[go: up one dir, main page]

JP2010178556A - モータ駆動システム - Google Patents

モータ駆動システム Download PDF

Info

Publication number
JP2010178556A
JP2010178556A JP2009020404A JP2009020404A JP2010178556A JP 2010178556 A JP2010178556 A JP 2010178556A JP 2009020404 A JP2009020404 A JP 2009020404A JP 2009020404 A JP2009020404 A JP 2009020404A JP 2010178556 A JP2010178556 A JP 2010178556A
Authority
JP
Japan
Prior art keywords
inverter
motor
current
phase
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009020404A
Other languages
English (en)
Inventor
Kentaro Matsumoto
健太朗 松本
Takahiko Hirasawa
崇彦 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009020404A priority Critical patent/JP2010178556A/ja
Publication of JP2010178556A publication Critical patent/JP2010178556A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】インバータ1相オープン故障が検出可能なモータ駆動システムを提供する。
【解決手段】制御装置は、電流センサによる直流電源の直流電流の検出値と、モータ駆動システム全体での電力収支に基づいて演算した直流電流の推定値とを比較し(ステップS01〜S03)、両者の偏差が閾値以上であるとき(ステップS04のYES判定時)には、直流電流の変動を検出する。さらに、制御装置は、直流電流の変動周波数を演算すると(ステップS05)、その演算した直流電流の変動周波数がモータジェネレータの回転速度に同期しているか否かを判定する(ステップS06〜S08)。このとき、直流電流の変動周波数がモータジェネレータの回転速度に同期していれば、制御装置は、インバータにおける1相オープン故障の発生を検出する(ステップS09,S10)。
【選択図】図5

