[go: up one dir, main page]

JP2010163897A - 内燃機関の冷却装置 - Google Patents

内燃機関の冷却装置 Download PDF

Info

Publication number
JP2010163897A
JP2010163897A JP2009004994A JP2009004994A JP2010163897A JP 2010163897 A JP2010163897 A JP 2010163897A JP 2009004994 A JP2009004994 A JP 2009004994A JP 2009004994 A JP2009004994 A JP 2009004994A JP 2010163897 A JP2010163897 A JP 2010163897A
Authority
JP
Japan
Prior art keywords
cooling water
temperature
block
water jacket
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009004994A
Other languages
English (en)
Inventor
Yuki Miyamoto
悠樹 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009004994A priority Critical patent/JP2010163897A/ja
Publication of JP2010163897A publication Critical patent/JP2010163897A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

【課題】燃費の悪化を抑制しつつ、機関暖機完了前において、シリンダヘッド側のウォータジャケットから流出する冷却水の熱を利用する内燃機関以外の熱利用部において冷却水の熱を適切に利用することができる内燃機関の冷却装置を提供する。
【解決手段】内燃機関の冷却装置では、冷却水路1において、ヘッド側ウォータジャケット11aから流出する冷却水をブロック側ウォータジャケット10aとヒータコア15とに流通させた後にヘッド側ウォータジャケット11aに再び流入させるようにしている。電子制御装置50は、機関の暖機完了前において、ヒータコア15において暖房要求がある場合には、三方バルブ18が第1状態に制御するとともに、流量調整バルブ19が全閉状態に制御し、ヘッド側ウォータジャケット11aから流出する冷却水の全てがバイパス水路4を通じてブロック側ウォータジャケット10aをバイパスするように制御する。
【選択図】図5

