JP2010160984A - Anode for lithium-ion secondary battery and lithium-ion secondary battery - Google Patents
Anode for lithium-ion secondary battery and lithium-ion secondary battery Download PDFInfo
- Publication number
- JP2010160984A JP2010160984A JP2009002948A JP2009002948A JP2010160984A JP 2010160984 A JP2010160984 A JP 2010160984A JP 2009002948 A JP2009002948 A JP 2009002948A JP 2009002948 A JP2009002948 A JP 2009002948A JP 2010160984 A JP2010160984 A JP 2010160984A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- lithium
- ion secondary
- secondary battery
- protective layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 81
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 80
- 239000011241 protective layer Substances 0.000 claims abstract description 150
- 239000010410 layer Substances 0.000 claims abstract description 143
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 107
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 105
- 239000002245 particle Substances 0.000 claims abstract description 80
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 42
- 239000011147 inorganic material Substances 0.000 claims abstract description 42
- 239000004020 conductor Substances 0.000 claims abstract description 38
- 239000007773 negative electrode material Substances 0.000 claims description 90
- 238000004519 manufacturing process Methods 0.000 claims description 26
- 238000010248 power generation Methods 0.000 claims description 19
- 230000032683 aging Effects 0.000 claims description 18
- 239000002904 solvent Substances 0.000 claims description 17
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 11
- 239000011248 coating agent Substances 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 9
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 8
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 4
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 3
- 239000011230 binding agent Substances 0.000 abstract description 29
- 230000002427 irreversible effect Effects 0.000 abstract description 20
- 238000006243 chemical reaction Methods 0.000 abstract description 19
- 239000006183 anode active material Substances 0.000 abstract 4
- 230000002265 prevention Effects 0.000 abstract 1
- 239000003792 electrolyte Substances 0.000 description 35
- 239000007774 positive electrode material Substances 0.000 description 33
- 239000000463 material Substances 0.000 description 28
- 239000002002 slurry Substances 0.000 description 28
- 238000000034 method Methods 0.000 description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 23
- 239000011149 active material Substances 0.000 description 20
- 239000000843 powder Substances 0.000 description 16
- 239000008151 electrolyte solution Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 14
- 238000012360 testing method Methods 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- -1 polytetrafluoroethylene Polymers 0.000 description 11
- 229920003048 styrene butadiene rubber Polymers 0.000 description 11
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 239000003575 carbonaceous material Substances 0.000 description 9
- 238000007600 charging Methods 0.000 description 9
- 239000006258 conductive agent Substances 0.000 description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 229910002804 graphite Inorganic materials 0.000 description 8
- 239000010439 graphite Substances 0.000 description 8
- 229910003002 lithium salt Inorganic materials 0.000 description 8
- 159000000002 lithium salts Chemical class 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 239000000470 constituent Substances 0.000 description 7
- 239000011245 gel electrolyte Substances 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 5
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 5
- 239000006230 acetylene black Substances 0.000 description 5
- 239000011244 liquid electrolyte Substances 0.000 description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 5
- 239000005518 polymer electrolyte Substances 0.000 description 5
- 229920001451 polypropylene glycol Polymers 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 239000007784 solid electrolyte Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- 239000002174 Styrene-butadiene Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000027756 respiratory electron transport chain Effects 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000002905 metal composite material Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(II) oxide Inorganic materials [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- 229910013684 LiClO 4 Inorganic materials 0.000 description 2
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910008088 Li-Mn Inorganic materials 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 229910013385 LiN(SO2C2F5)2 Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910012424 LiSO 3 Inorganic materials 0.000 description 1
- 229910006327 Li—Mn Inorganic materials 0.000 description 1
- 229910006465 Li—Ni—Mn Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 229910006501 ZrSiO Inorganic materials 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 101150004907 litaf gene Proteins 0.000 description 1
- SWAIALBIBWIKKQ-UHFFFAOYSA-N lithium titanium Chemical compound [Li].[Ti] SWAIALBIBWIKKQ-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 238000012719 thermal polymerization Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明はリチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池に関する。 The present invention relates to a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery using the same.
近年、地球温暖化に対処するため、二酸化炭素量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池の開発が盛んに行われている。 In recent years, in order to cope with global warming, reduction of the amount of carbon dioxide is eagerly desired. In the automobile industry, there is a great expectation for reducing carbon dioxide emissions by introducing electric vehicles (EV) and hybrid electric vehicles (HEV), and the development of secondary batteries for motor drive that holds the key to commercialization of these is thriving. Has been done.
モータ駆動用二次電池としては、携帯電話やノートパソコン等に使用される民生用リチウムイオン二次電池と比較して極めて高い出力特性、及び高いエネルギーを有することが求められている。従って、全ての電池の中で比較的高い理論エネルギーを有するリチウムイオン二次電池が注目を集めており、現在急速に開発が進められている。 As a secondary battery for driving a motor, it is required to have extremely high output characteristics and high energy as compared with a consumer lithium ion secondary battery used in a mobile phone, a notebook personal computer or the like. Therefore, lithium ion secondary batteries having a relatively high theoretical energy among all the batteries are attracting attention, and are currently being developed rapidly.
リチウムイオン二次電池は、一般に、バインダーを用いて正極活物質等を正極集電体の両面に塗布した正極と、バインダーを用いて負極活物質等を負極集電体の両面に塗布した負極とが、電解質層を介して接続され、電池ケースに収納される構成を有している。 Generally, a lithium ion secondary battery includes a positive electrode in which a positive electrode active material or the like is applied to both surfaces of a positive electrode current collector using a binder, and a negative electrode in which a negative electrode active material or the like is applied to both surfaces of a negative electrode current collector using a binder. However, it has the structure connected through an electrolyte layer and accommodated in a battery case.
従来、リチウムイオン二次電池の負極には充放電サイクルの寿命やコスト面で有利な炭素、特に黒鉛系材料が用いられてきた。また、最近では、高容量の負極活物質として、リチウムと合金化しうる材料などが研究されている。例えば、Si材料は、充放電において1molあたり4.4molのリチウムイオンを吸蔵放出し、Li22Si5においては4200mAh/g程度もの理論容量を有する。このようにリチウムと合金化しうる材料は電極のエネルギー密度を増加させることができるため、車両用途における負極材料として期待されている。 Conventionally, carbon that is advantageous in terms of charge / discharge cycle life and cost, particularly graphite-based materials, has been used for the negative electrode of a lithium ion secondary battery. Recently, materials capable of being alloyed with lithium have been studied as high-capacity negative electrode active materials. For example, Si material occludes and releases 4.4 mol of lithium ions per mol during charge / discharge, and Li 22 Si 5 has a theoretical capacity of about 4200 mAh / g. Thus, since the material which can be alloyed with lithium can increase the energy density of an electrode, it is anticipated as a negative electrode material in a vehicle use.
しかしながら、このような大容量を有する炭素材料やリチウムと合金化する材料を負極活物質として用いたリチウムイオン二次電池の多くは、初期充放電時の不可逆容量が大きい。このため、充填された正極の容量利用率が低下し、電池のエネルギー密度が低下するという問題がある。ここで、不可逆容量とは、リチウムイオン二次電池において、初期充電で負極中に吸蔵されたリチウムの全てを放電によって放出することはできず、放電後も負極中に残留するリチウム量のことを意味する。この不可逆容量の問題は、高容量が要求される車両用途への実用化において大きな開発課題となっており、不可逆容量を抑制する試みが盛んに行われている。 However, many of the lithium ion secondary batteries using such a carbon material having a large capacity or a material alloyed with lithium as a negative electrode active material have a large irreversible capacity during initial charge / discharge. For this reason, there exists a problem that the capacity utilization factor of the filled positive electrode falls and the energy density of a battery falls. Here, the irreversible capacity refers to the amount of lithium remaining in the negative electrode even after the discharge in the lithium ion secondary battery, in which all of the lithium occluded in the negative electrode during the initial charge cannot be released by the discharge. means. This problem of irreversible capacity has become a major development issue in the practical application to vehicle applications that require high capacity, and attempts to suppress the irreversible capacity have been actively made.
このような不可逆容量に相当するリチウムを補填する技術として、予め所定量のリチウム粉末を表面に付着させた炭素材料を負極活物質として用いる方法が提案されている(特許文献1を参照)。この開示によれば、負極に初回充放電容量差に相当する量のリチウムを予備吸蔵(プレドープ)させることにより、初充電時に充放電容量差を解消でき高容量で安全な電池が得られる、としている。 As a technique for supplementing lithium corresponding to such irreversible capacity, a method has been proposed in which a carbon material having a predetermined amount of lithium powder attached to the surface in advance is used as a negative electrode active material (see Patent Document 1). According to this disclosure, by preliminarily storing (pre-doping) lithium in an amount corresponding to the initial charge / discharge capacity difference in the negative electrode, the charge / discharge capacity difference can be eliminated at the first charge, and a high-capacity and safe battery can be obtained. Yes.
しかしながら、リチウムを予備吸蔵させた負極では、リチウムイオンのドープ時にリチウムと負極活物質との間で発熱反応が生じる。特に、特許文献1に記載の技術のように負極の表面にリチウムを付着させる場合には、リチウムと負極活物質との接触面積が大きいために発熱量も大きくなる。その結果、負極活物質層に含まれるバインダーなどの電極構成材料が溶解して活物質間の抵抗が上昇し、これにより電極の内部抵抗が上昇するおそれがあるという問題があった。 However, in the negative electrode preliminarily occluded with lithium, an exothermic reaction occurs between lithium and the negative electrode active material when lithium ions are doped. In particular, when lithium is attached to the surface of the negative electrode as in the technique described in Patent Document 1, the amount of heat generated increases because the contact area between lithium and the negative electrode active material is large. As a result, there has been a problem that an electrode constituent material such as a binder contained in the negative electrode active material layer is dissolved to increase the resistance between the active materials, thereby increasing the internal resistance of the electrode.
そこで本発明は、リチウムと負極活物質との間の過度な発熱反応を防止して、負極の内部抵抗の上昇を抑制しつつ、不可逆容量を補償しうる手段を提供することを目的とする。 Therefore, an object of the present invention is to provide a means capable of compensating an irreversible capacity while preventing an excessive exothermic reaction between lithium and a negative electrode active material and suppressing an increase in internal resistance of the negative electrode.
本発明者らは上記課題を解決すべく鋭意研究を行った。その結果、負極活物質層の表面に絶縁性無機材料、導電性材料、およびリチウム粒子を含む保護層を形成し、リチウム粒子の表面を保護層の表面から露出させることで上記課題が解決されうることを見出した。 The present inventors have intensively studied to solve the above problems. As a result, the above problem can be solved by forming a protective layer containing an insulating inorganic material, a conductive material, and lithium particles on the surface of the negative electrode active material layer, and exposing the surface of the lithium particles from the surface of the protective layer. I found out.
すなわち、本発明のリチウムイオン二次電池用負極は、集電体と、当該集電体の表面に形成された、負極活物質を含む負極活物質層とを有する。そして、当該前記負極活物質層の表面には絶縁性無機材料、導電性材料、およびリチウム粒子を含む保護層がさらに配置され、当該リチウム粒子の表面の一部が保護層の表面から露出している点に特徴を有する。 That is, the negative electrode for a lithium ion secondary battery of the present invention has a current collector and a negative electrode active material layer including a negative electrode active material formed on the surface of the current collector. A protective layer containing an insulating inorganic material, a conductive material, and lithium particles is further disposed on the surface of the negative electrode active material layer, and a part of the surface of the lithium particles is exposed from the surface of the protective layer. It is characterized in that
本発明によれば、保護層の存在により、リチウムイオンのドープ時におけるリチウム粒子と負極活物質との接触が抑えられ、上述した発熱反応の発生が抑制されうる。その結果、負極の内部抵抗の上昇を抑制しつつ、不可逆容量を補償することが可能となる。 According to the present invention, due to the presence of the protective layer, the contact between the lithium particles and the negative electrode active material at the time of doping with lithium ions can be suppressed, and the above-described exothermic reaction can be suppressed. As a result, it is possible to compensate for the irreversible capacity while suppressing an increase in the internal resistance of the negative electrode.
以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.
[負極]
図1は、本発明の一実施形態に係るリチウムイオン二次電池用負極を示す模式断面図である。以下、図1に示すリチウムイオン二次電池用負極を例に挙げて説明するが、本発明の技術的範囲はかような形態のみに制限されない。
[Negative electrode]
FIG. 1 is a schematic cross-sectional view showing a negative electrode for a lithium ion secondary battery according to an embodiment of the present invention. Hereinafter, the negative electrode for a lithium ion secondary battery shown in FIG. 1 will be described as an example, but the technical scope of the present invention is not limited to such a form.
図1に示す本実施形態の負極1は、集電体2と、負極活物質層3と、保護層4とが順に積層された構造を有する。ここで、保護層4は、絶縁性無機材料として、無機酸化物である酸化アルミニウム(Al2O3)を含む。これに加えて、保護層4は、リチウム粉末、および導電性材料であるグラファイト粒子、並びにバインダーであるスチレン−ブタジエンゴム(SBR)をさらに含む。 A negative electrode 1 of the present embodiment shown in FIG. 1 has a structure in which a current collector 2, a negative electrode active material layer 3, and a protective layer 4 are sequentially laminated. Here, the protective layer 4, as the insulating inorganic material comprises aluminum oxide which is an inorganic oxide (Al 2 O 3). In addition to this, the protective layer 4 further includes lithium powder, graphite particles as a conductive material, and styrene-butadiene rubber (SBR) as a binder.
図2は、図1に示す負極1における負極活物質層3と保護層4との拡大断面図である。図2を参照すると、本実施形態においては、上述したように、保護層4が絶縁性無機材料として無機酸化物である酸化アルミニウム(Al2O3)粒子4aと、リチウム粉末を構成するリチウム粒子4bと、導電性材料であるグラファイト粒子4cと、バインダーであるSBR4dとを含む。そして、保護層4に含まれるリチウム粒子4bの表面の一部が、保護層4の表面(図1に示す上側の面)から露出している。一方、リチウム粒子4bの表面の一部が、負極活物質層3を構成する負極活物質3aに接している。 FIG. 2 is an enlarged cross-sectional view of the negative electrode active material layer 3 and the protective layer 4 in the negative electrode 1 shown in FIG. Referring to FIG. 2, in the present embodiment, as described above, aluminum oxide (Al 2 O 3 ) particles 4a whose protective layer 4 is an inorganic oxide as an insulating inorganic material, and lithium particles constituting lithium powder are used. 4b, graphite particles 4c as a conductive material, and SBR 4d as a binder. A part of the surface of the lithium particle 4b included in the protective layer 4 is exposed from the surface of the protective layer 4 (the upper surface shown in FIG. 1). On the other hand, a part of the surface of the lithium particle 4 b is in contact with the negative electrode active material 3 a constituting the negative electrode active material layer 3.
以下、本実施形態の負極1を構成する部材について説明するが、下記の形態のみに制限されることはなく、従来公知の形態が同様に採用されうる。 Hereinafter, although the member which comprises the negative electrode 1 of this embodiment is demonstrated, it is not restrict | limited only to the following form, A conventionally well-known form may be employ | adopted similarly.
[集電体]
集電体2は導電性材料から構成される。集電体2を構成する材料は、導電性を有するものであれば特に制限されず、例えば、金属や導電性高分子が採用されうる。具体的には、鉄、クロム、ニッケル、マンガン、チタン、モリブデン、バナジウム、ニオブ、アルミニウム、銅、銀、金、白金またはカーボンが挙げられる。集電体1の厚さは、特に限定されないが、通常は1〜100μm程度である。
[Current collector]
The current collector 2 is made of a conductive material. The material which comprises the electrical power collector 2 will not be restrict | limited especially if it has electroconductivity, For example, a metal and a conductive polymer may be employ | adopted. Specific examples include iron, chromium, nickel, manganese, titanium, molybdenum, vanadium, niobium, aluminum, copper, silver, gold, platinum, and carbon. Although the thickness of the electrical power collector 1 is not specifically limited, Usually, it is about 1-100 micrometers.
[負極活物質層]
負極活物質層3は負極活物質を含み、必要に応じて電気伝導性を高めるための導電剤、バインダー、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるための電解質支持塩(リチウム塩)などをさらに含みうる。
[Negative electrode active material layer]
The negative electrode active material layer 3 contains a negative electrode active material, and if necessary, a conductive agent, a binder, an electrolyte (polymer matrix, ion conductive polymer, electrolyte, etc.) for increasing electric conductivity, and ion conductivity for increasing An electrolyte supporting salt (lithium salt) or the like may be further included.
負極活物質層3中に含まれる成分の配合比は特に限定されず、リチウムイオン二次電池についての公知の知見を適宜参照することにより、調整されうる。また、活物質層の厚さについても特に制限はなく、リチウムイオン二次電池についての従来公知の知見が適宜参照されうる。一例を挙げると、活物質層の厚さは、2〜100μm程度である。 The compounding ratio of the components contained in the negative electrode active material layer 3 is not particularly limited, and can be adjusted by appropriately referring to known knowledge about the lithium ion secondary battery. Moreover, there is no restriction | limiting in particular also about the thickness of an active material layer, The conventionally well-known knowledge about a lithium ion secondary battery can be referred suitably. For example, the thickness of the active material layer is about 2 to 100 μm.
(負極活物質)
負極活物質はリチウムを可逆的に吸蔵および放出できるものであれば特に制限されないが、リチウムと合金化しうる元素を含むことが好ましい。リチウムと合金化しうる元素を含む形態としては、リチウムと合金化しうる元素の単体、これらの元素を含む酸化物および炭化物等が挙げられる。
(Negative electrode active material)
The negative electrode active material is not particularly limited as long as it can reversibly occlude and release lithium, but preferably contains an element that can be alloyed with lithium. Examples of the form containing an element that can be alloyed with lithium include simple elements that can be alloyed with lithium, oxides and carbides containing these elements, and the like.
