[go: up one dir, main page]

JP2010206182A - Electromagnetic shielding sheet - Google Patents

Electromagnetic shielding sheet Download PDF

Info

Publication number
JP2010206182A
JP2010206182A JP2010014458A JP2010014458A JP2010206182A JP 2010206182 A JP2010206182 A JP 2010206182A JP 2010014458 A JP2010014458 A JP 2010014458A JP 2010014458 A JP2010014458 A JP 2010014458A JP 2010206182 A JP2010206182 A JP 2010206182A
Authority
JP
Japan
Prior art keywords
sheet
magnetic field
ferromagnetic
electromagnetic
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010014458A
Other languages
Japanese (ja)
Inventor
Keiji Yamada
啓壽 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010014458A priority Critical patent/JP2010206182A/en
Publication of JP2010206182A publication Critical patent/JP2010206182A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic shielding sheet having excellent magnetic field shielding characteristics even if the sheet is reduced in thickness, which solves such a problem that, since the use of a thin conductive sheet lowers a magnetic field shielding effect, the thickness of the conductive sheet should be increased to some extent, and as a result, it is difficult to completely seal electronic parts because of the poor flexibility of the sheet, thus failing to obtain the high shielding effect. <P>SOLUTION: The electromagnetic shielding sheet includes a laminate film formed by laminating ferromagnetic layers 2 between conductive layers 1 formed of a non-magnetic material. The ferromagnetic layer 2 has electric field/magnetic field shielding effects in both cases that μF is a positive value and where the μF is a negative value when the μF is the specific magnetic permeability of a ferromagnetic material. The electric field/magnetic field shielding effects become greater as the absolute value of the μF becomes greater. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電磁ノイズをシールドする電磁シールドシートに関する。   The present invention relates to an electromagnetic shield sheet for shielding electromagnetic noise.

携帯電話やノートブック型パーソナルコンピュータなどといったモバイル機器では、高い周波数で動作する電子部品から発生される電磁ノイズをシールドするために、電子部品を覆うように成形された金属板からなる板金シールドが用いられている。   In mobile devices such as mobile phones and notebook personal computers, a sheet metal shield made of a metal plate shaped to cover electronic components is used to shield electromagnetic noise generated from electronic components operating at high frequencies. It has been.

しかしながら、板金シールドは、シールドケースの高さが高くなるので、モバイル機器の薄型化の障害となっている。   However, the sheet metal shield is an obstacle to making the mobile device thinner because the height of the shield case is increased.

電磁シールドに関連する技術として、例えば特許文献1は、厚さが薄くても、シールド効果が低下しない磁気シートの製造方法を開示している。この磁気シートの製造方法では、離型層を有する離型性PET上に金属を蒸着し、金属蒸着層を形成し、この上に扁平状金属粉末を樹脂および溶剤中に分散した磁性塗料を塗布、乾燥し、磁性層を形成した後に、磁性層と金属蒸着層を同時に離型性PETから剥離する。   As a technique related to the electromagnetic shield, for example, Patent Document 1 discloses a method for manufacturing a magnetic sheet in which the shielding effect does not decrease even if the thickness is thin. In this magnetic sheet manufacturing method, a metal is vapor-deposited on a releasable PET having a release layer, a metal vapor-deposited layer is formed, and a magnetic paint in which flat metal powder is dispersed in a resin and a solvent is applied thereon. After drying and forming the magnetic layer, the magnetic layer and the metal vapor-deposited layer are peeled from the releasable PET at the same time.

特開2000−348916号公報JP 2000-348916 A

モバイル機器の薄型化を実現するために、板金シールドの代わりに、銅(Cu)や銀(Ag)などからなる薄型の導電シートで電子部品を覆うことにより、電磁ノイズをシールドすることが考えられる。   In order to reduce the thickness of mobile devices, it is conceivable to shield electromagnetic noise by covering electronic components with a thin conductive sheet made of copper (Cu) or silver (Ag) instead of a sheet metal shield. .

しかしながら、薄い導電シートを用いた場合、磁界シールド効果が小さくなるため、導電シートの厚さをある程度厚くする必要がある。その結果、柔軟性に劣り、電子部品を完全に密閉することが困難になるので、大きなシールド効果を得ることができないという問題がある。   However, when a thin conductive sheet is used, the magnetic field shielding effect is reduced, so the thickness of the conductive sheet needs to be increased to some extent. As a result, the flexibility is inferior and it becomes difficult to completely seal the electronic component, and thus there is a problem that a large shielding effect cannot be obtained.

本発明の課題は、薄型化しても磁界シールド特性に優れた電磁シールドシートを提供することにある。   The subject of this invention is providing the electromagnetic shielding sheet excellent in the magnetic field shielding characteristic, even if it reduced in thickness.

上記課題を解決するために、本発明に係る電磁シールドシートは、導電性の強磁性体層を挟むように非磁性体からなる導体層が積層された積層膜からなることを特徴とする。   In order to solve the above problems, the electromagnetic shield sheet according to the present invention is characterized by comprising a laminated film in which conductive layers made of a non-magnetic material are laminated so as to sandwich a conductive ferromagnetic layer.

本発明によれば、導体層と導電性の強磁性体層とを交互に積層した積層膜を構成することにより、電磁シールド特性に優れ電磁シールドシートを提供できるため、電磁シールドシートを薄くすることができる。   According to the present invention, an electromagnetic shield sheet having excellent electromagnetic shielding characteristics can be provided by forming a laminated film in which conductor layers and conductive ferromagnetic layers are alternately laminated. Can do.