Description

本発明は、シリンダブロックとシリンダヘッドとに独立したウォータジャケットが形成される内燃機関の冷却装置に関するものである。
従来、内燃機関の冷却装置には、例えば特許文献1に示されるように、シリンダブロックとシリンダヘッドとにウォータジャケットが独立して形成される冷却水路を備えるものがある。
また、シリンダブロックとシリンダヘッドとに独立したウォータジャケットを形成する場合において、内燃機関の暖機完了前にシリンダヘッドのウォータジャケットから流出した冷却水をシリンダブロックのウォータジャケットに流入させるようにした冷却装置がある。このような冷却装置では、シリンダブロックよりも早期に温度上昇するシリンダヘッドの熱をシリンダブロックに供給することより、シリンダヘッドの過熱に起因したノッキングの発生を抑制するとともに、シリンダブロックの温度上昇を促進してシリンダブロック内の可動部におけるフリクションを低減させるようにしている。
特開2004−44609号公報
ところで、車室内の暖房を行うにあたり、シリンダヘッドのウォータジャケットから流出した冷却水が上記シリンダブロックのウォータジャケットとヒータコアとに流入するようにした構成の冷却水路を採用する場合がある。このような場合、内燃機関の暖機完了前において、シリンダヘッドから流出する冷却水の熱は、シリンダブロックとヒータコアとの双方において利用されるため、シリンダブロックにおける冷却水の放熱量が多いと、ヒータコアにおいて冷却水の放熱を十分に行うことができず、所望の暖房性能が得られない場合がある。そのため、従来は、所望の暖房性能を得るべく、内燃機関の運転要求とは無関係に機関回転速度を上昇させてシリンダヘッドから流出する冷却水の熱量を増大させるようにしており、この機関回転速度の上昇に起因して燃費が悪化するという問題がある。なお、このような問題は、冷却水路にヒータコアを接続する場合に限らず、その他の熱利用部を冷却水路に接続する場合にも同様に生じうる。
本発明は、こうした実情に鑑みてなされたものであり、その目的は、燃費の悪化を抑制しつつ、機関暖機完了前において、シリンダヘッド側のウォータジャケットから流出する冷却水の熱を利用する内燃機関以外の熱利用部において冷却水の熱を適切に利用することができる内燃機関の冷却装置を提供することにある。
以下、上記課題を解決するための手段及びその作用効果について記載する。
請求項1に記載の発明は、ウォータポンプとシリンダヘッドに形成されるヘッド側ウォータジャケットとシリンダブロックに形成されるブロック側ウォータジャケットと冷却水の温熱が利用される熱利用部とが接続される冷却水路を備え、前記ウォータポンプの駆動を通じて前記ヘッド側ウォータジャケットから流出する冷却水が前記ブロック側ウォータジャケットと前記熱利用部とに流通した後に前記ヘッド側ウォータジャケットに再び流入する内燃機関の冷却装置において、前記冷却水路は、前記ブロック側ウォータジャケットの上流側及び下流側に接続されて冷却水が同ブロック側ウォータジャケットをバイパスするためのバイパス水路と、前記ヘッド側ウォータジャケットから流出した冷却水のうち前記バイパス水路を通じて前記ブロック側ウォータジャケットをバイパスする冷却水の量を調整する調整手段とを有し、前記機関の暖機完了前に、前記熱利用部における冷却水の温熱の利用要求に応じて、前記ブロック側ウォータジャケットをバイパスする冷却水の量が調整されるように前記調整手段を制御することを要旨とする。
上記構成によれば、内燃機関の暖機完了前には、熱利用部における冷却水の温熱の利用要求に応じて、ヘッド側ウォータジャケットから流出した冷却水のうちブロック側ウォータジャケットをバイパスする冷却水の量が調整されるため、ヘッド側ウォータジャケットから流出した冷却水におけるシリンダブロックでの放熱量を調整することができる。したがって、シリンダブロックにおいてヘッド側ウォータジャケットから流出した冷却水の放熱量が多くなることに起因して、熱利用部において冷却水の温熱を十分に利用することができないといった事態が生じることを抑制することができる。すなわち、上記構成によれば、ヘッド側ウォータジャケットから流出した冷却水の熱をシリンダブロックよりも熱利用部において優先的に利用することができるため、熱利用部において冷却水の温熱を十分に利用することができる。なお、内燃機関の暖機完了前とは、ヘッド側及びブロック側の各ウォータジャケット内の冷却水の温度が最終的に制御すべき目標温度となるときをいう。
また、このように熱利用部において冷却水の温熱を十分に利用することができるため、熱利用部における熱の利用に際して機関回転速度を上昇させる必要がなく、機関回転速度の上昇に起因した燃費の悪化を抑制することができる。
なお、上記構成は、単に、熱利用部における冷却水の温熱の利用要求の有無に応じて、ヘッド側ウォータジャケットから流出した冷却水のうちの全てがブロック側ウォータジャケットをバイパスする状態とバイパスしない状態とに切り換える場合を含む。
請求項2に記載の発明は、請求項1に記載の発明において、前記機関の暖機完了後には、前記ヘッド側ウォータジャケット内の冷却水の温度が第1温度となり、且つ前記ブロック側ウォータジャケット内の冷却水の温度が前記第1温度よりも高く冷却水の沸点以下の第2温度となるように、前記ヘッド側ウォータジャケットから流出した冷却水のうち前記バイパス水路を通じて前記ブロック側ウォータジャケットをバイパスする冷却水の量が調整されるように前記調整手段を制御することを要旨とする。
シリンダヘッドの温度が高くなるとノッキングが発生しやすくなる。一方、シリンダブロックは、温度がある程度高温となっても、ノッキングの発生にはさほど影響を及ぼさない。また、限界はあるものの、シリンダヘッド及びシリンダブロックの温度は高いほうが、それぞれの可動部で発生するフリクションを低減させることができる。この点、上記構成によれば、ヘッド側ウォータジャケットの冷却水をブロック側ウォータジャケットの冷却水よりも低い温度に制御することができるため、内燃機関においてノッキングが発生することを抑制することができる。また、ブロック側ウォータジャケットの冷却水は、ヘッド側ウォータジャケットよりも高い温度に制御することができるため、シリンダブロック内の可動部におけるフリクションを低減させることができる。なお、第1温度は、例えばノッキングを抑制可能な上限の温度とすることにより、内燃機関におけるノッキングの発生を抑制しつつ、この抑制が可能な範囲内でシリンダヘッド内の可動部で発生するフリクションを最小とすることができる。
このようにして、上記構成によれば、ヘッド側ウォータジャケット内の冷却水の温度がブロック側ウォータジャケット内の冷却水の温度よりも低くなるようにして、シリンダヘッド及びシリンダブロックの温度を個別に最適化することができる。
また、暖機完了後には、シリンダブロック及びシリンダヘッドの双方で発生する熱が冷却水に放出され、冷却水路にラジエータ(放熱器)が設けられる場合には、冷却水がこれらシリンダブロック及びシリンダヘッドから授受した熱をこのラジエータで放熱する。そして、上記構成では、ブロック側ウォータジャケット内の冷却水の温度が上述した第1温度よりも高い第2温度に制御される。したがって、ブロック側ウォータジャケット内の冷却水をヘッド側ウォータジャケットの冷却水と同じ温度(第1温度)に制御する場合、すなわち、冷却水によりシリンダブロックをシリンダヘッドと同程度に冷却する場合と比較してラジエータにおける冷却水の放熱量を小さくすることができる。これにより、そのラジエータを小型化することができるようになり、冷却装置全体として小型化を図ることができる。また、熱利用部単体の放熱能力が十分に高い場合、あるいは複数の熱利用部の総放熱能力が十分に高い場合には、ラジエータを更に小型化することが可能となり、場合によってはラジエータそのものを廃止することもできる。
なお、内燃機関の暖機完了とは、ヘッド側及びブロック側の各ウォータジャケット内の冷却水の温度が最終的に制御すべき目標温度となるときであり、具体的には、ヘッド側ウォータジャケット内の冷却水の温度が第1温度となり且つブロック側ウォータジャケット内の冷却水の温度が第2温度に達したときをいう。
請求項3に記載の発明は、請求項1又は2に記載の内燃機関の冷却装置において、前記ウォータポンプの駆動を、前記ヘッド側ウォータジャケット内の冷却水の温度がノッキングを抑制可能な上限温度に達したことを条件に開始することを要旨とする。
ヘッド側ウォータジャケットの冷却水温がノッキングを抑制可能な上限温度よりも低い場合には、内燃機関においてノッキングが発生することがないため、ヘッド側ウォータジャケットへの冷却水供給を停止しておくことにより、シリンダヘッドを早期に昇温させることができる。また、ヘッド側ウォータジャケットの冷却水温が上記上限温度よりも低い場合には、この冷却水の熱をシリンダブロックや熱利用部において利用してもそれほど熱供給は期待できない。そこで上記構成では、ヘッド側ウォータジャケットにおける冷却水の温度がノッキングを抑制可能な上限温度に達するまでは、ウォータポンプの駆動を停止するようにしており、これにより不必要なウォータポンプの駆動を抑制することができる。また、ヘッド側ウォータジャケットの冷却水の温度が上記上限温度に達したときには、ウォータポンプの駆動が開始されるため、シリンダヘッドを冷却してノッキングの発生を抑制することができるとともに、シリンダヘッドで発生する熱をシリンダブロック及び熱利用部で有効利用することができる。
