[go: up one dir, main page]

JP2010175359A - Mems inclination sensor - Google Patents

Mems inclination sensor Download PDF

Info

Publication number
JP2010175359A
JP2010175359A JP2009017522A JP2009017522A JP2010175359A JP 2010175359 A JP2010175359 A JP 2010175359A JP 2009017522 A JP2009017522 A JP 2009017522A JP 2009017522 A JP2009017522 A JP 2009017522A JP 2010175359 A JP2010175359 A JP 2010175359A
Authority
JP
Japan
Prior art keywords
magnetic
magnet
layer
magnetic detection
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009017522A
Other languages
Japanese (ja)
Inventor
Hideto Ando
秀人 安藤
Kiyoshi Sato
清 佐藤
Katsuya Kikuiri
勝也 菊入
Sumuto Morita
澄人 森田
Eiji Umetsu
英治 梅津
Toru Takahashi
亨 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2009017522A priority Critical patent/JP2010175359A/en
Publication of JP2010175359A publication Critical patent/JP2010175359A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an MEMS (Micro-Electro-Mechanical Systems) inclination sensor being ready for miniaturization, in particular, and having high detection accuracy. <P>SOLUTION: This MEMS inclination sensor 1 includes a support substrate, a cap substrate, and an intermediate layer positioned between the support substrate and the cap substrate. The intermediate layer has a turning weight 11 and a turning shaft 12, the turning shaft 12 put through a through hole formed in the turning weight 11 and fixed/supported on the support substrate and on the cap substrate. The turning weight 11 is supported so that it can turn around toward the gravitational direction. A magnet 8 is placed on the turning weight 11. A pair of magnetism detection elements 4 and 5 are placed in an opposite domain of the cap substrate to a turning domain 22 of the turning weight 11. When rotating the inclination sensor 1 clockwise or anticlockwise from a reference state, the electric characteristics of one magnetism detection element positioned on a side approaching the magnet 8 changes due to an external magnetic field received from the magnet 8. Based on the change in the electric characteristics, the state of rotation can be found. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、MEMS(Micro-Electro-Mechanical Systems)技術を用いて形成された傾斜センサに関する。   The present invention relates to a tilt sensor formed using MEMS (Micro-Electro-Mechanical Systems) technology.

下記特許文献には、傾斜センサが開示されている。傾斜センサは、回動可能に支持された磁石と、前記磁石からの外部磁界を検知する検知手段を備える。   The following patent document discloses a tilt sensor. The tilt sensor includes a magnet that is rotatably supported and a detection unit that detects an external magnetic field from the magnet.

これら特許文献に記載された傾斜センサはいずれも機械的構成(メカ式)であり、傾斜センサの小型化を促進できず、製造コストが高くなる問題があった。また外乱磁場によっても誤作動を起こさず、検出精度を向上させることが必要であった。
特開2006−300789号公報 特開2006−126059号公報 特開2007−118868号公報 特開2006−78406号公報
All of the tilt sensors described in these patent documents have a mechanical configuration (mechanical type), and the miniaturization of the tilt sensor cannot be promoted, resulting in an increase in manufacturing cost. In addition, it was necessary to improve detection accuracy without causing malfunction due to a disturbance magnetic field.
JP 2006-300789 A JP 2006-126059 A JP 2007-118868 A JP 2006-78406 A

そこで本発明は上記従来の課題を解決するものであり、特に、小型化に対応でき、また、高い検出精度を得ることが出来るMEMS傾斜センサを提供することを目的としている。   Therefore, the present invention solves the above-described conventional problems, and in particular, an object of the present invention is to provide a MEMS tilt sensor that can cope with downsizing and obtain high detection accuracy.

本発明は、磁石と、前記磁石と非接触に配置され、前記磁石からの外部磁界を受けて電気特性が変化する磁気検出素子とを有してなるMEMS傾斜センサにおいて、
第1基板と、第2基板と、前記第1基板と前記第2基板の間に位置する中間層と、を有し、
前記中間層は、回動錘と、前記回動錘に形成された貫通孔に挿通され前記第1基板と前記第2基板に固定支持される回動軸と、を有し、前記回動錘は、重力方向に向けて回動可能に支持されており、
前記回動錘には前記磁石が設置され、前記回動錘の回動領域に対する前記第1基板の対向領域には、前記磁気検出素子が設置されており、
前記MEMS傾斜センサの基準状態では、回動軸の中心を通って重力方向に平行に引いた中心線の両側に、夫々、前記磁気検出素子が配置されており、
前記MEMS傾斜センサを前記基準状態から時計方向あるいは反時計方向に回転させると、前記回動錘が回動して重力方向に一定の姿勢を保ち、一方、前記磁気検出素子が時計方向あるいは反時計方向に回転し、このとき前記磁石と近づく側の前記磁気検出素子は前記磁石から外部磁界を受けることで電気特性が変化し、この電気特性変化に基づいて回転状態を知ることができることを特徴とするものである。
The present invention relates to a MEMS tilt sensor including a magnet and a magnetic detection element that is arranged in a non-contact manner with the magnet and changes an electric characteristic in response to an external magnetic field from the magnet.
A first substrate, a second substrate, and an intermediate layer located between the first substrate and the second substrate;
The intermediate layer includes a rotating weight, and a rotating shaft that is inserted into a through-hole formed in the rotating weight and is fixedly supported by the first substrate and the second substrate. Is supported so that it can rotate in the direction of gravity,
The magnet is installed on the rotating weight, and the magnetic detection element is installed in a region facing the first substrate with respect to the rotating area of the rotating weight,
In the reference state of the MEMS tilt sensor, the magnetic detection elements are disposed on both sides of a center line drawn in parallel to the direction of gravity through the center of the rotation shaft,
When the MEMS tilt sensor is rotated clockwise or counterclockwise from the reference state, the rotating weight rotates and maintains a constant posture in the gravity direction, while the magnetic detection element is rotated clockwise or counterclockwise. The magnetic detection element that rotates in the direction and approaches the magnet at this time receives an external magnetic field from the magnet, and changes its electrical characteristics, and the rotation state can be known based on the change in electrical characteristics. To do.

本発明ではMEMS技術を用いて、傾斜センサを構成したことで、小型化を図ることができ、また生産コストを低減できる。   In the present invention, since the tilt sensor is configured by using the MEMS technology, the size can be reduced and the production cost can be reduced.

本発明では、前記第1基板の前記対向領域外に、前記磁気検出素子と電気回路を構成する固定抵抗用素子が設けられ、前記固定抵抗用素子は前記磁気検出素子と同じ素子構成であることが好ましい。   In the present invention, a fixed resistance element that constitutes an electric circuit with the magnetic detection element is provided outside the opposing region of the first substrate, and the fixed resistance element has the same element configuration as the magnetic detection element. Is preferred.

このように、磁気検出素子及び固定抵抗用素子を全て同じ素子構成で形成できるので、製造効率を向上させることができ、また製造コストの低減をより効果的に図ることができる。また、仮に外乱磁場が作用しても、磁気検出素子及び固定抵抗用素子の電気特性変化は同じようになり、出力変動を抑制でき、誤作動が生じにくい。   As described above, since the magnetic detection element and the fixed resistance element can all be formed with the same element configuration, the manufacturing efficiency can be improved, and the manufacturing cost can be reduced more effectively. Even if a disturbance magnetic field acts, the electrical characteristics change of the magnetic detection element and the fixed resistance element is the same, output fluctuation can be suppressed, and malfunction is unlikely to occur.

また本発明では、前記磁気検出素子は、感度軸方向からの外部磁界に対して電気抵抗値が変化する素子部を備え、
前記素子部は、第1磁性層と、第2磁性層とが非磁性層を介して積層された積層構造を有しており、
前記第1磁性層と前記第2磁性層は、共に前記外部磁界に対して磁化変動可能であり、
無磁場状態では、前記第1磁性層の磁化方向は、前記感度軸方向に直交する基準方向から前記感度軸方向のうち第1の方向に傾いており、前記第2磁性層の磁化方向は、前記基準方向から前記感度軸方向の前記第1の方向とは逆方向の第2の方向に傾いており、前記第1磁性層の磁化方向と前記基準方向間の角度と、前記第2磁性層の磁化方向と前記基準方向間の角度とが、ほぼ同角度であり、前記第1磁性層の磁化方向と、前記第2磁性層の磁化方向との間の角度が90度〜180度の範囲内であり、
前記素子部は、前記感度軸方向を長手方向とした細長形状で形成されており、前記MEMS傾斜センサを基準状態から時計方向あるいは反時計方向に回転させて、磁石と磁気検出素子とが対向状態になったとき、磁石の着磁方向と、前記素子部の長手方向とが一致するように、前記磁石及び前記素子部の配置が規制されていることが好ましい。
In the present invention, the magnetic detection element includes an element portion whose electric resistance value changes with respect to an external magnetic field from the sensitivity axis direction,
The element portion has a laminated structure in which a first magnetic layer and a second magnetic layer are laminated via a nonmagnetic layer,
Both the first magnetic layer and the second magnetic layer can change magnetization with respect to the external magnetic field,
In the absence of a magnetic field, the magnetization direction of the first magnetic layer is inclined from the reference direction orthogonal to the sensitivity axis direction to the first direction of the sensitivity axis direction, and the magnetization direction of the second magnetic layer is The second magnetic layer is inclined from the reference direction in a second direction opposite to the first direction in the sensitivity axis direction, the angle between the magnetization direction of the first magnetic layer and the reference direction, and the second magnetic layer And the reference direction are substantially the same angle, and the angle between the magnetization direction of the first magnetic layer and the magnetization direction of the second magnetic layer is in the range of 90 degrees to 180 degrees. Within
The element portion is formed in an elongated shape having the sensitivity axis direction as a longitudinal direction, and the magnet and the magnetic detection element are opposed to each other by rotating the MEMS tilt sensor clockwise or counterclockwise from a reference state. It is preferable that the arrangement of the magnet and the element portion is regulated so that the magnetizing direction of the magnet coincides with the longitudinal direction of the element portion.