本発明の実施例1に係る電磁シールドシートの構成を示す断面図である。It is sectional drawing which shows the structure of the electromagnetic shielding sheet which concerns on Example 1 of this invention. 本発明の実施例1に係る電磁シールドシートのシミュレーションモデルの構成を示す斜視図である。It is a perspective view which shows the structure of the simulation model of the electromagnetic shielding sheet which concerns on Example 1 of this invention. 本発明の実施例1に係る電磁シールドシートのシミュレーションモデルの構成を示す断面図である。It is sectional drawing which shows the structure of the simulation model of the electromagnetic shielding sheet which concerns on Example 1 of this invention. 本発明の実施例1に係る電磁シールドシートのシミュレーションモデルで算出された磁界強度の平均値を示す図である。It is a figure which shows the average value of the magnetic field intensity computed with the simulation model of the electromagnetic shielding sheet which concerns on Example 1 of this invention. 本発明の実施例1に係る電磁シールドシートのシミュレーションモデルで算出された電界強度の平均値を示す図である。It is a figure which shows the average value of the electric field strength computed with the simulation model of the electromagnetic shielding sheet which concerns on Example 1 of this invention. 5GHzにおける強磁性体の比透磁率と測定面における磁界強度の平均値との関係を示す図である。It is a figure which shows the relationship between the relative magnetic permeability of the ferromagnetic material in 5 GHz, and the average value of the magnetic field intensity in a measurement surface. 5GHzにおける強磁性体の比透磁率と測定面における電界強度の平均値との関係を示す図である。It is a figure which shows the relationship between the relative magnetic permeability of the ferromagnetic material in 5 GHz, and the average value of the electric field strength in a measurement surface. 本発明の実施例2に係る電磁シールドシートのシミュレーションモデルの構成を示す斜視図である。It is a perspective view which shows the structure of the simulation model of the electromagnetic shielding sheet which concerns on Example 2 of this invention. 本発明の実施例2に係る電磁シールドシートのシミュレーションモデルの構成を示す断面図である。It is sectional drawing which shows the structure of the simulation model of the electromagnetic shielding sheet which concerns on Example 2 of this invention. 本発明の実施例2に係る電磁シールドシートのシミュレーションモデルの構成を示す断面図である。It is sectional drawing which shows the structure of the simulation model of the electromagnetic shielding sheet which concerns on Example 2 of this invention. 本発明の実施例2に係る電磁シールドシートのシミュレーションモデルの構成を示す断面図である。It is sectional drawing which shows the structure of the simulation model of the electromagnetic shielding sheet which concerns on Example 2 of this invention. 本発明の実施例2に係る電磁シールドシートのシミュレーションモデルの構成を示す断面図である。It is sectional drawing which shows the structure of the simulation model of the electromagnetic shielding sheet which concerns on Example 2 of this invention. 本発明の実施例2に係る強磁性体の層数、及びシールドの厚さと磁界シールド量の関係を示す図である。It is a figure which shows the relationship between the number of layers of the ferromagnetic material which concerns on Example 2 of this invention, the thickness of a shield, and the amount of magnetic field shields. 本発明の実施例2に係る強磁性体の層数、及びシールドの厚さと磁界シールド量の関係を示す図である。It is a figure which shows the relationship between the number of layers of the ferromagnetic material which concerns on Example 2 of this invention, and the thickness of a shield, and the amount of magnetic field shields. 本発明の実施例2に係る強磁性体の層数、及びシールドの厚さと磁界シールド量の関係を示す図である。It is a figure which shows the relationship between the number of layers of the ferromagnetic material which concerns on Example 2 of this invention, and the thickness of a shield, and the amount of magnetic field shields. 本発明の実施例2に係る強磁性体の層数、及びシールドの厚さと磁界シールド量の関係を示す図である。It is a figure which shows the relationship between the number of layers of the ferromagnetic material which concerns on Example 2 of this invention, and the thickness of a shield, and the amount of magnetic field shields. 本発明の実施例2に係る解析に用いた強磁性体の比透磁率の周波数特性を表す図である。It is a figure showing the frequency characteristic of the relative magnetic permeability of the ferromagnetic material used for the analysis which concerns on Example 2 of this invention. 本発明の実施例2に係る周波数とY方向の磁界シールド量との関係を示す図である。It is a figure which shows the relationship between the frequency which concerns on Example 2 of this invention, and the magnetic field shield amount of a Y direction. 本発明の実施例3に係る電磁シールドシートのシミュレーションモデルの構成を示す斜視図である。It is a perspective view which shows the structure of the simulation model of the electromagnetic shielding sheet which concerns on Example 3 of this invention. 本発明の実施例3に係る周波数とY方向の磁界シールド量との関係を示す図である。It is a figure which shows the relationship between the frequency which concerns on Example 3 of this invention, and the magnetic field shield amount of a Y direction.

以下、本発明の実施の形態を、図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施例1に係る電磁シールドシートの構成を示す断面図である。この電磁シールドシートは、導体層1、強磁性体層2、導体層1、強磁性体層2および導体層1が順次に積層された5層からなる積層膜によって構成されている。強磁性体層2は、導電性を有する強磁性体で構成するのが好ましい。   FIG. 1 is a cross-sectional view illustrating a configuration of an electromagnetic shield sheet according to Example 1 of the present invention. This electromagnetic shield sheet is composed of a laminated film composed of five layers in which a conductor layer 1, a ferromagnetic layer 2, a conductor layer 1, a ferromagnetic layer 2, and a conductor layer 1 are sequentially laminated. The ferromagnetic layer 2 is preferably composed of a conductive ferromagnetic material.