請求項4に記載の発明は、請求項1〜3のいずれかに記載の発明において、前記冷却水路は、前記ブロック側ウォータジャケットの上流側における前記バイパス水路の接続部位よりも下流側及び前記ブロック側ウォータジャケットの下流側における前記バイパス水路の接続部位よりも上流側に接続され且つ高温の冷却水を貯留する蓄熱用タンクと蓄熱用ポンプとが設けられる蓄熱水路を有し、前記機関の始動時に、前記蓄熱用ポンプの駆動を通じて前記蓄熱用タンクに貯留された冷却水を前記ブロック側ウォータジャケットに流通させることを要旨とする。
内燃機関の暖機完了前にあって、ヘッド側ウォータジャケットから流出した冷却水の熱をシリンダブロックよりも優先して熱利用部にて利用する場合には、ヘッド側ウォータジャケットから流出した冷却水の熱を利用したシリンダブロックの加熱が困難になるといった不都合の発生が懸念される。この点、同構成によれば、この蓄熱用タンクに貯留された冷却水の熱によりシリンダブロックを早期に昇温させることができる。したがって、機関始動時にシリンダブロックの可動部で発生するフリクションを早期に低減させることができる。
請求項5に記載の発明は、請求項4に記載の発明において、前記蓄熱用タンクに貯留された冷却水が所定の蓄熱温度以上であることを条件に、前記蓄熱用タンクに貯留された冷却水を前記ブロック側ウォータジャケットに流通させることを要旨とする。
上記構成によれば、蓄熱用タンクに貯留された冷却水の温度が低く、シリンダブロックの加熱が期待できない場合には、蓄熱用タンクの冷却水をシリンダブロックに流通させることがないため、蓄熱用ポンプの不必要な駆動や、シリンダブロックの温度低下等を抑制することができる。
また、冷却水路が蓄熱水路を有する場合には、請求項6に記載の発明によるように、前記機関の暖機完了後に、前記蓄熱用ポンプの駆動を通じて前記ブロック側ウォータジャケットから流出した冷却水を前記蓄熱用タンクに貯留するといった態様を採用することができる。
請求項6に記載の発明において、請求項2に記載の発明に適用される場合には、ブロック側ウォータジャケット内の冷却水の温度が、ヘッド側ウォータジャケット内の冷却水温よりも高い温度に維持されるため、ブロック側ウォータジャケットから流出した高温の冷却水を蓄熱用タンクに貯留することができる。
本発明の内燃機関の冷却装置に係る一実施形態において、冷却水路及びその周辺構成を示す模式図。 同実施形態において、冷却水路における冷却水循環制御の実行手順を示すフローチャート。 同実施形態において、冷却水路における冷却水循環制御の実行手順を示すフローチャート。 同実施形態において、機関始動時に蓄熱用タンク内の冷却水をブロック側ウォータジャケットに流通させる際の冷却水の流れを示す冷却装置の模式図。 同実施形態において、機関暖機前で暖房要求があるときに、ヘッド側ウォータブロックから流出した冷却水の全量がブロック側ウォータジャケットをバイパスする際の冷却水の流れを示す冷却装置の模式図。 同実施形態において、機関暖機完了後にブロック側ウォータブロックから流出した冷却水を蓄熱用タンクに貯留する際の冷却水の流れを示す模式図。 同実施形態において、機関暖機完了後にサーモスタットが閉じた状態で、ヘッド側ウォータジャケットから流出した冷却水の一部がブロック側ウォータジャケットを流通する際の冷却水の流れを示す模式図。 同実施形態において、機関暖機完了後にサーモスタットが開いた状態における冷却水の流れを示す模式図。
以下、本発明を車載内燃機関の冷却装置に具体化した一実施形態を、図1〜図8を参照して説明する。
図1に、本実施形態にかかる冷却装置を示す。この図1に示すように、冷却装置は、冷却水路1と同冷却水路1における冷却水の循環制御を実行する電子制御装置50とを備える。冷却水路1は、メイン水路2、バイパス水路4、蓄熱水路5、蓄熱バイパス水路6及びラジエータ水路7を備えて構成されている。
図1に示すように、本実施形態では、シリンダブロック10にブロック側ウォータジャケット10aが形成されるとともに、シリンダヘッド11にヘッド側ウォータジャケット11aが形成されており、これら各ウォータジャケット10a,11aは互いに独立している。そして、メイン水路2においては、ヘッド側ウォータジャケット11a、車室内の暖房のために冷却水が流れて放熱するヒータコア15、ウォータポンプ17及びブロック側ウォータジャケット10aがこの順に直列に接続されており、冷却水がこの順に循環するように構成されている。本実施形態のメイン水路2は、このような構成により、ヘッド側ウォータジャケット11aから流出した冷却水がヒータコア15とブロック側ウォータジャケット10aに流入して、車室の暖房と機関暖機完了前におけるシリンダブロック10の加熱とが促進される。
また、冷却水路1では、メイン水路2におけるブロック側ウォータジャケット10aの上流側及び下流側に、メイン水路2を流れる冷却水がブロック側ウォータジャケット10aをバイパスするためのバイパス水路4が接続されている。そして、メイン水路2には、ブロック側ウォータジャケット10aの上流側におけるバイパス水路4の接続部位に三方バルブ18が設けられる一方、ブロック側ウォータジャケット10aの下流側におけるバイパス水路4の接続部位の上流側に流量調整バルブ19が設けられている。
三方バルブ18は、電子制御によって第1〜第3の3つの状態に設定されることにより、メイン水路2のウォータポンプ17側に対するブロック側ウォータジャケット10a側及びバイパス水路4の連通状態を変更するものである。具体的には、三方バルブ18は、第1状態において、メイン水路2のウォータポンプ17側に対してブロック側ウォータジャケット10a及びバイパス水路4の双方の連通を遮断する。また、三方バルブ18は、第2状態において、メイン水路2のウォータポンプ17側に対してブロック側ウォータジャケット10a側を連通させるとともに、メイン水路2とバイパス水路4の連通を遮断し、第2状態において、メイン水路2のウォータポンプ17側に対してブロック側ウォータジャケット10a側及びバイパス水路4の双方を連通させる。
また、流量調整バルブ19は、電子制御により開度調整が可能なバルブであり、ブロック側ウォータジャケット10aから流出する冷却水の流量を可変に調整するためのものである。本実施形態では、この流量調整バルブ19の開度調整を通じて、メイン水路2を流れた冷却水のうちブロック側ウォータジャケット10a側をバイパスする冷却水の量が可変に制御される。そして、本実施形態では、内燃機関の暖機完了前において車室内の暖房要求があるときには、ヘッド側ウォータジャケット11aから流出した冷却水の全てがバイパス水路4を通じてブロック側ウォータジャケット10aをバイパスするように、流量調整バルブ19が全閉状態に制御される。すなわち、本実施形態では、この流量調整バルブ19が調整手段を構成している。
冷却水路1の蓄熱水路5には、蓄熱用ポンプ31と高温の冷却水を貯留する蓄熱用タンク30とが順に設けられている。この蓄熱水路5は、その上流端がメイン水路2におけるブロック側ウォータジャケット10aと流量調整バルブ19との間に接続されており、下流端がメイン水路2における三方バルブ18とブロック側ウォータジャケット10aとの間に接続されている。このような構成により、三方バルブ18が第1状態且つ流量調整バルブ19が全閉状態において、蓄熱用ポンプ31が駆動すると、冷却水が蓄熱用タンク30及びブロック側ウォータジャケット10aを循環する閉水路が構成される。そして、本実施形態では、このような構成により、蓄熱用ポンプ31の駆動を通じて、蓄熱用タンク30に貯留された冷却水をブロック側ウォータジャケット10aに流通させたり、ブロック側ウォータジャケット10aから流出した冷却水を蓄熱用タンク30に貯留したりすることが可能な構成となっている。
この蓄熱水路5において、蓄熱用ポンプ31の上流側と下流側とには、この蓄熱用ポンプ31をバイパスするためのバイパスする蓄熱バイパス水路6が接続されており、この蓄熱バイパス水路6には、蓄熱用ポンプ31の上流側から下流側への冷却水の流通のみを許容する逆止弁32が設けられている。