また、前記第1磁性層の磁化方向と、前記第2磁性層の磁化方向は、前記感度軸方向と平行な方向に向けて略反平行であることがより好ましい。   More preferably, the magnetization direction of the first magnetic layer and the magnetization direction of the second magnetic layer are substantially antiparallel toward a direction parallel to the sensitivity axis direction.

上記した構成の磁気検出素子であると、感度軸方向以外の外部磁界が作用しても、電気抵抗変化は小さく、外乱磁場耐性を向上させることができ、検出精度の向上を図ることが出来る。また、上記した構成の磁気検出素子であると、各磁気検出素子は、磁石の着磁方向が逆であってもほぼ同じ抵抗変化を示すため、磁石の着磁方向に関わらずほぼ同じ出力特性を得ることが出来る。   With the magnetic detection element having the above-described configuration, even if an external magnetic field other than the sensitivity axis direction acts, the change in electric resistance is small, the disturbance magnetic field resistance can be improved, and the detection accuracy can be improved. In addition, in the case of the magnetic detection element having the above-described configuration, each magnetic detection element exhibits almost the same resistance change even when the magnetization direction of the magnet is reversed. Therefore, the output characteristics are almost the same regardless of the magnetization direction of the magnet. Can be obtained.

本発明によれば、MEMS技術を用いて、傾斜センサを構成したことで、小型化を図ることができまた生産コストを低減できる。さらに外乱磁場耐性を向上させることができ、検出精度の向上を図ることが出来る。   According to the present invention, since the tilt sensor is configured using the MEMS technology, the size can be reduced and the production cost can be reduced. Furthermore, disturbance magnetic field tolerance can be improved, and detection accuracy can be improved.

図1は、本実施形態におけるMEMS傾斜センサの透視正面図、図2は、図1に示すA−A線から切断し矢印方向から見たMEMS傾斜センサの断面図、図3は、図1の基準状態からMEMS傾斜センサを時計方向に90度回転させたときのMEMS傾斜センサの透視正面図、図4は、図1の基準状態からMEMS傾斜センサを反時計方向に90度回転させたときのMEMS傾斜センサの透視正面図、図5は、本実施形態における磁気検出素子の一例を示す正面図、図6は図5の素子部をB−B線に沿って切断し矢印方向から見た部分拡大断面図、図7は、図6の磁気検出素子を構成する第1磁性層と第2磁性層の磁化関係を示す模式図、図8(a)は、感度軸方向に対して直交する方向から外部磁界(外乱磁場)が作用したときの磁気検出素子のRH曲線、図8(b)は、感度軸方向から外部磁界が作用したときの磁気検出素子のRH曲線、図9は、MEMS傾斜センサの電気回路図、である。   FIG. 1 is a perspective front view of the MEMS tilt sensor in the present embodiment, FIG. 2 is a cross-sectional view of the MEMS tilt sensor taken along the line AA shown in FIG. 1 and viewed from the direction of the arrow, and FIG. FIG. 4 is a perspective front view of the MEMS tilt sensor when the MEMS tilt sensor is rotated 90 degrees clockwise from the reference state. FIG. 4 is a view when the MEMS tilt sensor is rotated 90 degrees counterclockwise from the reference state of FIG. FIG. 5 is a front view showing an example of the magnetic detection element in the present embodiment, and FIG. 6 is a view of the element part of FIG. 5 cut along the line BB and viewed from the arrow direction. FIG. 7 is an enlarged cross-sectional view, FIG. 7 is a schematic diagram showing a magnetization relationship between the first magnetic layer and the second magnetic layer constituting the magnetic detection element of FIG. 6, and FIG. 8A is a direction orthogonal to the sensitivity axis direction. Detection when an external magnetic field (disturbance magnetic field) acts from RH curve of the child, FIG. 8 (b), RH curve 9 of the magnetic detecting element when the external magnetic field is applied from the sensitivity axis direction, an electric circuit diagram of a MEMS tilt sensor is.

図中のX1−X2方向、Y1−Y2方向、Z1−Z2方向は、互いに直交する関係となっている。   The X1-X2 direction, the Y1-Y2 direction, and the Z1-Z2 direction in the figure are orthogonal to each other.

図1では、図2に示すキャップ基板(第1基板)2を削除して現れる中間層15の形態を示している。ただし、キャップ基板2の裏面2aに配置される磁気検出素子4,5及び固定抵抗用素子6,7については図示した。   FIG. 1 shows a form of the intermediate layer 15 that appears by deleting the cap substrate (first substrate) 2 shown in FIG. However, the magnetic detection elements 4 and 5 and the fixed resistance elements 6 and 7 arranged on the back surface 2a of the cap substrate 2 are illustrated.

図1,図2に示すMEMS傾斜センサ1は、キャップ基板(第1基板)2と、支持基板(第2基板)3と、前記キャップ基板2と支持基板3の間に位置する中間層15と、磁気検出素子4,5と、固定抵抗用素子6,7と、磁石8とを有して構成される。   The MEMS tilt sensor 1 shown in FIGS. 1 and 2 includes a cap substrate (first substrate) 2, a support substrate (second substrate) 3, and an intermediate layer 15 positioned between the cap substrate 2 and the support substrate 3. The magnetic detection elements 4 and 5, the fixed resistance elements 6 and 7, and the magnet 8 are configured.

キャップ基板2、支持基板3及び中間層15は例えばシリコン基板で形成される。図2に示すように、支持基板3の表面3aには凹部3bが形成されている。また、この凹部3bには突出形状のスティッキング防止部9が形成されている。   The cap substrate 2, the support substrate 3, and the intermediate layer 15 are formed of, for example, a silicon substrate. As shown in FIG. 2, a recess 3 b is formed on the surface 3 a of the support substrate 3. In addition, a protruding sticking prevention portion 9 is formed in the recess 3b.

図1,図2に示すように、中間層15は、枠体10と、回動錘11と、回動軸12とに分離加工されている。図1,図2に示すように、回動錘11は略扇形で形成されている。回動錘11の曲率半径が大きい円弧部11aから離れた先端側(X1−X2方向への幅寸法が狭い側)には貫通孔11bが形成されている。前記回動軸12は、前記貫通孔11bに挿通されている。回動軸12と対向する部分の支持基板3は突出した状態であり、例えば、支持基板3と回動軸12間は酸化絶縁層(SiO2)13を介して常温接合にて固定されている。あるいは、支持基板3と回動軸12間がアルミニウムとゲルマニウム等の組み合わせによる共晶接合にて固定されていてもよい。 As shown in FIGS. 1 and 2, the intermediate layer 15 is separated into a frame body 10, a rotating weight 11, and a rotating shaft 12. As shown in FIGS. 1 and 2, the rotating weight 11 is formed in a substantially fan shape. A through hole 11b is formed on the distal end side (the side having a narrow width dimension in the X1-X2 direction) away from the circular arc portion 11a having a large curvature radius of the rotating weight 11. The pivot shaft 12 is inserted through the through hole 11b. The portion of the support substrate 3 that faces the rotating shaft 12 is in a protruding state. For example, the support substrate 3 and the rotating shaft 12 are fixed at room temperature via an oxide insulating layer (SiO 2 ) 13. . Alternatively, the space between the support substrate 3 and the rotating shaft 12 may be fixed by eutectic bonding using a combination of aluminum and germanium.

なお図2に示すように、枠体10と支持基板3の間も上記と同様にして固定されている。回動錘11の裏面に酸化絶縁層13が形成されているが、この酸化絶縁層13は形成されていなくてもよい。なお前記回動錘11の裏面に酸化絶縁層13を形成しておくことで、回動軸11の質量を大きくできる。   As shown in FIG. 2, the frame 10 and the support substrate 3 are also fixed in the same manner as described above. Although the oxide insulating layer 13 is formed on the back surface of the rotating weight 11, the oxide insulating layer 13 may not be formed. The mass of the rotating shaft 11 can be increased by forming the oxide insulating layer 13 on the back surface of the rotating weight 11.

図2に示すように、回動錘11の表面11cには磁石8が設置されている。図1に示す基準状態では、前記磁石8は、Z1−Z2方向に細長い棒形状であり、X1側がS極、X2側がN極となっている。磁石8の中心は、回動軸12の中心を通って重力方向に平行に引いた中心線C−C上に一致している。磁石8は、回動錘11の裏面に設けられてもよいが、磁石8と後述の磁気検出素子4,5とが対向したときに、磁石8から磁気検出素子4,5に適切に外部磁界を作用させるべく、磁石8を回動錘11の表面11cに設置することが好適である。   As shown in FIG. 2, a magnet 8 is installed on the surface 11 c of the rotating weight 11. In the reference state shown in FIG. 1, the magnet 8 has a bar shape elongated in the Z1-Z2 direction, and the X1 side is the S pole and the X2 side is the N pole. The center of the magnet 8 coincides with a center line C-C drawn parallel to the direction of gravity through the center of the rotating shaft 12. The magnet 8 may be provided on the back surface of the rotating weight 11, but when the magnet 8 and magnetic detection elements 4 and 5 described later face each other, an appropriate external magnetic field is applied from the magnet 8 to the magnetic detection elements 4 and 5. It is preferable to install the magnet 8 on the surface 11c of the rotating weight 11 so as to act.