なお、図1に示す例では、2層の強磁性体層2とこれらを挟むように形成された3層の導体層1とから構成されているが、強磁性体層を導体層で挟む構造であれば、導体層1および強磁性体層2の層数は上記に限定されない。強磁性体層2の層数を増やすことにより磁界シールド効果を高めることができる。   In the example shown in FIG. 1, it is composed of two ferromagnetic layers 2 and three conductor layers 1 formed so as to sandwich them, but a structure in which a ferromagnetic layer is sandwiched between conductor layers. If so, the number of layers of the conductor layer 1 and the ferromagnetic layer 2 is not limited to the above. Increasing the number of ferromagnetic layers 2 can enhance the magnetic field shielding effect.

導体層1は、例えば銀(Ag)、銅(Cu)またはアルミニウム(Al)などといった非磁性体(導体)から構成されている。   The conductor layer 1 is made of a nonmagnetic material (conductor) such as silver (Ag), copper (Cu), or aluminum (Al).

強磁性体層2は、鉄(Fe)、ニッケル(Ni)またはコバルト(Co)の単体、あるいは、鉄(Fe)、ニッケル(Ni)またはコバルト(Co)を含む化合物からなる強磁性体から構成されている。化合物としては、例えば、Co85Nb12Zr3を例示することができる。 The ferromagnetic layer 2 is composed of a ferromagnetic material made of iron (Fe), nickel (Ni) or cobalt (Co) alone or a compound containing iron (Fe), nickel (Ni) or cobalt (Co). Has been. An example of the compound is Co 85 Nb 12 Zr 3 .

強磁性体は、周波数が1GHz以上の箇所で比透磁率が負になるものが多い。   Many ferromagnetic materials have a negative relative permeability at a frequency of 1 GHz or more.

また、この磁界シールドシートは、導体層1を含むので、電界もシールドすることができ、磁界だけではなく電界もシールドする電磁シールドシートになる。   Moreover, since this magnetic field shield sheet contains the conductor layer 1, it can shield an electric field and becomes an electromagnetic shield sheet that shields not only a magnetic field but also an electric field.

次に、上記のように構成される電磁シールドシートの電磁ノイズのシールド効果をシミュレーションにより確認したので、その結果を説明する。   Next, since the shielding effect of electromagnetic noise of the electromagnetic shielding sheet configured as described above was confirmed by simulation, the result will be described.

図2は、シミュレーションモデルの構成を示す斜視図であり、図3は、その断面図である。このシミュレーションモデルは、電磁シールドシート上に、絶縁体に埋め込まれたノイズ源としてのインダクタLが積層されて構成されている。なお、ノイズ源としてはインダクタLに限らず、任意の回路部品を用いることもできる。   FIG. 2 is a perspective view showing the configuration of the simulation model, and FIG. 3 is a cross-sectional view thereof. This simulation model is configured by laminating an inductor L as a noise source embedded in an insulator on an electromagnetic shield sheet. Note that the noise source is not limited to the inductor L, and any circuit component may be used.

このシミュレーションモデルにおいて、磁界を発生するインダクタLの大きさは、0.1×0.1mmである。インダクタLは、絶縁体が中に存在し、インダクタLと電磁シールドシートの表面(導体層)との距離は6.6umである。   In this simulation model, the size of the inductor L that generates a magnetic field is 0.1 × 0.1 mm. The inductor L has an insulator therein, and the distance between the inductor L and the surface (conductor layer) of the electromagnetic shield sheet is 6.6 um.

電磁シールドシートは、導体層1、強磁性体層2、導体層1、強磁性体層2および導体層1が順次に積層された5層の積層膜からなり、導体層1の厚さは1um、強磁性体層2の厚さは0.2umであり、電磁シールドシートの合計の膜厚は3.4umである。   The electromagnetic shield sheet is composed of a laminated film of five layers in which the conductor layer 1, the ferromagnetic layer 2, the conductor layer 1, the ferromagnetic layer 2 and the conductor layer 1 are sequentially laminated, and the thickness of the conductor layer 1 is 1 μm. The thickness of the ferromagnetic layer 2 is 0.2 μm, and the total film thickness of the electromagnetic shield sheet is 3.4 μm.

比較のために、実施例1に係る電磁シールドシートのシミュレーションモデル(モデル1)の他に、銅(Cu)のみ1層のモデル2、板金シールドの材質であるステンレス鋼(Sus;Stainless Used Steel)のみ1層のモデル3のシミュレーションを行った。モデル1〜モデル3の電磁シールドシートの合計の膜厚は全て3.4umとした。   For comparison, in addition to the electromagnetic shield sheet simulation model (model 1) according to the first embodiment, only copper (Cu) is a one-layer model 2 and stainless steel (Sus: Stainless Used Steel) as the material of the sheet metal shield. Only one-layer model 3 was simulated. The total film thickness of Model 1 to Model 3 electromagnetic shield sheets was all 3.4 μm.