リチウムと合金化しうる元素を用いることにより、従来の炭素材料に比べて高いエネルギー密度を有する高容量の電池を得ることが可能となる。また、リチウムと合金化しうる元素を含む材料はリチウムのドープ時に特に急激な発熱反応を起こし、炭素材料などの他の負極活物質に比べて発熱量を増加させる。上述したように、本実施形態では、保護層4が存在することによりリチウムと負極活物質との過剰な反応が抑制される点に特徴を有する。よって、リチウムとの反応による発熱量が大きいこれらの活物質を用いた場合に本発明の作用効果がより顕著に発揮される。 By using an element that can be alloyed with lithium, a high-capacity battery having a higher energy density than that of a conventional carbon material can be obtained. In addition, a material containing an element that can be alloyed with lithium causes a particularly rapid exothermic reaction when lithium is doped, and increases the amount of heat generation as compared with other negative electrode active materials such as a carbon material. As described above, the present embodiment is characterized in that the presence of the protective layer 4 suppresses excessive reaction between lithium and the negative electrode active material. Therefore, when these active materials having a large calorific value due to reaction with lithium are used, the effects of the present invention are more remarkably exhibited.
リチウムと合金化しうる元素としては、以下に制限されることはないが、具体的には、Si、Ge、Sn、Pb、Al、In、Zn、H、Ca、Sr、Ba、Ru、Rh、Ir、Pd、Pt、Ag、Au、Cd、Hg、Ga、Tl、C、N、Sb、Bi、O、S、Se、Te、Cl等が挙げられる。これらの中でも、容量およびエネルギー密度に優れた電池を構成できる観点から、負極活物質は、Si、Ge、Sn、Pb、Al、In、およびZnからなる群より選択される少なくとも1種の元素を含むことが好ましく、SiまたはSnの元素を含むことがより好ましく、Siを含むことが特に好ましい。酸化物としては、一酸化ケイ素(SiO)、二酸化スズ(SnO2)、一酸化スズ(SnO)などを用いることができる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。 Elements that can be alloyed with lithium are not limited to the following, but specifically, Si, Ge, Sn, Pb, Al, In, Zn, H, Ca, Sr, Ba, Ru, Rh, Ir, Pd, Pt, Ag, Au, Cd, Hg, Ga, Tl, C, N, Sb, Bi, O, S, Se, Te, Cl and the like can be mentioned. Among these, from the viewpoint that a battery excellent in capacity and energy density can be configured, the negative electrode active material contains at least one element selected from the group consisting of Si, Ge, Sn, Pb, Al, In, and Zn. It is preferable to include Si, Sn elements are more preferable, and Si is particularly preferable. As the oxide, silicon monoxide (SiO), tin dioxide (SnO 2 ), tin monoxide (SnO), or the like can be used. These may be used individually by 1 type and may use 2 or more types together.
この他、グラファイト、ソフトカーボン、ハードカーボン等の炭素材料、リチウム金属等の金属材料、リチウム−チタン複合酸化物(チタン酸リチウム:Li4Ti5O12)等のリチウム−遷移金属複合酸化物、およびその他の従来公知の負極活物質が使用可能である。場合によっては、これらの負極活物質が2種以上併用されてもよい。 In addition, carbon materials such as graphite, soft carbon, and hard carbon, metal materials such as lithium metal, lithium-transition metal composite oxides such as lithium-titanium composite oxide (lithium titanate: Li 4 Ti 5 O 12 ), In addition, other conventionally known negative electrode active materials can be used. In some cases, two or more of these negative electrode active materials may be used in combination.
ただし、容量を向上させるためには、リチウムと合金化しうる元素を含む負極活物質を多く活物質中に含むことが好ましい。より好ましい形態において、具体的には、負極活物質中、リチウムと合金化しうる元素を含む活物質が60質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、特に好ましくは100質量%含まれる。 However, in order to improve the capacity, it is preferable to include a large amount of a negative electrode active material containing an element that can be alloyed with lithium in the active material. In a more preferred form, specifically, in the negative electrode active material, the active material containing an element capable of alloying with lithium is 60% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, particularly preferably. 100% by mass is contained.
(導電剤)
導電剤とは、導電性を向上させるために配合される添加物をいう。本実施形態において用いられうる導電剤は特に制限されず、従来公知の形態が適宜参照されうる。例えば、アセチレンブラック等のカーボンブラック、グラファイト、炭素繊維などの炭素材料が挙げられる。導電剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。
(Conductive agent)
The conductive agent refers to an additive blended to improve conductivity. The conductive agent that can be used in the present embodiment is not particularly limited, and conventionally known forms can be appropriately referred to. Examples thereof include carbon materials such as carbon black such as acetylene black, graphite, and carbon fiber. When the conductive agent is included, an electronic network inside the active material layer is effectively formed, which can contribute to improvement of the output characteristics of the battery.
(バインダー)
バインダーとしては、以下に制限されることはないが、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリ酢酸ビニル、ポリイミド、およびアクリル樹脂などの熱可塑性樹脂、エポキシ樹脂、ポリウレタン樹脂、およびユリア樹脂などの熱硬化性樹脂、ならびにスチレン−ブタジエンゴム(SBR)などのゴム系材料が挙げられる。
(binder)
Examples of the binder include, but are not limited to, thermoplastic resins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl acetate, polyimide, and acrylic resins, epoxy resins, polyurethane resins, And thermosetting resins such as urea resin, and rubber-based materials such as styrene-butadiene rubber (SBR).
(電解質・支持塩)
電解質としては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、それらの共重合体などのリチウム塩を含むイオン伝導性ポリマー(固体高分子電解質)などが挙げられるが、これらに制限されることはない。
(Electrolyte / Supporting salt)
Examples of the electrolyte include, but are not limited to, ion conductive polymers (solid polymer electrolytes) including lithium salts such as polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof. There is nothing.
支持塩(リチウム塩)としては、以下に制限されないが、LiPF6、LiBF4、LiClO4、LiAsF6、LiTaF6、LiAlCl4、Li2B10Cl10等の無機酸陰イオン塩;LiCF3SO3、Li(CF3SO2)2N、Li(C2F5SO2)2N等の有機酸陰イオン塩が挙げられる。これらの支持塩は、単独で使用されてもよいし、2種以上が併用されてもよい。 The supporting salt (lithium salt), but are not limited to, LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiTaF 6, LiAlCl 4, inorganic acid anion salts such as Li 2 B 10 Cl 10; LiCF 3 SO 3 , organic acid anion salts such as Li (CF 3 SO 2 ) 2 N and Li (C 2 F 5 SO 2 ) 2 N. These supporting salts may be used alone or in combination of two or more.
[保護層]
この保護層4は、本実施形態の負極が用いられるリチウムイオン二次電池の初回充放電において生じる電極の不可逆容量を補償するためのリチウム(イオン)の予備吸蔵層として機能する。
[Protective layer]
This protective layer 4 functions as a lithium (ion) pre-occlusion layer for compensating for the irreversible capacity of the electrode that occurs in the first charge / discharge of the lithium ion secondary battery in which the negative electrode of the present embodiment is used.
保護層4は、絶縁性無機材料、導電性材料、およびリチウム粒子を含む。また、保護層4は、必要に応じて、バインダー、界面活性剤等の他の成分を含んでもよい。 The protective layer 4 includes an insulating inorganic material, a conductive material, and lithium particles. Moreover, the protective layer 4 may contain other components, such as a binder and surfactant, as needed.
(絶縁性無機材料)
保護層4が絶縁性無機材料を含むことにより、後述するリチウム粒子と負極活物質との間の発熱反応を抑制することが可能となる。その結果、当該発熱反応に起因する負極の内部抵抗の増大が防止されうる。なお、かような形態とすることで、ドープによる化学反応は主として電解液を介して行なわれることとなる。
(Insulating inorganic material)
When the protective layer 4 contains an insulating inorganic material, an exothermic reaction between lithium particles and a negative electrode active material described later can be suppressed. As a result, an increase in the internal resistance of the negative electrode due to the exothermic reaction can be prevented. In addition, by setting it as such a form, the chemical reaction by dope will be mainly performed through electrolyte solution.
保護層4に含まれうる絶縁性無機材料としては、電気絶縁性を示す無機材料であれば特に制限されず、用いられうる。例えば、SiO2、Al2O3、TiO2、ZrO2、MgO、ZnO、SnO2、WO3、HfO2、Ta2O5、BaTiO3、BaZrO3、Al2O3、Y2O3、およびZrSiO4などの無機酸化物や、AlN、Si3N4などの無機窒化物が挙げられる。これらの中でも、電子伝導性が低く(絶縁性が高く)、かつ、機械的強度に優れるという観点からは、SiO2、Al2O3、またはTiO2が好適に用いられる。これらの材料は1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。保護層4における絶縁性無機材料の形状は特に制限されず、球状、棒状、針状、板状、柱状、不定形状、燐片状、紡錘状など任意の構造をとりうる。 The insulating inorganic material that can be included in the protective layer 4 is not particularly limited as long as it is an inorganic material that exhibits electrical insulation, and may be used. For example, SiO 2, Al 2 O 3 , TiO 2, ZrO 2, MgO, ZnO, SnO 2, WO 3, HfO 2, Ta 2 O 5, BaTiO 3, BaZrO 3, Al 2 O 3, Y 2 O 3, And inorganic oxides such as ZrSiO 4 and inorganic nitrides such as AlN and Si 3 N 4 . Among these, SiO 2 , Al 2 O 3 , or TiO 2 is preferably used from the viewpoint of low electronic conductivity (high insulation) and excellent mechanical strength. Only 1 type of these materials may be used independently, and 2 or more types may be used together. The shape of the insulating inorganic material in the protective layer 4 is not particularly limited, and may take any structure such as a spherical shape, a rod shape, a needle shape, a plate shape, a column shape, an indefinite shape, a flake shape, and a spindle shape.
絶縁性無機材料の粒子径は特に制限されない。ただし、絶縁性無機材料の粒子径は、好ましくは0.01〜3μmであり、より好ましくは0.05〜3μmであり、特に好ましくは0.1〜2μmである。絶縁性無機材料の粒子径が0.1μm以上であれば、取り扱いが容易であるとともにリチウム粒子と負極活物質との間の接触・反応抑制の効果が十分に発揮される。一方、絶縁性無機材料の粒子径が2μm以下であれば、リチウム粒子が保護層表面から露出しやすいという利点がある。なお、本明細書において「粒子径」とは、粒子の輪郭線上の任意の2点間の距離のうち、最大の距離を意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数〜数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。 The particle diameter of the insulating inorganic material is not particularly limited. However, the particle diameter of the insulating inorganic material is preferably 0.01 to 3 μm, more preferably 0.05 to 3 μm, and particularly preferably 0.1 to 2 μm. When the particle diameter of the insulating inorganic material is 0.1 μm or more, the handling is easy and the effect of suppressing contact and reaction between the lithium particles and the negative electrode active material is sufficiently exhibited. On the other hand, when the particle diameter of the insulating inorganic material is 2 μm or less, there is an advantage that the lithium particles are easily exposed from the surface of the protective layer. In this specification, “particle diameter” means the maximum distance among any two points on the particle outline. As the value of “average particle diameter”, the average particle diameter of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.
保護層4における絶縁性無機材料の含有量は特に制限されないが、保護層4の全体積を基準として、好ましくは5〜90体積%であり、より好ましくは40〜90体積%であり、さらに好ましくは40〜85体積%である。絶縁性無機材料の含有量が5体積%以上であれば、リチウム粒子と負極活物質との間の接触・反応抑制の効果が十分に発揮される。一方、絶縁性無機材料の含有量が90体積%以下であれば、後述するリチウム粒子の含有量がある程度確保され、リチウムのプレドープによる不可逆容量の補償効果が十分に発揮されうる。 Although content in particular of the insulating inorganic material in the protective layer 4 is not restrict | limited, Preferably it is 5-90 volume% on the basis of the whole volume of the protective layer 4, More preferably, it is 40-90 volume%, More preferably Is 40-85 volume%. When the content of the insulating inorganic material is 5% by volume or more, the effect of suppressing contact and reaction between the lithium particles and the negative electrode active material is sufficiently exhibited. On the other hand, if the content of the insulating inorganic material is 90% by volume or less, the content of lithium particles to be described later is secured to some extent, and the effect of compensating the irreversible capacity by the lithium pre-doping can be sufficiently exhibited.
(導電性材料)
保護層4が導電性材料を含むことにより、保護層4において良好な電子ネットワークが形成される。その結果、負極活物質層3の表面電位が等電位化され、リチウムイオンが負極活物質にドープされる際の電子移動抵抗が低減されうる。その結果、電子移動抵抗に起因するジュール熱の発生もまた、抑制されうる。
(Conductive material)
When the protective layer 4 includes a conductive material, a good electronic network is formed in the protective layer 4. As a result, the surface potential of the negative electrode active material layer 3 is equalized, and the electron transfer resistance when lithium ions are doped into the negative electrode active material can be reduced. As a result, generation of Joule heat due to electron transfer resistance can also be suppressed.
保護層4に含まれうる導電性材料としては、電子伝導性を示す材料であれば特に制限されず、用いられうる。例えば、アセチレンブラック等のカーボンブラック、グラファイト、および炭素繊維などの炭素材料ならびにTi、Cr、Mn、Fe、Co、Ni、Cu、およびMoなどのリチウムと反応しない金属などが挙げられる。なかでも、電子伝導性に優れ、軽量であるという点で、アセチレンブラック等のカーボンブラック、グラファイト、および炭素繊維などの炭素材料が好ましく用いられうる。これらの材料は1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。導電性材料の形状は特に制限されず、球状、棒状、針状、板状、柱状、不定形状、燐片状、紡錘状など任意の構造をとりうる。 The conductive material that can be included in the protective layer 4 is not particularly limited as long as it is a material that exhibits electronic conductivity, and may be used. Examples thereof include carbon materials such as acetylene black, carbon materials such as graphite, and carbon fibers, and metals that do not react with lithium such as Ti, Cr, Mn, Fe, Co, Ni, Cu, and Mo. Especially, carbon materials, such as carbon black, such as acetylene black, a graphite, and a carbon fiber, can be used preferably from the point that it is excellent in electronic conductivity and is lightweight. Only 1 type of these materials may be used independently, and 2 or more types may be used together. The shape of the conductive material is not particularly limited, and may have any structure such as a spherical shape, a rod shape, a needle shape, a plate shape, a column shape, an indefinite shape, a flake shape, and a spindle shape.
導電性材料の粒子径は特に制限されない。ただし、導電性材料の粒子径は、好ましくは0.01〜10μmであり、より好ましくは0.01〜5μmであり、特に好ましくは0.05〜3μmである。 The particle diameter of the conductive material is not particularly limited. However, the particle diameter of the conductive material is preferably 0.01 to 10 μm, more preferably 0.01 to 5 μm, and particularly preferably 0.05 to 3 μm.
保護層4における導電性材料の含有量は特に制限されないが、保護層4の全体積を基準として、好ましくは5〜50体積%であり、より好ましくは10〜50体積%である。導電性材料の含有量が5体積%以上であれば、保護層4において電子ネットワークが十分に形成され、リチウムイオンが負極活物質にドープされる際の電子移動抵抗が有意に低減されうる。一方、導電性材料の含有量が50体積%以下であれば、高エネルギー密度化が達成されうるという点で好ましい。 The content of the conductive material in the protective layer 4 is not particularly limited, but is preferably 5 to 50% by volume, more preferably 10 to 50% by volume based on the total volume of the protective layer 4. If the content of the conductive material is 5% by volume or more, an electron network is sufficiently formed in the protective layer 4, and the electron transfer resistance when lithium ions are doped into the negative electrode active material can be significantly reduced. On the other hand, if the content of the conductive material is 50% by volume or less, it is preferable in that high energy density can be achieved.
(リチウム粒子)
保護層4がリチウム粒子を含むことで、リチウムイオン二次電池の初回充放電時にリチウムイオンが負極活物質中にドープされうる。その結果、リチウムイオン二次電池における不可逆容量の補償が可能となる。この際、上述した絶縁性材料および導電性材料が併せて保護層4に含まれることで、リチウムイオンのドープ時におけるリチウム粒子と負極活物質との接触が抑えられ、発熱反応の発生が抑制されうる。その結果、負極の内部抵抗の上昇を抑制しつつ、不可逆容量を補償することが可能となる。
(Lithium particles)
When the protective layer 4 contains lithium particles, lithium ions can be doped into the negative electrode active material during the initial charge / discharge of the lithium ion secondary battery. As a result, it is possible to compensate for the irreversible capacity in the lithium ion secondary battery. At this time, since the insulating material and the conductive material described above are included in the protective layer 4, the contact between the lithium particles and the negative electrode active material at the time of doping with lithium ions is suppressed, and the generation of an exothermic reaction is suppressed. sell. As a result, it is possible to compensate for the irreversible capacity while suppressing an increase in the internal resistance of the negative electrode.
リチウム粒子とは、金属リチウムが微細に粉砕されたリチウムの粉末を意味する。リチウム粒子は、初回充放電時において生じる電極の不可逆容量を補償する機能を有する。なお、リチウム粒子の形状は特に制限されず、球状、棒状、針状、板状、柱状、不定形状、燐片状、紡錘状など任意の構造をとりうる。 The lithium particles mean lithium powder in which metallic lithium is finely pulverized. The lithium particles have a function of compensating for the irreversible capacity of the electrode that occurs during the first charge / discharge. The shape of the lithium particles is not particularly limited, and may take any structure such as a spherical shape, a rod shape, a needle shape, a plate shape, a column shape, an indefinite shape, a flake shape, and a spindle shape.
また、リチウム粒子の平均粒子径についても特に制限はない。ただし、リチウム粒子の平均粒子径は、好ましくは1〜100μmであり、より好ましくは3〜80μmであり、特に好ましくは5〜20μmである。リチウム粒子の平均粒子径が1μm以上であれば、取り扱いが容易であるため好ましい。一方、リチウム粒子の平均粒子径が100μm以下であれば、電極の面内分散状態が良好になるという点で好ましい。 Moreover, there is no restriction | limiting in particular also about the average particle diameter of a lithium particle. However, the average particle diameter of the lithium particles is preferably 1 to 100 μm, more preferably 3 to 80 μm, and particularly preferably 5 to 20 μm. If the average particle diameter of the lithium particles is 1 μm or more, it is preferable because the handling is easy. On the other hand, if the average particle diameter of the lithium particles is 100 μm or less, it is preferable in that the in-plane dispersion state of the electrode becomes good.