ラジエータ水路7には、冷却水の熱を放熱するためのラジエータ20が設けられている。ラジエータ水路7は、その上流端がヘッド側ウォータジャケット11aの途中に接続される一方、下流端がメイン水路2におけるヒータコア15とウォータポンプ17の間に接続されている。メイン水路2において、ラジエータ水路7の下流端が接続される部位には、サーモスタット16が設けられている。このサーモスタット16は、内部にメイン水路2を流れる冷却水が流通する流路が設けられており、この流路を流れる冷却水の温度に応じて、ラジエータ20を流れた冷却水がメイン水路2に流入可能な状態と、流入不能な状態とに切り換えられる。具体的には、このサーモスタット16内の流路を流れる冷却水の温度、すなわち、メイン水路2においてヒータコア15からウォータポンプ17へ流れる冷却水の温度が所定温度未満であるときには、サーモスタット16が閉じた状態となり、ラジエータ水路7の下流端からメイン水路2への冷却水の流入が不能となる。また、メイン水路2においてサーモスタット16を流れる冷却水の温度が所定温度以上となるときには、サーモスタット16が開いた状態となり、ラジエータ水路7の下流端からメイン水路2への冷却水の流入が可能な状態となる。なお、この所定温度は、後述する第1温度Thよりも低い温度に設定されている。
以上のようにして構成される冷却水路1における冷却水の循環制御は、車両に搭載される電子制御装置50により実行される。電子制御装置50は、機関制御やこの冷却水の循環制御に係る各種演算処理を実行するCPU、その制御に必要なプログラムやデータの記憶されたROM、CPUの演算結果等が一時記憶されるRAM、外部との間で信号を入・出力するための入・出力ポート等を備えて構成されている。
電子制御装置50の入力ポートには、ヘッド側ウォータジャケット11a内の冷却水の温度を検出するヘッド側水温センサ51、ブロック側ウォータジャケット10a内の冷却水の温度を検出するブロック側水温センサ52、蓄熱用タンク30に貯留されている冷却水の温度を検出する蓄熱水温センサ53が接続されている。さらに、電子制御装置50には、図示を省略するが、入力ポートを通じて、内燃機関の運転状態や車両の使用者による暖房要求の情報が入力される。また、電子制御装置50の出力ポートには、ウォータポンプ17及び蓄熱用ポンプ31の駆動回路及び三方バルブ18の流量調整バルブ19駆動回路が接続されている。
以上の構成により、電子制御装置50は、内燃機関の運転状態、車両の使用者による暖房要求、及び上記各水温センサ51,52,53の検出信号に基づいて、冷却水路1における冷却水の循環制御を実行する。
具体的には、電子制御装置50は、内燃機関の暖気完了前であって車室内の暖房要求があるときには、ヘッド側ウォータジャケット11aから流出した冷却水の熱をシリンダブロック10よりもヒータコア15において優先的に利用すべく、この冷却水の全てがバイパス水路4を通じてブロック側ウォータジャケット10aをバイパスするように制御する。また、電子制御装置50は、内燃機関の暖機完了後には、ヘッド側ウォータジャケット11aを流れる冷却水の温度が後述する第1温度Thとなり、ブロック側ウォータジャケット10aを流れる冷却水の温度から流出した冷却水の温度を第1温度Thよりも高い第2温度Tbとなるように制御する。なお、暖機完了とは、ヘッド側ウォータジャケット11a及びブロック側ウォータジャケット10aの冷却水の温度が最終的に制御すべき目標温度となるときであり、具体的には、ヘッド側ウォータジャケット11aの冷却水の温度が第1温度Thとなり且つブロック側ウォータジャケット10a内の冷却水の温度が第2温度Tbに達したときをいう。さらに、電子制御装置50は、機関始動時に蓄熱用タンク30に貯留された冷却水をブロック側ウォータジャケット10aに流通させるように制御するとともに、ブロック側ウォータジャケット10aから流出した冷却水をこの蓄熱用タンク30に貯留するように制御する。
以下、電子制御装置50によって実行される冷却水の循環制御を図2〜図8に基づいて説明する。図2及び図3は、冷却水の循環制御の実行手順を示すフローチャートであり、図4〜図8は、この循環制御における冷却水の流れを示している。
図2及び図3に示す冷却水の循環制御は、内燃機関が始動したときに開始される。この制御では、まず図2に示すように、ステップS11において、蓄熱水温センサ53の検出信号に基づいて蓄熱用タンク30に貯留されている冷却水の温度が所定の蓄熱温度Ts以上であるか否かが判定される。すなわち、蓄熱用タンク30に貯留された冷却水の温度が低い場合は、この冷却水によるシリンダブロック10の加熱が期待できず、シリンダブロック10の温度を低下させる虞もある。したがって、ここでは、蓄熱用タンク30に貯留された冷却水の温度が所定の蓄熱温度Ts以上であり、蓄熱用タンク30に貯留された冷却水によりシリンダブロック10の昇温が促進されるか否かが判定される。なお、この所定の蓄熱温度Tsは、例えば一定温度であってもよいし、外気温が高いほど高い温度に設定してもよい。
そして、ステップS11において、冷却水の温度が所定の蓄熱水温Ts以上であると判定されると、ステップS12に移り、三方バルブ18を第1状態に制御するとともに、流量調整バルブ19を全閉状態に制御する。これにより、冷却水が蓄熱用タンク30及びブロック側ウォータジャケット10aとの間を循環する閉水路が形成されるため、ステップS13に移り、蓄熱用ポンプ31を所定期間(例えば、数分間)駆動すると、この蓄熱用ポンプ31の駆動により、図4に示すように冷却水が蓄熱用タンク30とブロック側ウォータジャケット10aとを循環する。これにより、蓄熱用タンク30に貯留された所定の蓄熱温度Ts以上の冷却水がブロック側ウォータジャケット10aに流通し、シリンダブロック10を機関始動後早期に昇温させることができる。
次に、図2においてステップS14移り、ヘッド側水温センサ51の検出信号に基づいて、ヘッド側ウォータジャケット11aの冷却水の温度が第1温度Th以上であるか否かを判定する。なお、先のステップS11において、蓄熱用タンク30内の冷却水の温度が所定の蓄熱温度Ts未満であった場合には、蓄熱用タンク30内の冷却水をブロック側ウォータジャケット10aに流通させることなく、このステップS14に移る。
ここで、この第1温度Thは、ヘッド側ウォータジャケット11aの冷却水の温度においてノッキングを抑制可能となる上限の温度に設定されており、この上限の温度は予め実験などにより導出されている。すなわち、内燃機関においてシリンダヘッド11の温度が高くなると、ノッキングが生じやすくなるが、ヘッド側水温センサ51で検出される冷却水の温度がこの第1温度Thに達するまではノッキングの発生を抑制でき、この第1温度Thを超えるとノッキングが生じやすくなる。そして、このステップS14の判定は、ヘッド側ウォータジャケット11aの冷却水の温度が第1温度以上となるまで繰り返される。
ステップS14において、ヘッド側ウォータジャケット11aの冷却水の温度が第1温度以上であると判定されると、図3のステップS15に移り、車室内の暖房要求があるか否かが判定される。そして、車室内の暖房要求がある場合には、ステップS16に移り、三方バルブ18を第2状態に制御するとともに、流量調整バルブ19を全閉状態に制御する。そして、ステップS17に移り、ウォータポンプ17の駆動を開始する。これにより、図5に示すように、暖房要求がある場合には、ヘッド側ウォータジャケット11aから流出した冷却水はヒータコア15を流れた後に、その全てがブロック側ウォータジャケット10aをバイパスするため、ヘッド側ウォータジャケット11aから流出した冷却水の熱をヒータコア15に優先して利用することができる。
なお、ヘッド側ウォータジャケット11aの冷却水の温度が上記第1温度Thに達するまでは、この冷却水の熱をヒータコア15などの加熱に利用してもそれほど熱供給は期待できない。また、ヘッド側ウォータジャケット11aの冷却水の温度が上記第1温度Th未満であると、内燃機関においてノッキングが発生することがない。したがって、ヘッド側ウォータジャケット11aの冷却水の温度が上記第1温度Thに達するまでは、ウォータポンプ17の駆動を停止してヘッド側ウォータジャケット11aへの冷却水供給を停止しておくことにより、シリンダヘッド11を早期に昇温させてシリンダヘッド11内の可動部の加熱を図ることができる。したがって、ヘッド側ウォータジャケット11aの冷却水の温度が上記第1温度Thに達したことを条件に、ウォータポンプ17の駆動が開始されるようにしている。
その後、図3においてステップS18に移り、ブロック側水温センサ52の検出信号に基づいてブロック側ウォータジャケット10aが第2温度Tb以上であるか否かが判定される。そして、ステップS18において、ブロック側ウォータジャケット10aが第2温度Tb以上であると判定されると、内燃機関の暖機が完了したものとして、ステップS19に移り、蓄熱用ポンプ31が所定期間駆動する。これにより、先のステップS16におけるバルブ18,19の制御により蓄熱用タンク30とブロック側ウォータジャケット10aとを含む閉水路が構成されているため、図6に示すように、冷却水がブロック側ウォータジャケット10aと蓄熱用タンク30との間を循環し、蓄熱用タンク30には第2温度Tbの冷却水が貯留される。なお、図6に示すように、メイン水路2においては、図5に示す態様と同様に、ヘッド側ウォータジャケット11aを流出した冷却水が全てブロック側ウォータジャケット10aをバイパスしている。