Description

この発明は、モータ駆動システムに関し、より特定的には、交流モータを駆動するモータ駆動システムにおけるインバータの故障発生を検出する技術に関する。
近年、電気自動車やハイブリッド自動車等の電動車両を走行させるために電動モータを使用する車両が増えつつある。このようなモータを駆動するためには、一般に、インバータが用いられる。
特開2005−143242号公報(特許文献1)には、直流電源と多相交流電源との間に接続されるパワー半導体電力変換器のパワー半導体ブリッジにおいて、逆方向ブリッジには自分でオン・オフを行なうことができるパワー半導体スイッチを用い、順方向ブリッジにはサイリスタを用いた構成が開示される。そして、このような構成において、負荷短絡または素子異常は、異常電流判定手段によって、直流電源の直流電流の計測値および多相交流電源の交流電流の計測値から判定される。
特開2005−143242号公報 特開2007−89240号公報 特開2005−160190号公報
ここで、ハイブリッド自動車においては、主として発電機として機能する第1の回転電機と、主として車輪を駆動させるモータとして動作する第2の回転電機とを搭載し、動力分割機構によってエンジンの回転速度を効率の良い回転域に動作させながら、第1および第2の回転電機を制御することにより車速を制御するようなシステムも存在する。
このような複雑な構成を有する車両用のインバータにおいては、2つのインバータのうちの一方のインバータにおいて、スイッチング素子の1つに常時オフ状態となるオープン故障が発生した場合(以下、インバータ1相オープン故障と称する。)には検出することが困難であった。したがって、そのようなインバータ1相オープン故障が発生した際に検出できるような故障検出装置は実現が難しかった。
この発明の目的は、インバータ1相オープン故障が検出可能なモータ駆動システムを提供することである。
この発明は、交流モータを駆動するモータ駆動システムであって、直流電源と、直流電源から電力の供給を受けて交流モータを駆動するインバータと、直流電源に入出力される直流電流を検出する電流センサと、交流モータの回転速度を検出する速度センサと、インバータにおける故障発生を検出する故障検出装置とを備える。インバータは、交流モータの各相にそれぞれ対応する複数のアームを備え、複数のアームの各々は、直列に接続された2つのスイッチング素子を含む。故障検出装置は、電流センサから出力される検出値に基づいて、直流電流の変動周波数を演算する変動周波数演算手段と、演算された直流電流の変動周波数が、速度センサにより検出された回転速度に同期している場合には、複数のアームのうちのいずれか1つのアームに含まれる一方のスイッチング素子が常時オフ状態となるオープン故障の発生を検出するオープン故障検出手段とを含む。
この発明によれば、従来車両において検出できていなかったインバータ1相オープン故障を検出することが可能となる。
この発明の実施の形態に従うモータ駆動システムが搭載される電動車両の一例として示されるハイブリッド車両の全体ブロック図である。 インバータが正常運転している場合の電圧および電流の変化を説明するための波形図である。 本実施の形態で検出するインバータ1相オープン故障について説明するための図である。 インバータ1相オープン故障が発生した場合の電圧および電流の変化を説明するための波形図である。 図1の制御装置が実行する異常検出処理の詳細を示したフローチャートである。 図1の制御装置が実行する異常時運転処理の詳細を示したフローチャートである。
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
図1は、本発明の実施の形態に従うモータ駆動システムが搭載される電動車両の一例として示されるハイブリッド車両100の全体ブロック図である。
図1を参照して、ハイブリッド車両100は、エンジン4と、モータジェネレータMG1,MG2と、動力分割機構3と、車輪2とを備える。また、ハイブリッド車両100は、直流電源Bと、システムリレーSR1,SR2と、昇降圧コンバータ12と、インバータ14,31と、制御装置30と、コンデンサC0,C1と、電力線PL1,PL2と、アース線SLと、電圧センサ10,13,18と、電流センサ11,20,22と、回転角センサ(レゾルバ)24,26とをさらに備える。
このハイブリッド車両100は、エンジン4およびモータジェネレータMG2を動力源として走行する。動力分割機構3は、エンジン4とモータジェネレータMG1,MG2とに結合されてこれらの間で動力を分配する。たとえば、動力分割機構3としては、サンギヤ、プラネタリキャリアおよびリングギヤの3つの回転軸を有する遊星歯車機構を用いることができる。これら3つの回転軸がエンジン4およびモータジェネレータMG1,MG2の各回転軸にそれぞれ接続される。たとえば、モータジェネレータMG1のロータを中空としてその中心にエンジン4のクランク軸を通すことで動力分割機構3にエンジン4とモータジェネレータMG1,MG2とを機械的に接続することができる。モータジェネレータMG2の回転軸は、図示しない減速ギヤによって車輪2に結合されている。
そして、モータジェネレータMG1は、エンジン4によって駆動される発電機として動作し、かつ、エンジン4の始動を行ない得る電動機として動作するものとしてハイブリッド車両100に組込まれ、モータジェネレータMG2は、車輪2を駆動する電動機としてハイブリッド車両100に組込まれる。
直流電源Bは、充放電可能な蓄電装置であり、代表的には、ニッケル水素またはリチウムイオン等の二次電池や電気二重層キャパシタ等により構成される。直流電源Bが出力する直流電圧VBおよび入出力される直流電流IBは、電圧センサ10および電流センサ11によってそれぞれ検出される。
システムリレーSR1は、直流電源Bの正極端子および電力線PL1の間に接続され、システムリレーSR2は、直流電源Bの負極端子およびアース線SLの間に接続される。システムリレーSR1,SR2は、制御装置30からの信号SEによりオン/オフされる。
コンデンサC1は、電力線PL1およびアース線SLの間の電圧変動を平滑化する。電圧センサ13は、電力線PL1およびアース線SL間に接続され、コンデンサC1の両端の電圧(昇降圧コンバータ12への入力電圧に相当するこの直流電圧を、以下「入力電圧」とも称する。)を検出し、その検出した入力電圧VLを制御装置30へ出力する。