図2に示すように、キャップ基板2の裏面2aは、支持基板3の表面3aと同様に凹部2bが形成され、また突出形状のスティッキング防止部14が設けられている。このスティッキング防止部14の高さ寸法は、少なくとも、後述する磁気検出素子4,5の膜厚より厚く形成されなくてはならない。この実施形態では、前記キャップ基板2の裏面2aの形状は、前記支持基板3の表面3aの形状のミラーパターンである。また、キャップ基板2には、多数の微細な貫通孔39が形成されている。   As shown in FIG. 2, the back surface 2 a of the cap substrate 2 is formed with a recess 2 b similarly to the front surface 3 a of the support substrate 3, and is provided with a protruding sticking prevention portion 14. The height dimension of the sticking prevention portion 14 must be formed at least larger than the film thickness of the magnetic detection elements 4 and 5 described later. In this embodiment, the shape of the back surface 2 a of the cap substrate 2 is a mirror pattern having the shape of the front surface 3 a of the support substrate 3. A large number of fine through holes 39 are formed in the cap substrate 2.

図2に示すように、回動軸12及び枠体10と対向する部分のキャップ基板2は突出した形状であり、キャップ基板2と回動軸12及び枠体10との間が例えば常温接合にて固定されている。なお上記したように共晶接合による固定であってもよい。   As shown in FIG. 2, the cap substrate 2 in a portion facing the rotation shaft 12 and the frame body 10 has a protruding shape, and the space between the cap substrate 2 and the rotation shaft 12 and the frame body 10 is, for example, normal temperature bonding. Is fixed. As described above, fixation by eutectic bonding may be used.

図2に示すように、回動軸12はキャップ基板2と支持基板3とに両側から固定支持されている。   As shown in FIG. 2, the rotation shaft 12 is fixedly supported on the cap substrate 2 and the support substrate 3 from both sides.

図1及び図2に示すように、回動錘11に形成された貫通孔11bと、回動軸12との間には微小なクリアランスが設けられており、回動錘11は、前記回動軸12を回動中心として重力方向(図1のZ1方向)に回動可能に支持されている。この実施形態におけるMEMS傾斜センサ1は、図1の基準状態から90度、時計方向、あるいは反時計方向に回転させたときに(図3、図4も参照)、回動錘11が重力方向(Z1方向)に向けて、図1の基準状態から90度の回動を確保すべく、枠体10の内壁形状が決められている。枠体10の内壁形状が回動錘11の回動領域22を構成する。   As shown in FIGS. 1 and 2, a minute clearance is provided between the through-hole 11 b formed in the rotating weight 11 and the rotating shaft 12. The shaft 12 is supported so as to be rotatable in the gravity direction (Z1 direction in FIG. 1) with the rotation center as a rotation center. When the MEMS tilt sensor 1 in this embodiment is rotated 90 degrees clockwise or counterclockwise from the reference state of FIG. 1 (see also FIGS. 3 and 4), the rotating weight 11 is in the direction of gravity ( The inner wall shape of the frame body 10 is determined so as to ensure 90 degrees of rotation from the reference state of FIG. The inner wall shape of the frame body 10 constitutes the rotation area 22 of the rotation weight 11.

さらに図1に示すように、図1の基準状態では、回動軸12の中心を通って重力方向に平行に引いた中心線C−Cの両側に、第1磁気検出素子4と第2磁気検出素子5が配置されている。この実施形態では、第1磁気検出素子4及び第2磁気検出素子5はちょうど回動軸12とX1−X2方向にて一直線上に並んだ位置関係にある。これら磁気検出素子4,5は、図1の基準状態からMEMS傾斜センサ1を90度、時計方向、あるいは反時計方向に回転させたときに(図3、図4も参照)、磁石8と対向する位置に設けられている。   Further, as shown in FIG. 1, in the reference state of FIG. 1, the first magnetic detection element 4 and the second magnetism are arranged on both sides of a center line CC drawn through the center of the rotating shaft 12 and parallel to the direction of gravity. A detection element 5 is arranged. In this embodiment, the first magnetic detection element 4 and the second magnetic detection element 5 are just in a positional relationship aligned with the rotation shaft 12 in the X1-X2 direction. These magnetic detection elements 4 and 5 face the magnet 8 when the MEMS tilt sensor 1 is rotated 90 degrees clockwise or counterclockwise from the reference state shown in FIG. 1 (see also FIGS. 3 and 4). It is provided in the position to do.

第1磁気検出素子4及び第2磁気検出素子5は、図2に示すようにキャップ基板2の裏面2aに設けられる。以下、磁気検出素子4,5の構成について説明する。   The first magnetic detection element 4 and the second magnetic detection element 5 are provided on the back surface 2a of the cap substrate 2 as shown in FIG. Hereinafter, the configuration of the magnetic detection elements 4 and 5 will be described.

第1磁気検出素子4及び第2磁気検出素子5は、図5(図1と同様の基準状態での磁磁気検出素子の拡大正面図)に示すように、Z1−Z2方向に帯状に延びる素子部19を備える。素子部19のX1−X2方向における素子幅はW1で形成され、素子部19のZ1−Z2方向における長さ寸法はL1で形成される。図5に示すように長さ寸法L1は素子幅W1より大きい。よって素子部19はZ1−Z2方向を長手方向とした細長形状で形成される。   The first magnetic detection element 4 and the second magnetic detection element 5 are elements extending in the Z1-Z2 direction as shown in FIG. 5 (enlarged front view of the magneto-magnetic detection element in the same reference state as FIG. 1). The unit 19 is provided. The element width in the X1-X2 direction of the element part 19 is formed by W1, and the length dimension in the Z1-Z2 direction of the element part 19 is formed by L1. As shown in FIG. 5, the length dimension L1 is larger than the element width W1. Therefore, the element portion 19 is formed in an elongated shape with the Z1-Z2 direction as the longitudinal direction.

図5に示すように素子部19は複数設けられ、各素子部19はX1−X2方向に所定の間隔T1を空けて並設されている。   As shown in FIG. 5, a plurality of element portions 19 are provided, and each element portion 19 is arranged in parallel at a predetermined interval T1 in the X1-X2 direction.

図5に示すように、各素子部19のZ1−Z2方向における端部間は接続部20により接続されている。接続部20は非磁性導電材料による電極層で形成されたり、あるいはハードバイアス層等で形成される。磁気検出素子4,5は、素子部19と接続部20によりミアンダ形状で形成される。なお接続部20は、図1に示すごとく、素子部19と同じ層構成で形成され、素子部19の層構成で一体化されたミアンダ形状であってもよい。ただし、かかる場合、接続部20の位置も外部磁界を検知する感度領域になってしまうため、接続部20の位置での感度を弱めるために図1に示すように湾曲形状で形成することが望ましい。   As shown in FIG. 5, the end portions of each element portion 19 in the Z1-Z2 direction are connected by a connecting portion 20. The connection portion 20 is formed of an electrode layer made of a nonmagnetic conductive material, or is formed of a hard bias layer or the like. The magnetic detection elements 4 and 5 are formed in a meander shape by the element part 19 and the connection part 20. As shown in FIG. 1, the connecting portion 20 may be formed in the same layer configuration as the element portion 19 and may have a meander shape integrated with the layer configuration of the element portion 19. However, in such a case, since the position of the connecting portion 20 also becomes a sensitivity region for detecting an external magnetic field, in order to weaken the sensitivity at the position of the connecting portion 20, it is desirable to form it in a curved shape as shown in FIG. .

素子部19は、図6に示す多層構造で形成される。図6に示すように素子部19はキャップ基板2の裏面2a側からシード層30、第1磁性層31、非磁性層32、第2磁性層33及び保護層34の順に積層される。シード層30はNiFeCrあるいはCr等によって形成される。シード層30は、各層の結晶配向性を整えるために設けられる層である。シード層30は形成されなくてもよい。また、シード層30とキャップ基板2の間には、Ta等で形成される非磁性の下地層が形成されていてもよい。   The element part 19 is formed in the multilayer structure shown in FIG. As shown in FIG. 6, the element portion 19 is laminated in order of the seed layer 30, the first magnetic layer 31, the nonmagnetic layer 32, the second magnetic layer 33, and the protective layer 34 from the back surface 2 a side of the cap substrate 2. The seed layer 30 is formed of NiFeCr or Cr. The seed layer 30 is a layer provided for adjusting the crystal orientation of each layer. The seed layer 30 may not be formed. Further, a nonmagnetic underlayer made of Ta or the like may be formed between the seed layer 30 and the cap substrate 2.

第1磁性層31は、Ni−Fe層35、及びCo−Fe層36の順に積層されている。
非磁性層32はCu、Ru、Rh、Ir、Cr、Reのうち1種あるいは2種以上の合金で形成されていることが好ましい。
The first magnetic layer 31 is laminated in the order of the Ni—Fe layer 35 and the Co—Fe layer 36.
The nonmagnetic layer 32 is preferably formed of one or more alloys of Cu, Ru, Rh, Ir, Cr, and Re.

第2磁性層33は、Co−Fe層37及びNi−Fe層38の順に積層されている。
保護層34は、例えばTaで形成される。保護層34の形成は必須でないが、形成したほうがよい。
The second magnetic layer 33 is laminated in the order of the Co—Fe layer 37 and the Ni—Fe layer 38.
The protective layer 34 is made of Ta, for example. The formation of the protective layer 34 is not essential, but it is better to form it.