ここで、上記第2温度Tbは、上記第1温度Thよりも高く冷却水の沸点以下の温度に設定されている。すなわち、本願発明者により、ブロック側ウォータジャケット10a内の冷却水が上記第1温度Th以上となってもノッキングは発生しにくいことが確認されている。また、限界はあるものの、シリンダブロック10の温度はある程度高いほうがシリンダブロック10内の可動部で発生するフリクションを低減させるといった効果が得られる。したがって、第2温度Tbを第1温度Thよりも高く冷却水の沸点以下の温度に設定することにより、シリンダブロック10内の可動部で発生するフリクションを極力低減することができる。また、蓄熱用タンク30には、ブロック側ウォータジャケット10aの冷却水のみが貯留されるため、第1温度Thよりも高い第2温度Tbの冷却水を貯留することができる。なお、ステップS17において、蓄熱用ポンプ31を駆動する所定期間は、例えば蓄熱用タンク30内の冷却水の全量がブロック側ウォータジャケット10aから流出した第2温度Tbの冷却水に置換されるまでの時間に設定される。
そして、蓄熱用タンク30における高温の冷却水の貯留が完了すると、図3においてステップS20に移り、三方バルブ18を第3状態に制御し、ステップS21に移り、流量調整バルブ19の開度制御を開始する。これにより、図7に示すように、ヘッド側ウォータジャケット11aから流出した冷却水の一部が、ブロック側ウォータジャケット10aを流通する。そして、電子制御装置50は、具体的には、ヘッド側水温センサ51及びブロック側水温センサ52の検出信号に基づいて、ヘッド側ウォータジャケット11aの冷却水の温度が上記第1温度Thとなり、ブロック側ウォータジャケット10aの冷却水の温度が上記第2温度Tbとなるように、流量調整バルブ19の開度制御を開始する。すなわち、ブロック側水温センサ52により検出される冷却水温が第2温度Tbよりも高い場合は、ブロック側ウォータジャケット10aを流れる冷却水の量が多くなり、同センサ52により検出される冷却水温が第2温度Tbよりも低い場合は、ブロック側ウォータジャケット10aを流れる冷却水の量が少なくなるように、流量調整バルブ19を開度制御する。このような制御により、内燃機関においてノッキングが発生することを抑制しつつ、シリンダヘッド11及びシリンダブロック10における可動部のフリクションを好適に低減することができる。
また、このときには、蓄熱水路5における蓄熱用ポンプ31は停止しているものの、図7に示すように、ブロック側ウォータジャケット10aを流出した冷却水の一部が蓄熱バイパス水路6を通じて蓄熱用タンク30に貯留される。したがって、先のステップS18及びS19の処理によりブロック側ウォータジャケット10aを流れる冷却水の温度が第2温度Tb以上となった後には、即座に蓄熱用タンク30に高温の冷却水を貯留することができるとともに、その後においても、この蓄熱バイパス水路6を通じて蓄熱用タンク30に常時高温の冷却水を流入させることができる。したがって、内燃機関の停止時には、蓄熱用タンク30に第2温度Tbの冷却水を確実に貯留させることができる。また、このような構成により、蓄熱用タンク30に高温の冷却水を一旦貯留した後に、その流出を防ぐバルブ等を設ける必要がない。
そして、シリンダブロック10及びシリンダヘッド11の双方で発生する熱の熱量がさほど多くない状態では、この熱がヒータコア15のみで放熱され、メイン水路2においてサーモスタット16を流れる冷却水の温度が所定温度未満となるため、図7に示すように、サーモスタット16は閉じた状態に維持される。しかしながら、シリンダブロック10及びシリンダヘッド11の双方において発生する熱が多くなると、ヒータコア15のみでは十分に放熱できなくなり、メイン水路2においてサーモスタット16を流れる冷却水の温度が所定温度以上となり、サーモスタット16が開いた状態となる。これにより、図8に示すように、ラジエータ水路7とメイン水路2との冷却水の流通が可能となり、ヘッド側ウォータジャケット11aから流出した冷却水は、ヒータコア15とラジエータ20とを流れる際に、ブロック側ウォータジャケット10a及びヘッド側ウォータジャケット11aを流れる際に授受した熱を放熱する。
なお、本実施形態では、ブロック側ウォータジャケット10a内の冷却水の温度がヘッド側ウォータジャケット11a内の冷却水よりも高い第2温度に制御される。そのため、ブロック側ウォータジャケット10a内の冷却水も、ヘッド側ウォータジャケット11a内の冷却水と同じ第1温度に制御する場合に比べて、ブロック側ウォータジャケット10a内を流れる冷却水がシリンダブロック10から授受する熱を少なくすることができる。したがって、ブロック側ウォータジャケット10a内の冷却水も、ヘッド側ウォータジャケット11a内の冷却水と同じ第1温度に制御する場合に比べて、ラジエータ20を小型化することができるようになり、冷却装置全体として小型化を図ることができる。
そして、このように流量調整バルブ19の開度制御が開始された後、本制御は終了され、その後に内燃機関が停止すると、別の処理によりウォータポンプ17が停止される。
一方、図3に示すステップS15において、車室の暖房要求がないと判定された場合には、ステップS22に移り、三方バルブ18を第3状態に制御するとともに、流量調整バルブ19を全開制御して、ステップS23に移り、ウォータポンプ17の駆動を開始する。これにより、ヘッド側ウォータジャケット11aから流出した冷却水を最大限にブロック側ウォータジャケット10aに流通させ、この冷却水によりブロック側ウォータジャケット10aを早期に昇温させる。
そして、ステップS24の判定により、ブロック側ウォータジャケット10aを流れる冷却水の温度が第2温度Th以上となったら、先のステップS21に移る。これにより、ヘッド側水温センサ51及びブロック側水温センサ52の検出信号に基づいて、ヘッド側ウォータジャケット11aの冷却水の温度が上記第1温度Thとなり、ブロック側ウォータジャケット10aの冷却水の温度が上記第2温度Tbとなるように、流量調整バルブ19の開度制御を開始する。このとき、冷却水は、先の図7に示すように循環し、その後に、サーモスタット16を通じたラジエータ水路7とメイン水路2との冷却水の流通が可能となり、図8に示すように冷却水が循環する。なお、ブロック側ウォータジャケット10aを流れる冷却水の温度が第2温度Th以上となったら、図6に示すように、まず、蓄熱用タンク30にブロック側ウォータジャケット10aから流出する第2温度Th以上の冷却水を貯留するようにし、その後に、図7に示す態様で冷却水を循環させるようにしてもよい。そして、本制御は終了され、内燃機関が停止すると、別の処理によりウォータポンプ17が停止される。
以上説明した本実施形態によれば、以下の作用効果を奏することができる。
(1)本実施形態では、ヘッド側ウォータジャケット11aから流出する冷却水をブロック側ウォータジャケット10aとヒータコア15とに流通させた後にヘッド側ウォータジャケット11aに再び流入させるようにしている。そして、機関の暖機完了前において、車室の暖房要求がある場合には、三方バルブ18を第1状態に制御するとともに、流量調整バルブ19を全閉状態に制御し、ヘッド側ウォータジャケット11aから流出する冷却水の全てがバイパス水路4を通じてブロック側ウォータジャケット10aをバイパスするようにしている。これにより、ヘッド側ウォータジャケット11aから流出した冷却水がシリンダブロック10で放熱されないようにすることができる。したがって、内燃機関の暖機完了前において、ヘッド側ウォータジャケット11aから流出した冷却水の熱をシリンダブロック10よりもヒータコア15において優先的に利用することができるため、ヒータコア15において冷却水の温熱を十分に利用して、車室の暖房要求に対応することができる。
また、このようにヒータコア15において冷却水の温熱を十分に利用することができるため、ヒータコア15における熱の利用に際して機関回転速度を上昇させる必要がなく、機関回転速度の上昇に起因した燃費の悪化を抑制することができる。
(2)本実施形態では、ヘッド側ウォータジャケット11aにおける冷却水の温度が上記第1温度Thに達したことを条件に、ウォータポンプ17の駆動を開始するようにしている。これにより、ヘッド側ウォータジャケット11aの冷却水が第1温度Thよりも低い場合には、内燃機関においてノッキングが発生することがないため、ヘッド側ウォータジャケット11aへの冷却水供給を停止しておくことにより、シリンダヘッド11を早期に昇温させることができる。