これら3つのモデルについて、電磁シールドシートの表面から10um離れた測定面(図3に示す面1)の磁界強度と電界強度の平均値を算出した。その結果を図4および図5に示す。図4は、測定面における磁界強度の平均値を示し、図5は、測定面における電界強度の平均値を示す。   For these three models, the average values of the magnetic field strength and the electric field strength of the measurement surface (surface 1 shown in FIG. 3) 10 μm away from the surface of the electromagnetic shield sheet were calculated. The results are shown in FIG. 4 and FIG. FIG. 4 shows the average value of the magnetic field strength on the measurement surface, and FIG. 5 shows the average value of the electric field strength on the measurement surface.

図4および図5に示すように、積層膜を用いたモデル1でμ(強磁性体の比透磁率)が−30の場合、銅(Cu)のみのモデル2、ステンレス鋼(Sus)のみのモデル3よりも磁界および電界ともに低くなった。 As shown in FIGS. 4 and 5, when model 1 using a laminated film has μ F (relative permeability of ferromagnetic material) of −30, model 2 only with copper (Cu), stainless steel (Sus) only Both the magnetic field and the electric field were lower than those of the model 3 in FIG.

したがって、導体と強磁性体の積層膜は磁界ノイズおよび電界ノイズのシールド効果が従来の銅(Cu)またはステンレス鋼(Sus)よりも高い。   Therefore, the laminated film of the conductor and the ferromagnetic body has a higher shielding effect against magnetic field noise and electric field noise than conventional copper (Cu) or stainless steel (Sus).

図6は、5GHzにおける強磁性体の比透磁率と測定面における磁界強度の平均値との関係を示す。これによれば、強磁性体の比透磁率の正負にかかわらず、比透磁率の絶対値が大きいほど測定面における磁界強度が低いことがわかる。また、比透磁率の絶対値が10以上の場合、Cu単体の電磁シールドシートの場合の1.78A/mより磁界強度が低い。   FIG. 6 shows the relationship between the relative permeability of the ferromagnetic material at 5 GHz and the average value of the magnetic field strength on the measurement surface. According to this, it can be seen that the magnetic field strength on the measurement surface is lower as the absolute value of the relative permeability is larger, regardless of whether the relative permeability of the ferromagnetic material is positive or negative. Moreover, when the absolute value of relative magnetic permeability is 10 or more, the magnetic field strength is lower than 1.78 A / m in the case of an electromagnetic shield sheet made of Cu alone.

また、図7は、5GHzにおける強磁性体の比透磁率と測定面における電界強度の平均値との関係を示す。これによれば、強磁性体の比透磁率の正負にかかわらず、比透磁率の絶対値が大きいほど測定面における電界強度が低いことがわかる。また、比透磁率の絶対値が10以上の場合、Cu単体の電磁シールドシートの場合の1.92V/mより電界強度が低い。   FIG. 7 shows the relationship between the relative permeability of the ferromagnetic material at 5 GHz and the average value of the electric field strength on the measurement surface. According to this, it can be seen that the electric field strength on the measurement surface is lower as the absolute value of the relative permeability is larger, regardless of whether the relative permeability of the ferromagnetic material is positive or negative. Moreover, when the absolute value of relative magnetic permeability is 10 or more, the electric field strength is lower than 1.92 V / m in the case of an electromagnetic shield sheet made of Cu alone.

したがって、導体と強磁性体の積層膜において、電界シールド効果、及び磁界シールド効果は、強磁性体の比透磁率の正負にかかわらず、比透磁率の絶対値が大きいほど高く、比透磁率の絶対値が10以上の場合、銅(Cu)の電磁シールドシートより高いシールド効果が得られた。   Therefore, in the laminated film of the conductor and the ferromagnetic material, the electric field shielding effect and the magnetic field shielding effect are higher as the absolute value of the relative magnetic permeability is higher regardless of the relative magnetic permeability of the ferromagnetic material. When the absolute value was 10 or more, a shielding effect higher than that of the copper (Cu) electromagnetic shielding sheet was obtained.

図8は、本発明の実施例2に係る電磁シールドシートのシミュレーションモデルの構成を示す斜視図である。電磁波源となる信号線と電磁シールドシートの間は0.1mmに設定し、磁界シールド量は、信号線から0.2mmだけ離れた位置に0.2mm平方の面1を配置し、面1の磁界強度の平均値の差分から算出した。   FIG. 8 is a perspective view showing a configuration of a simulation model of the electromagnetic shield sheet according to Example 2 of the present invention. The distance between the signal line serving as the electromagnetic wave source and the electromagnetic shield sheet is set to 0.1 mm, and the amount of magnetic field shielding is such that a 0.2 mm square surface 1 is disposed at a position separated by 0.2 mm from the signal line. It calculated from the difference of the average value of magnetic field intensity.

解析に使用した電磁シールドシートは、図9〜図12に示す4種類である。図9は、導体(Cu)のみの電磁シールドシートの断面図、図10は、2層の導体層と1層の強磁性体層とからなる電磁シールドシートの断面図、図11は、3層の導体層と2層の強磁性体層とからなる電磁シールドシートの断面図、図12は、5層の導体層と4層の強磁性体層とからなる電磁シールドシートの断面図である。   The electromagnetic shield sheets used for the analysis are four types shown in FIGS. 9 is a cross-sectional view of an electromagnetic shield sheet having only a conductor (Cu), FIG. 10 is a cross-sectional view of an electromagnetic shield sheet including two conductor layers and one ferromagnetic layer, and FIG. 11 is a three-layer structure. FIG. 12 is a cross-sectional view of an electromagnetic shield sheet comprising five conductor layers and four ferromagnetic layers, and FIG. 12 is a cross-sectional view of an electromagnetic shield sheet comprising two conductor layers and two ferromagnetic layers.

