動機システムの界磁制御方法。 5. The field control method for a permanent magnet synchronous motor system according to claim 4, wherein a characteristic load when a stator phase current of the permanent magnet synchronous motor becomes a minimum with respect to a torque generated by the permanent magnet synchronous motor in the low speed region. A field control method for a permanent magnet synchronous motor system, characterized in that an angle is calculated and a load angle of the permanent magnet synchronous motor is matched with the characteristic load angle. 請求項4及び5のいずれか1項に記載の永久磁石同期電動機システムの界磁制御方法において、前記高速度領域では、前記永久磁石同期電動機の速度が予め設定された臨界速度以下の場合、前記d軸電流を0又は前記永久磁石同期電動機の固定子相電流が該永久磁石同期電動機の発生トルクに対して最小となる特性負荷角に相当する値に保持しながら前記q軸電流の値及び固定子相電圧を調整し、前記臨界速度を超える場合、前記d軸電流の値を調整して界磁制御を行いながら前記q軸電流の値を調整することを特徴とする永久磁石同期電動機システムの界磁制御方法。 6. The field control method for a permanent magnet synchronous motor system according to claim 4, wherein, in the high speed region, when the speed of the permanent magnet synchronous motor is equal to or lower than a preset critical speed, the d axis While maintaining the current at 0 or a value corresponding to the characteristic load angle at which the stator phase current of the permanent magnet synchronous motor is minimum with respect to the torque generated by the permanent magnet synchronous motor, the value of the q-axis current and the stator phase A field control method for a permanent magnet synchronous motor system, wherein a voltage is adjusted and if the critical speed is exceeded, the value of the d-axis current is adjusted to adjust the value of the q-axis current while performing field control.
JP2009116872A 2009-05-13 2009-05-13 Permanent magnet synchronous electric motor system and magnetic field control method therefor Pending JP2010268579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009116872A JP2010268579A (en) 2009-05-13 2009-05-13 Permanent magnet synchronous electric motor system and magnetic field control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009116872A JP2010268579A (en) 2009-05-13 2009-05-13 Permanent magnet synchronous electric motor system and magnetic field control method therefor

Publications (1)

Publication Number Publication Date
JP2010268579A true JP2010268579A (en) 2010-11-25

Family

ID=43365064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009116872A Pending JP2010268579A (en) 2009-05-13 2009-05-13 Permanent magnet synchronous electric motor system and magnetic field control method therefor

Country Status (1)

Country Link
JP (1) JP2010268579A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236508A (en) * 2012-05-10 2013-11-21 Toshiba Mitsubishi-Electric Industrial System Corp Drive system of reverse rolling electric motor
CN104734591A (en) * 2014-12-30 2015-06-24 黄志坚 Stable speed regulation method of cascade system for field-oriented control of automobile electric steering motor
CN104917436A (en) * 2015-07-08 2015-09-16 沈阳工业大学 Adaptive second-order terminal sliding-mode control system and method of permanent magnet linear synchronous motor
CN105577058A (en) * 2015-12-28 2016-05-11 江苏大学 Novel fuzzy active disturbance rejection controller based five-phase fault-tolerant permanent magnet motor speed control method
JP2016082790A (en) * 2014-10-21 2016-05-16 ダイキン工業株式会社 Electric motor control device, electric motor control system
CN105790660A (en) * 2016-03-03 2016-07-20 南京理工大学 Rotary speed adaptive robust control system and method for ultra-high-speed permanent magnet synchronous motor
CN105978425A (en) * 2015-12-01 2016-09-28 西安科技大学 Flux weakening speed regulation control determination method of alternating current permanent-magnet synchronous motor of electric car
CN110138285A (en) * 2019-06-13 2019-08-16 安徽首智新能源科技有限公司 A kind of permanent magnet synchronous motor rising film condensation method and system
CN112152536A (en) * 2020-08-21 2020-12-29 江苏大学 A Transient Current Planning Method for Ultra-high-speed Permanent Magnet Synchronous Motors to Improve Speed Regulation Response