また、ヘッド側ウォータジャケット11a内の冷却水の温度が第1温度Thよりも低い場合には、この冷却水の熱をシリンダブロック10やヒータコア15において利用してもそれほど熱供給は期待できない。したがって、ヘッド側ウォータジャケット11a内の冷却水の温度が第1温度Thに達するまでは、不必要なウォータポンプ17の駆動を抑制することができる。また、ヘッド側ウォータジャケット11aの冷却水の温度が第1温度Thに達したときには、ウォータポンプ17の駆動が開始されるため、シリンダヘッド11を冷却してノッキングの発生を抑制することができるとともに、シリンダヘッド11で発生する熱をシリンダブロック10及びヒータコア15において有効利用することができる。
(3)本実施形態では、内燃機関の暖機完了後において、ヘッド側ウォータジャケット11a内の冷却水の温度が上記第1温度Thとなり、且つブロック側ウォータジャケット10a内の冷却水の温度が上記第2温度Tbとなるように、バイパス水路4を通じてブロック側ウォータジャケット10aをバイパスする冷却水の量が調整されるように流量調整バルブ19を制御するようにしている。これにより、内燃機関においてノッキングが発生することを抑制しつつ、シリンダヘッド11及びシリンダブロック10における可動部で発生するフリクションを低減することができ、シリンダヘッド11及びシリンダブロック10の温度を個別に最適化することができる。
また、内燃機関の暖機完了後においては、シリンダブロック10及びシリンダヘッド11の双方で発生する熱が冷却水路1を流れる冷却水に放出される。そして、ブロック側ウォータジャケット10a内の冷却水の温度は第1温度Thよりも高い第2温度Tbに制御されるため、ブロック側ウォータジャケット10a内の冷却水も第1温度Thに制御する場合と比較して、冷却水の放熱要求を小さくすることができる。したがって、ラジエータ20を小型化することができるようになり、冷却装置全体としての小型化を図ることができる。
(4)本実施形態では、冷却水路1において、蓄熱用タンク30と蓄熱用ポンプ31とが設けられる蓄熱水路5がブロック側ウォータジャケット10aの上流側におけるバイパス水路4の接続部位よりも下流側及びブロック側ウォータジャケット10aの下流側におけるバイパス水路4の接続部位よりも上流側に接続されている。そして、機関の始動時に、蓄熱用ポンプ31の駆動を通じて蓄熱用タンク30に貯留された冷却水をブロック側ウォータジャケット10aに流通させるようにしている。これにより、内燃機関の暖機完了前にあって、ヘッド側ウォータジャケット11aから流出した冷却水の熱をシリンダブロック10よりも優先してヒータコア15にて利用する場合には、この冷却水の熱を利用したシリンダブロック10の加熱が困難になるといった不都合の発生が懸念されるものの、蓄熱用タンク30に貯留された冷却水の熱によりシリンダブロック10を早期に温度上昇させることができる。したがって、機関始動時にシリンダブロック10の可動部で発生するフリクションを早期に低減させることができる。
(5)本実施形態では、蓄熱用タンク30に貯留された冷却水が所定の蓄熱温度Ts以上であることを条件に、蓄熱用タンク30に貯留された冷却水をブロック側ウォータジャケット10aに流通させるようにしている。したがって、蓄熱用タンク30に貯留された冷却水の温度が低く、シリンダブロック10の加熱が期待できない場合には、蓄熱用タンク30の冷却水をシリンダブロック10に流通させることがないため、蓄熱用ポンプ31の不必要な駆動や、シリンダブロック10の温度低下等を抑制することができる。
(6)本実施形態では、機関の暖機完了後に、蓄熱用ポンプ31の駆動を通じてブロック側ウォータジャケット10aから流出した冷却水を蓄熱用タンク30に貯留するようにしている。そして、ブロック側ウォータジャケット10a内の冷却水の温度が、ヘッド側ウォータジャケット11a内の冷却水温よりも高い温度に維持されるため、ブロック側ウォータジャケット10aから流出した高温の冷却水を蓄熱用タンク30に貯留することができる。
(その他の実施形態)
なお上記実施形態は以下のように適宜変更してもよい。
・上記実施形態では、内燃機関の暖機完了後に、蓄熱用ポンプの駆動を通じてブロック側ウォータジャケットから流出した冷却水を蓄熱用タンクに貯留するようにしている。しかしながら、蓄熱用タンクを駆動させることなく、蓄熱バイパス水路を通じて貯留させるようにしてもよい。また、上記実施形態では、機関始動時に蓄熱用タンクの冷却水が所定の蓄熱温度Ts以上であることを条件に、蓄熱用タンクの冷却水をブロック側ウォータジャケットに流通させるようにしているが、蓄熱用タンク内に貯留される冷却水の温度に拘わらず、機関始動時にはこの冷却水をブロック側ウォータジャケットに冷却水を流通させるようにしてもよい。また、上記実施形態では、蓄熱用タンクはブロック側ウォータジャケットとの間でのみ冷却水が循環するようにしているが、蓄熱用タンクには、例えば、ヘッド側ウォータジャケットから流出される冷却水が直接流入して貯留される構成であってもよい。また、冷却水路が蓄熱水路を有さない構成であってもよい。
・上記各実施形態では、ヘッド側ウォータジャケット内の冷却水の温度が、ノッキングを抑制可能な上限温度に達したことを条件にウォータポンプの駆動を開始するようにしている。しかしながら、ウォータポンプの駆動は、ヘッド側ウォータジャケット内の冷却水の温度が、ノッキングを抑制可能な上限温度よりも低い温度で開始するようにしてもよい。また、例えば、機関始動開始時から、ウォータポンプを駆動して、ヘッド側ウォータジャケットから流出した冷却水をヒータコアに供給するようにしてもよい。
・上記各実施形態では、ヘッド側ウォータジャケット内の冷却水の温度を第1温度に制御するとともに、ブロック側ウォータジャケット内の冷却水の温度を第2温度に制御するようにしている。そして、第1温度を、ノッキングを抑制可能な上限温度とするようにしている。しかしながら、第1温度は、この上限温度よりも低い温度であってもよい。また、ヘッド側ウォータジャケット内の冷却水の温度とブロック側ウォータジャケット内の冷却水の温度を第2温度とを同じ温度に制御するようにしてもよい。
・上記各実施形態では、冷却水路のメイン水路において、ヒータコア、ブロック側ウォータジャケットをこの順に直列に接続するようにしていたが、ヒータコアとブロック側ウォータジャケットとを並列に接続して、ヒータコアが設けられる水路を冷却水がブロック側ウォータジャケットをバイパスするバイパス水路とするようにしてもよい。
・上記各実施形態では、機関暖機前において車室内の暖房要求があるときには、ヘッド側ウォータジャケットから流出した冷却水の全てがブロック側ウォータジャケットをバイパスするようにしている。しかしながら、機関暖機前において、例えばヘッド側ウォータジャケットから流出した冷却水の一部をブロック側ウォータジャケットに流しつつ、暖房要求が大きいほど、ブロック側ウォータジャケットをバイパスする冷却水の量が多くなるように流量調整バルブの開度を制御するようにしてもよい。
・上記各実施形態では、流量調整バルブを調整手段としている。しかしながら、単に暖房要求のある場合に、ヘッド側ウォータジャケットから流出した冷却水の全量がブロック側ウォータジャケットをバイパスするように制御する場合には、調整手段としてブロック側ウォータジャケットを冷却水が流通する状態とその流通を遮断する状態とに切り換えるバルブのみを設けるようにしてもよい。すなわち、このような場合には、流量調整バルブを設ける必要はなく、三方バルブをこの調整手段としてもよい。なお、上記実施形態では、機関暖機後にヘッド側ウォータジャケット内の冷却水の温度をブロック側ウォータジャケット内の冷却水の温度よりも高い温度とすべく、ブロック側ウォータジャケットを流れる冷却水の量を調整するために流量調整バルブを設けているため、この流量調整バルブにより調整手段を構成している。
・上記各実施形態では、熱利用部を車室の暖房のために利用されるヒータコアとしている。しかしながら、熱利用部は、その他のものを加熱するためにヘッド側ウォータジャケットから流出した冷却水の熱を利用するものであってもよい。また、そのような熱利用部を複数設けるようにしてもよい。また、複数の熱利用部を設ける場合など、冷却水がシリンダブロック及びシリンダヘッドから授受した熱を熱利用部のみで利用(放熱)可能な場合には、ラジエータを省略してもよい。特に、ブロック側ウォータジャケット内の冷却水の温度をヘッド側ウォータジャケット内の冷却水の温度よりも高くなるように制御している場合には、ブロック側ウォータジャケットを流れる際に冷却水がシリンダブロックから授受される熱量を少なくすることができるため、ラジエータの小型化又は省略を図ることができる。
1…冷却水路、2…メイン水路、4…バイパス水路、5…蓄熱水路、6…蓄熱バイパス水路、7…ラジエータ水路、10…シリンダブロック、10a…ブロック側ウォータジャケット、11…シリンダヘッド、11a…ヘッド側ウォータジャケット、15…ヒータコア、16…サーモスタット、17…ウォータポンプ、18…三方バルブ、19…流量調整バルブ、20…ラジエータ、30…蓄熱用タンク、31…蓄熱用ポンプ、32…逆止弁、50…電子制御装置、51…ヘッド側水温センサ、52…ブロック側水温センサ、53…蓄熱水温センサ。