図6に示すように第1磁性層31と第2磁性層33は非磁性層32を介して積層されている。第1磁性層31と第2磁性層33は、共にCo−Fe層36,37とNi−Fe層35,38との積層構造である。そして図6に示すように第1磁性層31を構成するCo−Fe層36と、第2磁性層33を構成するCo−Fe層37とが非磁性層32を介して対向している。   As shown in FIG. 6, the first magnetic layer 31 and the second magnetic layer 33 are laminated via the nonmagnetic layer 32. Both the first magnetic layer 31 and the second magnetic layer 33 have a laminated structure of Co—Fe layers 36 and 37 and Ni—Fe layers 35 and 38. As shown in FIG. 6, the Co—Fe layer 36 constituting the first magnetic layer 31 and the Co—Fe layer 37 constituting the second magnetic layer 33 are opposed to each other with the nonmagnetic layer 32 interposed therebetween.

第1磁性層31及び第2磁性層33は、共に同じ磁性材料で形成されることが好ましい。これにより第1磁性層31及び第2磁性層33のMs・t(Msは飽和磁化、tは膜厚)の調整を行いやすい。   Both the first magnetic layer 31 and the second magnetic layer 33 are preferably formed of the same magnetic material. Thereby, it is easy to adjust Ms · t (Ms is saturation magnetization and t is film thickness) of the first magnetic layer 31 and the second magnetic layer 33.

第1磁性層31と第2磁性層33は、Ni−Fe、Co−Fe以外の磁性材料で形成されてもよい。また、各磁性層31,33は単層構造であっても積層構造であってもどちらでもよい。   The first magnetic layer 31 and the second magnetic layer 33 may be formed of a magnetic material other than Ni—Fe or Co—Fe. Further, each of the magnetic layers 31 and 33 may have a single layer structure or a laminated structure.

ただし図6のように、各磁性層31,33がNi−Fe層35,38とCo−Fe層36,37の積層構造で形成され、Co−Fe層36,37が非磁性層32を介して対向した形態であることが好ましい。これにより、熱を加えたときにNiFeが非磁性層32へ拡散するのを抑制できる。   However, as shown in FIG. 6, each of the magnetic layers 31, 33 is formed by a stacked structure of Ni—Fe layers 35, 38 and Co—Fe layers 36, 37, and the Co—Fe layers 36, 37 are interposed via the nonmagnetic layer 32. Are preferably opposed to each other. Thereby, it is possible to prevent NiFe from diffusing into the nonmagnetic layer 32 when heat is applied.

第1磁性層31と第2磁性層33は共に外部磁界に対して磁化変動可能となっている。すなわちGMR素子の固定磁性層のように磁化固定されていない。   Both the first magnetic layer 31 and the second magnetic layer 33 can change the magnetization with respect to an external magnetic field. That is, the magnetization is not fixed like the pinned magnetic layer of the GMR element.

本実施形態では、素子部19の長手方向(図1、図5、図6の基準状態ではZ1−Z2方向)が、感度軸方向である。   In the present embodiment, the longitudinal direction of the element portion 19 (Z1-Z2 direction in the reference state of FIGS. 1, 5, and 6) is the sensitivity axis direction.

図7に示すように、無磁場状態(外部磁界が作用していない状態)では、第1磁性層31の磁化方向F1が、感度軸方向に対して直交する基準方向から感度軸方向のうち第1の方向に傾いており、第2磁性層33の磁化方向F2が、前記基準方向から前記感度軸方向の前記第1の方向とは逆方向の第2の方向に傾いている。このとき、前記第1磁性層31の磁化方向F1と基準方向間の角度θ1と、前記第2の磁性層33の磁化方向F2と基準方向間の角度θ2とがほぼ同角度である。そして、第1磁性層31の磁化方向F1と第2磁性層33の磁化方向F2間の角度θ3は、90度〜180度の範囲内となっている。   As shown in FIG. 7, in the non-magnetic state (the state in which no external magnetic field is applied), the magnetization direction F1 of the first magnetic layer 31 is the first of the sensitivity axis directions from the reference direction orthogonal to the sensitivity axis direction. The magnetization direction F2 of the second magnetic layer 33 is inclined from the reference direction to a second direction opposite to the first direction in the sensitivity axis direction. At this time, the angle θ1 between the magnetization direction F1 of the first magnetic layer 31 and the reference direction and the angle θ2 between the magnetization direction F2 of the second magnetic layer 33 and the reference direction are substantially the same angle. The angle θ3 between the magnetization direction F1 of the first magnetic layer 31 and the magnetization direction F2 of the second magnetic layer 33 is in the range of 90 degrees to 180 degrees.

図6に示すように、本実施形態では、無磁場状態では、第1磁性層31の磁化方向F1と、第2磁性層33の磁化方向F2とが、感度軸方向に向けて、略反平行となっていることが好ましい。   As shown in FIG. 6, in the present embodiment, in the non-magnetic state, the magnetization direction F1 of the first magnetic layer 31 and the magnetization direction F2 of the second magnetic layer 33 are substantially anti-parallel toward the sensitivity axis direction. It is preferable that

ここで「略反平行」とは、第1磁性層31の磁化方向F1と第2磁性層33の磁化方向F2間の角度θ3(鈍角)が150度〜180度の範囲内を意味する。   Here, “substantially antiparallel” means that the angle θ3 (obtuse angle) between the magnetization direction F1 of the first magnetic layer 31 and the magnetization direction F2 of the second magnetic layer 33 is within a range of 150 degrees to 180 degrees.

第1磁性層31と第2磁性層33との間にはRKKY相互作用による結合磁界が生じている。   A coupling magnetic field is generated between the first magnetic layer 31 and the second magnetic layer 33 by the RKKY interaction.

図8(a)は、図6の積層構造を備える磁気検出素子に対して感度軸方向の直交方向から外部磁界を作用させたときの抵抗変化を示し、図8(b)は、図6の積層構造を備える磁気検出素子に対して感度軸方向から外部磁界を作用させたときの抵抗変化を示す。図8では、−50Oeから+50Oeの範囲内での抵抗変化を示している。   FIG. 8A shows a resistance change when an external magnetic field is applied to the magnetic detection element having the laminated structure of FIG. 6 from the direction orthogonal to the sensitivity axis direction, and FIG. The resistance change when an external magnetic field is made to act on a magnetic detection element having a laminated structure from the sensitivity axis direction is shown. FIG. 8 shows the resistance change within the range of −50 Oe to +50 Oe.

実験は、素子幅W1を3μm(アスペクト比(L1/W1)は100)とした1つの素子部19を用いて行った。また、無磁場状態(外部磁界が0Oe)での第1磁性層31の磁化方向F1と第2磁性層33の磁化方向F2との間の角度θ3(鈍角)が、約180度であった。   The experiment was performed using one element portion 19 having an element width W1 of 3 μm (an aspect ratio (L1 / W1) of 100). In addition, the angle θ3 (obtuse angle) between the magnetization direction F1 of the first magnetic layer 31 and the magnetization direction F2 of the second magnetic layer 33 in the absence of a magnetic field (external magnetic field is 0 Oe) was about 180 degrees.

図8(a)に示すように感度軸方向と異なる方向からの外部磁界(外乱磁場)に対してはあまり抵抗値が変化しない。   As shown in FIG. 8A, the resistance value does not change much with respect to an external magnetic field (disturbance magnetic field) from a direction different from the sensitivity axis direction.

一方、図8(b)に示すように無磁場状態(外部磁界が0Oe)から感度軸方向に外部磁界を大きくしていくと、外部磁界と、RKKY相互作用による結合磁界とにより、第1磁性層31の磁化方向F1と第2磁性層33の磁化方向F2とが反平行になり抵抗値が最大値に達する。さらに感度軸方向への外部磁界を大きくしていくと、反平行状態が崩れ、第1磁性層31の磁化方向F1と第2磁性層33の磁化方向F2とが平行状態に近づき、抵抗値が徐々に低下する。   On the other hand, as shown in FIG. 8B, when the external magnetic field is increased in the sensitivity axis direction from the non-magnetic state (external magnetic field is 0 Oe), the first magnetic field is generated by the external magnetic field and the coupling magnetic field due to the RKKY interaction. The magnetization direction F1 of the layer 31 and the magnetization direction F2 of the second magnetic layer 33 are antiparallel, and the resistance value reaches the maximum value. When the external magnetic field in the sensitivity axis direction is further increased, the antiparallel state is lost, the magnetization direction F1 of the first magnetic layer 31 and the magnetization direction F2 of the second magnetic layer 33 approach a parallel state, and the resistance value is increased. Decrease gradually.

図8(b)に示すように、感度軸方向の第1の方向(例えばプラス値の方向)と第2の方向(例えばマイナス値の方向)のどちらの外部磁界に対してもほぼ同様のRH特性を有している。   As shown in FIG. 8B, substantially the same RH is applied to both external magnetic fields in the first direction (for example, the positive value direction) and the second direction (for example, the negative value direction) in the sensitivity axis direction. It has characteristics.