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336919A (en) * 1994-04-13 1995-12-22 Toyota Motor Corp Permanent magnet motor
JPH10191700A (en) * 1996-12-20 1998-07-21 Yaskawa Electric Corp Control method for synchronous motor
JP2000341983A (en) * 1999-05-31 2000-12-08 Sanyo Denki Co Ltd Controller for embedded magnet type synchronous motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336919A (en) * 1994-04-13 1995-12-22 Toyota Motor Corp Permanent magnet motor
JPH10191700A (en) * 1996-12-20 1998-07-21 Yaskawa Electric Corp Control method for synchronous motor
JP2000341983A (en) * 1999-05-31 2000-12-08 Sanyo Denki Co Ltd Controller for embedded magnet type synchronous motor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236508A (en) * 2012-05-10 2013-11-21 Toshiba Mitsubishi-Electric Industrial System Corp Drive system of reverse rolling electric motor
JP2016082790A (en) * 2014-10-21 2016-05-16 ダイキン工業株式会社 Electric motor control device, electric motor control system
CN104734591B (en) * 2014-12-30 2017-06-16 黄志坚 Stable speed regulation method for cascade system of automobile electric steering motor magnetic field directional control
CN104734591A (en) * 2014-12-30 2015-06-24 黄志坚 Stable speed regulation method of cascade system for field-oriented control of automobile electric steering motor
CN104917436A (en) * 2015-07-08 2015-09-16 沈阳工业大学 Adaptive second-order terminal sliding-mode control system and method of permanent magnet linear synchronous motor
CN105978425B (en) * 2015-12-01 2018-02-23 西安科技大学 Electric Vehicle's Alternating permasyn morot weak-magnetic speed-regulating controls decision method
CN105978425A (en) * 2015-12-01 2016-09-28 西安科技大学 Flux weakening speed regulation control determination method of alternating current permanent-magnet synchronous motor of electric car
CN105577058A (en) * 2015-12-28 2016-05-11 江苏大学 Novel fuzzy active disturbance rejection controller based five-phase fault-tolerant permanent magnet motor speed control method
CN105577058B (en) * 2015-12-28 2018-08-21 江苏大学 The five mutually fault-tolerant magneto method for control speed based on fuzzy automatic disturbance rejection controller
CN105790660A (en) * 2016-03-03 2016-07-20 南京理工大学 Rotary speed adaptive robust control system and method for ultra-high-speed permanent magnet synchronous motor
CN105790660B (en) * 2016-03-03 2019-02-22 南京理工大学 Speed Adaptive Robust Control System and Method of Ultra-high-speed Permanent Magnet Synchronous Motor
CN110138285A (en) * 2019-06-13 2019-08-16 安徽首智新能源科技有限公司 A kind of permanent magnet synchronous motor rising film condensation method and system
CN110138285B (en) * 2019-06-13 2022-04-01 安徽首智新能源科技有限公司 Permanent magnet synchronous motor speed-up control method and system
CN112152536A (en) * 2020-08-21 2020-12-29 江苏大学 A Transient Current Planning Method for Ultra-high-speed Permanent Magnet Synchronous Motors to Improve Speed Regulation Response
CN112152536B (en) * 2020-08-21 2021-12-21 江苏大学 A Transient Current Planning Method for Ultra-High-Speed Permanent Magnet Synchronous Motors

Similar Documents

Publication Publication Date Title
JP2010268579A (en) Permanent magnet synchronous electric motor system and magnetic field control method therefor
JP5357232B2 (en) Synchronous machine controller
US8975841B2 (en) Motor control device
KR100850415B1 (en) Vector controller of induction motor
CN109874396B (en) Inverter control device and motor drive system
JP5549751B1 (en) Inverter device, control method for inverter device, and motor drive system
US9935568B2 (en) Control apparatus of rotary electric machine
US7235947B2 (en) Synchronous motor control method and synchronous motor control system
US20020109474A1 (en) Motor control device
JP7126910B2 (en) MOTOR CONTROL DEVICE AND MOTOR CONTROL METHOD
CN113646204A (en) Driving device of permanent magnet synchronous motor, torque compensation method of permanent magnet synchronous motor and electric vehicle
US7626352B2 (en) Control device for stepping motor
JP2010200430A (en) Drive controller for motors
KR102676718B1 (en) Control method and control system of motor rotation speed
JP6115392B2 (en) Motor control device
WO2015056541A1 (en) Drive device for electric motor
JP6216215B2 (en) Control device for synchronous motor
JP6080996B1 (en) Electric motor drive system
US9231514B2 (en) Motor control apparatus and motor control method
JPWO2018142445A1 (en) Control device of synchronous motor
JP2015073396A (en) Control apparatus and control method for electric motor
US11196373B2 (en) Control device and control method for synchronous electric motor
JP2016100997A (en) Control device of electric motor
JP2021111986A (en) Motor controller
JP7033973B2 (en) Motor control device and motor control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130319