保護層4におけるリチウム粒子の含有量は特に制限されないが、保護層4の全体積を基準として、好ましくは10〜90体積%であり、より好ましくは10〜50体積%である。リチウム粒子の含有量が10体積%以上であれば、上述した初回充放電時における不可逆容量の補償効果が十分に発揮されうる。また、プレドープ後の保護層内に電解液が浸透する十分な空隙が得られるため、高出力電池を作製しうる。一方、リチウム粒子の含有量が90体積%以下であれば、リチウム粒子とともに保護層4に含まれる絶縁性材料や導電性材料による上述した効果が併せて発揮されうる。 The content of the lithium particles in the protective layer 4 is not particularly limited, but is preferably 10 to 90% by volume, more preferably 10 to 50% by volume based on the total volume of the protective layer 4. When the lithium particle content is 10% by volume or more, the above-described irreversible capacity compensation effect during the initial charge / discharge can be sufficiently exhibited. Moreover, since sufficient space | gap which electrolyte solution osmose | permeates in the protective layer after a pre dope is obtained, a high output battery can be produced. On the other hand, when the content of the lithium particles is 90% by volume or less, the above-described effects by the insulating material and the conductive material included in the protective layer 4 together with the lithium particles can be exhibited.
なお、保護層4におけるリチウム粒子の含有量は、負極活物質層に含まれる負極活物質の不可逆容量相当量以上であることが好ましく、不可逆容量相当量の1.0倍〜2.0倍の範囲であることがより好ましい。かような範囲のリチウムが含まれれば、初回充放電において生じる電極の不可逆容量を補償することができ、かつ不要なリチウム量を最小限にできるため好ましい。ここで、負極活物質層に含まれる負極活物質の不可逆容量は、予め使用する負極を用いた電池を別途作製して充放電を行い、充電前後における放電容量の差分から算出することができる。 In addition, it is preferable that content of the lithium particle in the protective layer 4 is more than the irreversible capacity | capacitance equivalent amount of the negative electrode active material contained in a negative electrode active material layer, 1.0-2.0 times the irreversible capacity | capacitance equivalent amount. A range is more preferable. The inclusion of lithium in such a range is preferable because it is possible to compensate for the irreversible capacity of the electrode that occurs in the initial charge / discharge and to minimize the amount of unnecessary lithium. Here, the irreversible capacity of the negative electrode active material contained in the negative electrode active material layer can be calculated from the difference in discharge capacity before and after charging by separately preparing a battery using a negative electrode to be used in advance and charging and discharging.
本実施形態の負極1においては、保護層3に含まれるリチウム粒子の少なくとも一部が、保護層4の表面から露出している。これにより、負極の内部抵抗の増大を抑制しつつ不可逆容量を補償するという本発明の作用効果が十分に発揮されうる。なお、「リチウム粒子が露出している」か否かは、保護層4の集電体1と対向する表面とは反対側の表面を透過型電子顕微鏡(TEM)等により観察した場合に、その観察像において、リチウム粒子の存在が確認されるか否かを調べることにより判定される。 In the negative electrode 1 of this embodiment, at least a part of the lithium particles contained in the protective layer 3 is exposed from the surface of the protective layer 4. Thereby, the effect of this invention of compensating an irreversible capacity | capacitance, suppressing the increase in the internal resistance of a negative electrode can fully be exhibited. Whether or not “lithium particles are exposed” is determined when the surface of the protective layer 4 opposite to the surface facing the current collector 1 is observed with a transmission electron microscope (TEM) or the like. This is determined by examining whether or not the presence of lithium particles is confirmed in the observed image.
上述したような形態において、リチウム粒子を露出させることによる作用効果を十分に発揮させるという観点から、好ましくは、保護層4の集電体2と対向する表面とは反対側の表面の面積に占める、当該表面から露出したリチウム粒子の面積の割合が規定される。具体的には、露出したリチウム粒子の面積は、保護層4の面積を基準として、好ましくは5〜95%であり、より好ましくは10〜80%であり、さらに好ましくは20〜70%である。 In the form as described above, from the viewpoint of sufficiently exerting the effect by exposing the lithium particles, preferably, the protective layer 4 occupies the area of the surface opposite to the surface facing the current collector 2. The ratio of the area of the lithium particles exposed from the surface is defined. Specifically, the area of the exposed lithium particles is preferably 5 to 95%, more preferably 10 to 80%, still more preferably 20 to 70% based on the area of the protective layer 4. .
上述したように、場合によっては、保護層4は、バインダー、界面活性剤等の他の成分をも含みうる。 As described above, in some cases, the protective layer 4 may also include other components such as a binder and a surfactant.
保護層4がバインダーを含むことで、保護層4に含まれる各成分間での結着性が増し、保護層4自体の機械的強度が増大する。これと併せて、保護層4と負極活物質層3との結着性もまた向上し、最終的には負極1全体の機械的強度の増大につながる。 When the protective layer 4 contains the binder, the binding property between the components contained in the protective layer 4 increases, and the mechanical strength of the protective layer 4 itself increases. At the same time, the binding property between the protective layer 4 and the negative electrode active material layer 3 is also improved, and finally the mechanical strength of the entire negative electrode 1 is increased.
保護層4に含まれうるバインダーとしては、負極活物質層3の欄において列挙した材料が同様に用いられうるため、ここでは詳細な説明を省略する。なお、保護層4におけるバインダーの含有量は、保護層4の全体積を基準として、好ましくは1〜50体積%であり、より好ましくは2〜30体積%であり、さらに好ましくは3〜20体積%である。保護層4におけるバインダーの含有量が1体積%以上であれば、上述した機械的強度の向上効果が十分に発揮されうる。一方、バインダーの含有量が50体積%以下であれば、保護層4に含まれる絶縁性材料や導電性材料、リチウム粒子による上述した効果が併せて発揮されうる。 As the binder that can be included in the protective layer 4, the materials listed in the column of the negative electrode active material layer 3 can be used in the same manner, and thus detailed description thereof is omitted here. The binder content in the protective layer 4 is preferably 1 to 50% by volume, more preferably 2 to 30% by volume, even more preferably 3 to 20% by volume, based on the total volume of the protective layer 4. %. If the content of the binder in the protective layer 4 is 1% by volume or more, the above-described effect of improving the mechanical strength can be sufficiently exhibited. On the other hand, when the content of the binder is 50% by volume or less, the above-described effects due to the insulating material, the conductive material, and the lithium particles included in the protective layer 4 can be exhibited together.
保護層4の厚さについて特に制限はないが、高エネルギー密度化の観点から、電極の不可逆容量を補償するためのリチウムを保持できる限り薄い方が好ましい。一例を挙げると、保護層4の厚さは5〜50μm程度である。 Although there is no restriction | limiting in particular about the thickness of the protective layer 4, The thinner one is preferable as long as the lithium for compensating the irreversible capacity | capacitance of an electrode can be hold | maintained from a viewpoint of high energy density. For example, the thickness of the protective layer 4 is about 5 to 50 μm.
以上、保護層4が1層のみからなる形態を例に挙げて本実施形態の負極について詳細に説明したが、本発明の技術的範囲はかような形態のみには制限されない。以下に、負極についての変形例を説明する。 As described above, the negative electrode of the present embodiment has been described in detail by taking the form in which the protective layer 4 is composed of only one layer as an example, but the technical scope of the present invention is not limited to such a form. Below, the modification about a negative electrode is demonstrated.
図3は、本発明の他の実施形態に係るリチウムイオン二次電池用負極を示す模式断面図である。 FIG. 3 is a schematic cross-sectional view showing a negative electrode for a lithium ion secondary battery according to another embodiment of the present invention.
図3に示す形態において、保護層4は、負極活物質層3側の層(第1保護層)4xと、負極活物質層3側とは反対側の層(第2保護層)4yとの2層からなる。第1保護層4xは、絶縁性無機材料(無機酸化物)である酸化アルミニウム(Al2O3)と、導電性材料であるグラファイト粉末と、バインダーであるスチレン−ブタジエンゴム(SBR)とを含む。また、第2保護層4yは、絶縁性無機材料(無機酸化物)である酸化アルミニウム(Al2O3)と、リチウム粉末と、導電性材料であるグラファイト粉末と、バインダーであるスチレン−ブタジエンゴム(SBR)とを含む。 In the form shown in FIG. 3, the protective layer 4 includes a layer (first protective layer) 4x on the negative electrode active material layer 3 side and a layer (second protective layer) 4y on the opposite side to the negative electrode active material layer 3 side. It consists of two layers. The first protective layer 4x includes aluminum oxide (Al 2 O 3 ) that is an insulating inorganic material (inorganic oxide), graphite powder that is a conductive material, and styrene-butadiene rubber (SBR) that is a binder. . The second protective layer 4y includes an insulating inorganic material (inorganic oxide) aluminum oxide (Al 2 O 3 ), a lithium powder, a conductive material graphite powder, and a styrene-butadiene rubber as a binder. (SBR).
第2保護層4yは、図1に示す実施形態における保護層4と同様に、絶縁性無機材料、導電性材料、およびリチウム粒子を必須に含有する限り、その他の形態について特に制限はない。含有される絶縁性無機材料および導電性材料(並びに、必要に応じてバインダーその他の任意成分)の具体的な種類は、上述した図1に示す実施形態における保護層4と同一である。よって、ここでは詳細な説明を省略する。 Similar to the protective layer 4 in the embodiment shown in FIG. 1, the second protective layer 4 y is not particularly limited with respect to other forms as long as it contains an insulating inorganic material, a conductive material, and lithium particles. Specific types of the insulating inorganic material and the conductive material (and the binder and other optional components as necessary) are the same as those of the protective layer 4 in the embodiment shown in FIG. 1 described above. Therefore, detailed description is omitted here.
第2保護層4yに含まれる各成分の含有量についても特に制限はない。一例を挙げると、第2保護層4yにおける絶縁性無機材料の含有量は、上記と同様の理由から、第2保護層4yの全体積を基準として、好ましくは5〜90体積%であり、より好ましくは40〜90体積%である。また、第2保護層4yにおける導電性材料の含有量は、上記と同様の理由から、第2保護層4yの全体積を基準として、好ましくは4〜20体積%であり、より好ましくは5〜20体積%であり、さらに好ましくは10〜20体積%である。さらに、第2保護層4yにおけるリチウム粒子の含有量は、上記と同様の理由から、第2保護層4yの全体積を基準として、好ましくは5〜90体積%であり、より好ましくは10〜90体積%であり、さらに好ましくは10〜50体積%である。 There is no restriction | limiting in particular also about content of each component contained in the 2nd protective layer 4y. For example, the content of the insulating inorganic material in the second protective layer 4y is preferably 5 to 90% by volume on the basis of the total volume of the second protective layer 4y for the same reason as described above. Preferably it is 40-90 volume%. In addition, the content of the conductive material in the second protective layer 4y is preferably 4 to 20% by volume, more preferably 5 to 5% by volume based on the total volume of the second protective layer 4y for the same reason as described above. It is 20 volume%, More preferably, it is 10-20 volume%. Furthermore, the lithium particle content in the second protective layer 4y is preferably 5 to 90% by volume, more preferably 10 to 90%, based on the total volume of the second protective layer 4y, for the same reason as described above. It is volume%, More preferably, it is 10-50 volume%.
一方、第1保護層4xの組成は、リチウム粉末を含まない点で、第2保護層4yの組成とは異なる。図1に示す形態における保護層4と同様に、上述した第2保護層4yの構成成分のうち、バインダーの含有は任意である。したがって、第2保護層4yは、絶縁性無機材料および導電性材料を必須に含有する限り、その他の形態について特に制限はない。第1保護層4xについても、含有される絶縁性無機材料および導電性材料(並びに、必要に応じてバインダーその他の任意成分)の具体的な種類は、上述した図1に示す実施形態における保護層4と同一である。よって、ここでは詳細な説明を省略する。 On the other hand, the composition of the first protective layer 4x is different from the composition of the second protective layer 4y in that it does not contain lithium powder. As in the protective layer 4 in the embodiment shown in FIG. 1, among the constituent components of the second protective layer 4y described above, the binder may be optionally contained. Therefore, the second protective layer 4y is not particularly limited with respect to other forms as long as it essentially contains an insulating inorganic material and a conductive material. Also for the first protective layer 4x, the specific types of the insulating inorganic material and the conductive material (and the binder and other optional components as necessary) contained in the protective layer in the embodiment shown in FIG. 4 is the same. Therefore, detailed description is omitted here.
第1保護層4xに含まれる各成分の含有量についても特に制限はない。一例を挙げると、第1保護層4xにおける絶縁性無機材料の含有量は、第1保護層4xの全体積を基準として、好ましくは5〜95体積%であり、より好ましくは10〜90体積%であり、さらに好ましくは20〜80体積%である。絶縁性無機材料の含有量が5体積%以上であれば、第2保護層4yに含まれるリチウム粒子と、負極活物質層3に含まれる負極活物質との間の接触・反応抑制の効果が十分に発揮される。一方、絶縁性無機材料の含有量が95体積%以下であれば、第2保護層4yに含まれるリチウム粒子と、負極活物質層3に含まれる負極活物質との間の電子伝導性が確保されるという利点が得られる。 There is no particular limitation on the content of each component contained in the first protective layer 4x. For example, the content of the insulating inorganic material in the first protective layer 4x is preferably 5 to 95% by volume, more preferably 10 to 90% by volume, based on the total volume of the first protective layer 4x. More preferably, it is 20 to 80% by volume. If the content of the insulating inorganic material is 5% by volume or more, there is an effect of suppressing contact / reaction between the lithium particles contained in the second protective layer 4y and the negative electrode active material contained in the negative electrode active material layer 3. It is fully demonstrated. On the other hand, if the content of the insulating inorganic material is 95% by volume or less, the electron conductivity between the lithium particles contained in the second protective layer 4y and the negative electrode active material contained in the negative electrode active material layer 3 is ensured. The advantage of being obtained.
また、第1保護層4xにおける導電性材料の含有量は、第1保護層4xの全体積を基準として、好ましくは5〜90体積%であり、より好ましくは10〜60体積%である。導電性材料の含有量が5体積%以上であれば、第1保護層4xにおいて電子ネットワークが十分に形成され、リチウムイオンが負極活物質にドープされる際の電子移動抵抗が有意に低減されうる。一方、導電性材料の含有量が90体積%以下であれば、第2保護層4yに含まれるリチウム粒子と、負極活物質層3に含まれる負極活物質との間の接触・反応抑制の効果が十分に発揮されうるため、好ましい。 In addition, the content of the conductive material in the first protective layer 4x is preferably 5 to 90% by volume, more preferably 10 to 60% by volume, based on the total volume of the first protective layer 4x. If the content of the conductive material is 5% by volume or more, an electron network is sufficiently formed in the first protective layer 4x, and the electron transfer resistance when the lithium ion is doped into the negative electrode active material can be significantly reduced. . On the other hand, if the content of the conductive material is 90% by volume or less, the effect of suppressing contact / reaction between the lithium particles contained in the second protective layer 4y and the negative electrode active material contained in the negative electrode active material layer 3 is achieved. Can be sufficiently exhibited.
図3に示す形態において、第1保護層4xおよび第2保護層4yのそれぞれの厚さについて特に制限はなく、所望のプレドープ効果などを考慮して適宜決定されうる。一例として、第1保護層4xの厚さは、好ましくは0.5〜10μmであり、より好ましくは1〜10μmであり、特に好ましくは2〜8μmである。また、第2保護層4yの厚さは、好ましくは1〜100μmであり、より好ましくは5〜80μmであり、特に好ましくは5〜50μmである。 In the form shown in FIG. 3, the thicknesses of the first protective layer 4x and the second protective layer 4y are not particularly limited, and can be appropriately determined in consideration of a desired pre-doping effect. As an example, the thickness of the first protective layer 4x is preferably 0.5 to 10 μm, more preferably 1 to 10 μm, and particularly preferably 2 to 8 μm. The thickness of the second protective layer 4y is preferably 1 to 100 μm, more preferably 5 to 80 μm, and particularly preferably 5 to 50 μm.
[負極の製造方法]
本実施形態のリチウムイオン二次電池用負極の製造方法としては、特に制限されるものではなく、従来公知の方法を適用して作製することができる。以下、図3に示す形態の負極を製造する場合を例に挙げて、本実施形態の負極の製造方法を説明する。
[Production method of negative electrode]
The method for producing the negative electrode for a lithium ion secondary battery of the present embodiment is not particularly limited, and can be produced by applying a conventionally known method. Hereinafter, the manufacturing method of the negative electrode of this embodiment will be described by taking as an example the case of manufacturing the negative electrode of the form shown in FIG.
すなわち、本発明の他の一形態によれば、集電体の表面に形成された負極活物質層の表面に、絶縁性無機材料および導電性材料が溶媒に添加されてなる第1溶液を塗布し、乾燥させて、第1塗膜を形成する第1工程と、前記第1工程の後に行なわれる、リチウム粒子、絶縁性無機材料および導電性材料が溶媒に添加されてなる第2溶液を前記第1塗膜の表面に塗布し、乾燥させて、第2塗膜を形成する第2工程とを含む、リチウムイオン二次電池用負極の製造方法が提供される。かような方法を用いることにより、リチウムと負極活物質との間の過度の反応とこれに伴う反応熱の発生を抑制し、内部抵抗の上昇を防止しうるリチウムイオン二次電池用負極を容易に得ることができる。 That is, according to another embodiment of the present invention, the first solution in which the insulating inorganic material and the conductive material are added to the solvent is applied to the surface of the negative electrode active material layer formed on the surface of the current collector. A first step of forming a first coating film by drying, and a second solution formed after the first step, in which lithium particles, an insulating inorganic material and a conductive material are added to a solvent. The manufacturing method of the negative electrode for lithium ion secondary batteries including the 2nd process of apply | coating to the surface of a 1st coating film, making it dry and forming a 2nd coating film is provided. By using such a method, a negative electrode for a lithium ion secondary battery that can suppress an excessive reaction between lithium and the negative electrode active material and the generation of reaction heat accompanying this and prevent an increase in internal resistance can be easily achieved. Can get to.
(1)活物質層形成工程
まず、負極活物質、導電剤およびバインダーなどの電極材料を、適当なスラリー粘度調整溶媒に分散させて、負極活物質スラリーを調製する。
(1) Active material layer formation process First, electrode materials, such as a negative electrode active material, a electrically conductive agent, and a binder, are disperse | distributed to a suitable slurry viscosity adjustment solvent, and negative electrode active material slurry is prepared.