強磁性体層の厚さは0.2umで固定し、導体層の厚さを変化させることにより、電磁シールドシートの厚さを変化させた。周波数は100MHzで解析した。強磁性体としては、比透磁率が1000の磁性体、比透磁率が−1000の磁性体、Co85Nb12Zr3、及びNi80Fe20の4種類を用いた。比透磁率が1000の磁性体は、比透磁率の実部が1000、虚部は0とした。比透磁率が−1000の磁性体は、比透磁率の実部が−1000、虚部は0とした。Co85Nb12Zr3は比透磁率の実部が1011、虚部は55とした。Ni80Fe20は、比透磁率の実部が3290、虚部は392とした。厚さは0.5〜64umで変化させた。図13は、比透磁率が1000の磁性体の電磁シールドシートの厚さと磁界シールド量の関係を示す。図14は、比透磁率が−1000の磁性体の電磁シールドシートの厚さと磁界シールド量の関係を示す。図15は、Co85Nb12Zr3の磁性体の電磁シールドシートの厚さと磁界シールド量の関係を示す。図16は、Ni80Fe20の磁性体の電磁シールドシートの厚さと磁界シールド量の関係を示す。図13〜図16は横軸の電磁シールドシートの厚み(um)が対数で表され、縦軸の磁界シールド量dB(デシベル)が線形で表された片対数グラフである。 The thickness of the ferromagnetic layer was fixed at 0.2 μm, and the thickness of the electromagnetic shield sheet was changed by changing the thickness of the conductor layer. The frequency was analyzed at 100 MHz. As the ferromagnetic material, four types of magnetic material having a relative permeability of 1000, a magnetic material having a relative permeability of −1000, Co 85 Nb 12 Zr 3 , and Ni 80 Fe 20 were used. A magnetic body having a relative permeability of 1000 has a real part of the relative permeability of 1000 and an imaginary part of 0. A magnetic body having a relative permeability of −1000 has a real part of the relative permeability of −1000 and an imaginary part of 0. In Co 85 Nb 12 Zr 3, the real part of relative permeability was 1011 and the imaginary part was 55. Ni 80 Fe 20 has a real part of relative permeability of 3290 and an imaginary part of 392. The thickness was varied from 0.5 to 64 um. FIG. 13 shows the relationship between the thickness of the electromagnetic shielding sheet of magnetic material having a relative permeability of 1000 and the amount of magnetic shielding. FIG. 14 shows the relationship between the thickness of a magnetic shield sheet of magnetic material having a relative permeability of −1000 and the amount of magnetic field shield. FIG. 15 shows the relationship between the thickness of the electromagnetic shield sheet of magnetic material of Co 85 Nb 12 Zr 3 and the amount of magnetic field shield. FIG. 16 shows the relationship between the thickness of the magnetic shield sheet of magnetic material of Ni 80 Fe 20 and the amount of magnetic field shield. FIGS. 13 to 16 are semi-logarithmic graphs in which the thickness (um) of the electromagnetic shield sheet on the horizontal axis is expressed logarithmically and the magnetic field shield amount dB (decibel) on the vertical axis is linearly expressed.

図13〜図16に示されるように、導体のみの電磁シールドシートよりも、本発明に係る電磁シールドシートを用いたほうが磁界シールド量は高いことがわかる。具体的には、比透磁率が1000の磁性体では電磁シールドシートの厚さが0.50um以上で、比透磁率が−1000の磁性体では電磁シールドシートの厚さが0.71um以上で、Co85Nb12Zr3では電磁シールドシートの厚さが0.50um以上で、Ni80Fe20では電磁シールドシートの厚さが0.50um以上で、磁界シールド量は高く、強磁性体層の層数が多いほうが磁界シールド量は高いことがわかる。 As shown in FIGS. 13 to 16, it can be seen that the amount of magnetic field shield is higher when the electromagnetic shield sheet according to the present invention is used than when the electromagnetic shield sheet is made of only a conductor. Specifically, the thickness of the electromagnetic shield sheet is 0.50 μm or more for a magnetic material having a relative permeability of 1000, and the thickness of the electromagnetic shield sheet is 0.71 μm or more for a magnetic material having a relative permeability of −1000, In Co 85 Nb 12 Zr 3 , the thickness of the electromagnetic shield sheet is 0.50 μm or more, and in Ni 80 Fe 20 , the thickness of the electromagnetic shield sheet is 0.50 μm or more. It can be seen that the larger the number, the higher the magnetic shielding amount.

100MHzにおける導体(Cu)の表皮厚さは6.6umであるので、本発明に係る電磁シールドシートは、導体の表皮厚さのおおよそ10分の1以上の厚さ(例えば0.5um〜1um)で導体のみの電磁シールドシートよりも電磁シールド量が高くなり、厚くなるに従って電磁シールド量が高くなる。なお、表皮厚さδは、導体中で電磁界が1/2.7に減衰する厚さであり、下記(1)式によって表される。   Since the skin thickness of the conductor (Cu) at 100 MHz is 6.6 um, the electromagnetic shield sheet according to the present invention has a thickness of about 1/10 or more (for example, 0.5 um to 1 um) of the skin thickness of the conductor. Thus, the electromagnetic shielding amount becomes higher than the electromagnetic shielding sheet having only a conductor, and the electromagnetic shielding amount increases as the thickness increases. The skin thickness δ is a thickness at which the electromagnetic field attenuates to 1 / 2.7 in the conductor, and is represented by the following equation (1).