Claims (6)

  1. ウォータポンプとシリンダヘッドに形成されるヘッド側ウォータジャケットとシリンダブロックに形成されるブロック側ウォータジャケットと冷却水の温熱が利用される熱利用部とが接続される冷却水路を備え、前記ウォータポンプの駆動を通じて前記ヘッド側ウォータジャケットから流出する冷却水が前記ブロック側ウォータジャケットと前記熱利用部とに流通した後に前記ヘッド側ウォータジャケットに再び流入する内燃機関の冷却装置において、
    前記冷却水路は、前記ブロック側ウォータジャケットの上流側及び下流側に接続されて冷却水が同ブロック側ウォータジャケットをバイパスするためのバイパス水路と、前記ヘッド側ウォータジャケットから流出した冷却水のうち前記バイパス水路を通じて前記ブロック側ウォータジャケットをバイパスする冷却水の量を調整する調整手段とを有し、
    前記機関の暖機完了前に、前記熱利用部における冷却水の温熱の利用要求に応じて、前記ブロック側ウォータジャケットをバイパスする冷却水の量が調整されるように前記調整手段を制御する
    ことを特徴とする内燃機関の冷却装置。
  2. 請求項1に記載の内燃機関の冷却装置において、
    前記機関の暖機完了後には、前記ヘッド側ウォータジャケット内の冷却水の温度が第1温度となり、且つ前記ブロック側ウォータジャケット内の冷却水の温度が前記第1温度よりも高く冷却水の沸点以下の第2温度となるように、前記ヘッド側ウォータジャケットから流出した冷却水のうち前記バイパス水路を通じて前記ブロック側ウォータジャケットをバイパスする冷却水の量が調整されるように前記調整手段を制御する
    ことを特徴とする内燃機関の冷却装置。
  3. 請求項1又は2に記載の内燃機関の冷却装置において、
    前記ウォータポンプの駆動を、前記ヘッド側ウォータジャケット内の冷却水の温度がノッキングを抑制可能な上限温度に達したことを条件に開始する
    ことを特徴とする内燃機関の冷却装置。
  4. 請求項1〜3のいずれか1項に記載の内燃機関の冷却装置において、
    前記冷却水路は、前記ブロック側ウォータジャケットの上流側における前記バイパス水路の接続部位よりも下流側及び前記ブロック側ウォータジャケットの下流側における前記バイパス水路の接続部位よりも上流側に接続され且つ高温の冷却水を貯留する蓄熱用タンクと蓄熱用ポンプとが設けられる蓄熱水路を有し、
    前記機関の始動時に、前記蓄熱用ポンプの駆動を通じて前記蓄熱用タンクに貯留された冷却水を前記ブロック側ウォータジャケットに流通させる
    ことを特徴とする内燃機関の冷却装置。
  5. 請求項4に記載の内燃機関の冷却装置において、
    前記蓄熱用タンクに貯留された冷却水が所定の蓄熱温度以上であることを条件に、前記蓄熱用タンクに貯留された冷却水を前記ブロック側ウォータジャケットに流通させる
    ことを特徴とする内燃機関の冷却装置。
  6. 請求項4又は5に記載の内燃機関の冷却装置において、
    前記機関の暖機完了後に、前記蓄熱用ポンプの駆動を通じて前記ブロック側ウォータジャケットから流出した冷却水を前記蓄熱用タンクに貯留する
    ことを特徴とする内燃機関の冷却装置。
JP2009004994A 2009-01-13 2009-01-13 内燃機関の冷却装置 Pending JP2010163897A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009004994A JP2010163897A (ja) 2009-01-13 2009-01-13 内燃機関の冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009004994A JP2010163897A (ja) 2009-01-13 2009-01-13 内燃機関の冷却装置