図1に示すように、第1磁気検出素子4及び第2磁気検出素子5は、前記回動錘11の回動領域22に対するキャップ基板2の対向領域に設けられる。このとき、磁気検出素子4,5は、キャップ基板2の表面に設けてもよいが、その場合は、磁気検出素子4,5と磁石8間の距離が離れることで、磁石8から磁気検出素子4,5に作用する外部磁界が弱まったり、また磁気検出素子4,5の表面側に新たに蓋部を設ける必要がある。よって、磁気検出素子4,5は、キャップ基板2の裏面2aに設けることが好適である。   As shown in FIG. 1, the first magnetic detection element 4 and the second magnetic detection element 5 are provided in a region where the cap substrate 2 faces the rotation region 22 of the rotation weight 11. At this time, the magnetic detection elements 4 and 5 may be provided on the surface of the cap substrate 2. In this case, the distance between the magnetic detection elements 4 and 5 and the magnet 8 is increased so that the magnetic detection elements are separated from the magnet 8. The external magnetic field acting on the magnetic detection elements 4 and 5 is weakened, and it is necessary to newly provide a lid on the surface side of the magnetic detection elements 4 and 5. Therefore, the magnetic detection elements 4 and 5 are preferably provided on the back surface 2 a of the cap substrate 2.

また図1に示すように、固定抵抗用素子6,7は、前記キャップ基板2の前記対向領域外に設けられる。固定抵抗用素子6,7は第1磁気検出素子4及び第2磁気検出素子5と同じ素子構成で形成される(図5,図6参照)。ただし、固定抵抗用素子6,7は、上記のように、キャップ基板2の対向領域外に設けられ、次に説明するMEMS傾斜センサ1を回転動作させても、磁石8と固定抵抗用素子6,7が対向することは無く、磁石8からの外部磁界を受けない。よって固定抵抗用素子6,7を磁気検出素子4,5と同じ素子構成で形成しても、磁石8の回動動作に伴う電気抵抗変化をほぼ無くすことが出来る。そして、磁気検出素子4,5及び固定抵抗用素子6,7により図9に示すブリッジ回路が構成されている。   As shown in FIG. 1, the fixed resistance elements 6 and 7 are provided outside the facing region of the cap substrate 2. The fixed resistance elements 6 and 7 are formed with the same element configuration as the first magnetic detection element 4 and the second magnetic detection element 5 (see FIGS. 5 and 6). However, the fixed resistance elements 6 and 7 are provided outside the facing region of the cap substrate 2 as described above, and the magnet 8 and the fixed resistance element 6 can be operated even when the MEMS tilt sensor 1 described below is rotated. , 7 do not face each other, and does not receive an external magnetic field from the magnet 8. Therefore, even if the fixed resistance elements 6 and 7 are formed with the same element configuration as the magnetic detection elements 4 and 5, it is possible to substantially eliminate the electrical resistance change accompanying the rotation operation of the magnet 8. The magnetic detection elements 4 and 5 and the fixed resistance elements 6 and 7 constitute a bridge circuit shown in FIG.

続いて本実施形態のMEMS傾斜センサ1による回転検出原理について説明する。
図1の基準状態から、図3のように、MEMS傾斜センサ1を時計方向に90度回転させる。すると、回動錘11は回動軸12を回動中心として回動して、重力方向に一定の姿勢を保つ。
Next, the principle of rotation detection by the MEMS tilt sensor 1 of this embodiment will be described.
From the reference state of FIG. 1, the MEMS tilt sensor 1 is rotated 90 degrees clockwise as shown in FIG. Then, the rotating weight 11 rotates about the rotating shaft 12 and maintains a constant posture in the direction of gravity.

磁気検出素子4,5はキャップ基板2に固定されているため、MEMS傾斜センサ1を基準状態から時計方向に90度、回転させると、磁気検出素子4,5も基準状態から時計方向に90度回転する。そのため、図3に示すように、常に重力方向に向いた姿勢を保つ回動錘11と、基準状態から時計方向に90度回転した第2磁気検出素子5とが対向した状態になる。このとき、第2磁気検出素子5を構成する素子部19(図5も参照)の長手方向(感度軸方向)に磁石8の着磁方向が一致するため、前記第2磁気検出素子5の感度軸方向へ向けて前記磁石8から外部磁界が作用し、図8(b)で説明したRH特性により第2磁気検出素子5の電気抵抗値が低下する。   Since the magnetic detection elements 4 and 5 are fixed to the cap substrate 2, when the MEMS tilt sensor 1 is rotated 90 degrees clockwise from the reference state, the magnetic detection elements 4 and 5 are also 90 degrees clockwise from the reference state. Rotate. Therefore, as shown in FIG. 3, the rotating weight 11 that always maintains the posture directed in the direction of gravity and the second magnetic detection element 5 rotated 90 degrees in the clockwise direction from the reference state face each other. At this time, since the magnetization direction of the magnet 8 coincides with the longitudinal direction (sensitivity axis direction) of the element portion 19 (see also FIG. 5) constituting the second magnetic detection element 5, the sensitivity of the second magnetic detection element 5 is increased. An external magnetic field acts from the magnet 8 in the axial direction, and the electrical resistance value of the second magnetic detection element 5 decreases due to the RH characteristics described with reference to FIG.

一方、図3の回転状態では、固定抵抗素子として機能する固定抵抗用素子6,7のみならず、磁石8から離れる側の第1磁気検出素子4も外部磁界を受けないため電気抵抗値は変化しない。よって、図9のブリッジ回路からは、第2磁気検出素子5の電気抵抗変化に基づく差動出力が得られ、この差動出力に基づいて、MEMS傾斜センサ1が90度、時計方向に回転したことを検知することが出来る。   On the other hand, in the rotation state of FIG. 3, not only the fixed resistance elements 6 and 7 functioning as fixed resistance elements, but also the first magnetic detection element 4 on the side away from the magnet 8 does not receive an external magnetic field, so that the electric resistance value changes. do not do. Therefore, the differential output based on the electrical resistance change of the second magnetic detection element 5 is obtained from the bridge circuit of FIG. 9, and the MEMS tilt sensor 1 is rotated 90 degrees clockwise based on the differential output. Can be detected.

続いて、MEMS傾斜センサ1を基準状態から反時計方向に90度、回転させると、磁気検出素子4,5も基準状態から反時計方向に90度回転する。そのため、図4に示すように、常に重力方向に向いた姿勢を保つ回動錘11と、基準状態から反時計方向に90度回転した第1磁気検出素子4とが対向した状態になる。このとき、第1磁気検出素子4を構成する素子部19(図5も参照)の長手方向(感度軸方向)に磁石8の着磁方向が一致するため、前記第1磁気検出素子4の感度軸方向へ向けて前記磁石8から外部磁界が作用し、図8(b)で説明したように第1磁気検出素子4の電気抵抗値が低下する。   Subsequently, when the MEMS tilt sensor 1 is rotated 90 degrees counterclockwise from the reference state, the magnetic detection elements 4 and 5 are also rotated 90 degrees counterclockwise from the reference state. Therefore, as shown in FIG. 4, the rotating weight 11 that always maintains the posture directed in the direction of gravity and the first magnetic detection element 4 rotated 90 degrees counterclockwise from the reference state are opposed to each other. At this time, since the magnetization direction of the magnet 8 coincides with the longitudinal direction (sensitivity axis direction) of the element portion 19 (see also FIG. 5) constituting the first magnetic detection element 4, the sensitivity of the first magnetic detection element 4. An external magnetic field acts from the magnet 8 in the axial direction, and the electric resistance value of the first magnetic detection element 4 decreases as described with reference to FIG.

一方、図4の回転状態では、固定抵抗素子として機能する固定抵抗用素子6,7のみならず、磁石8から離れる側の第2磁気検出素子5も外部磁界を受けないため電気抵抗値は変化しない。よって、図9のブリッジ回路からは、第1磁気検出素子4の電気抵抗変化に基づく差動出力が得られ、この差動出力に基づいて、MEMS傾斜センサ1が90度、反時計方向に回転したことを検知することが出来る。   On the other hand, in the rotation state of FIG. 4, not only the fixed resistance elements 6 and 7 that function as fixed resistance elements, but also the second magnetic detection element 5 on the side away from the magnet 8 does not receive an external magnetic field, so that the electric resistance value changes. do not do. Therefore, a differential output based on the change in the electric resistance of the first magnetic detection element 4 is obtained from the bridge circuit of FIG. 9, and the MEMS tilt sensor 1 rotates 90 degrees counterclockwise based on this differential output. Can be detected.

本実施形態では、図1,図2に示すように、MEMS技術を用いてMEMS傾斜センサ1を形成したことで従来に比べて傾斜センサの小型化を図ることができ、また製造コストを低減することが可能である。   In this embodiment, as shown in FIGS. 1 and 2, the MEMS tilt sensor 1 is formed using the MEMS technology, so that the tilt sensor can be reduced in size as compared with the prior art, and the manufacturing cost is reduced. It is possible.

また本実施形態では、図5ないし図8の構成及び特性を備える磁気検出素子4,5を用いている。すなわち図6に示すように、外部磁界に対して磁化変動可能な第1磁性層31及び第2磁性層33とが非磁性層32を介して対向する素子部19を備え、無磁場状態では、第1磁性層31の磁化方向F1と第2磁性層33の磁化方向F2とが図7に示す関係を備え、前記素子部19は感度軸方向を長手方向とした細長形状で形成されている。このため図8に示すように、感度軸方向からの外部磁界に対して電気抵抗が大きく変動し、一方、感度軸方向とは異なる方向からの外部磁界(外乱磁場)に対してはさほど抵抗変化しないRH特性を備える。   In the present embodiment, the magnetic detection elements 4 and 5 having the configurations and characteristics shown in FIGS. 5 to 8 are used. That is, as shown in FIG. 6, the first magnetic layer 31 and the second magnetic layer 33 that can change the magnetization with respect to an external magnetic field are provided with the element portion 19 facing each other with the nonmagnetic layer 32 interposed therebetween. The magnetization direction F1 of the first magnetic layer 31 and the magnetization direction F2 of the second magnetic layer 33 have the relationship shown in FIG. 7, and the element portion 19 is formed in an elongated shape with the sensitivity axis direction as the longitudinal direction. For this reason, as shown in FIG. 8, the electric resistance greatly fluctuates with respect to the external magnetic field from the sensitivity axis direction, while the resistance changes greatly with respect to the external magnetic field (disturbance magnetic field) from a direction different from the sensitivity axis direction. RH characteristics not to be provided.