昇降圧コンバータ12は、リアクトルL1と、電力用半導体スイッチング素子Q1,Q2と、ダイオードD1,D2とを含む。電力用半導体スイッチング素子Q1およびQ2は、電力線PL2およびアース線SLの間に直列に接続される。電力用半導体スイッチング素子Q1およびQ2のオン・オフは、制御装置30からのスイッチング制御信号PWCによって制御される。
この発明の実施の形態において、電力用半導体スイッチング素子(以下、単に「スイッチング素子」と称する)としては、IGBT(Insulated Gate Bipolar Transistor)、電力用MOS(Metal Oxide Semiconductor)トランジスタあるいは、電力用バイポーラトランジスタ等を用いることができる。スイッチング素子Q1,Q2に対しては、逆並列ダイオードD1,D2が配置されている。リアクトルL1は、スイッチング素子Q1およびQ2の接続ノードと電力線PL1の間に接続される。また、平滑コンデンサC0は、電力線PL2およびアース線SLの間に接続される。
インバータ14は、電力線PL2およびアース線SLの間に並列に設けられる、U相アーム15と、V相アーム16と、W相アーム17とを含む。各相アームは、電力線PL2およびアース線SLの間に直列接続されたスイッチング素子を含む。たとえば、U相アーム15は、スイッチング素子Q13,Q14を含む。V相アーム16は、スイッチング素子Q15,Q16を含む。W相アーム17は、スイッチング素子Q17,Q18を含む。また、スイッチング素子Q13〜Q18に対して、逆並列ダイオードD13〜D18がそれぞれ接続されている。スイッチング素子Q13〜Q18のオン・オフは、制御装置30からのスイッチング制御信号PWM1によって制御される。
各相アームの中間点は、モータジェネレータMG1の各相コイルの各相端に接続されている。代用的には、モータジェネレータMG1は、3相の永久磁石モータであり、U,V,W相の3つのコイルの一端が中性点に共通接続されて構成される。さらに、各相コイルの他端は、各相アーム15〜17のスイッチング素子の中間点と接続されている。
インバータ31は、U相アーム25、V相アーム26およびW相アーム27を含む。インバータ31およびモータジェネレータMG2の構成は、それぞれインバータ14およびモータジェネレータMG1と同様である。なお、スイッチング素子Q23〜Q28のオン・オフは、制御装置30からのスイッチング制御信号PWM2によって制御される。
昇降圧コンバータ12は、昇圧動作時には、直流電源Bから供給された直流電圧VBを昇圧した直流電圧VH(インバータ14,31への入力電圧に相当するこの直流電圧を、以下「システム電圧」とも称する)を電力線PL2へ供給する。具体的には、制御装置30からのスイッチング制御信号PWCに基づいて、スイッチング素子Q2のスイッチング動作に応じて流れる電流をリアクトルL1に磁場エネルギーとして蓄積することによって直流電源Bからの直流電圧を昇圧する。そして、昇降圧コンバータ12は、その昇圧した昇圧電圧をスイッチング素子Q2がオフされたタイミングに同期して逆並列ダイオードD1を介して電力線PL2へ出力する。また、昇降圧コンバータ12は、制御装置30からのスイッチング制御信号PWCに基づいて、電力線PL2から供給された直流電圧を降圧して直流電源Bを充電する。
平滑コンデンサC0は、電力線PL2およびアース線SLの間の電圧変動を平滑化する。電圧センサ18は、平滑コンデンサC0の両端の電圧、すなわち、システム電圧VHを検出し、その検出値を制御装置30へ出力する。
インバータ14は、制御装置30からのスイッチング制御信号PWM1に基づいて、電力線PL2から受ける直流電圧を3相交流電圧に変換し、その変換した3相交流電圧をモータジェネレータMG1へ出力する。また、インバータ14は、エンジン4からの出力を用いてモータジェネレータMG1が発電した3相交流電圧を制御装置30からのスイッチング制御信号PWM1に基づいて直流電圧に変換し、その変換した直流電圧を電力線PL2へ出力する。
インバータ31は、制御装置30からのスイッチング制御信号PWM2に基づいて、電力線PL2から受ける直流電圧を3相交流電圧に変換し、その変換した3相交流電圧をモータジェネレータMG2へ出力する。また、インバータ31は、ハイブリッド車両100の回生制動時、車輪2からの回転力をエンジン4からの出力を用いてモータジェネレータMG1が発電した3相交流電圧を制御装置30からのスイッチング制御信号PWM1に基づいて直流電圧に変換し、その変換した直流電圧を電力線PL2へ出力する。
モータジェネレータMG1,MG2の各々は、3相交流電動機であり、たとえばIPM(Interior Permanent Magnet)型3相交流同期電動機から成る。モータジェネレータMG1は、動力分割機構3によってエンジン4と連結され、エンジン4からの出力を用いて3相交流電圧を発生し、その発生した3相交流電圧をインバータ14へ出力する。また、モータジェネレータMG1は、インバータ14から受ける3相交流電圧によって駆動力を発生し、エンジン4の始動を行なう。モータジェネレータMG2は、車輪2と連結され、インバータ31から受ける3相交流電圧によって車両の駆動トルクを発生する。また、モータジェネレータMG2は、車両の回生制動時、3相交流電圧を発生してインバータ31へ出力する。
電流センサ20は、モータジェネレータMG1に流れるモータ電流MCRT1を検出し、その検出値を制御装置30へ出力する。電流センサ22は、モータジェネレータMG2に流れるモータ電流MCRT2を検出し、その検出値を制御装置30へ出力する。なお、三相電流iu,iv,iwの瞬時値の和は零であるので、図1に示すように電流センサ20,22は2相分のモータ電流(たとえば、V相電流ivおよびW相電流iw)を検出するように配置すれば足りる。
回転角センサ(レゾルバ)24は、モータジェネレータMG1のロータ回転角θ1を検出し、その検出した回転角θ1を制御装置30へ送出する。回転角センサ26は、モータジェネレータMG2のロータ回転角θ2を検出し、その検出した回転角θ2を制御装置30へ送出する。制御装置30では、回転角θ1,θ2に基づきモータジェネレータMG1,MG2の回転数(回転速度)MRN1,MRN2および角速度ω1,ω2(rad/s)をそれぞれ算出できる。なお、回転角センサ24,26については、回転角θ1,θ2を制御装置30にてモータ電圧や電流から直接演算することによって、配置を省略してもよい。