スラリー粘度調整溶媒としては、特に制限されないが、例えば、N−メチル−2−ピロリドン(NMP)などが挙げられる。スラリーはホモジナイザーまたは混練装置などを用いて溶媒および固形分よりインク化される。 The slurry viscosity adjusting solvent is not particularly limited, and examples thereof include N-methyl-2-pyrrolidone (NMP). The slurry is converted into ink from the solvent and the solid content using a homogenizer or a kneader.
次いで、集電体の表面に上記で調製した負極活物質スラリーを塗布する。スラリーを集電体に塗布するための塗布手段は特に限定されないが、例えば、自走型コーター、ドクターブレード法、スプレー法などの一般に用いられる手段が採用されうる。 Next, the negative electrode active material slurry prepared above is applied to the surface of the current collector. The application means for applying the slurry to the current collector is not particularly limited. For example, commonly used means such as a self-propelled coater, a doctor blade method, and a spray method may be employed.
続いて、集電体の表面に形成された塗膜を乾燥させる。これにより、塗膜中の溶媒が除去される。塗膜を乾燥させるための乾燥手段も特に制限されず、電極製造について従来公知の知見が適宜参照されうる。例えば、加熱処理が例示される。乾燥条件(乾燥時間、乾燥温度など)は、スラリーの塗布量やスラリー粘度調製溶媒の揮発速度に応じて適宜設定されうる。得られた乾燥物はプレスすることによって電極の密度、空孔率や厚みが調整される。なお、このプレス処理は乾燥前に行なわれてもよい。 Subsequently, the coating film formed on the surface of the current collector is dried. Thereby, the solvent in a coating film is removed. The drying means for drying the coating film is not particularly limited, and conventionally known knowledge about electrode production can be appropriately referred to. For example, heat treatment is exemplified. Drying conditions (drying time, drying temperature, etc.) can be appropriately set according to the amount of slurry applied and the volatilization rate of the slurry viscosity adjusting solvent. The density, porosity, and thickness of the electrode are adjusted by pressing the obtained dried product. In addition, this press process may be performed before drying.
これにより、集電体の表面に負極活物質層が形成される。 Thereby, a negative electrode active material layer is formed on the surface of the current collector.
(2)第1保護層形成工程
本工程では、第1保護層を形成する。具体的には、例えば、アルミナ粉末等の絶縁性無機材料、グラファイト粉末等の導電性材料、およびバインダーなどの第1保護層の形成材料を、適当なスラリー粘度調整溶媒に分散させて、第1保護層形成用スラリーを調製する。
(2) First protective layer forming step In this step, a first protective layer is formed. Specifically, for example, an insulating inorganic material such as alumina powder, a conductive material such as graphite powder, and a first protective layer forming material such as a binder are dispersed in a suitable slurry viscosity adjusting solvent, and the first A slurry for forming a protective layer is prepared.
次いで、上記と同様の手法により、上記で形成した負極活物質層の表面に、上記で調製した第1保護層形成用スラリーを塗布し、乾燥させる。これにより、第1保護層が形成される。 Next, the first protective layer-forming slurry prepared above is applied to the surface of the negative electrode active material layer formed as described above and dried by the same method as described above. Thereby, the first protective layer is formed.
(3)第2保護層形成工程
本工程では、第2保護層を形成する。具体的には、例えば、アルミナ粉末等の絶縁性無機材料、グラファイト粉末等の導電性材料、リチウム粉末、およびバインダーなどの第2保護層の形成材料を、適当なスラリー粘度調整溶媒に分散させて、第2保護層形成用スラリーを調製する。
(3) Second protective layer forming step In this step, a second protective layer is formed. Specifically, for example, an insulating inorganic material such as alumina powder, a conductive material such as graphite powder, lithium powder, and a second protective layer forming material such as a binder are dispersed in a suitable slurry viscosity adjusting solvent. Then, a slurry for forming the second protective layer is prepared.
次いで、上記と同様の手法により、上記で形成した第1保護層の表面に、上記で調製した第2保護層形成用スラリーを塗布し、乾燥させる。これにより、第2保護層が形成される。 Next, the slurry for forming the second protective layer prepared above is applied to the surface of the first protective layer formed above by the same method as described above, and dried. Thereby, the second protective layer is formed.
[電池]
上記実施形態に係るリチウムイオン二次電池用負極はリチウムイオン二次電池に用いられうる。すなわち、本発明の一形態は上記の実施形態に係るリチウムイオン二次電池用負極を用いて構成される、リチウムイオン二次電池である。リチウムイオン二次電池の構造および形態は、双極型電池、積層型電池など特に制限されず、従来公知のいずれの構造にも適用されうる。以下、本発明のリチウムイオン二次電池の構造について説明する。
[battery]
The negative electrode for a lithium ion secondary battery according to the above embodiment can be used for a lithium ion secondary battery. That is, one embodiment of the present invention is a lithium ion secondary battery configured using the negative electrode for a lithium ion secondary battery according to the above embodiment. The structure and form of the lithium ion secondary battery are not particularly limited, such as a bipolar battery or a stacked battery, and can be applied to any conventionally known structure. Hereinafter, the structure of the lithium ion secondary battery of the present invention will be described.
図4は、本発明の代表的な一実施形態である双極型リチウムイオン二次電池(以下、単に「双極型二次電池」とも称する)の概要を模式的に表した断面概略図である。なお、図4および後述する図5において、保護層3の図示は省略されている。 FIG. 4 is a schematic cross-sectional view schematically showing an outline of a bipolar lithium ion secondary battery (hereinafter also simply referred to as “bipolar secondary battery”) which is a typical embodiment of the present invention. In addition, illustration of the protective layer 3 is abbreviate | omitted in FIG. 4 and FIG. 5 mentioned later.
図4に示す本実施形態の双極型二次電池10は、実際に充放電反応が進行する略矩形の発電要素21が、電池外装材であるラミネートシート29の内部に封止された構造を有する。 The bipolar secondary battery 10 of this embodiment shown in FIG. 4 has a structure in which a substantially rectangular power generating element 21 in which a charge / discharge reaction actually proceeds is sealed inside a laminate sheet 29 that is a battery exterior material. .
図4に示すように、本実施形態の双極型二次電池10の発電要素21は、集電体11の一方の面に電気的に結合した正極活物質層13が形成され、前記集電体11の反対側の面に電気的に結合した負極活物質層15が形成された複数の双極型電極を有する。各双極型電極は、電解質層17を介して積層されて発電要素21を形成する。なお、電解質層17は、基材としてのセパレータの面方向中央部に電解質が保持されてなる構成を有する。この際、一の双極型電極の正極活物質層13と前記一の双極型電極に隣接する他の双極型電極の負極活物質層15とが電解質層17を介して向き合うように、各双極型電極および電解質層17が交互に積層されている。すなわち、一の双極型電極の正極活物質層13と前記一の双極型電極に隣接する他の双極型電極の負極活物質層15との間に電解質層17が挟まれて配置されている。 As shown in FIG. 4, the power generation element 21 of the bipolar secondary battery 10 according to the present embodiment includes a positive electrode active material layer 13 electrically coupled to one surface of the current collector 11, and the current collector 11 has a plurality of bipolar electrodes formed with a negative electrode active material layer 15 electrically coupled to the opposite surface. Each bipolar electrode is stacked via the electrolyte layer 17 to form the power generation element 21. The electrolyte layer 17 has a configuration in which an electrolyte is held at the center in the surface direction of a separator as a base material. At this time, each bipolar type is formed such that the positive electrode active material layer 13 of one bipolar electrode and the negative electrode active material layer 15 of another bipolar electrode adjacent to the one bipolar electrode face each other through the electrolyte layer 17. Electrodes and electrolyte layers 17 are alternately stacked. That is, the electrolyte layer 17 is disposed between the positive electrode active material layer 13 of one bipolar electrode and the negative electrode active material layer 15 of another bipolar electrode adjacent to the one bipolar electrode.
隣接する正極活物質層13、電解質層17、および負極活物質層15は、一つの単電池層19を構成する。したがって、双極型二次電池10は、単電池層19が積層されてなる構成を有するともいえる。また、電解質層17からの電解液の漏れによる液絡を防止する目的で、単電池層19の外周部にはシール部31が配置されている。該シール部31を設けることで、隣接する集電体11間を絶縁し、隣接する電極間の接触による短絡を防止することもできる。なお、発電要素21の最外層に位置する正極側の最外層集電体11aには、片面のみに正極活物質層13が形成されている。また、発電要素21の最外層に位置する負極側の最外層集電体11bには、片面のみに負極活物質層15が形成されている。ただし、正極側の最外層集電体11aの両面に正極活物質層13が形成されてもよい。同様に、負極側の最外層集電体11bの両面に負極活物質層13が形成されてもよい。 The adjacent positive electrode active material layer 13, electrolyte layer 17, and negative electrode active material layer 15 constitute one unit cell layer 19. Therefore, it can be said that the bipolar secondary battery 10 has a configuration in which the single battery layers 19 are stacked. Further, for the purpose of preventing liquid junction due to leakage of the electrolytic solution from the electrolyte layer 17, a seal portion 31 is disposed on the outer peripheral portion of the unit cell layer 19. By providing the seal portion 31, it is possible to insulate between the adjacent current collectors 11 and prevent a short circuit due to contact between adjacent electrodes. A positive electrode active material layer 13 is formed only on one side of the positive electrode outermost layer current collector 11 a located in the outermost layer of the power generation element 21. The negative electrode active material layer 15 is formed only on one surface of the outermost current collector 11b on the negative electrode side located in the outermost layer of the power generation element 21. However, the positive electrode active material layer 13 may be formed on both surfaces of the outermost layer current collector 11a on the positive electrode side. Similarly, the negative electrode active material layer 13 may be formed on both surfaces of the outermost layer current collector 11b on the negative electrode side.
さらに、図4に示す双極型二次電池10では、正極側最外層集電体11aに隣接するように正極集電板25が配置され、これが延長されて電池外装材であるラミネートシート29から導出している。一方、負極側最外層集電体11bに隣接するように負極集電板27が配置され、同様にこれが延長されて電池の外装であるラミネートシート29から導出している。 Furthermore, in the bipolar secondary battery 10 shown in FIG. 4, the positive electrode current collector plate 25 is disposed so as to be adjacent to the positive electrode side outermost layer current collector 11a, and this is extended to be derived from the laminate sheet 29 which is a battery exterior material. is doing. On the other hand, the negative electrode current collector plate 27 is disposed so as to be adjacent to the negative electrode side outermost layer current collector 11b, which is similarly extended and led out from the laminate sheet 29 which is an exterior of the battery.
以下、双極型二次電池を構成する負極以外の構成要素について、簡単に説明するが、下記の形態のみには限定されない。 Hereinafter, constituent elements other than the negative electrode constituting the bipolar secondary battery will be briefly described, but are not limited to the following modes.
[正極(正極活物質層)]
正極活物質層13は正極活物質を含み、必要に応じて他の添加剤を含みうる。正極活物質層13の構成要素のうち、正極活物質以外は、負極活物質層15について上述したのと同様の形態が採用されうるため、ここでは説明を省略する。正極活物質層13に含まれる成分の配合比および正極活物質層の厚さについても特に限定されず、リチウムイオン二次電池についての従来公知の知見が適宜参照されうる。
[Positive electrode (positive electrode active material layer)]
The positive electrode active material layer 13 includes a positive electrode active material, and may include other additives as necessary. Among the constituent elements of the positive electrode active material layer 13, except for the positive electrode active material, the same form as described above for the negative electrode active material layer 15 can be adopted, and thus the description thereof is omitted here. The compounding ratio of the components contained in the positive electrode active material layer 13 and the thickness of the positive electrode active material layer are not particularly limited, and conventionally known knowledge about the lithium ion secondary battery can be appropriately referred to.
正極活物質は、特にリチウムの吸蔵放出が可能な材料であれば特に限定されず、リチウムイオン二次電池に通常用いられる正極活物質が利用されうる。具体的には、リチウム−遷移金属複合酸化物が好ましく、例えば、LiMn2O4などのLi−Mn系複合酸化物、LiNiO2などのLi−Ni系複合酸化物、LiNi0.5Mn0.5O2などのLi−Ni−Mn系複合酸化物が挙げられる。場合によっては、2種以上の正極活物質が併用されてもよい。 The positive electrode active material is not particularly limited as long as it is a material capable of occluding and releasing lithium, and a positive electrode active material usually used for a lithium ion secondary battery can be used. Specifically, a lithium-transition metal composite oxide is preferable. For example, a Li—Mn composite oxide such as LiMn 2 O 4, a Li—Ni composite oxide such as LiNiO 2 , LiNi 0.5 Mn 0. A Li—Ni—Mn based composite oxide such as 5 O 2 can be given. In some cases, two or more positive electrode active materials may be used in combination.
なお、上述した保護層は、正極活物質層13の表面(正極と後述する電解質層との間)にも配置されうる。 The protective layer described above can also be disposed on the surface of the positive electrode active material layer 13 (between the positive electrode and an electrolyte layer described later).
[電解質層]
電解質層17は、正極活物質層と負極活物質層との間の空間的な隔壁(スペーサ)として機能する。また、これと併せて、充放電時における正負極間でのリチウムイオンの移動媒体である電解質を保持する機能をも有する。
[Electrolyte layer]
The electrolyte layer 17 functions as a spatial partition (spacer) between the positive electrode active material layer and the negative electrode active material layer. In addition, it also has a function of holding an electrolyte that is a lithium ion transfer medium between the positive and negative electrodes during charging and discharging.
電解質層を構成する電解質に特に制限はなく、液体電解質、ならびに高分子ゲル電解質および高分子固体電解質などのポリマー電解質が適宜用いられうる。 There is no restriction | limiting in particular in the electrolyte which comprises an electrolyte layer, Polymer electrolytes, such as a liquid electrolyte and a polymer gel electrolyte and a polymer solid electrolyte, can be used suitably.
液体電解質は、可塑剤である有機溶媒に支持塩であるリチウム塩が溶解した形態を有する。可塑剤として用いられる有機溶媒としては、例えば、エチレンカーボネート(EC)やプロピレンカーボネート(PC)などのカーボネート類が挙げられる。また、支持塩(リチウム塩)としては、LiN(SO2C2F5)2、LiN(SO2CF3)2、LiPF6、LiBF4、LiClO4、LiAsF6、LiSO3CF3などの電極の活物質層に添加されうる化合物を同様に用いることができる。 The liquid electrolyte has a form in which a lithium salt as a supporting salt is dissolved in an organic solvent as a plasticizer. Examples of the organic solvent used as the plasticizer include carbonates such as ethylene carbonate (EC) and propylene carbonate (PC). As the supporting salt (lithium salt), LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) 2, LiPF 6, LiBF 4, LiClO 4, electrodes such as LiAsF 6, LiSO 3 CF 3 A compound that can be added to the active material layer can be similarly used.
一方、ポリマー電解質は、電解液を含むゲル電解質と、電解液を含まない高分子固体電解質に分類される。 On the other hand, the polymer electrolyte is classified into a gel electrolyte containing an electrolytic solution and a polymer solid electrolyte containing no electrolytic solution.
ゲル電解質は、リチウムイオン伝導性を有するマトリックスポリマーに、上記の液体電解質が注入されてなる構成を有する。リチウムイオン伝導性を有するマトリックスポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、およびこれらの共重合体などが挙げられる。かようなマトリックスポリマーには、リチウム塩などの電解質塩がよく溶解しうる。 The gel electrolyte has a configuration in which the above liquid electrolyte is injected into a matrix polymer having lithium ion conductivity. Examples of the matrix polymer having lithium ion conductivity include polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof. In such a matrix polymer, an electrolyte salt such as a lithium salt can be well dissolved.
なお、電解質層が液体電解質やゲル電解質から構成される場合には、電解質層にセパレータを用いてもよい。セパレータの具体的な形態としては、例えば、ポリエチレンやポリプロピレンといったポリオレフィンやポリフッ化ビニリデン−ヘキサフルオロプロピレン(PVdF−HFP)等の炭化水素、ガラス繊維などからなる微多孔膜が挙げられる。 In addition, when an electrolyte layer is comprised from a liquid electrolyte or a gel electrolyte, you may use a separator for an electrolyte layer. Specific examples of the separator include a microporous film made of a polyolefin such as polyethylene or polypropylene, a hydrocarbon such as polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, or the like.
高分子固体電解質は、上記のマトリックスポリマーに支持塩(リチウム塩)が溶解してなる構成を有し、可塑剤である有機溶媒を含まない。したがって、電解質層が高分子固体電解質から構成される場合には電池からの液漏れの心配がなく、電池の信頼性が向上しうる。 The polymer solid electrolyte has a structure in which a supporting salt (lithium salt) is dissolved in the matrix polymer, and does not include an organic solvent that is a plasticizer. Therefore, when the electrolyte layer is composed of a polymer solid electrolyte, there is no fear of liquid leakage from the battery, and the battery reliability can be improved.
高分子ゲル電解質や高分子固体電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発揮しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合などの重合処理を施せばよい。なお、上記電解質は、電極の活物質層中に含まれていてもよい。 A matrix polymer of a polymer gel electrolyte or a polymer solid electrolyte can exhibit excellent mechanical strength by forming a crosslinked structure. In order to form a crosslinked structure, thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, etc. are performed on a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte, using an appropriate polymerization initiator. A polymerization treatment may be performed. In addition, the said electrolyte may be contained in the active material layer of an electrode.
[シール部]
シール部31は、双極型二次電池に特有の部材であり、電解質層17の漏れを防止する目的で単電池層19の外周部に配置されている。このほかにも、電池内で隣り合う集電体同士が接触したり、積層電極の端部の僅かな不ぞろいなどによる短絡が起こったりするのを防止することもできる。図4に示す形態において、シール部31は、隣接する2つの単電池層19を構成するそれぞれの集電体11で挟持され、電解質層17の基材であるセパレータの外周縁部を貫通するように、単電池層19の外周部に配置されている。シール部31の構成材料としては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、エポキシ樹脂、ゴム、ポリイミドなどが挙げられる。なかでも、耐蝕性、耐薬品性、製膜性、経済性などの観点からは、ポリオレフィン樹脂が好ましい。
[Seal part]
The seal portion 31 is a member unique to the bipolar secondary battery, and is disposed on the outer peripheral portion of the single cell layer 19 for the purpose of preventing leakage of the electrolyte layer 17. In addition to this, it is possible to prevent current collectors adjacent in the battery from coming into contact with each other and a short circuit due to a slight unevenness at the end of the laminated electrode. In the form shown in FIG. 4, the seal portion 31 is sandwiched between the respective current collectors 11 constituting the two adjacent single battery layers 19 so as to penetrate the outer peripheral edge portion of the separator that is the base material of the electrolyte layer 17. Further, it is arranged on the outer peripheral portion of the unit cell layer 19. Examples of the constituent material of the seal portion 31 include polyolefin resins such as polyethylene and polypropylene, epoxy resins, rubber, and polyimide. Of these, polyolefin resins are preferred from the viewpoints of corrosion resistance, chemical resistance, film-forming properties, economy, and the like.