そして図3,図4に示すように、磁石8と磁気検出素子4,5とが対向するとき、磁石8の着磁方向と、磁気検出素子4,5を構成する素子部19の長手方向(感度軸方向)とが一致するように、図1に示す基準状態での磁石8及び磁気検出素子4,5の配置を規制する。   3 and 4, when the magnet 8 and the magnetic detection elements 4 and 5 face each other, the magnetization direction of the magnet 8 and the longitudinal direction of the element portion 19 constituting the magnetic detection elements 4 and 5 ( The arrangement of the magnet 8 and the magnetic detection elements 4 and 5 in the reference state shown in FIG.

これにより、図3、図4に示すように、磁石8と磁気検出素子4,5とが略対向状態のときに、磁気検出素子4,5に感度軸方向からの外部磁界が作用して図8(b)に示すように電気抵抗値が低下し、図9の電気回路からの差動出力により、MEMS傾斜センサ1が略90度、時計方向あるいは反時計方向に回転したことを検知することが可能である。   As a result, as shown in FIGS. 3 and 4, when the magnet 8 and the magnetic detection elements 4 and 5 are substantially opposed to each other, an external magnetic field from the sensitivity axis direction acts on the magnetic detection elements 4 and 5. As shown in FIG. 8B, the electrical resistance value decreases, and the MEMS tilt sensor 1 is detected to be rotated approximately 90 degrees clockwise or counterclockwise by the differential output from the electrical circuit of FIG. Is possible.

図5ないし図8の構成及び特性を備える磁気検出素子4,5を用いることで、図8(a)に示すように外部磁界が感度軸方向と異なる方向から作用しても、磁気検出素子4,5の電気抵抗値はあまり変化しない。したがって、外乱磁場耐性を向上させることができ誤作動を抑制できる。また、図1の基準状態からMEMS傾斜センサ1を回転させて、図3あるいは図4の90度回転に至る途中段階で、磁石8から磁気検出素子4,5に外部磁界が作用しても、その外部磁界の方向は感度軸方向とは異なっているので、抵抗値変化は小さく、回転していることを検知せず、図3、図4に示すように、磁気検出素子4,5と磁石8とが略対向状態になることで、大きな電気抵抗変化が生じて、回転状態を検知できる。すなわち、回転検知は、磁気検出素子4,5と磁石8とが略対向状態のときと決められるため、回転検出精度の向上を図ることが出来る。また、図5ないし図8の構成及び特性を備える磁気検出素子4,5は、図8(b)に示すように、感度軸方向からの外部磁界が第1の方向(例えばプラス値)であっても第2の方向(例えばマイナス値)であってもほぼ同じ電気抵抗変化を示す。したがって、図5ないし図8の構成及び特性を備える磁気検出素子4,5を用いれば、図1に示す磁石8の着磁方向と逆の着磁方向であっても、ほぼ同じ出力特性を得ることが出来る。また換言すれば、磁石8の着磁方向を考慮しなくてよいため、磁石8の設置工程を容易にできる。   By using the magnetic detection elements 4 and 5 having the configurations and characteristics shown in FIGS. 5 to 8, even if an external magnetic field acts from a direction different from the sensitivity axis direction as shown in FIG. , 5 does not change much. Therefore, disturbance magnetic field tolerance can be improved and malfunction can be suppressed. In addition, even when an external magnetic field acts on the magnetic detection elements 4 and 5 from the magnet 8 in the middle of the rotation of the MEMS tilt sensor 1 from the reference state of FIG. Since the direction of the external magnetic field is different from the direction of the sensitivity axis, the change in resistance value is small and the rotation is not detected. As shown in FIGS. 3 and 4, the magnetic detection elements 4 and 5 and the magnet 8 is in a substantially opposite state, a large electric resistance change occurs, and the rotation state can be detected. That is, since rotation detection is determined when the magnetic detection elements 4 and 5 and the magnet 8 are substantially opposed to each other, it is possible to improve rotation detection accuracy. Further, in the magnetic detection elements 4 and 5 having the configurations and characteristics shown in FIGS. 5 to 8, as shown in FIG. 8B, the external magnetic field from the sensitivity axis direction is the first direction (for example, a positive value). Even in the second direction (for example, a negative value), the same electric resistance change is exhibited. Therefore, if the magnetic detection elements 4 and 5 having the configurations and characteristics shown in FIGS. 5 to 8 are used, substantially the same output characteristics can be obtained even in the magnetization direction opposite to the magnetization direction of the magnet 8 shown in FIG. I can do it. In other words, since it is not necessary to consider the magnetization direction of the magnet 8, the installation process of the magnet 8 can be facilitated.

なお、本実施形態では、磁気検出素子4,5として、図5ないし図8の構成及び特性を備える素子以外に、磁気抵抗効果(MR効果)を利用した磁気抵抗効果素子(MR素子)や、ホール素子等であってもよい。   In the present embodiment, as the magnetic detection elements 4 and 5, in addition to the elements having the configurations and characteristics shown in FIGS. 5 to 8, a magnetoresistive effect element (MR element) using the magnetoresistive effect (MR effect), It may be a Hall element or the like.

ただし、MR素子を用いた場合、膜面方向からの外部磁界の作用により電気抵抗値が変化するため、図3,図4のように、磁気検出素子4,5と磁石8とが略対向状態でなくても、磁石8からの外部磁界が磁気検出素子4,5に作用すれば、磁気検出素子4,5の電気抵抗値は変動しやすく、よって、外乱磁場耐性や検出精度は図5ないし図8の構成及び特性を備える磁気検出素子4,5のほうが勝ると考えられる。また、磁気検出素子4には例えば、プラス側の外部磁界が作用すると電気抵抗値が変化し、一方、マイナス側の外部磁界が作用すると電気抵抗値が変化しないMR素子の構成を用い、磁気検出素子5には、磁気検出素子4と反対のRH特性を持つMR素子の構成を用いることができる。しかしながら、係る場合は、磁気検出素子4と磁気検出素子5とを別々に形成しなければならず、プロセス数が増加する問題がある。また、磁石8の着磁方向を反対にできず一定方向に決まっているため、磁石8の設置工程の容易化を図ることが出来ない。   However, when an MR element is used, the electric resistance value changes due to the action of an external magnetic field from the film surface direction, so that the magnetic detection elements 4 and 5 and the magnet 8 are substantially opposed to each other as shown in FIGS. However, if an external magnetic field from the magnet 8 acts on the magnetic detection elements 4 and 5, the electric resistance values of the magnetic detection elements 4 and 5 are likely to fluctuate. It is considered that the magnetic detection elements 4 and 5 having the configuration and characteristics of FIG. 8 are superior. In addition, the magnetic detection element 4 uses a configuration of an MR element that changes its electrical resistance value when a positive external magnetic field acts, and does not change its electric resistance value when a negative external magnetic field acts. As the element 5, an MR element configuration having an RH characteristic opposite to that of the magnetic detection element 4 can be used. However, in such a case, the magnetic detection element 4 and the magnetic detection element 5 must be formed separately, which increases the number of processes. Moreover, since the magnetizing direction of the magnet 8 cannot be reversed and determined in a certain direction, the installation process of the magnet 8 cannot be facilitated.

また、ホール素子を用いた場合、膜面垂直方向からの外部磁界を適切にホール素子に作用させるべく、磁石8の膜厚を厚くしなければならず、MEMS傾斜センサ1の薄型化を促進できない問題がある。   Further, when the Hall element is used, the thickness of the magnet 8 must be increased so that an external magnetic field from the direction perpendicular to the film surface can be appropriately applied to the Hall element, and the thinning of the MEMS tilt sensor 1 cannot be promoted. There's a problem.

以上により、図1に示す構造のMEMS傾斜センサ1には、図5ないし図8の構成及び特性を備える磁気検出素子4,5を用いることが好適である。   As described above, it is preferable to use the magnetic detection elements 4 and 5 having the configurations and characteristics shown in FIGS. 5 to 8 in the MEMS tilt sensor 1 having the structure shown in FIG.

また本実施形態では、固定抵抗用素子6,7を磁気検出素子4,5と同じ素子構成で形成している。よって、磁気検出素子4,5と固定抵抗用素子6,7とをキャップ基板2の裏面2aに同時に形成できるため、製造効率を向上させることができ、製造コストの低減をより効果的に図ることが出来る。また仮に外乱磁場が作用して電気抵抗値が変化しても、全ての磁気検出素子4,5及び固定抵抗用素子6,7が同じ電気抵抗変化を示すため、出力変動は小さく、誤作動を生じにくい構成にできる。   In the present embodiment, the fixed resistance elements 6 and 7 are formed in the same element configuration as the magnetic detection elements 4 and 5. Therefore, since the magnetic detection elements 4 and 5 and the fixed resistance elements 6 and 7 can be simultaneously formed on the back surface 2a of the cap substrate 2, the manufacturing efficiency can be improved and the manufacturing cost can be reduced more effectively. I can do it. Also, even if the disturbance magnetic field acts and the electric resistance value changes, all the magnetic detection elements 4 and 5 and the fixed resistance elements 6 and 7 show the same electric resistance change, so the output fluctuation is small and malfunctions occur. It is possible to make the configuration difficult to occur.