Figure 2010206182
ここで、μは透磁率[H/m]、σは導電率[S/m]、fは周波数[Hz]である。
Figure 2010206182
Here, μ is permeability [H / m], σ is conductivity [S / m], and f is frequency [Hz].

次に、図8に示すシミュレーションモデルで、図9に示す導体のみの電磁シールドシートと図10に示す2層の導体層と1層の強磁性体層とからなる電磁シールドシートを用いて、周波数と磁界シールド量の関係を解析した結果を示す。   Next, in the simulation model shown in FIG. 8, using the electromagnetic shield sheet consisting of only the conductor shown in FIG. 9 and the electromagnetic shield sheet consisting of two conductor layers and one ferromagnetic layer shown in FIG. And the result of analyzing the relationship between the magnetic field shielding amount and the magnetic field shielding amount.

各電磁シールドシートの厚さは1um厚とした。強磁性体の比透磁率の実部μ’と虚部μ”の周波数特性としては、図17に示すような特性を与えた。比透磁率の実部μ’が0、虚部が最大となる周波数が強磁性共鳴周波数であり、図17に示す例では890MHzである。   Each electromagnetic shield sheet was 1 um thick. The frequency characteristics of the real part μ ′ and the imaginary part μ ″ of the relative permeability of the ferromagnetic material are given as shown in FIG. 17. The real part μ ′ of the relative permeability is 0 and the imaginary part is maximum. Is the ferromagnetic resonance frequency, which is 890 MHz in the example shown in FIG.

図18は、Y方向の磁界シールド量の周波数特性の解析結果を示す。図18に示すように、890MHzの強磁性共鳴周波数において最も高い磁界シールド量となり、10MHz以上890MHz以下では周波数が高いほど高い磁界シールド量になった。   FIG. 18 shows the analysis result of the frequency characteristics of the magnetic field shield amount in the Y direction. As shown in FIG. 18, the highest magnetic field shielding amount was obtained at the ferromagnetic resonance frequency of 890 MHz, and the higher magnetic field shielding amount was obtained from 10 MHz to 890 MHz.

実施例2に係る電磁シールドシートによれば、シールド量を最も高くしたい周波数と強磁性共鳴周波数が近い強磁性体を選定することにより、所望の周波数でシールド量を高くした電磁シールドシートを実現できる。   According to the electromagnetic shielding sheet according to Example 2, an electromagnetic shielding sheet having a high shielding amount at a desired frequency can be realized by selecting a ferromagnetic material whose ferromagnetic resonance frequency is close to the frequency at which the shielding amount is desired to be the highest. .

図19は、本発明の実施例3に係る電磁シールドシートのシミュレーションモデルの構成を示す斜視図である。このシミュレーションモデルは、電磁シールドシートの磁性体の異方性とシールド効果の関係を解析するために使用される。解析に用いた電磁シールドシートは、図9に示した導体のみからなる電磁シールドシートと図12に示した3層の導体層と2層の強磁性体層からなる電磁シールドシートである。   FIG. 19 is a perspective view showing a configuration of a simulation model of the electromagnetic shield sheet according to Example 3 of the present invention. This simulation model is used to analyze the relationship between the anisotropy of the magnetic body of the electromagnetic shield sheet and the shielding effect. The electromagnetic shield sheet used for the analysis is the electromagnetic shield sheet composed of only the conductor shown in FIG. 9 and the electromagnetic shield sheet composed of the three conductor layers and the two ferromagnetic layers shown in FIG.

3層の導体層と2層の強磁性体層からなる電磁シールドシートは、図19に示すように、信号線から遠い方の磁性体層を磁性体層A、信号線から近い方の磁性体層を磁性体層Bとし、一軸磁気異方性の容易軸方向を、「磁性体層AがY方向、磁性体層BがY方向」、「磁性体層AがY方向、磁性体層BがX方向」、「磁性体層AがX方向、磁性体層BがY方向」および「磁性体層AがX方向、磁性体層BがX方向」といった4種類について解析を行った。磁性体の比透磁率は容易軸方向が1で、容易軸に直交する困難軸には図20に示す周波数特性を与えた。信号線と電磁シールドシートの距離は0.1mmとし、磁界シールド量は、信号線から0.2mm離れた位置に0.2mm平方の面2を配置し、面1の磁界強度の平均値の差分から算出した。   As shown in FIG. 19, the electromagnetic shield sheet composed of three conductor layers and two ferromagnetic layers is composed of a magnetic layer far from the signal line, the magnetic layer A, and a magnetic substance closer to the signal line. The magnetic layer B is the easy axis direction of uniaxial magnetic anisotropy, “the magnetic layer A is the Y direction, the magnetic layer B is the Y direction”, “the magnetic layer A is the Y direction, and the magnetic layer B The analysis was performed on four types: “X direction”, “Magnetic layer A is X direction, Magnetic layer B is Y direction”, and “Magnetic layer A is X direction, and Magnetic layer B is X direction”. The relative permeability of the magnetic material is 1 in the easy axis direction, and the frequency characteristic shown in FIG. 20 is given to the hard axis perpendicular to the easy axis. The distance between the signal line and the electromagnetic shield sheet is 0.1 mm, and the amount of magnetic field shielding is the difference of the average value of the magnetic field strength of the surface 1 by arranging the 0.2 mm square surface 2 at a position 0.2 mm away from the signal line. Calculated from