制御装置30は、電子制御ユニット(Electronic Control Unit:ECU)により構成され、予め記憶されたプログラムを図示しないCPUで実行することによるソフトウェア処理および/または専用の電子回路によるハードウェア処理により、モータ駆動システムの動作を制御する。
代表的な機能として、制御装置30は、モータジェネレータMG1,MG2のトルク指令値TR1,TR2およびモータ回転数MRN1,MRN2、電圧センサ13から入力電圧VLならびに電圧センサ18からのシステム電圧VHに基づいて、昇降圧コンバータ12を駆動するための信号PWCを生成し、その生成した信号PWCを昇降圧コンバータ12へ出力する。
また、制御装置30は、システム電圧VH、トルク指令値TR1、電流センサ20からのモータ電流MCRT1およびモータジェネレータMG1のロータ回転角θ1に基づいて、モータジェネレータMG1を駆動するための信号PWM1を生成し、その生成した信号PWM1をインバータ14へ出力する。さらに、制御装置30は、システム電圧VH、トルク指令値TR2、電流センサ22からのモータ電流MCRT2およびモータジェネレータMG2のロータ回転角θ2に基づいて、モータジェネレータMG2を駆動するための信号PWM2を生成し、その生成した信号PWM2をインバータ31へ出力する。
さらに、制御装置30は、上述したモータジェネレータMG1,MG2の駆動制御の実行中において、後述する方法によって、インバータ14,31における1相オープン故障の発生を検出するための「異常検出処理」を実行する。そして、この異常検出処理においてインバータ14,31のいずれか一方に1相オープン故障が検出された場合には、制御装置30は、他方のインバータに対応するモータジェネレータを用いた異常時運転(退避運転)を行なう。これにより、退避運転による移動距離を伸ばすことができる。
図2は、インバータ14が正常運転している場合の電圧および電流の変化を説明するための波形図である。なお、図示は省略するが、インバータ31が正常運転している場合においても、図2のような電圧および電流の変化が得られる。
図2を参照して、モータジェネレータMG1を駆動するインバータ14において、6つのスイッチング素子Q11〜Q16が全て正常である場合には、モータ電流MCRT1を構成する3相電流(V相電流MG1_V,W相電流MG1_WおよびU相電流MG1_U)は、一定の振幅からなる交流波形を示す。なお、V相電流MG1_VおよびW相電流MG1_Wは、各々がU相電流MG1_Uに対して+120°または−120°の位相差を有している。
このときの入力電圧VLおよびシステム電圧VHは、それぞれ略一定値に保たれている。これにより、直流電流IBについても略一定値に保たれている。
図3は、本実施の形態で検出するインバータ1相オープン故障について説明するための図である。
図3を参照して、モータジェネレータMG1を駆動するインバータ14において、6つのスイッチング素子Q11〜Q16のうちのいずれかが壊れてオフ状態に固定されてしまうような故障を、インバータ1相オープン故障という。図3では、V相アーム16のスイッチング素子Q13が壊れた場合を例示している。他に、ドライブICの故障や、フォトカプラの故障、結線の断線などによりインバータ14の6相のうち1相が動かなくなる場合がある。
図4は、インバータ1相オープン故障が発生した場合の電圧および電流の変化を説明するための波形図である。
図4を参照して、V相にオープン故障が発生している場合には、V相電流MG1_Vが+方向に振れなくなった様子が示される。これにより、モータジェネレータMG1のパワー変動が大きくなるため、昇降圧コンバータ12の昇圧制御が追従できなくなり、システム電圧VHおよび入力電圧VLの振幅が増加する。その結果、直流電流IBの振幅も増加する。すなわち、1相オープン故障が発生すると、モータジェネレータの電流の1相が半波になってしまう。これにより、電圧VHが発振するため、直流電流IBの振幅が増加する。
図5は、図1の制御装置30が実行する異常検出処理の詳細を示したフローチャートである。図5に示したフローチャートは、図1に示した制御装置30にプログラムされた一連の制御処理として実行される。
図5を参照して、まず処理が開始されると、制御装置30は、電流センサ11による直流電流IBの検出値を取得すると(ステップS01)、取得した検出値に基づいて直流電流IBの変動の有無を判定する。
具体的には、最初に、制御装置30は、モータ駆動システム(図1)全体での電力収支Pを算出し、その算出した電力収支Pに基づいて直流電流の推定値IB(E)を演算する(ステップS02)。
ここで、ハイブリッド車両100では、基本的には発電機として動作するモータジェネレータMG1の入出力電力(以下、MG1電力とも称する)と、基本的には車両駆動力発生用の電動機として動作するモータジェネレータMG2の入出力電力(以下、MG2電力とも称する)との和で示される、モータジェネレータMG1,MG2全体での電力の過不足分が、直流電源Bの入出力電力によって賄われるような電力収支が構成される。したがって、この電力収支制御において、直流電源Bの入出力電力PBは、下記(1)式に従って算出することができる。
PB=Pm1+Pm2+Ploss ・・・(1)
(1)式中において、Pm1はMG1電力であり、Pm2はMG2電力であり、Plossはインバータ14,31およびモータジェネレータMG1,MG2で発生する損失である。MG1電力Pm1については、モータジェネレータMG1の運転状態(トルク指令値TR1および回転速度MRN1)に基づいて推定することができ、MG2電力Pm2については、モータジェネレータMG2の運転状態(トルク指令値TR2および回転速度MRN2)に基づいて推定することができる。なお、上記(1)式中の入出力電力PBが直流電源Bの入出力可能電力Win,Woutの範囲内となるように電力収支制御が実行される。
直流電源Bの入出力電力PBが算出されると、制御装置30は、電圧センサ13により検出される入力電圧VLに基づき、下記(2)式に従って直流電流IBを推定する。