次に図10を用いて図1のMEMS傾斜センサ1の製造方法を説明する。図10の各図は製造工程中におけるMEMS傾斜センサ1の断面図である。   Next, the manufacturing method of the MEMS inclination sensor 1 of FIG. 1 is demonstrated using FIG. Each drawing of FIG. 10 is a cross-sectional view of the MEMS tilt sensor 1 during the manufacturing process.

図10(a)の工程では、シリコン基板より成る支持基板3の表面3aに、凹部3b、スティッキング防止部9を形成する。また、図10(e)の酸化絶縁層(犠牲層)を除去するときに、支持基板3の表面3aを保護すべく、薄い酸化絶縁層を成膜しておいてもよい。   In the step of FIG. 10A, the recess 3b and the sticking prevention portion 9 are formed on the surface 3a of the support substrate 3 made of a silicon substrate. Further, when the oxide insulating layer (sacrificial layer) in FIG. 10E is removed, a thin oxide insulating layer may be formed to protect the surface 3a of the support substrate 3.

次に図10(b)の工程では、シリコン基板からなる中間層15を用意する。中間層15の裏面全体に酸化絶縁層(SiO2)13が形成されている。また、中間層15の表面に図1に示す磁石8を設置する。そして、支持基板3と中間層15とを酸化絶縁層13を介して例えば常温接合にて固定する。 Next, in the step of FIG. 10B, an intermediate layer 15 made of a silicon substrate is prepared. An oxide insulating layer (SiO 2 ) 13 is formed on the entire back surface of the intermediate layer 15. Further, the magnet 8 shown in FIG. 1 is installed on the surface of the intermediate layer 15. Then, the support substrate 3 and the intermediate layer 15 are fixed by, for example, room temperature bonding through the oxide insulating layer 13.

次に図10(c)の工程では、中間層15をエッチングして、枠体10、回動錘11及び回動軸12にパターン加工する。   Next, in the process of FIG. 10C, the intermediate layer 15 is etched to pattern the frame body 10, the rotating weight 11, and the rotating shaft 12.

次に図10(d)の工程では、裏面2aに、凹部2b、スティッキング防止部14が形成され、且つ磁気検出素子4,5及び固定抵抗用素子6,7が設置されたキャップ基板2を、中間層15の枠体10及び回動軸12に例えば常温接合にて固定する。また図10(d)に示すように、キャップ基板2に微細な貫通孔39を形成しておく。   Next, in the step of FIG. 10D, the cap substrate 2 in which the concave portion 2b and the sticking prevention portion 14 are formed on the back surface 2a and the magnetic detection elements 4 and 5 and the fixed resistance elements 6 and 7 are installed. It fixes to the frame 10 and the rotating shaft 12 of the intermediate | middle layer 15 by normal temperature joining, for example. Further, as shown in FIG. 10 (d), fine through holes 39 are formed in the cap substrate 2.

そして図10(e)の工程では、回動軸12と支持基板3間の酸化絶縁層13、及び枠体10と支持基板3間の酸化絶縁層13を残して他の酸化絶縁層13が除去されるように、エッチングガスやエッチング液を貫通孔39に通してエッチングにより前記酸化絶縁層13を除去する。このとき、図10(e)に示すように回動錘11の裏面にも一部、酸化絶縁層13が残される。   10E, the other oxide insulating layer 13 is removed while leaving the oxide insulating layer 13 between the rotating shaft 12 and the support substrate 3 and the oxide insulating layer 13 between the frame 10 and the support substrate 3. As described above, the oxide insulating layer 13 is removed by etching with an etching gas or an etchant passing through the through holes 39. At this time, as shown in FIG. 10E, a part of the oxide insulating layer 13 is also left on the back surface of the rotating weight 11.

MEMS傾斜センサ1は、携帯電話、ゲーム機、デジタルカメラ、ビデオカメラ、自動車、自動二輪車等に搭載できるが、特に用途を限定するものでない。   The MEMS tilt sensor 1 can be mounted on a mobile phone, a game machine, a digital camera, a video camera, an automobile, a motorcycle, or the like, but the application is not particularly limited.

また図1のMEMS傾斜センサ1の構成では、図3、図4に示すように、ちょうど図1の基準状態からMEMS傾斜センサ1を90度、時計方向あるいは反時計方向に回転させることで、回転状態を検知できる構成であるが、検知される回転角度は磁気検出素子4,5の設置位置により任意に設定できる。このとき、図5ないし図8の構成及び特性を備える磁気検出素子4,5を用いる場合、回転検知角度になったら、磁気検出素子4,5と磁石8とが対向状態になり、磁石8の着磁方向と磁気検出素子4,5の素子部19の長手方向(感度軸方向)とが一致するように、磁気検出素子4,5の設置位置及び向きを回転検知角度に合わせて調整することが必要である。   Further, in the configuration of the MEMS tilt sensor 1 of FIG. 1, as shown in FIGS. 3 and 4, the MEMS tilt sensor 1 is rotated by 90 degrees clockwise or counterclockwise from the reference state of FIG. Although the configuration can detect the state, the detected rotation angle can be arbitrarily set according to the installation position of the magnetic detection elements 4 and 5. At this time, when the magnetic detection elements 4 and 5 having the configurations and characteristics shown in FIGS. 5 to 8 are used, the magnetic detection elements 4 and 5 and the magnet 8 are opposed to each other when the rotation detection angle is reached. Adjust the installation position and orientation of the magnetic detection elements 4 and 5 according to the rotation detection angle so that the magnetization direction and the longitudinal direction (sensitivity axis direction) of the element portion 19 of the magnetic detection elements 4 and 5 coincide. is required.

また、図1では、中心線C−Cの両側に一つずつ磁気検出素子4,5を設置しているが、磁気検出素子4,5の設置数は任意に決定できる。例えば、回転検知角度を30度、60度、90度とする場合には、夫々の回転検知角度に合わせて、左右両側に3個ずつ磁気検出素子4,5を設定すればよい。   In FIG. 1, the magnetic detection elements 4 and 5 are installed one by one on both sides of the center line CC, but the number of magnetic detection elements 4 and 5 can be arbitrarily determined. For example, when the rotation detection angles are 30 degrees, 60 degrees, and 90 degrees, three magnetic detection elements 4 and 5 may be set on each of the left and right sides according to the rotation detection angles.

本実施形態におけるMEMS傾斜センサの透視正面図、The perspective front view of the MEMS inclination sensor in this embodiment, 図1に示すA−A線から切断し矢印方向から見たMEMS傾斜センサの断面図、Sectional drawing of the MEMS inclination sensor cut | disconnected from the AA line shown in FIG. 図1の基準状態からMEMS傾斜センサを時計方向に90度回転させたときのMEMS傾斜センサの透視正面図、FIG. 3 is a perspective front view of the MEMS tilt sensor when the MEMS tilt sensor is rotated 90 degrees clockwise from the reference state of FIG. 図1の基準状態からMEMS傾斜センサを反時計方向に90度回転させたときのMEMS傾斜センサの透視正面図、FIG. 3 is a perspective front view of the MEMS tilt sensor when the MEMS tilt sensor is rotated 90 degrees counterclockwise from the reference state of FIG. 1; 本実施形態における磁気検出素子の一例を示す正面図、The front view which shows an example of the magnetic detection element in this embodiment, 図5の素子部をB−B線に沿って切断し矢印方向から見た部分拡大断面図、FIG. 5 is a partially enlarged cross-sectional view of the element portion of FIG. 5 cut along the line BB and seen from the arrow direction; 図6の磁気検出素子を構成する第1磁性層と第2磁性層の磁化関係を示す模式図、FIG. 7 is a schematic diagram showing a magnetization relationship between a first magnetic layer and a second magnetic layer constituting the magnetic detection element of FIG. 図8(a)は、感度軸方向に対して直交する方向から外部磁界(外乱磁場)が作用したときの磁気検出素子のRH曲線、図8(b)は、感度軸方向から外部磁界が作用したときの磁気検出素子のRH曲線、FIG. 8A shows an RH curve of the magnetic detection element when an external magnetic field (disturbance magnetic field) acts from a direction orthogonal to the sensitivity axis direction, and FIG. 8B shows an external magnetic field acting from the sensitivity axis direction. RH curve of the magnetic detection element when MEMS傾斜センサの電気回路図、Electrical circuit diagram of MEMS tilt sensor, 本実施形態のMEMS傾斜センサの製造方法を示す工程図(断面図)、Process drawing (sectional drawing) which shows the manufacturing method of the MEMS inclination sensor of this embodiment,

1 MEMS傾斜センサ
2 キャップ基板
3 支持基板
4、5 磁気検出素子
6、7 固定抵抗用素子
8 磁石
9、14 スティッキング防止部
11 回動錘
12 回動軸
13 酸化絶縁層
15 中間層
19 素子部
22 回動領域
31 第1磁性層
32 非磁性層
33 第2磁性層
DESCRIPTION OF SYMBOLS 1 MEMS inclination sensor 2 Cap board | substrate 3 Support board | substrate 4, 5 Magnetic detection element 6, 7 Fixed resistance element 8 Magnet 9, 14 Sticking prevention part 11 Rotating weight 12 Rotating shaft 13 Oxide insulating layer 15 Intermediate layer 19 Element part 22 Rotating region 31 First magnetic layer 32 Nonmagnetic layer 33 Second magnetic layer