[正極集電板および負極集電板]
集電板(25、27)を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板25と負極集電板27とでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。また、最外層集電体(11a、11b)を延長することにより集電板としてもよいし、図4に示すように別途準備したタブを最外層集電体に接続してもよい。
[Positive electrode current collector and negative electrode current collector]
The material which comprises a current collector plate (25, 27) is not restrict | limited in particular, The well-known highly electroconductive material conventionally used as a current collector plate for lithium ion secondary batteries can be used. As a constituent material of the current collector plate, for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable. From the viewpoint of light weight, corrosion resistance, and high conductivity, aluminum and copper are more preferable, and aluminum is particularly preferable. Note that the positive electrode current collector plate 25 and the negative electrode current collector plate 27 may be made of the same material or different materials. Moreover, it is good also as a collector plate by extending outermost layer electrical power collectors (11a, 11b), and you may connect the tab prepared separately as shown in FIG. 4 to an outermost current collector.
[正極リードおよび負極リード]
また、図示は省略するが、集電体11と集電板(25、27)との間を正極リードや負極リードを介して電気的に接続してもよい。正極および負極リードの構成材料としては、公知のリチウムイオン二次電池において用いられる材料が同様に採用されうる。なお、外装から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆することが好ましい。
[Positive lead and negative lead]
Moreover, although illustration is abbreviate | omitted, you may electrically connect between the collector 11 and the current collector plates (25, 27) via a positive electrode lead or a negative electrode lead. As a constituent material of the positive electrode and the negative electrode lead, materials used in known lithium ion secondary batteries can be similarly employed. In addition, heat-shrinkable heat-shrinkable parts are removed from the exterior so that they do not affect products (for example, automobile parts, especially electronic devices) by touching peripheral devices or wiring and causing leakage. It is preferable to coat with a tube or the like.
[外装]
外装としては、図4に示すようなラミネートシート29が用いられうる。ラミネートシートは、例えば、ポリプロピレン、アルミニウム、ナイロンがこの順に積層されてなる3層構造として構成されうる。なお、場合によっては、従来公知の金属缶ケースもまた、外装として用いられうる。
[Exterior]
As the exterior, a laminate sheet 29 as shown in FIG. 4 can be used. For example, the laminate sheet may be configured as a three-layer structure in which polypropylene, aluminum, and nylon are laminated in this order. In some cases, a conventionally known metal can case can also be used as an exterior.
以上、図4に示す形態の双極型二次電池10を例に挙げて、本発明の好適な実施形態について説明したが、本発明は、例えば、双極型でないリチウムイオン二次電池にも適用されうる。図5は、双極型でない積層型のリチウムイオン二次電池(積層型電池)の全体構造を模式的に表した断面概略図である。 The preferred embodiment of the present invention has been described above by taking the bipolar secondary battery 10 of the form shown in FIG. 4 as an example. However, the present invention is also applicable to, for example, a lithium ion secondary battery that is not bipolar. sell. FIG. 5 is a schematic cross-sectional view schematically showing the overall structure of a stacked lithium ion secondary battery (stacked battery) that is not bipolar.
図5に示すように、本実施形態のリチウムイオン二次電池10’は、実際に充放電反応が進行する略矩形の発電要素21が、外装であるラミネートシート29の内部に封止された構造を有する。詳しくは、高分子−金属複合ラミネートシートを電池の外装として用いて、その周辺部の全部を熱融着にて接合することにより、発電要素21を収納し密封した構成を有している。 As shown in FIG. 5, the lithium ion secondary battery 10 ′ of the present embodiment has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a laminate sheet 29 that is an exterior. Have Specifically, the power generation element 21 is housed and sealed by using a polymer-metal composite laminate sheet as the battery exterior and joining all of its peripheral parts by thermal fusion.
発電要素21は、正極集電体11の両面に正極活物質層13が配置された正極と、電解質層17と、負極集電体12の両面に負極活物質層15が配置された負極とを積層した構成を有している。具体的には、1つの正極活物質層13とこれに隣接する負極活物質層15とが、電解質層17を介して対向するようにして、正極、電解質層および負極がこの順に積層されている。 The power generation element 21 includes a positive electrode in which the positive electrode active material layer 13 is disposed on both surfaces of the positive electrode current collector 11, an electrolyte layer 17, and a negative electrode in which the negative electrode active material layer 15 is disposed on both surfaces of the negative electrode current collector 12. It has a stacked configuration. Specifically, the positive electrode, the electrolyte layer, and the negative electrode are laminated in this order so that one positive electrode active material layer 13 and the negative electrode active material layer 15 adjacent thereto face each other with the electrolyte layer 17 therebetween. .
これにより、隣接する正極、電解質層および負極は、1つの単電池層19を構成する。従って、本実施形態のリチウムイオン電池10’は、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。また、単電池層19の外周には、隣接する正極集電体11と負極集電体12との間を絶縁するためのシール部(絶縁層)(図示せず;図4の符号31を参照)が設けられていてもよい。発電要素21の両最外層に位置する最外層正極集電体には、いずれも片面のみに正極活物質層12が配置されている。なお、図5とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層負極集電体が位置するようにし、該最外層負極集電体の片面のみに負極活物質層が配置されているようにしてもよい。 Thereby, the adjacent positive electrode, electrolyte layer, and negative electrode constitute one unit cell layer 19. Therefore, it can be said that the lithium ion battery 10 ′ of the present embodiment has a configuration in which a plurality of single battery layers 19 are stacked and electrically connected in parallel. Further, on the outer periphery of the unit cell layer 19, a seal portion (insulating layer) for insulating between the adjacent positive electrode current collector 11 and negative electrode current collector 12 (not shown; see reference numeral 31 in FIG. 4) ) May be provided. The positive electrode active material layer 12 is disposed only on one side of the outermost positive electrode current collector located in both outermost layers of the power generation element 21. Note that the arrangement of the positive electrode and the negative electrode is reversed from that in FIG. 5 so that the outermost negative electrode current collector is positioned in both outermost layers of the power generation element 21, and the negative electrode is formed only on one side of the outermost negative electrode current collector. An active material layer may be arranged.
正極集電体11および負極集電体12は、各電極(正極および負極)と導通される正極集電板25および負極集電板27がそれぞれ取り付けられ、ラミネートシート29の端部に挟まれるようにしてラミネートシート29の外部に導出される構造を有している。正極集電板25および負極集電板27はそれぞれ、必要に応じて正極リードおよび負極リード(図示せず)を介して、各電極の正極集電体11および負極集電体12に超音波溶接や抵抗溶接等により取り付けられていてもよい。 The positive electrode current collector 11 and the negative electrode current collector 12 are attached to a positive electrode current collector plate 25 and a negative electrode current collector plate 27 that are electrically connected to the respective electrodes (positive electrode and negative electrode), and are sandwiched between end portions of the laminate sheet 29. Thus, it has a structure led out of the laminate sheet 29. The positive electrode current collector plate 25 and the negative electrode current collector plate 27 are ultrasonically welded to the positive electrode current collector 11 and the negative electrode current collector 12 of each electrode, respectively, via a positive electrode lead and a negative electrode lead (not shown) as necessary. Or resistance welding or the like.
本実施形態の双極型二次電池10やリチウムイオン二次電池10’は、上述した実施形態の負極を用いている。よって、これらの電池では、動作時における内部短絡の発生が効果的に抑制されうる。また、リチウムイオンのドープ時における発熱も抑制され、活物質等の電池の構成要素の劣化が防止されうる。このため、本実施形態によれば、信頼性の高い電池が提供されうる。 The bipolar secondary battery 10 and the lithium ion secondary battery 10 ′ of the present embodiment use the negative electrode of the above-described embodiment. Therefore, in these batteries, the occurrence of an internal short circuit during operation can be effectively suppressed. Further, heat generation during doping with lithium ions is suppressed, and deterioration of battery components such as an active material can be prevented. For this reason, according to this embodiment, a highly reliable battery can be provided.
[組電池]
上述した実施形態の双極型二次電池10やリチウムイオン二次電池10’は、複数個接続されて組電池を構成してもよい。詳しくは、少なくとも2つの電池が、直列化あるいは並列化あるいはその両方で接続されることにより、組電池が構成されうる。この際、直列、並列化することで容量および電圧を自由に調節することが可能になる。
[Battery]
A plurality of the bipolar secondary batteries 10 and the lithium ion secondary batteries 10 ′ of the above-described embodiments may be connected to form an assembled battery. Specifically, an assembled battery can be configured by connecting at least two batteries in series, parallel, or both. At this time, it is possible to freely adjust the capacity and voltage by serialization and parallelization.
本実施形態の組電池を構成する二次電池の数および接続の仕方は、電池に求める出力および容量に応じて決定されうる。本実施形態によれば、信頼性の高い組電池が提供されうる。また、本実施形態の組電池を構成することにより、組電池を構成する1つの単電池層(単セル)の劣化による組電池全体への影響を低減することもできる。 The number of secondary batteries constituting the assembled battery of the present embodiment and the manner of connection can be determined according to the output and capacity required of the battery. According to this embodiment, a highly reliable assembled battery can be provided. In addition, by configuring the assembled battery of the present embodiment, it is possible to reduce the influence on the entire assembled battery due to deterioration of one single battery layer (single cell) constituting the assembled battery.
図6は、本発明の一実施形態に係る組電池の外観図であって、図6Aは組電池の平面図であり、図6Bは組電池の正面図であり、図6Cは組電池の側面図である。 6 is an external view of an assembled battery according to an embodiment of the present invention, FIG. 6A is a plan view of the assembled battery, FIG. 6B is a front view of the assembled battery, and FIG. 6C is a side view of the assembled battery. FIG.
図6に示す形態では、上述した実施形態の電池(10、10’)が複数、直列および/または並列に接続されて装脱着可能な小型の組電池35が形成されている。そして、この装脱着可能な小型の組電池35がさらに複数、直列および/または並列に接続され、組電池37とされている。これにより、組電池37は、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に適した大容量、大出力を持つ組電池37とされる。作製した装脱着可能な小型の組電池35は、バスバーのような電気的な接続手段を用いて相互に接続され、この組電池35は接続治具39を用いて複数段積層される。何個の非水電解質二次電池を接続して組電池35を作成するか、また、何段の組電池35を積層して組電池37を作成するかは、搭載される車両(電気自動車)の電池容量や出力に応じて決めればよい。本実施形態の組電池は、上述した実施形態の電池を用いて構成されていることから、耐久性に優れる。 In the form shown in FIG. 6, a plurality of batteries (10, 10 ') of the above-described embodiment are connected in series and / or in parallel to form a small assembled battery 35 that can be attached and detached. A plurality of small assembled batteries 35 that can be attached and detached are connected in series and / or in parallel to form an assembled battery 37. As a result, the assembled battery 37 is an assembled battery 37 having a large capacity and a large output suitable for a vehicle driving power source and an auxiliary power source that require high volume energy density and high volume output density. The assembled and removable small assembled batteries 35 are connected to each other using an electrical connection means such as a bus bar, and the assembled batteries 35 are stacked in a plurality of stages using a connection jig 39. How many non-aqueous electrolyte secondary batteries are connected to create the assembled battery 35, and how many assembled batteries 35 are stacked to create the assembled battery 37 depends on the mounted vehicle (electric vehicle). Depending on the battery capacity and output. Since the assembled battery of this embodiment is comprised using the battery of embodiment mentioned above, it is excellent in durability.
[車両]
上述した実施形態の二次電池(10、10’)や組電池37は、車両の駆動用電源として用いられうる。これらの二次電池または組電池は、例えば、自動車ならばハイブリッド車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バスなどの商用車、軽自動車など)のほか、二輪車(バイク)や三輪車を含む)に用いられうる。これにより、高寿命で信頼性の高い自動車が提供されうる。ただし、用途が自動車に限定されるわけではなく、例えば、他の車両であれば、電車などの移動体の各種電源であっても適用は可能であるし、無停電電源装置などの載置用電源として利用することも可能である。
[vehicle]
The secondary battery (10, 10 ′) and the assembled battery 37 of the above-described embodiment can be used as a power source for driving the vehicle. These secondary batteries or assembled batteries are, for example, hybrid vehicles, fuel cell vehicles, electric vehicles (all are automobiles (commercial vehicles such as passenger cars, trucks and buses, light vehicles), etc.) as well as motorcycles ( Motorcycles) and tricycles). Thereby, a long-life and highly reliable automobile can be provided. However, the application is not limited to automobiles. For example, if it is another vehicle, it can be applied to various power sources for moving bodies such as trains, and it can be used for mounting uninterruptible power supplies and the like. It can also be used as a power source.
図7は、図6に示す実施形態の組電池37を搭載した車両の概念図である。 FIG. 7 is a conceptual diagram of a vehicle equipped with the assembled battery 37 of the embodiment shown in FIG.
図7に示すように、組電池37を電気自動車40のような車両に搭載するには、電気自動車40の車体中央部の座席下に搭載する。座席下に搭載すれば、車内空間およびトランクルームを広く取ることができるからである。なお、組電池37を搭載する場所は、座席下に限らず、後部トランクルームの下部でもよいし、車両前方のエンジンルームに搭載してもよい。以上のような組電池37を用いた電気自動車40は優れた耐久性を有し、長期間使用しても十分な出力を提供しうる。さらに、燃費、走行性能に優れた電気自動車、ハイブリッド自動車を提供できる。 As shown in FIG. 7, in order to mount the assembled battery 37 on a vehicle such as the electric vehicle 40, the battery pack 37 is mounted under the seat at the center of the vehicle body of the electric vehicle 40. This is because if it is installed under the seat, the interior space and the trunk room can be widened. The place where the assembled battery 37 is mounted is not limited to the position under the seat, but may be a lower part of the rear trunk room or an engine room in front of the vehicle. The electric vehicle 40 using the assembled battery 37 as described above has excellent durability and can provide a sufficient output even when used for a long time. Furthermore, it is possible to provide electric vehicles and hybrid vehicles that are excellent in fuel efficiency and running performance.
[電池の製造方法]
本実施形態のリチウムイオン二次電池の製造方法としては、特に制限されるものではなく、従来公知の方法を適用して作製することができる。
[Battery manufacturing method]
The method for producing the lithium ion secondary battery of the present embodiment is not particularly limited, and can be produced by applying a conventionally known method.
本発明の他の一形態によれば、上述した形態のリチウムイオン二次電池用負極を用いて発電要素を作製する発電要素作製工程と、前記発電要素をエージングするエージング工程とを含む、リチウムイオン二次電池の製造方法が提供される。かような手法によれば、本実施形態のリチウムイオン二次電池が簡便な手法により製造されうる。 According to another aspect of the present invention, a lithium ion including a power generation element manufacturing step of manufacturing a power generation element using the above-described negative electrode for a lithium ion secondary battery, and an aging step of aging the power generation element A method for manufacturing a secondary battery is provided. According to such a technique, the lithium ion secondary battery of the present embodiment can be manufactured by a simple technique.
(1)発電要素作製工程
例えば、双極型電池の場合には、まず、集電体の一方の面に正極活物質層が形成され他方の面に負極活物質層および保護層が形成されてなる双極型電極を作製する。作製方法としては、従来公知の知見と、特に負極面側の作製方法については上述した手法が併せて参照されうる。例えば、正極面側については、負極と同様に、正極活物質、導電剤およびバインダーなどの電極材料を適当なスラリー粘度調製溶媒に分散させてスラリーとし、これを集電体の表面に塗布した後、乾燥およびプレスすることにより活物質層を形成すればよい。
(1) Power generation element manufacturing step For example, in the case of a bipolar battery, first, a positive electrode active material layer is formed on one surface of a current collector, and a negative electrode active material layer and a protective layer are formed on the other surface. A bipolar electrode is produced. As for the production method, conventionally known knowledge and particularly the above-described method can be referred to for the production method on the negative electrode side. For example, on the positive electrode surface side, like the negative electrode, an electrode material such as a positive electrode active material, a conductive agent, and a binder is dispersed in an appropriate slurry viscosity adjusting solvent to form a slurry, which is applied to the surface of the current collector. The active material layer may be formed by drying and pressing.
次に、正極活物質層と負極活物質層(より正確には保護層)とがセパレータを介して対向するように、双極型電極とセパレータとを交互に積層する。これにより、発電要素が作製される。この際、単電池層の数が所望の数となるまでセパレータおよび電極の積層を繰り返す。かような製造方法によれば、より簡便な手法によってセパレータの形成が可能であり、かつ、セパレータと活物質層との密着性が高い発電要素が作製されうる。 Next, bipolar electrodes and separators are alternately laminated so that the positive electrode active material layer and the negative electrode active material layer (more precisely, the protective layer) face each other with the separator interposed therebetween. Thereby, a power generation element is produced. At this time, the stacking of the separator and the electrode is repeated until the number of single battery layers reaches a desired number. According to such a manufacturing method, a separator can be formed by a simpler method, and a power generation element having high adhesion between the separator and the active material layer can be produced.
そして、得られた発電要素の両端に必要に応じて集電板および/またはリードを接続し、集電板またはリードが導出するように、発電要素をアルミラミネートシートからなるバッグに収容する。その後、注液機により電解液を注液して、減圧下で端部をシールすることにより、双極型電池が完成する。 Then, current collecting plates and / or leads are connected to both ends of the obtained power generating element as necessary, and the power generating elements are accommodated in a bag made of an aluminum laminate sheet so that the current collecting plates or leads are led out. Thereafter, the electrolytic solution is injected with a liquid injector, and the end portion is sealed under reduced pressure to complete the bipolar battery.
上記では電解質が液体電解質である場合の双極型電池を例に挙げて説明したが、ゲル電解質や真性ポリマー電解質を用いた場合の双極型電池およびここで挙げた電解質を用いた積層型電池の作製についても、公知の技術を参照して実施可能であり、ここでは省略する。 In the above description, the bipolar battery in which the electrolyte is a liquid electrolyte has been described as an example. However, the bipolar battery in the case of using a gel electrolyte or an intrinsic polymer electrolyte, and the production of a stacked battery using the electrolyte mentioned here Can be implemented with reference to a known technique, and is omitted here.