Publications (1)

Publication Number Publication Date
JP2010163897A true JP2010163897A (ja) 2010-07-29

Family

ID=42580258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009004994A Pending JP2010163897A (ja) 2009-01-13 2009-01-13 内燃機関の冷却装置

Country Status (1)

Country Link
JP (1) JP2010163897A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154222A (ja) * 2011-01-25 2012-08-16 Mitsubishi Motors Corp 内燃機関の冷却装置
DE102012202531A1 (de) 2011-02-23 2012-08-23 Denso Corporation Kühlsystem für einen Verbrennungsmotor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154222A (ja) * 2011-01-25 2012-08-16 Mitsubishi Motors Corp 内燃機関の冷却装置
DE102012202531A1 (de) 2011-02-23 2012-08-23 Denso Corporation Kühlsystem für einen Verbrennungsmotor
CN102650232A (zh) * 2011-02-23 2012-08-29 株式会社电装 用于内燃机的冷却系统
US8695541B2 (en) 2011-02-23 2014-04-15 Denso Corporation Cooling system for internal combustion engine

Similar Documents

Publication Publication Date Title
US9611781B2 (en) System and method of thermal management for an engine
US9850802B2 (en) Coolant control device
KR101592428B1 (ko) 통합 유량 제어 밸브 장치
WO2015125260A1 (ja) 冷却システム制御装置及び冷却システム制御方法
JP6090138B2 (ja) エンジンの冷却装置
JP5618945B2 (ja) 内燃機関の冷却制御装置
JP2011099400A (ja) 車両の冷却装置
WO2013108551A1 (ja) エンジン水冷装置
JP5040816B2 (ja) 内燃機関の冷却回路
JP7193327B2 (ja) 車両用システムの制御装置
US8978599B2 (en) Cooling apparatus of internal combustion engine for vehicle
JP2010163897A (ja) 内燃機関の冷却装置
JP5267654B2 (ja) エンジンの冷却装置
KR20120050845A (ko) 자동차 엔진의 냉각수 순환회로
JP2005083225A (ja) トランスミッション油温制御装置
WO2011089705A1 (ja) 車両の冷却装置
CN111434904B (zh) 内燃机的蓄热散热装置
JP5257087B2 (ja) 内燃機関の制御装置
JP2016211482A (ja) エンジンの冷却装置
JP2016210298A (ja) 内燃機関の冷却装置
JP2013124546A (ja) 車両の冷却装置
JP2004285830A (ja) エンジンの冷却装置
JP2014005759A (ja) 車両用暖房装置
JP2008223725A (ja) 内燃機関の冷却装置
JP4151415B2 (ja) 内燃機関の冷却装置