Claims (4)

磁石と、前記磁石と非接触に配置され、前記磁石からの外部磁界を受けて電気特性が変化する磁気検出素子とを有してなるMEMS傾斜センサにおいて、
第1基板と、第2基板と、前記第1基板と前記第2基板の間に位置する中間層と、を有し、
前記中間層は、回動錘と、前記回動錘に形成された貫通孔に挿通され前記第1基板と前記第2基板に固定支持される回動軸と、を有し、前記回動錘は、重力方向に向けて回動可能に支持されており、
前記回動錘には前記磁石が設置され、前記回動錘の回動領域に対する前記第1基板の対向領域には、前記磁気検出素子が設置されており、
前記MEMS傾斜センサの基準状態では、回動軸の中心を通って重力方向に平行に引いた中心線の両側に、夫々、前記磁気検出素子が配置されており、
前記MEMS傾斜センサを前記基準状態から時計方向あるいは反時計方向に回転させると、前記回動錘が回動して重力方向に一定の姿勢を保ち、一方、前記磁気検出素子が時計方向あるいは反時計方向に回転し、このとき前記磁石と近づく側の前記磁気検出素子は前記磁石から外部磁界を受けることで電気特性が変化し、この電気特性変化に基づいて回転状態を知ることができることを特徴とするMEMS傾斜センサ。
In a MEMS inclination sensor comprising a magnet and a magnetic detection element that is arranged in a non-contact manner with the magnet and changes its electrical characteristics in response to an external magnetic field from the magnet.
A first substrate, a second substrate, and an intermediate layer located between the first substrate and the second substrate;
The intermediate layer includes a rotating weight, and a rotating shaft that is inserted into a through-hole formed in the rotating weight and is fixedly supported by the first substrate and the second substrate. Is supported so that it can rotate in the direction of gravity,
The magnet is installed on the rotating weight, and the magnetic detection element is installed in a region facing the first substrate with respect to the rotating area of the rotating weight,
In the reference state of the MEMS tilt sensor, the magnetic detection elements are disposed on both sides of a center line drawn in parallel to the direction of gravity through the center of the rotation shaft,
When the MEMS tilt sensor is rotated clockwise or counterclockwise from the reference state, the rotating weight rotates and maintains a constant posture in the gravity direction, while the magnetic detection element is rotated clockwise or counterclockwise. The magnetic detection element that rotates in the direction and approaches the magnet at this time receives an external magnetic field from the magnet, and changes its electrical characteristics, and the rotation state can be known based on the change in electrical characteristics. MEMS tilt sensor.
前記第1基板の前記対向領域外に、前記磁気検出素子と電気回路を構成する固定抵抗用素子が設けられ、前記固定抵抗用素子は前記磁気検出素子と同じ素子構成である請求項1記載のMEMS傾斜センサ。   The fixed resistance element which comprises the said magnetic detection element and an electric circuit is provided outside the said opposing area | region of the said 1st board | substrate, The said fixed resistance element is the same element structure as the said magnetic detection element. MEMS tilt sensor. 前記磁気検出素子は、感度軸方向からの外部磁界に対して電気抵抗値が変化する素子部を備え、
前記素子部は、第1磁性層と、第2磁性層とが非磁性層を介して積層された積層構造を有しており、
前記第1磁性層と前記第2磁性層は、共に前記外部磁界に対して磁化変動可能であり、
無磁場状態では、前記第1磁性層の磁化方向は、前記感度軸方向に直交する基準方向から前記感度軸方向のうち第1の方向に傾いており、前記第2磁性層の磁化方向は、前記基準方向から前記感度軸方向の前記第1の方向とは逆方向の第2の方向に傾いており、前記第1磁性層の磁化方向と前記基準方向間の角度と、前記第2磁性層の磁化方向と前記基準方向間の角度とが、ほぼ同角度であり、前記第1磁性層の磁化方向と、前記第2磁性層の磁化方向との間の角度が90度〜180度の範囲内であり、
前記素子部は、前記感度軸方向を長手方向とした細長形状で形成されており、前記MEMS傾斜センサを基準状態から時計方向あるいは反時計方向に回転させて、磁石と磁気検出素子とが対向状態になったとき、磁石の着磁方向と、前記素子部の長手方向とが一致するように、前記磁石及び前記素子部の配置が規制されている請求項1又は2に記載のMEMS傾斜センサ。
The magnetic detection element includes an element portion whose electric resistance value changes with respect to an external magnetic field from the sensitivity axis direction,
The element portion has a laminated structure in which a first magnetic layer and a second magnetic layer are laminated via a nonmagnetic layer,
Both the first magnetic layer and the second magnetic layer can change magnetization with respect to the external magnetic field,
In the absence of a magnetic field, the magnetization direction of the first magnetic layer is inclined from the reference direction orthogonal to the sensitivity axis direction to the first direction of the sensitivity axis direction, and the magnetization direction of the second magnetic layer is The second magnetic layer is inclined from the reference direction in a second direction opposite to the first direction in the sensitivity axis direction, the angle between the magnetization direction of the first magnetic layer and the reference direction, and the second magnetic layer And the reference direction are substantially the same angle, and the angle between the magnetization direction of the first magnetic layer and the magnetization direction of the second magnetic layer is in the range of 90 degrees to 180 degrees. Within
The element portion is formed in an elongated shape having the sensitivity axis direction as a longitudinal direction, and the magnet and the magnetic detection element are opposed to each other by rotating the MEMS tilt sensor clockwise or counterclockwise from a reference state. The MEMS inclination sensor according to claim 1 or 2, wherein the arrangement of the magnet and the element portion is regulated so that the magnetizing direction of the magnet coincides with the longitudinal direction of the element portion.
前記第1磁性層の磁化方向と、前記第2磁性層の磁化方向は、前記感度軸方向と平行な方向に向けて略反平行である請求項3記載のMEMS傾斜センサ。   4. The MEMS tilt sensor according to claim 3, wherein the magnetization direction of the first magnetic layer and the magnetization direction of the second magnetic layer are substantially antiparallel toward a direction parallel to the sensitivity axis direction.
JP2009017522A 2009-01-29 2009-01-29 Mems inclination sensor Withdrawn JP2010175359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009017522A JP2010175359A (en) 2009-01-29 2009-01-29 Mems inclination sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009017522A JP2010175359A (en) 2009-01-29 2009-01-29 Mems inclination sensor

Publications (1)

Publication Number Publication Date
JP2010175359A true JP2010175359A (en) 2010-08-12

Family

ID=42706485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009017522A Withdrawn JP2010175359A (en) 2009-01-29 2009-01-29 Mems inclination sensor

Country Status (1)

Country Link
JP (1) JP2010175359A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011106178A1 (en) 2011-07-01 2013-01-03 Daimler Ag A position adjustable vehicle component and method for aligning the same
JP2018072231A (en) * 2016-11-01 2018-05-10 株式会社小野測器 Rotation angle detector and rotary encoder
CN109813295A (en) * 2017-11-20 2019-05-28 北京小米移动软件有限公司 Orientation determines method and device, electronic equipment
JP2020018343A (en) * 2018-07-30 2020-02-06 ホーチキ株式会社 Water spray head

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011106178A1 (en) 2011-07-01 2013-01-03 Daimler Ag A position adjustable vehicle component and method for aligning the same
WO2013004327A1 (en) 2011-07-01 2013-01-10 Daimler Ag Position-adjustable vehicle component and method for orienting same
JP2018072231A (en) * 2016-11-01 2018-05-10 株式会社小野測器 Rotation angle detector and rotary encoder
CN109813295A (en) * 2017-11-20 2019-05-28 北京小米移动软件有限公司 Orientation determines method and device, electronic equipment
CN109813295B (en) * 2017-11-20 2021-08-03 北京小米移动软件有限公司 Orientation determination method and device and electronic equipment
JP2020018343A (en) * 2018-07-30 2020-02-06 ホーチキ株式会社 Water spray head
JP7136621B2 (en) 2018-07-30 2022-09-13 ホーチキ株式会社 water spray head

Similar Documents

Publication Publication Date Title
JP5152495B2 (en) Magnetic sensor and portable information terminal device
JP4800452B1 (en) Magnetic film sensor
US6661225B2 (en) Revolution detecting device
JP6296155B2 (en) Anisotropic magnetoresistive element, magnetic sensor and current sensor
JP5297539B2 (en) Magnetic sensor
JP5297442B2 (en) Magnetic sensor
JP5899012B2 (en) Magnetic sensor
US7444871B2 (en) Acceleration sensor and magnetic disk drive apparatus
JP4979487B2 (en) Angle sensor
JP2010175359A (en) Mems inclination sensor
JP6516057B1 (en) Magnetic sensor
US7444872B2 (en) Acceleration sensor and magnetic disk drive apparatus
WO2011074488A1 (en) Magnetic sensor
JP4331630B2 (en) Magnetic sensor
JP5341865B2 (en) Magnetic sensor
JP2008180633A (en) Substrate for sensor element
JP2015133377A (en) Magnetic detection element and rotation detection device
JP5174676B2 (en) Magnetic detection device and electronic apparatus
JP5139190B2 (en) Magnetic switch
JP5184380B2 (en) Magnetic detector
WO2015182643A1 (en) Magnetoresistive element, magnetic sensor and current sensor
JP2010173008A (en) Rotary weight structural body, sensor using the same, and method for manufacturing them
JP6210596B2 (en) Rotation detector
JP5630247B2 (en) Rotation angle sensor
JP4890401B2 (en) Origin detection device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120403