(2)エージング工程
上記(1)において作製した電池を所定の時間エージング(静置)する。これにより、負極の保護層に存在するリチウム粒子がイオン化して、負極活物質層および/または正極活物質層に存在する活物質にドープされる。エージング工程を実施することにより、活物質層における単位面積当たりのリチウムドープ量を均一化することができ、信頼性の向上した電池が得られる。
(2) Aging process The battery produced in the above (1) is aged for a predetermined time. Thereby, the lithium particles present in the protective layer of the negative electrode are ionized and doped into the active material present in the negative electrode active material layer and / or the positive electrode active material layer. By performing the aging step, the lithium doping amount per unit area in the active material layer can be made uniform, and a battery with improved reliability can be obtained.
エージングの温度は、短時間でリチウムドープを完了するという観点からは、好ましくは20〜80℃であり、より好ましくは40〜60℃である。また、エージング時間は、エージング後の電池の電圧が所望のレベルとなるように適宜決定すればよいが、通常24〜120時間程度である。 The aging temperature is preferably 20 to 80 ° C., more preferably 40 to 60 ° C. from the viewpoint of completing lithium doping in a short time. Further, the aging time may be appropriately determined so that the voltage of the battery after aging becomes a desired level, but is usually about 24 to 120 hours.
エージング工程後の電池の電圧は、1.0V以上であることが好ましく、1.0〜3.2Vであることがより好ましく、1.2〜3.0Vであることがさらに好ましい。エージング工程後の電池の電圧がかような範囲内の値であれば、リチウムが活物質層に十分にドープされている。 The voltage of the battery after the aging step is preferably 1.0 V or more, more preferably 1.0 to 3.2 V, and further preferably 1.2 to 3.0 V. If the voltage of the battery after the aging step is a value within such a range, lithium is sufficiently doped into the active material layer.
なお、エージングは電池の組み立てや予備充電の後に行なってもよい。予備充電の条件は特に制限されない。例えば、20〜60℃で定電流方式(電流:0.5C)で10分間充電する方法を用いてもよい。 Aging may be performed after battery assembly or pre-charging. The conditions for the preliminary charging are not particularly limited. For example, a method of charging at a constant current method (current: 0.5 C) at 20 to 60 ° C. for 10 minutes may be used.
[ドープ後の電池]
上述したように、製造直後の電池においては、負極の保護層にリチウム粒子が存在する。言い換えれば、負極にリチウムがプレドープ(予備吸蔵)されている。このプレドープされたリチウムは、エージングおよび/または初充電の際にイオン化して、負極活物質層および/または正極活物質層内にドープされる。
[Battery after doping]
As described above, in the battery immediately after manufacture, lithium particles are present in the protective layer of the negative electrode. In other words, lithium is pre-doped (preliminary occlusion) in the negative electrode. The pre-doped lithium is ionized during aging and / or initial charge, and is doped into the negative electrode active material layer and / or the positive electrode active material layer.
その結果、保護層中のリチウム粒子が存在していた部分の全部または一部は空隙(中空領域)となり、ドープ後の保護層は中空構造を有しうる。 As a result, all or part of the portion where the lithium particles existed in the protective layer becomes a void (hollow region), and the protective layer after doping can have a hollow structure.
したがって、本発明によれば、負極が保護層を有し、当該保護層の空隙率が20〜90%である、リチウムイオン二次電池も提供される。なお、かような形態の電池において、保護層の有する空隙は、上述したリチウムのドープによって生じたものである必要はない。また、保護層におけるかような中空構造は、例えば、電極の断面を走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などを用いて撮影することにより確認することができる。 Therefore, according to the present invention, a lithium ion secondary battery in which the negative electrode has a protective layer and the porosity of the protective layer is 20 to 90% is also provided. In such a battery, the voids of the protective layer need not be generated by the above-described lithium doping. Such a hollow structure in the protective layer can be confirmed by, for example, photographing the cross section of the electrode using a scanning electron microscope (SEM), a transmission electron microscope (TEM), or the like.
保護層の有する空隙の形状は特に限定されるものではなく、球状、略球状、楕円球状、角体状などの様々な形状であってよい。空隙のサイズや分散形態も特に限定されない。 The shape of the voids of the protective layer is not particularly limited, and may be various shapes such as a spherical shape, a substantially spherical shape, an elliptic spherical shape, and a rectangular shape. The size of the voids and the dispersion form are not particularly limited.
上述したような保護層の有する空隙は、電池の充放電過程において、電解液保持層として機能しうる。充放電時における膨張収縮が大きい活物質(例えば、合金系負極活物質)を用いた場合には、活物質層において電解液の不足が生じたり、電解液の保持が不均一となったりするおそれがある。これに対し、上述のような空隙が保護層に存在すると、この空隙に電解液が保持され、均一かつ円滑な電解液の吸収・供給が可能となるのである。また、かような空隙の存在により、電池の充放電時におけるリチウムイオンの拡散抵抗も低減される。その結果、電池の出力特性の観点からも好ましい。 The voids of the protective layer as described above can function as an electrolyte solution holding layer in the battery charge / discharge process. When an active material (for example, an alloy-based negative electrode active material) that has a large expansion / contraction during charging / discharging is used, there is a risk that the active material layer may have insufficient electrolyte solution or non-uniform holding of the electrolyte solution. There is. On the other hand, when the voids as described above are present in the protective layer, the electrolytic solution is held in the voids, and the electrolyte solution can be uniformly and smoothly absorbed and supplied. In addition, the presence of such voids also reduces the lithium ion diffusion resistance during charging and discharging of the battery. As a result, it is also preferable from the viewpoint of battery output characteristics.
保護層の空隙率は20〜90%であり、好ましくは30〜80%である。保護層の空隙率が20%以上であれば、上述した電解液保持層としての機能が十分に発揮されうる。一方、保護層の空隙率が90%以下であれば、電極の機械的強度の低下が防止されうる。この空隙率の値は、保護層におけるリチウム粒子その他の構成成分の添加量を調整することにより制御することができる。なお、保護層の空隙率の値としては、後述する実施例に記載の手法により測定される値を採用するものとする。 The porosity of the protective layer is 20 to 90%, preferably 30 to 80%. If the porosity of the protective layer is 20% or more, the above-described function as the electrolyte solution holding layer can be sufficiently exhibited. On the other hand, if the porosity of the protective layer is 90% or less, a decrease in the mechanical strength of the electrode can be prevented. The value of this porosity can be controlled by adjusting the amount of lithium particles and other components added in the protective layer. In addition, as a value of the porosity of a protective layer, the value measured by the method as described in the Example mentioned later shall be employ | adopted.
以上、本発明の好適な実施形態について示したが、本発明は、以上の実施形態に限られず、当業者によって種々の変更、省略、および追加が可能である。 The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above embodiments, and various modifications, omissions, and additions can be made by those skilled in the art.
以下、本発明の実施形態に係る負極およびこれを用いた二次電池の効果を、以下の実施例および比較例を用いて説明するが、本発明の技術的範囲は以下の実施例に限定されるものではない。 Hereinafter, the effects of the negative electrode according to the embodiment of the present invention and the secondary battery using the same will be described using the following examples and comparative examples. However, the technical scope of the present invention is limited to the following examples. It is not something.
[積層型電池]
[実施例1]
1.負極の作製
(1)活物質層形成工程
負極活物質としてSiO(82質量部、平均粒子径=8μm)、導電剤としてアセチレンブラック(8質量部)、およびバインダーとしてポリフッ化ビニリデン(PVdF)(10質量部)をスラリー粘度調整溶媒であるN−メチル−2−ピロリドン(NMP)(100質量部)に分散させ、負極活物質スラリーを調製した。
[Stacked battery]
[Example 1]
1. Production of Negative Electrode (1) Active Material Layer Formation Step SiO (82 parts by mass, average particle diameter = 8 μm) as the negative electrode active material, acetylene black (8 parts by mass) as the conductive agent, and polyvinylidene fluoride (PVdF) (10 Part by mass) was dispersed in N-methyl-2-pyrrolidone (NMP) (100 parts by mass), which is a slurry viscosity adjusting solvent, to prepare a negative electrode active material slurry.
一方、負極集電体として、厚さ20μmの銅箔を準備した。この集電体の片面に、上記で調製した負極活物質スラリーを塗布し、プレス後に乾燥させて、負極活物質層(厚さ=30μm、負極活物質密度=3.0mg/cm2)を形成した。 On the other hand, a copper foil having a thickness of 20 μm was prepared as a negative electrode current collector. The negative electrode active material slurry prepared above is applied to one side of the current collector, and dried after pressing to form a negative electrode active material layer (thickness = 30 μm, negative electrode active material density = 3.0 mg / cm 2 ). did.
(2)第1保護層形成工程
絶縁性無機材料(無機酸化物)であるアルミナ(Al2O3)粉末(平均粒子径=0.1μm)、導電性材料であるグラファイト粉末(平均粒子径=4μm)、およびバインダーとしてスチレン−ブタジエンゴム(SBR)をスラリー粘度調整溶媒であるキシレンの適量に分散させ、第1保護層形成用スラリーを調製した。
(2) First protective layer forming step Alumina (Al 2 O 3 ) powder (average particle size = 0.1 μm) which is an insulating inorganic material (inorganic oxide), graphite powder (average particle size = 4 μm), and styrene-butadiene rubber (SBR) as a binder were dispersed in an appropriate amount of xylene as a slurry viscosity adjusting solvent to prepare a slurry for forming a first protective layer.
上記で作製した負極活物質層の表面に、同様に上記で調製した第1保護層形成用スラリーを塗布し、乾燥させて、第1保護層(厚さ=5μm)を形成した。なお、アルミナ粉末、グラファイト粉末、およびSBRの配合量は、得られた第1保護層におけるこれらの体積比が80:20:2となるように調整した。 Similarly, the first protective layer-forming slurry prepared above was applied to the surface of the negative electrode active material layer prepared above and dried to form a first protective layer (thickness = 5 μm). In addition, the compounding quantity of an alumina powder, a graphite powder, and SBR was adjusted so that these volume ratios in the obtained 1st protective layer might be set to 80: 20: 2.
(3)第2保護層形成工程
絶縁性無機材料(無機酸化物)であるアルミナ(Al2O3)粉末(平均粒子径=0.1μm)、導電性材料であるグラファイト粉末(平均粒子径=4μm)、リチウム粉末(平均粒子径=20μm)、およびバインダーとしてスチレン−ブタジエンゴム(SBR)をスラリー粘度調整溶媒であるキシレンの適量に分散させ、第2保護層形成用スラリーを調製した。
(3) Second protective layer forming step Alumina (Al 2 O 3 ) powder (average particle size = 0.1 μm) which is an insulating inorganic material (inorganic oxide), graphite powder (average particle size = 4 μm), lithium powder (average particle size = 20 μm), and styrene-butadiene rubber (SBR) as a binder were dispersed in an appropriate amount of xylene as a slurry viscosity adjusting solvent to prepare a slurry for forming a second protective layer.
上記で作製した第1保護層の表面に、同様に上記で調製した第2保護層形成用スラリーを塗布し、乾燥させて、第2保護層(厚さ=20μm)を形成した。なお、アルミナ粉末、グラファイト粉末、リチウム粉末、およびSBRの配合量は、得られた第2保護層におけるこれらの体積比が85:5:10:2となるように調整した。 The slurry for forming the second protective layer prepared in the same manner was applied to the surface of the first protective layer prepared above and dried to form a second protective layer (thickness = 20 μm). The amounts of alumina powder, graphite powder, lithium powder, and SBR were adjusted so that the volume ratio of the obtained second protective layer was 85: 5: 10: 2.
上記(1)〜(3)の工程により、本実施例の負極を完成させた。得られた負極を、電極部サイズが80mm×80mmとなるように打ち抜き、集電板を接続して、試験用の負極を作製した。 The negative electrode of this example was completed through the steps (1) to (3). The obtained negative electrode was punched out so that the electrode part size was 80 mm × 80 mm, and a current collector plate was connected to prepare a test negative electrode.
2.正極の作製
正極活物質としてLiNiO2(90質量部)、導電剤としてアセチレンブラック(5質量部)、およびバインダーとしてPVdF(5質量部)を、スラリー粘度調整溶媒であるNMP(50質量部)に分散させ、正極活物質スラリーを調製した。
2. Production of Positive Electrode LiNiO 2 (90 parts by mass) as a positive electrode active material, acetylene black (5 parts by mass) as a conductive agent, and PVdF (5 parts by mass) as a binder are added to NMP (50 parts by mass) as a slurry viscosity adjusting solvent. Dispersed to prepare a positive electrode active material slurry.
一方、正極集電体として、厚さ20μmのアルミニウム箔を準備した。この集電体の片面に、上記で調製した正極活物質スラリーを塗布し、プレス後に乾燥させて、正極活物質層(厚さ=100μm、正極活物質密度=2.7mg/cm2)を形成した。 On the other hand, an aluminum foil having a thickness of 20 μm was prepared as a positive electrode current collector. The positive electrode active material slurry prepared above is applied to one side of the current collector and dried after pressing to form a positive electrode active material layer (thickness = 100 μm, positive electrode active material density = 2.7 mg / cm 2 ). did.
上記の工程により、本実施例の正極を完成させた。得られた正極を、電極部サイズが78mm×78mmとなるように打ち抜き、集電板を接続して、試験用の正極を作製した。 The positive electrode of this example was completed through the above steps. The obtained positive electrode was punched out so that the electrode part size was 78 mm × 78 mm, and a current collector plate was connected to prepare a positive electrode for testing.
3.試験用セルの作製
セパレータとして、ポリエチレン製微多孔質膜(厚さ=25μm)を準備した。また、電解液として、エチレンカーボネート(EC)とジメチルカーボネート(DMC)との等体積混合液にリチウム塩であるLiPF6が1Mの濃度で溶解した溶液を準備した。
3. Production of Test Cell A polyethylene microporous membrane (thickness = 25 μm) was prepared as a separator. Further, as an electrolytic solution, a solution in which LiPF 6 as a lithium salt was dissolved at a concentration of 1M in an equal volume mixed solution of ethylene carbonate (EC) and dimethyl carbonate (DMC) was prepared.
上記で作製/準備した正極、セパレータ、および負極を、両集電体が最外層に位置するようにこの順に積層した。得られた積層体を外装であるアルミラミネートシート製のバッグ中に載置し、上記で準備した電解液を注液した。両電極に接続された集電板が導出するようにアルミラミネートシート製バッグの開口部を封止し、試験用セルを完成させた。 The positive electrode, separator, and negative electrode prepared / prepared above were laminated in this order so that both current collectors were located in the outermost layer. The obtained laminate was placed in a bag made of an aluminum laminate sheet as an exterior, and the electrolytic solution prepared above was injected. The opening of the aluminum laminate sheet bag was sealed so that the current collector plates connected to both electrodes were led out, and the test cell was completed.
[実施例2〜16]
負極の第1保護層および第2保護層における各成分の配合量の体積比が下記の表1に示す値となるように各成分の添加量を調整したこと以外は、上述した実施例1と同様の手法により、試験用セルを作製した。ただし、実施例5においては、絶縁性無機材料としてアルミナに代えてチタニア(TiO2)を用いた。また、実施例6においては、絶縁性無機材料としてアルミナに代えてシリカ(SiO2)を用いた。
[Examples 2 to 16]
Example 1 described above except that the addition amount of each component was adjusted such that the volume ratio of the blending amount of each component in the first protective layer and the second protective layer of the negative electrode was the value shown in Table 1 below. A test cell was produced in the same manner. However, in Example 5, titania (TiO 2 ) was used instead of alumina as the insulating inorganic material. In Example 6, silica (SiO 2 ) was used instead of alumina as the insulating inorganic material.
[比較例1]
負極において、保護層を設けなかったこと以外は、上述した実施例1と同様の手法により、試験用セルを作製した。
[Comparative Example 1]
A test cell was produced in the same manner as in Example 1 except that the protective layer was not provided in the negative electrode.
[比較例2]
負極の第2保護層にリチウム粉末を添加しなかったこと以外は、上述した実施例1と同様の手法により、試験用セルを作製した。ただし、第1保護層および第2保護層における各成分の配合量の体積比は下記の表1に示す通りである。
[Comparative Example 2]
A test cell was prepared in the same manner as in Example 1 except that no lithium powder was added to the second protective layer of the negative electrode. However, the volume ratio of the amount of each component in the first protective layer and the second protective layer is as shown in Table 1 below.
[エージング]
上記で作製した各試験用セルに対して、55℃、72時間の条件でエージング処理を施した。
[aging]
Each test cell produced above was subjected to aging treatment at 55 ° C. for 72 hours.
[試験用セルの評価]
上記でエージング処理を施した各試験用セルについて、第2保護層の空隙率、および第2保護層の空孔のうち、1μm以上の空孔径を有するものの割合(%)を算出した。なお、これらの値の算出は、以下の手法により行なった。電池を解体後、負極とドープ層を取り出し、水銀ポロシメーターで空孔率を測定する。次に、電解液保持層のバインダーを溶剤で溶かし、負極からドープ層を除去し、負極活物質層のみの空孔率を測定する。この2つの空孔率から電解液保持層の空孔率を計算する。
[Evaluation of test cell]
For each test cell subjected to the aging treatment as described above, the porosity of the second protective layer and the ratio (%) of the pores of the second protective layer having a pore diameter of 1 μm or more were calculated. These values were calculated by the following method. After disassembling the battery, the negative electrode and the doped layer are taken out and the porosity is measured with a mercury porosimeter. Next, the binder of the electrolytic solution holding layer is dissolved with a solvent, the dope layer is removed from the negative electrode, and the porosity of only the negative electrode active material layer is measured. The porosity of the electrolyte holding layer is calculated from these two porosity.
続いて、25℃の大気中で、定電流定電圧方式(CCCV、電流:0.5C、電圧:4.2V)で3時間充電した後、定電流(CC、電流:0.5C)で2.5Vまで放電し、放電後30分間休止させた。 Subsequently, after charging for 3 hours in the air at 25 ° C. with a constant current and constant voltage method (CCCV, current: 0.5 C, voltage: 4.2 V), 2 with a constant current (CC, current: 0.5 C). The battery was discharged to 5 V and rested for 30 minutes after the discharge.