PB=VL×IB ・・・(2)
このようにして推定値IB(E)が算出されると、制御装置30は、直流電流IBの検出値と推定値IB(E)とを比較する(ステップS03)。そして、この比較によって求められた偏差ΔIB(=|IB−IB(E)|)が閾値以上であるか否かを判定し(ステップS04)、偏差ΔIBが閾値よりも小さい場合(ステップS04のNO判定時)には、制御装置30は、直流電流IBの変動が生じていないと判断して、一連の異常検出処理を終了する。
一方、偏差ΔIBが閾値以上である場合(ステップS04のYES判定時)には、制御装置30は、直流電流IBの変動を検出するとともに、直流電流IBの変動周波数fcを演算する(ステップS05)。
変動周波数fcを算出する一つの方法として、制御装置30は、予め定められた所定期間において、直流電流IBの検出値と推定値IB(E)とを比較し、その比較結果を示す信号を生成する。この比較結果信号は、直流電流IBの検出値が推定値IB(E)以上となる期間においてH(論理ハイ)レベルを示し、かつ、検出値が推定値IB(E)を下回る期間においてL(論理ロー)レベルを示すように生成される。そして、制御装置30は、生成した比較結果信号を参照して、時間的に隣り合うLレベルからHレベルに立ち上がったタイミング間の時間に基づいて直流電流IBの変動周波数fcを算出する。
次に、制御装置30は、モータジェネレータMG1の回転速度MRN1およびモータジェネレータMG2の回転速度MRN2を取得すると(ステップS06)、ステップS05において算出された直流電流IBの変動周波数fcがモータジェネレータMG1の回転速度MRN1に同期しているか否かを判定する(ステップS07)。そして、直流電流IBの変動周波数fcがモータジェネレータMG1の回転速度MRN1に同期している場合(ステップS07のYES判定時)には、制御装置30は、インバータ14における1相オープン故障の発生を検出する(ステップS09)。
これに対して、ステップS05で算出された直流電流IBの変動周波数fcがモータジェネレータMG1の回転速度MRN1に同期していない場合(ステップS07のNO判定時)には、制御装置30は、さらに、直流電流IBの変動周波数fcがモータジェネレータMG2の回転速度MRN2に同期しているか否かを判定する(ステップS08)。そして、直流電流IBの変動周波数fcがモータジェネレータMG2の回転速度MRN2に同期している場合(ステップS08のYES判定時)には、制御装置30は、インバータ31における1相オープン故障の発生を検出して、異常検出に関する制御処理を終了する(ステップS10)。
以上に述べたように、直流電流IBの変動を検出することによってインバータ1相オープン故障を検出することが可能になる。そして、インバータ1相オープン故障が検出された場合には、対応するモータジェネレータの動作を停止して、他方のインバータに対応するモータジェネレータを用いた異常時運転(退避運転)が行なわれる。これにより、退避運転による移動距離を伸ばすことができる。
図6は、図1の制御装置30が実行する異常時運転処理の詳細を示したフローチャートである。図6に示したフローチャートは、図5に示す異常検出処理に後続する一連の制御処理として実行される。
図6を参照して、まず処理が開始されると、制御装置30は、インバータ14に1相オープン故障が検出されたか否かを判定する(ステップS11)。インバータ14に1相オープン故障が検出された場合(ステップS11のYES判定時)には、制御装置30は、インバータ14を構成する各スイッチング素子Q11〜Q16のゲート遮断指示を発する(ステップS13)。これにより、インバータ14のQ11〜Q16の各々がスイッチング動作を停止(オフ状態)する。そして、制御装置30は、モータジェネレータMG2による異常時運転(退避運転)を指示する(ステップS14)。
これに対して、インバータ14に1相オープン故障が検出されていない場合(ステップS11のNO判定時)には、制御装置30は、インバータ31に1相オープン故障が検出されたか否かを判定する(ステップS12)。インバータ31に1相オープン故障が検出された場合(ステップS12のYES判定時)には、制御装置30は、インバータ31を構成する各スイッチング素子Q21〜Q26のゲート遮断指示を発することにより(ステップS15)、インバータ31のQ21〜Q26の各々のスイッチング動作を停止(オフ状態)する。そして、制御装置30は、エンジン4による動力を用いた退避運転を指示する(ステップS16)。
一方、インバータ31に1相オープン故障が検出されていない場合(ステップS12のNO判定時)には、制御装置30は、退避運転を指示することなく、退避運転に関する制御処理を終了する。
以上のように、この発明の実施の形態においては、インバータ1相オープン故障が発生すると、システム電圧VHがハンチングを起こすことにより、直流電源Bに入出力される直流電流IBが変動する。そこで、直流電流IBの変動を検出し、その変動周波数がモータジェネレータの回転速度を同期している場合に、インバータ1相オープン故障をkwン出する。このようにすることにより、インバータ1相オープン故障を早期に検出することにより、モータジェネレータへの影響(永久磁石の減磁など)を最小限に抑えることができる。
また、インバータ1相オープン故障が検出されることによって、他方のインバータに対応するモータジェネレータを用いた異常時運転(退避運転)が可能となる。これにより、退避運転による移動距離を伸ばすことができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
2 車輪、3 動力分割機構、4 エンジン、10,13,18 電圧センサ、11,20,22 電流センサ、12 昇降圧コンバータ、14,31 インバータ、15,25 U相アーム、16,26 V相アーム、17,27 W相アーム、24,26 回転角センサ、30 制御装置、100 ハイブリッド車両、B 直流電源、C0,C1 コンデンサ、D1,D2,D11〜D16,D21〜D26 逆並列ダイオード、MG1,MG2 モータジェネレータ、PL1,PL2 電力線、Q1,Q2,Q11〜Q16,Q21〜Q26 電力用半導体スイッチング素子、SL アース線、SR1,SR2 システムリレー。