図20は、Y方向の磁界シールド量の周波数特性を示す。磁性体の容易軸が「磁性体AがY方向、磁性体BがY方向」は、導体のみの電磁シールドシートよりも磁気シールド量が低くなったが、「磁性体AがY方向、磁性体BがX方向」、及び「磁性体AがX方向、磁性体BがY方向」は導体のみの電磁シールドシートよりも10MHzから8900MHzで高くなった。したがって、本発明に係る電磁シールドシートは、強磁性体層を2層以上とし、一軸磁気異方性を異なる層で直交した方向に成膜することにより、面内の直行する2方向で高いシールド効果を有する。なお、強磁性体層を3層以上とした場合は、一軸磁気異方性を異なる層で交差した方向に成膜することにより、面内の交差する3方向以上で高いシールド効果を有する。   FIG. 20 shows the frequency characteristics of the magnetic field shield amount in the Y direction. When the easy axis of the magnetic body is “the magnetic body A is in the Y direction and the magnetic body B is in the Y direction”, the magnetic shield amount is lower than that of the electromagnetic shield sheet having only the conductor. “B is in the X direction” and “Magnetic body A is in the X direction and magnetic body B is in the Y direction” were higher than the conductor-only electromagnetic shield sheet at 10 to 8900 MHz. Therefore, the electromagnetic shield sheet according to the present invention has two or more ferromagnetic layers, and the uniaxial magnetic anisotropy is formed in a direction orthogonal to each other by different layers, thereby providing a high shield in two directions perpendicular to the plane. Has an effect. When three or more ferromagnetic layers are formed, a high shielding effect is obtained in three or more intersecting directions in the plane by forming the uniaxial magnetic anisotropy in a direction intersecting with different layers.

本発明は、高い周波数で動作する携帯電話やノートブック型パーソナルコンピュータなどのモバイル機器の電磁シールドシートに利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used as an electromagnetic shield sheet for mobile devices such as mobile phones and notebook personal computers that operate at high frequencies.

1‥導体層、2‥磁性体層、L‥インダクタ。 1. Conductor layer, 2. Magnetic layer, L. Inductor.

Claims (7)

強磁性体層を挟むように非磁性体からなる導体層が積層された積層膜からなる電磁シールドシート。   An electromagnetic shield sheet comprising a laminated film in which conductor layers made of a non-magnetic material are laminated so as to sandwich a ferromagnetic layer. 前記強磁性体層は、μを強磁性体の比透磁率とした場合、μが正の場合、負の場合の両方の場合で電界・磁界シールド効果があり、電界・磁界シールド効果はμの絶対値が大きいほど高いことを特徴とする請求項1記載の電磁シールドシート。 The ferromagnetic layer, when the mu F and relative permeability of the ferromagnetic body, if mu F is positive, there is the electrical or magnetic field shielding effect in both cases in case of negative, the electrical or magnetic field shielding effect electromagnetic shielding sheet according to claim 1, wherein the higher the absolute value of mu F is large. 前記強磁性体層は、導電性の強磁性体からなることを特徴とする請求項1又は請求項2記載の電磁シールドシート。   The electromagnetic shield sheet according to claim 1, wherein the ferromagnetic layer is made of a conductive ferromagnetic material. 前記強磁性体層は複数層からなり、層数が多くなるに従って磁界シールド量が高くなるように形成されていることを特徴とする請求項1乃至請求項3のいずれか1項記載の電磁シールドシート。   4. The electromagnetic shield according to claim 1, wherein the ferromagnetic layer is formed of a plurality of layers, and the magnetic field shield amount is increased as the number of layers increases. 5. Sheet. 厚さが導体の表皮厚さの所定値分の1以上であり、厚くなるに従って電磁シールド量が高くなるように形成されていることを特徴とする請求項1乃至請求項4のいずれか1項記載の電磁シールドシート。   5. The thickness according to claim 1, wherein the thickness is equal to or more than a predetermined value of the skin thickness of the conductor, and the electromagnetic shielding amount increases as the thickness increases. The electromagnetic shielding sheet as described. 前記強磁性体の強磁性共鳴周波数以下の周波数では周波数が高いほど磁界シールド量が高くなり、強磁性共鳴周波数で最も磁界シールド量が高くなるように形成されていること特徴する請求項1乃至請求項5のいずれか1項記載の電磁シールドシート。   The magnetic field shield amount is increased as the frequency is higher than the ferromagnetic resonance frequency of the ferromagnetic material, and the magnetic field shield amount is highest at the ferromagnetic resonance frequency. Item 6. The electromagnetic shield sheet according to any one of items 5 to 6. 2層以上の強磁性体層を有し、一軸磁気異方性を異なる層で交差する方向に成膜し、交差する複数方向で高い磁界シールド量を有するように形成されていることを特徴とする請求項1乃至請求項6のいずれか1項記載の電磁シールドシート。   It has two or more ferromagnetic layers, and is formed so that uniaxial magnetic anisotropy is formed in a direction intersecting with different layers, and has a high magnetic field shielding amount in a plurality of intersecting directions. The electromagnetic shielding sheet according to any one of claims 1 to 6.
JP2010014458A 2009-02-05 2010-01-26 Electromagnetic shielding sheet Pending JP2010206182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010014458A JP2010206182A (en) 2009-02-05 2010-01-26 Electromagnetic shielding sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009024699 2009-02-05
JP2010014458A JP2010206182A (en) 2009-02-05 2010-01-26 Electromagnetic shielding sheet