続いて、定電流定電圧方式(CCCV、電流:0.5C、電圧:4.2V)で3時間充電して、充電容量を測定した。その後、定電流(CC、電流:3.0C)で20秒間放電させ、放電容量を測定した。これらの値に基づき、(放電容量÷充電容量)として充放電効率(%)を算出した。結果を下記の表1に示す。 Then, it charged for 3 hours by the constant current constant voltage system (CCCV, electric current: 0.5C, voltage: 4.2V), and measured the charge capacity. Thereafter, the battery was discharged at a constant current (CC, current: 3.0C) for 20 seconds, and the discharge capacity was measured. Based on these values, charge / discharge efficiency (%) was calculated as (discharge capacity ÷ charge capacity). The results are shown in Table 1 below.
また、エージングの際の、各試験用セルの発熱量を測定した。この発熱量の測定は、セルの温度計測により行なった。これらの結果を下記の表1に示す。なお、表1に示す発熱量の値は、比較例1の試験用セルにおける発熱量の値を1としたときの相対値である。 Further, the calorific value of each test cell during aging was measured. The calorific value was measured by measuring the cell temperature. These results are shown in Table 1 below. The calorific value shown in Table 1 is a relative value when the calorific value in the test cell of Comparative Example 1 is 1.
表1に示すように、すべての実施例において、絶縁性無機材料、導電性材料、およびリチウム粒子を含む保護層をリチウムイオン二次電池用負極に設けることで、発熱量の増大を抑えつつ、充放電効率が改善されることが示された。 As shown in Table 1, in all the examples, by providing a protective layer containing an insulating inorganic material, a conductive material, and lithium particles on the negative electrode for a lithium ion secondary battery, while suppressing an increase in calorific value, It was shown that the charge / discharge efficiency was improved.
1 負極、
2 集電体、
3 負極活物質層、
4 保護層、
4a 酸化アルミニウム(Al2O3)粒子、
4b リチウム粒子、
4c グラファイト粒子、
4d スチレン−ブタジエンゴム(SBR)、
4x 第1保護層、
4y 第2保護層、
10 双極型二次電池、
10’ リチウムイオン二次電池
11 集電体(正極集電体)、
11a 正極側最外層集電体、
11b 負極側最外層集電体、
12 負極集電体、
13 正極活物質層、
15 負極活物質層、
17 電解質層、
19 単電池層、
21 発電要素、
25 正極集電板、
27 負極集電板、
29 ラミネートシート、
31 シール部、
35 小型の組電池、
37 組電池、
39 接続冶具、
40 電気自動車。
1 negative electrode,
2 current collector,
3 negative electrode active material layer,
4 Protective layer,
4a Aluminum oxide (Al 2 O 3 ) particles,
4b lithium particles,
4c graphite particles,
4d styrene-butadiene rubber (SBR),
4x first protective layer,
4y second protective layer,
10 Bipolar secondary battery,
10 'lithium ion secondary battery 11 current collector (positive electrode current collector),
11a Positive electrode side outermost layer current collector,
11b The negative electrode side outermost layer current collector,
12 negative electrode current collector,
13 positive electrode active material layer,
15 negative electrode active material layer,
17 electrolyte layer,
19 cell layer,
21 power generation elements,
25 positive current collector,
27 negative current collector,
29 Laminate sheet,
31 seal part,
35 Small battery pack,
37 battery pack,
39 Connecting jig,
40 Electric car.
Claims (11)
前記集電体の表面に形成された、負極活物質を含む負極活物質層と、
を有するリチウムイオン二次電池用負極であって、
前記負極活物質層の表面に形成された、絶縁性無機材料、導電性材料、およびリチウム粒子を含む保護層をさらに有し、前記リチウム粒子の表面の一部が前記保護層の表面から露出していることを特徴とする、リチウムイオン二次電池用負極。 A current collector,
A negative electrode active material layer including a negative electrode active material formed on a surface of the current collector;
A negative electrode for a lithium ion secondary battery having
A protective layer including an insulating inorganic material, a conductive material, and lithium particles formed on the surface of the negative electrode active material layer is further included, and a part of the surface of the lithium particles is exposed from the surface of the protective layer. A negative electrode for a lithium ion secondary battery.
前記第1工程の後に行なわれる、リチウム粒子、絶縁性無機材料および導電性材料が溶媒に添加されてなる第2溶液を前記第1塗膜の表面に塗布し、乾燥させて、第2塗膜を形成する第2工程と、
を含む、リチウムイオン二次電池用負極の製造方法。 A first solution in which an insulating inorganic material and a conductive material are added to a solvent is applied to the surface of the negative electrode active material layer formed on the surface of the current collector, and dried to form a first coating film. The first step;
A second solution obtained by adding lithium particles, an insulating inorganic material, and a conductive material to a solvent, which is performed after the first step, is applied to the surface of the first coating film, and is dried. A second step of forming
The manufacturing method of the negative electrode for lithium ion secondary batteries containing.
前記発電要素をエージングするエージング工程と、
を含む、リチウムイオン二次電池の製造方法。 A power generation element production step of producing a power generation element using the negative electrode for a lithium ion secondary battery according to any one of claims 1 to 4,
An aging step of aging the power generation element;
A method for producing a lithium ion secondary battery, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009002948A JP2010160984A (en) | 2009-01-08 | 2009-01-08 | Anode for lithium-ion secondary battery and lithium-ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009002948A JP2010160984A (en) | 2009-01-08 | 2009-01-08 | Anode for lithium-ion secondary battery and lithium-ion secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010160984A true JP2010160984A (en) | 2010-07-22 |
Family
ID=42578008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009002948A Pending JP2010160984A (en) | 2009-01-08 | 2009-01-08 | Anode for lithium-ion secondary battery and lithium-ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010160984A (en) |
Cited By (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013054376A1 (en) * | 2011-10-12 | 2013-04-18 | トヨタ自動車株式会社 | Nonaqueous electrolyte secondary battery |
JP2013125697A (en) * | 2011-12-15 | 2013-06-24 | Idemitsu Kosan Co Ltd | Lithium particle-containing composition, electrode and battery |
WO2013125305A1 (en) * | 2012-02-23 | 2013-08-29 | トヨタ自動車株式会社 | Sealed nonaqueous electrolyte secondary battery |
CN104067417A (en) * | 2012-12-12 | 2014-09-24 | 株式会社Lg化学 | Electrode for secondary battery, secondary battery including same, and cable-type secondary battery |
JP2015002168A (en) * | 2013-06-14 | 2015-01-05 | 上海緑孚新能源科技有限公司Greenful New Energy Co.,Ltd. | Secondary battery |
JP2015507829A (en) * | 2012-12-12 | 2015-03-12 | エルジー・ケム・リミテッド | Secondary battery electrode, secondary battery including the same, and cable type secondary battery |
WO2015045350A1 (en) * | 2013-09-26 | 2015-04-02 | 株式会社豊田自動織機 | Lithium ion secondary battery |
WO2015140912A1 (en) * | 2014-03-17 | 2015-09-24 | 株式会社東芝 | Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack |
EP2846381A4 (en) * | 2013-05-07 | 2016-02-10 | Lg Chemical Ltd | SECONDARY BATTERY ELECTRODE, MANUFACTURING METHOD THEREOF, SECONDARY BATTERY, AND CABLE SECONDARY BATTERY COMPRISING SAME |
US9324978B2 (en) | 2013-04-29 | 2016-04-26 | Lg Chem, Ltd. | Packaging for cable-type secondary battery and cable-type secondary battery comprising the same |
US9397344B2 (en) | 2013-05-07 | 2016-07-19 | Lg Chem, Ltd. | Cable-type secondary battery |
JPWO2014077113A1 (en) * | 2012-11-13 | 2017-01-05 | 日本電気株式会社 | Negative electrode active material, method for producing the same, and lithium secondary battery |
US9660289B2 (en) | 2013-05-07 | 2017-05-23 | Lg Chem, Ltd. | Electrode for secondary battery, preparation thereof, and secondary battery and cable-type secondary battery comprising the same |
US9755278B2 (en) | 2013-05-07 | 2017-09-05 | Lg Chem, Ltd. | Cable-type secondary battery and preparation thereof |
US9972861B2 (en) | 2013-05-07 | 2018-05-15 | Lg Chem, Ltd. | Electrode for secondary battery, preparation thereof, and secondary battery and cable-type secondary battery comprising the same |
JP2018190692A (en) * | 2017-05-11 | 2018-11-29 | 株式会社豊田自動織機 | Method of manufacturing lithium-doped negative electrode |
WO2018226070A1 (en) * | 2017-06-08 | 2018-12-13 | 주식회사 엘지화학 | Negative electrode, secondary battery including same negative electrode, and method for manufacturing same negative electrode |
US10236537B2 (en) | 2014-04-21 | 2019-03-19 | Toyota Jidosha Kabushiki Kaisha | Non-aqueous electrolyte secondary battery |
WO2019027210A3 (en) * | 2017-08-01 | 2019-04-11 | 주식회사 엘지화학 | Electrode for lithium secondary battery comprising protective layer and lithium secondary battery comprising same |
CN109923704A (en) * | 2017-08-01 | 2019-06-21 | 株式会社Lg化学 | Electrode for lithium secondary battery including protective layer and lithium secondary battery including the same |
WO2019194433A1 (en) * | 2018-04-03 | 2019-10-10 | 주식회사 엘지화학 | Negative electrode for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same |
KR20190121051A (en) * | 2018-04-17 | 2019-10-25 | 주식회사 엘지화학 | Negative electrode for lithium secondary battery, preparing method thereof, and lithium secondary battery comprising the same |
JP2019192642A (en) * | 2018-04-28 | 2019-10-31 | 株式会社村田製作所 | Negative electrode structure for secondary battery and secondary battery using the same |
WO2019246474A1 (en) * | 2018-06-21 | 2019-12-26 | Nanotek Instruments, Inc. | Lithium metal secondary battery featuring an anode-protecting layer |
WO2020005868A1 (en) * | 2018-06-25 | 2020-01-02 | Nanotek Instruments, Inc. | Lithium-selenium battery containing an electrode-protecting layer and method of improving cycle-life |
JP2020506522A (en) * | 2017-08-11 | 2020-02-27 | エルジー・ケム・リミテッド | Prelithiation using lithium metal and inorganic composite layer |
US10629899B1 (en) | 2018-10-15 | 2020-04-21 | Global Graphene Group, Inc. | Production method for electrochemically stable anode particulates for lithium secondary batteries |
JP2020077605A (en) * | 2018-11-09 | 2020-05-21 | 株式会社リコー | Electrode, electrode element, and non-aqueous electrolyte storage element |
US10734642B2 (en) | 2016-03-30 | 2020-08-04 | Global Graphene Group, Inc. | Elastomer-encapsulated particles of high-capacity anode active materials for lithium batteries |
US10777810B2 (en) | 2018-06-21 | 2020-09-15 | Global Graphene Group, Inc. | Lithium metal secondary battery containing a protected lithium anode |
US10818926B2 (en) | 2018-03-07 | 2020-10-27 | Global Graphene Group, Inc. | Method of producing electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries |
US10854927B2 (en) | 2018-06-18 | 2020-12-01 | Global Graphene Group, Inc. | Method of improving cycle-life of alkali metal-sulfur secondary battery |
US10862157B2 (en) | 2018-06-18 | 2020-12-08 | Global Graphene Group, Inc. | Alkali metal-sulfur secondary battery containing a conductive electrode-protecting layer |
US10862129B2 (en) | 2017-04-12 | 2020-12-08 | Global Graphene Group, Inc. | Lithium anode-protecting polymer layer for a lithium metal secondary battery and manufacturing method |
CN112074975A (en) * | 2018-03-22 | 2020-12-11 | Fmc锂业美国公司 | Printable lithium compositions for forming battery electrodes |
US10886528B2 (en) | 2018-08-24 | 2021-01-05 | Global Graphene Group, Inc. | Protected particles of cathode active materials for lithium batteries |
US10957912B2 (en) | 2018-06-18 | 2021-03-23 | Global Graphene Group, Inc. | Method of extending cycle-life of a lithium-sulfur battery |
US10964951B2 (en) | 2017-08-14 | 2021-03-30 | Global Graphene Group, Inc. | Anode-protecting layer for a lithium metal secondary battery and manufacturing method |
US10971722B2 (en) | 2018-03-02 | 2021-04-06 | Global Graphene Group, Inc. | Method of manufacturing conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries |
US10971725B2 (en) | 2019-01-24 | 2021-04-06 | Global Graphene Group, Inc. | Lithium metal secondary battery containing elastic polymer foam as an anode-protecting layer |
US10971724B2 (en) | 2018-10-15 | 2021-04-06 | Global Graphene Group, Inc. | Method of producing electrochemically stable anode particulates for lithium secondary batteries |
US10978744B2 (en) | 2018-06-18 | 2021-04-13 | Global Graphene Group, Inc. | Method of protecting anode of a lithium-sulfur battery |
CN112655102A (en) * | 2018-09-18 | 2021-04-13 | 松下知识产权经营株式会社 | Slurry for secondary battery, positive electrode for secondary battery, and secondary battery |
US10978698B2 (en) | 2018-06-15 | 2021-04-13 | Global Graphene Group, Inc. | Method of protecting sulfur cathode materials for alkali metal-sulfur secondary battery |
CN112673499A (en) * | 2018-09-26 | 2021-04-16 | 松下知识产权经营株式会社 | Positive electrode for secondary battery and secondary battery |
US10985373B2 (en) | 2017-02-27 | 2021-04-20 | Global Graphene Group, Inc. | Lithium battery cathode and method of manufacturing |
US11005094B2 (en) | 2018-03-07 | 2021-05-11 | Global Graphene Group, Inc. | Electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries |
US11043662B2 (en) | 2018-08-22 | 2021-06-22 | Global Graphene Group, Inc. | Electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries |
US11043694B2 (en) | 2018-04-16 | 2021-06-22 | Global Graphene Group, Inc. | Alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles |
US11121398B2 (en) | 2018-06-15 | 2021-09-14 | Global Graphene Group, Inc. | Alkali metal-sulfur secondary battery containing cathode material particulates |
JP2021527937A (en) * | 2018-10-31 | 2021-10-14 | エルジー・ケム・リミテッド | Negative electrode for lithium secondary battery, lithium secondary battery containing it and its manufacturing method |
CN113597691A (en) * | 2019-03-20 | 2021-11-02 | Fmc锂业美国公司 | Battery using printable lithium |
US11223049B2 (en) | 2018-08-24 | 2022-01-11 | Global Graphene Group, Inc. | Method of producing protected particles of cathode active materials for lithium batteries |
US11239460B2 (en) | 2018-08-22 | 2022-02-01 | Global Graphene Group, Inc. | Method of producing electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries |
US11264598B2 (en) | 2018-03-22 | 2022-03-01 | Fmc Lithium Usa Corp. | Battery utilizing printable lithium |
US11276852B2 (en) | 2018-06-21 | 2022-03-15 | Global Graphene Group, Inc. | Lithium metal secondary battery containing an elastic anode-protecting layer |
US11342555B2 (en) | 2017-04-10 | 2022-05-24 | Global Graphene Group, Inc. | Encapsulated cathode active material particles, lithium secondary batteries containing same, and method of manufacturing |
US11495792B2 (en) | 2017-02-16 | 2022-11-08 | Global Graphene Group, Inc. | Method of manufacturing a lithium secondary battery having a protected high-capacity anode active material |
JP2023516415A (en) * | 2020-03-30 | 2023-04-19 | 寧徳新能源科技有限公司 | Negative electrode piece and electrochemical device including the same |
JP2023531545A (en) * | 2020-11-16 | 2023-07-24 | 珠海冠宇電池股分有限公司 | Negative electrode sheet and lithium ion battery |
US11721832B2 (en) | 2018-02-23 | 2023-08-08 | Global Graphene Group, Inc. | Elastomer composite-encapsulated particles of anode active materials for lithium batteries |
US11742475B2 (en) | 2017-04-03 | 2023-08-29 | Global Graphene Group, Inc. | Encapsulated anode active material particles, lithium secondary batteries containing same, and method of manufacturing |
KR20230140664A (en) * | 2022-03-29 | 2023-10-10 | 한국공학대학교산학협력단 | Negative electrode with protective layer and secondary battery comprising the same |
US11791450B2 (en) | 2019-01-24 | 2023-10-17 | Global Graphene Group, Inc. | Method of improving cycle life of a rechargeable lithium metal battery |
WO2023214711A1 (en) * | 2022-05-03 | 2023-11-09 | 주식회사 엘지에너지솔루션 | Negative electrode for lithium secondary battery, method for manufacturing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode |
WO2023236152A1 (en) * | 2022-06-09 | 2023-12-14 | 宁德时代新能源科技股份有限公司 | Secondary battery, battery module comprising secondary battery, battery pack, and electric device |
US11923535B2 (en) | 2020-02-19 | 2024-03-05 | Livent USA Corp. | Fast charging pre-lithiated silicon anode |
CN117686924A (en) * | 2024-02-01 | 2024-03-12 | 宁德时代新能源科技股份有限公司 | Evaluation method for effective replenishment level of active ions of secondary ion battery |
WO2024054016A1 (en) * | 2022-09-07 | 2024-03-14 | 주식회사 엘지에너지솔루션 | Negative electrode for lithium secondary battery, method for manufacturing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode |
US11978904B2 (en) | 2017-02-24 | 2024-05-07 | Honeycomb Battery Company | Polymer binder for lithium battery and method of manufacturing |
US11990608B2 (en) | 2017-02-24 | 2024-05-21 | Honeycomb Battery Company | Elastic polymer composite binder for lithium battery and method of manufacturing |
US12218346B2 (en) | 2018-06-21 | 2025-02-04 | Honeycomb Battery Company | Method of extending cycle-life of a lithium metal secondary battery |