Claims (1)

  1. 交流モータを駆動するモータ駆動システムであって、
    直流電源と、
    前記直流電源から電力の供給を受けて前記交流モータを駆動するインバータと、
    前記直流電源に入出力される直流電流を検出する電流センサと、
    前記交流モータの回転速度を検出する速度センサと、
    前記インバータにおける故障発生を検出する故障検出装置とを備え、
    前記インバータは、前記交流モータの各相にそれぞれ対応する複数のアームを備え、前記複数のアームの各々は、直列に接続された2つのスイッチング素子を含み、
    前記故障検出装置は、
    前記電流センサから出力される検出値に基づいて、前記直流電流の変動周波数を演算する変動周波数演算手段と、
    演算された前記直流電流の変動周波数が、前記速度センサにより検出された前記回転速度に同期している場合には、前記複数のアームのうちのいずれか1つのアームに含まれる一方のスイッチング素子が常時オフ状態となるオープン故障の発生を検出するオープン故障検出手段とを含む、モータ駆動システム。
JP2009020404A 2009-01-30 2009-01-30 モータ駆動システム Withdrawn JP2010178556A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009020404A JP2010178556A (ja) 2009-01-30 2009-01-30 モータ駆動システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009020404A JP2010178556A (ja) 2009-01-30 2009-01-30 モータ駆動システム