Publications (1)

Publication Number Publication Date
JP2010206182A true JP2010206182A (en) 2010-09-16

Family

ID=42967317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010014458A Pending JP2010206182A (en) 2009-02-05 2010-01-26 Electromagnetic shielding sheet

Country Status (1)

Country Link
JP (1) JP2010206182A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042964A1 (en) * 2010-09-30 2012-04-05 日東電工株式会社 Electromagnetic wave shielding sheet for use in wireless power transmission
JP2015523709A (en) * 2012-06-21 2015-08-13 広州方邦電子有限公司 Ultra-thin shield film with high shielding function and method for producing the same
JP2018018867A (en) * 2016-07-26 2018-02-01 Tdk株式会社 Electronic circuit package
US10468354B2 (en) 2017-05-16 2019-11-05 Kabushiki Kaisha Toshiba Semiconductor device with magnetic layer and nonmagnetic layer
CN112867376A (en) * 2019-11-27 2021-05-28 丰田自动车株式会社 Magnetic field shielding structure
CN113453523A (en) * 2020-03-26 2021-09-28 芝浦机械电子株式会社 Electromagnetic wave attenuator, electronic device, film forming apparatus, and film forming method
US11488809B2 (en) * 2017-04-24 2022-11-01 Jusung Engineering Co., Ltd. Substrate processing apparatus
JPWO2023166783A1 (en) * 2022-03-02 2023-09-07

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042964A1 (en) * 2010-09-30 2012-04-05 日東電工株式会社 Electromagnetic wave shielding sheet for use in wireless power transmission
JP2015523709A (en) * 2012-06-21 2015-08-13 広州方邦電子有限公司 Ultra-thin shield film with high shielding function and method for producing the same
JP2018018867A (en) * 2016-07-26 2018-02-01 Tdk株式会社 Electronic circuit package
US10269726B2 (en) 2016-07-26 2019-04-23 Tdk Corporation Electronic circuit package
US11488809B2 (en) * 2017-04-24 2022-11-01 Jusung Engineering Co., Ltd. Substrate processing apparatus
US10468354B2 (en) 2017-05-16 2019-11-05 Kabushiki Kaisha Toshiba Semiconductor device with magnetic layer and nonmagnetic layer
JP2021086918A (en) * 2019-11-27 2021-06-03 トヨタ自動車株式会社 Magnetic field shield structure
CN112867376A (en) * 2019-11-27 2021-05-28 丰田自动车株式会社 Magnetic field shielding structure
JP7302457B2 (en) 2019-11-27 2023-07-04 トヨタ自動車株式会社 Magnetic field shield structure
CN112867376B (en) * 2019-11-27 2024-04-02 丰田自动车株式会社 Magnetic field shielding structure
CN113453523A (en) * 2020-03-26 2021-09-28 芝浦机械电子株式会社 Electromagnetic wave attenuator, electronic device, film forming apparatus, and film forming method
CN113453523B (en) * 2020-03-26 2024-04-02 芝浦机械电子株式会社 Electromagnetic wave attenuator, electronic device, film forming device and film forming method
JPWO2023166783A1 (en) * 2022-03-02 2023-09-07
WO2023166783A1 (en) * 2022-03-02 2023-09-07 Jx金属株式会社 Electromagnetic wave shielding material, covering material or exterior material, and electric/electronic apparatus
JP7697133B2 (en) 2022-03-02 2025-06-23 Jx金属株式会社 Electromagnetic wave shielding materials, covering materials or exterior materials, and electrical and electronic equipment

Similar Documents

Publication Publication Date Title
JP2010206182A (en) Electromagnetic shielding sheet
JP6750593B2 (en) Inductor parts
JP3972951B2 (en) Switching power supply, power supply device and electronic equipment
JP2012038807A (en) Electromagnetic shield sheet
KR101681405B1 (en) Power inductor
KR20180003290A (en) Hybrid sheet for shielding EMI and portable device including the same
JP2012033764A (en) Electromagnetic shield sheet and method of producing the same
US11690207B2 (en) Magnetic shield material
US10149417B2 (en) Magnetism suppressing sheet and manufacturing method thereof
US9247680B1 (en) EMI gasket for shielding electromagnetic wave
CN206506768U (en) Four-stage continuous high-efficiency shielding film
JP2011258745A (en) Electromagnetic wave leakage suppression structure
JP2009266764A (en) Flexible flat cable
Cheraku et al. Estimation of reflectivity and shielding effectiveness of three layered laminate electromagnetic shield at X-band
US10098268B2 (en) Electromagnetic wave shielding tape using nanomaterials
JP2015220259A (en) Magnetism suppression sheet and method of manufacturing the same
JP2004303825A (en) Laminated soft magnetic member, and electronic apparatus
JP4843612B2 (en) Soft magnetic film, anti-electromagnetic wave component and electronic device using the same
CN100593362C (en) Circuit boards, electronic equipment and power supply units
Al-Duhni et al. Cu–CoNiFe multilayered stack for low-and intermediate-frequency magnetic shielding
JP2009170634A (en) Laminated electromagnetic wave control member
WO2023074619A1 (en) Electromagnetic wave shield material, electronic component, electronic device, and method of using electromagnetic wave shield material
WO2024241794A1 (en) Electromagnetic wave shielding material
JP2005011850A (en) Electromagnetic shielding material
JP5360889B2 (en) Uniform characteristic ferrite plate and method of manufacturing the same