Publications (1)

Publication Number Publication Date
JP2010178556A true JP2010178556A (ja) 2010-08-12

Family

ID=42708944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009020404A Withdrawn JP2010178556A (ja) 2009-01-30 2009-01-30 モータ駆動システム

Country Status (1)

Country Link
JP (1) JP2010178556A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012105498A (ja) * 2010-11-12 2012-05-31 Toyota Motor Corp 駆動装置
JP2012130098A (ja) * 2010-12-13 2012-07-05 Toyota Motor Corp 電動車両
JP2013236486A (ja) * 2012-05-09 2013-11-21 Mitsubishi Electric Corp モータ制御装置およびそれを用いた電動パワーステアリング装置
JP2016025725A (ja) * 2014-07-18 2016-02-08 トヨタ自動車株式会社 電動車両
WO2016026760A1 (de) * 2014-08-22 2016-02-25 Continental Teves Ag & Co. Ohg Verfahren und vorrichtung zum betreiben einer elektrischen maschine
CN115805880A (zh) * 2021-09-13 2023-03-17 株式会社电装天 电源控制装置和电源控制方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012105498A (ja) * 2010-11-12 2012-05-31 Toyota Motor Corp 駆動装置
JP2012130098A (ja) * 2010-12-13 2012-07-05 Toyota Motor Corp 電動車両
JP2013236486A (ja) * 2012-05-09 2013-11-21 Mitsubishi Electric Corp モータ制御装置およびそれを用いた電動パワーステアリング装置
US8981704B2 (en) 2012-05-09 2015-03-17 Mitsubishi Electronic Corporation Motor controller and electric power steering device using the same
JP2016025725A (ja) * 2014-07-18 2016-02-08 トヨタ自動車株式会社 電動車両
WO2016026760A1 (de) * 2014-08-22 2016-02-25 Continental Teves Ag & Co. Ohg Verfahren und vorrichtung zum betreiben einer elektrischen maschine
US10236809B2 (en) 2014-08-22 2019-03-19 Continental Teves Ag & Co. Ohg Method and device for operating an electric machine
CN115805880A (zh) * 2021-09-13 2023-03-17 株式会社电装天 电源控制装置和电源控制方法

Similar Documents

Publication Publication Date Title
JP4329880B1 (ja) 交流電動機の制御装置および電動車両
JP6098603B2 (ja) 車両の制御装置
WO2007139126A1 (ja) 電動機駆動制御システムおよびその制御方法
US10086706B2 (en) Vehicle
JP2007290483A (ja) 内燃機関の停止制御装置および停止制御方法
JP6354723B2 (ja) ハイブリッド車両
JP6252574B2 (ja) ハイブリッド車両
EP2765693A1 (en) Voltage conversion device control device and method
JP2018166382A (ja) 車両
US9994215B2 (en) Hybrid vehicle
JPWO2019102539A1 (ja) 回転電機制御装置及び電動車両
JP2010178556A (ja) モータ駆動システム
JP2010200582A (ja) 車両
JP2011109850A (ja) 電源システムの制御装置およびそれを搭載する車両
JP6344345B2 (ja) ハイブリッド車両
JP6264354B2 (ja) ハイブリッド車両
JP2011109852A (ja) 電源システムの制御装置およびそれを搭載する車両
JP2009284630A (ja) 充電制御装置およびそれを備えた車両
JP2017056790A (ja) ハイブリッド車両
JP2017056774A (ja) ハイブリッド車両
JP5618012B2 (ja) 電圧変換装置の制御装置及び制御方法
JP2014147161A (ja) 車両
JP2010268574A (ja) 電動車両
JP2017128193A (ja) ハイブリッド車両
JP2017114209A (ja) ハイブリッド車両

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120403