US12288883B2 (en) | 2018-06-21 | 2025-04-29 | Honeycomb Battery Company | Method of improving cycle-life of a lithium metal secondary battery |
US12341199B2 (en) | 2018-03-22 | 2025-06-24 | Livent USA Corp. | Printed lithium foil and film |
-
2009
- 2009-01-08 JP JP2009002948A patent/JP2010160984A/en active Pending
Cited By (116)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2013054376A1 (en) * | 2011-10-12 | 2015-03-30 | トヨタ自動車株式会社 | Nonaqueous electrolyte secondary battery |
WO2013054376A1 (en) * | 2011-10-12 | 2013-04-18 | トヨタ自動車株式会社 | Nonaqueous electrolyte secondary battery |
JP2013125697A (en) * | 2011-12-15 | 2013-06-24 | Idemitsu Kosan Co Ltd | Lithium particle-containing composition, electrode and battery |
WO2013125305A1 (en) * | 2012-02-23 | 2013-08-29 | トヨタ自動車株式会社 | Sealed nonaqueous electrolyte secondary battery |
JP2013175309A (en) * | 2012-02-23 | 2013-09-05 | Toyota Motor Corp | Closed type nonaqueous electrolyte secondary battery |
CN104137306A (en) * | 2012-02-23 | 2014-11-05 | 丰田自动车株式会社 | Sealed nonaqueous electrolyte secondary battery |
US10347950B2 (en) | 2012-02-23 | 2019-07-09 | Toyota Jidosha Kabushiki Kaisha | Sealed nonaqueous electrolyte secondary battery |
US9985286B2 (en) | 2012-11-13 | 2018-05-29 | Nec Corporation | Negative electrode active material, method for manufacturing same, and lithium secondary battery |
JPWO2014077113A1 (en) * | 2012-11-13 | 2017-01-05 | 日本電気株式会社 | Negative electrode active material, method for producing the same, and lithium secondary battery |
JP2015507829A (en) * | 2012-12-12 | 2015-03-12 | エルジー・ケム・リミテッド | Secondary battery electrode, secondary battery including the same, and cable type secondary battery |
JP2015507329A (en) * | 2012-12-12 | 2015-03-05 | エルジー・ケム・リミテッド | Secondary battery electrode, secondary battery including the same, and cable type secondary battery |
US10050311B2 (en) | 2012-12-12 | 2018-08-14 | Lg Chem, Ltd. | Electrode for secondary battery, secondary battery and cable-type secondary battery comprising the same |
US9214672B2 (en) | 2012-12-12 | 2015-12-15 | Lg Chem, Ltd. | Electrode for secondary battery, secondary battery and cable-type secondary battery comprising the same |
CN104067417A (en) * | 2012-12-12 | 2014-09-24 | 株式会社Lg化学 | Electrode for secondary battery, secondary battery including same, and cable-type secondary battery |
US9590241B2 (en) | 2012-12-12 | 2017-03-07 | Lg Chem, Ltd. | Electrode for secondary battery, secondary battery and cable-type secondary battery comprising the same |
US9324978B2 (en) | 2013-04-29 | 2016-04-26 | Lg Chem, Ltd. | Packaging for cable-type secondary battery and cable-type secondary battery comprising the same |
US9755278B2 (en) | 2013-05-07 | 2017-09-05 | Lg Chem, Ltd. | Cable-type secondary battery and preparation thereof |
US9397344B2 (en) | 2013-05-07 | 2016-07-19 | Lg Chem, Ltd. | Cable-type secondary battery |
US9293783B2 (en) | 2013-05-07 | 2016-03-22 | Lg Chem, Ltd. | Electrode for secondary battery, preparation thereof, and secondary battery and cable-type secondary battery comprising the same |
US9660289B2 (en) | 2013-05-07 | 2017-05-23 | Lg Chem, Ltd. | Electrode for secondary battery, preparation thereof, and secondary battery and cable-type secondary battery comprising the same |
US9755267B2 (en) | 2013-05-07 | 2017-09-05 | Lg Chem, Ltd. | Cable-type secondary battery |
US9406939B2 (en) | 2013-05-07 | 2016-08-02 | Lg Chem, Ltd. | Cable-type secondary battery |
US9972861B2 (en) | 2013-05-07 | 2018-05-15 | Lg Chem, Ltd. | Electrode for secondary battery, preparation thereof, and secondary battery and cable-type secondary battery comprising the same |
EP2846381A4 (en) * | 2013-05-07 | 2016-02-10 | Lg Chemical Ltd | SECONDARY BATTERY ELECTRODE, MANUFACTURING METHOD THEREOF, SECONDARY BATTERY, AND CABLE SECONDARY BATTERY COMPRISING SAME |
JP2015002168A (en) * | 2013-06-14 | 2015-01-05 | 上海緑孚新能源科技有限公司Greenful New Energy Co.,Ltd. | Secondary battery |
JPWO2015045350A1 (en) * | 2013-09-26 | 2017-03-09 | 株式会社豊田自動織機 | Lithium ion secondary battery |
WO2015045350A1 (en) * | 2013-09-26 | 2015-04-02 | 株式会社豊田自動織機 | Lithium ion secondary battery |
WO2015140912A1 (en) * | 2014-03-17 | 2015-09-24 | 株式会社東芝 | Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack |
US10236537B2 (en) | 2014-04-21 | 2019-03-19 | Toyota Jidosha Kabushiki Kaisha | Non-aqueous electrolyte secondary battery |
US10734642B2 (en) | 2016-03-30 | 2020-08-04 | Global Graphene Group, Inc. | Elastomer-encapsulated particles of high-capacity anode active materials for lithium batteries |
US11495792B2 (en) | 2017-02-16 | 2022-11-08 | Global Graphene Group, Inc. | Method of manufacturing a lithium secondary battery having a protected high-capacity anode active material |
US11990608B2 (en) | 2017-02-24 | 2024-05-21 | Honeycomb Battery Company | Elastic polymer composite binder for lithium battery and method of manufacturing |
US11978904B2 (en) | 2017-02-24 | 2024-05-07 | Honeycomb Battery Company | Polymer binder for lithium battery and method of manufacturing |
US10985373B2 (en) | 2017-02-27 | 2021-04-20 | Global Graphene Group, Inc. | Lithium battery cathode and method of manufacturing |
US11742475B2 (en) | 2017-04-03 | 2023-08-29 | Global Graphene Group, Inc. | Encapsulated anode active material particles, lithium secondary batteries containing same, and method of manufacturing |
US11342555B2 (en) | 2017-04-10 | 2022-05-24 | Global Graphene Group, Inc. | Encapsulated cathode active material particles, lithium secondary batteries containing same, and method of manufacturing |
US10862129B2 (en) | 2017-04-12 | 2020-12-08 | Global Graphene Group, Inc. | Lithium anode-protecting polymer layer for a lithium metal secondary battery and manufacturing method |
JP2018190692A (en) * | 2017-05-11 | 2018-11-29 | 株式会社豊田自動織機 | Method of manufacturing lithium-doped negative electrode |
WO2018226070A1 (en) * | 2017-06-08 | 2018-12-13 | 주식회사 엘지화학 | Negative electrode, secondary battery including same negative electrode, and method for manufacturing same negative electrode |
US11322736B2 (en) | 2017-06-08 | 2022-05-03 | Lg Energy Solution, Ltd. | Negative electrode, secondary battery including the same, and method of preparing the negative electrode |
US11205779B2 (en) | 2017-08-01 | 2021-12-21 | Lg Chem, Ltd. | Electrode for lithium secondary battery comprising protective layer and lithium secondary battery comprising the same |
CN109923704A (en) * | 2017-08-01 | 2019-06-21 | 株式会社Lg化学 | Electrode for lithium secondary battery including protective layer and lithium secondary battery including the same |
WO2019027210A3 (en) * | 2017-08-01 | 2019-04-11 | 주식회사 엘지화학 | Electrode for lithium secondary battery comprising protective layer and lithium secondary battery comprising same |
JP2020506522A (en) * | 2017-08-11 | 2020-02-27 | エルジー・ケム・リミテッド | Prelithiation using lithium metal and inorganic composite layer |
JP7038947B2 (en) | 2017-08-11 | 2022-03-22 | エルジー エナジー ソリューション リミテッド | Pre-lithiumization using lithium metal and inorganic composite layer |
US10964951B2 (en) | 2017-08-14 | 2021-03-30 | Global Graphene Group, Inc. | Anode-protecting layer for a lithium metal secondary battery and manufacturing method |
US11721832B2 (en) | 2018-02-23 | 2023-08-08 | Global Graphene Group, Inc. | Elastomer composite-encapsulated particles of anode active materials for lithium batteries |
US10971722B2 (en) | 2018-03-02 | 2021-04-06 | Global Graphene Group, Inc. | Method of manufacturing conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries |
US10818926B2 (en) | 2018-03-07 | 2020-10-27 | Global Graphene Group, Inc. | Method of producing electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries |
US11005094B2 (en) | 2018-03-07 | 2021-05-11 | Global Graphene Group, Inc. | Electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries |
US11735764B2 (en) | 2018-03-22 | 2023-08-22 | Livent USA Corp. | Printable lithium compositions |
JP2023063336A (en) * | 2018-03-22 | 2023-05-09 | リベント ユーエスエー コーポレイション | solid state battery |
US11824182B2 (en) | 2018-03-22 | 2023-11-21 | Livent USA Corp. | Battery utilizing printable lithium |
CN112074975B (en) * | 2018-03-22 | 2024-06-18 | 利文特美国公司 | Printable lithium compositions for forming battery electrodes |
CN112074976A (en) * | 2018-03-22 | 2020-12-11 | Fmc锂业美国公司 | solid state battery |
US12341199B2 (en) | 2018-03-22 | 2025-06-24 | Livent USA Corp. | Printed lithium foil and film |
CN112074976B (en) * | 2018-03-22 | 2024-07-26 | 利文特美国公司 | Solid-state batteries |
JP7417581B2 (en) | 2018-03-22 | 2024-01-18 | リベント ユーエスエー コーポレイション | printable lithium composition |
US12095029B2 (en) | 2018-03-22 | 2024-09-17 | Livent USA Corp. | Methods of applying printable lithium compositions for forming battery electrodes |
JP7239672B2 (en) | 2018-03-22 | 2023-03-14 | リベント ユーエスエー コーポレイション | solid state battery |
US12191470B2 (en) | 2018-03-22 | 2025-01-07 | Livent USA Corp. | Battery utilizing printable lithium |
CN112074975A (en) * | 2018-03-22 | 2020-12-11 | Fmc锂业美国公司 | Printable lithium compositions for forming battery electrodes |
US11264598B2 (en) | 2018-03-22 | 2022-03-01 | Fmc Lithium Usa Corp. | Battery utilizing printable lithium |
JP2021531620A (en) * | 2018-03-22 | 2021-11-18 | エフエムシー リチウム ユーエスエー コーポレイション | Printable lithium composition |
JP2021520048A (en) * | 2018-03-22 | 2021-08-12 | エフエムシー リチウム ユーエスエー コーポレイション | Solid state battery |
KR102386321B1 (en) * | 2018-04-03 | 2022-04-14 | 주식회사 엘지에너지솔루션 | Negative electrode for lithium secondary battery, preparing method thereof, and lithium secondary battery comprising the same |
WO2019194433A1 (en) * | 2018-04-03 | 2019-10-10 | 주식회사 엘지화학 | Negative electrode for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same |
KR20190115706A (en) * | 2018-04-03 | 2019-10-14 | 주식회사 엘지화학 | Negative electrode for lithium secondary battery, preparing method thereof, and lithium secondary battery comprising the same |
US11043694B2 (en) | 2018-04-16 | 2021-06-22 | Global Graphene Group, Inc. | Alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles |
KR102386322B1 (en) | 2018-04-17 | 2022-04-14 | 주식회사 엘지에너지솔루션 | Negative electrode for lithium secondary battery, preparing method thereof, and lithium secondary battery comprising the same |
KR20190121051A (en) * | 2018-04-17 | 2019-10-25 | 주식회사 엘지화학 | Negative electrode for lithium secondary battery, preparing method thereof, and lithium secondary battery comprising the same |
JP2019192642A (en) * | 2018-04-28 | 2019-10-31 | 株式会社村田製作所 | Negative electrode structure for secondary battery and secondary battery using the same |
US10978698B2 (en) | 2018-06-15 | 2021-04-13 | Global Graphene Group, Inc. | Method of protecting sulfur cathode materials for alkali metal-sulfur secondary battery |
US11121398B2 (en) | 2018-06-15 | 2021-09-14 | Global Graphene Group, Inc. | Alkali metal-sulfur secondary battery containing cathode material particulates |
US10862157B2 (en) | 2018-06-18 | 2020-12-08 | Global Graphene Group, Inc. | Alkali metal-sulfur secondary battery containing a conductive electrode-protecting layer |
US10957912B2 (en) | 2018-06-18 | 2021-03-23 | Global Graphene Group, Inc. | Method of extending cycle-life of a lithium-sulfur battery |
US10854927B2 (en) | 2018-06-18 | 2020-12-01 | Global Graphene Group, Inc. | Method of improving cycle-life of alkali metal-sulfur secondary battery |
US10978744B2 (en) | 2018-06-18 | 2021-04-13 | Global Graphene Group, Inc. | Method of protecting anode of a lithium-sulfur battery |
US10777810B2 (en) | 2018-06-21 | 2020-09-15 | Global Graphene Group, Inc. | Lithium metal secondary battery containing a protected lithium anode |
WO2019246474A1 (en) * | 2018-06-21 | 2019-12-26 | Nanotek Instruments, Inc. | Lithium metal secondary battery featuring an anode-protecting layer |
US12218346B2 (en) | 2018-06-21 | 2025-02-04 | Honeycomb Battery Company | Method of extending cycle-life of a lithium metal secondary battery |
US11276852B2 (en) | 2018-06-21 | 2022-03-15 | Global Graphene Group, Inc. | Lithium metal secondary battery containing an elastic anode-protecting layer |
US12288883B2 (en) | 2018-06-21 | 2025-04-29 | Honeycomb Battery Company | Method of improving cycle-life of a lithium metal secondary battery |
WO2020005868A1 (en) * | 2018-06-25 | 2020-01-02 | Nanotek Instruments, Inc. | Lithium-selenium battery containing an electrode-protecting layer and method of improving cycle-life |
US10873088B2 (en) | 2018-06-25 | 2020-12-22 | Global Graphene Group, Inc. | Lithium-selenium battery containing an electrode-protecting layer and method of improving cycle-life |
US11239460B2 (en) | 2018-08-22 | 2022-02-01 | Global Graphene Group, Inc. | Method of producing electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries |
US11043662B2 (en) | 2018-08-22 | 2021-06-22 | Global Graphene Group, Inc. | Electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries |
US11652211B2 (en) | 2018-08-24 | 2023-05-16 | Global Graphene Group, Inc. | Method of producing protected particles of cathode active materials for lithium batteries |
US11223049B2 (en) | 2018-08-24 | 2022-01-11 | Global Graphene Group, Inc. | Method of producing protected particles of cathode active materials for lithium batteries |
US10886528B2 (en) | 2018-08-24 | 2021-01-05 | Global Graphene Group, Inc. | Protected particles of cathode active materials for lithium batteries |
CN112655102A (en) * | 2018-09-18 | 2021-04-13 | 松下知识产权经营株式会社 | Slurry for secondary battery, positive electrode for secondary battery, and secondary battery |
CN112673499A (en) * | 2018-09-26 | 2021-04-16 | 松下知识产权经营株式会社 | Positive electrode for secondary battery and secondary battery |
CN112673499B (en) * | 2018-09-26 | 2024-05-24 | 松下知识产权经营株式会社 | Positive electrode for secondary battery and secondary battery |
US10629899B1 (en) | 2018-10-15 | 2020-04-21 | Global Graphene Group, Inc. | Production method for electrochemically stable anode particulates for lithium secondary batteries |
US10971724B2 (en) | 2018-10-15 | 2021-04-06 | Global Graphene Group, Inc. | Method of producing electrochemically stable anode particulates for lithium secondary batteries |
JP2021527937A (en) * | 2018-10-31 | 2021-10-14 | エルジー・ケム・リミテッド | Negative electrode for lithium secondary battery, lithium secondary battery containing it and its manufacturing method |
JP7090807B2 (en) | 2018-10-31 | 2022-06-24 | エルジー エナジー ソリューション リミテッド | Negative electrode for lithium secondary battery, lithium secondary battery containing it and its manufacturing method |
JP7447406B2 (en) | 2018-11-09 | 2024-03-12 | 株式会社リコー | Electrodes, electrode elements, non-aqueous electrolyte storage elements |
US11955640B2 (en) | 2018-11-09 | 2024-04-09 | Ricoh Company, Ltd. | Inorganic particle layer, electrode, electrode element, and non-aqueous electrolyte power storage element |
JP2020077605A (en) * | 2018-11-09 | 2020-05-21 | 株式会社リコー | Electrode, electrode element, and non-aqueous electrolyte storage element |
US10971725B2 (en) | 2019-01-24 | 2021-04-06 | Global Graphene Group, Inc. | Lithium metal secondary battery containing elastic polymer foam as an anode-protecting layer |
US11791450B2 (en) | 2019-01-24 | 2023-10-17 | Global Graphene Group, Inc. | Method of improving cycle life of a rechargeable lithium metal battery |
CN113597691A (en) * | 2019-03-20 | 2021-11-02 | Fmc锂业美国公司 | Battery using printable lithium |
CN113597691B (en) * | 2019-03-20 | 2024-09-24 | 利文特美国公司 | Battery using printable lithium |
US11923535B2 (en) | 2020-02-19 | 2024-03-05 | Livent USA Corp. | Fast charging pre-lithiated silicon anode |
JP2023516415A (en) * | 2020-03-30 | 2023-04-19 | 寧徳新能源科技有限公司 | Negative electrode piece and electrochemical device including the same |
JP7581360B2 (en) | 2020-03-30 | 2024-11-12 | 寧徳新能源科技有限公司 | Anode piece and electrochemical device including same |
EP4160731A4 (en) * | 2020-11-16 | 2025-01-22 | Zhuhai CosMX Battery Co., Ltd. | NEGATIVE ELECTRODE FOIL AND USE THEREOF |
JP2023531545A (en) * | 2020-11-16 | 2023-07-24 | 珠海冠宇電池股分有限公司 | Negative electrode sheet and lithium ion battery |
KR20230140664A (en) * | 2022-03-29 | 2023-10-10 | 한국공학대학교산학협력단 | Negative electrode with protective layer and secondary battery comprising the same |
KR102795385B1 (en) * | 2022-03-29 | 2025-04-17 | 한국공학대학교산학협력단 | Negative electrode with protective layer and secondary battery comprising the same |
WO2023214711A1 (en) * | 2022-05-03 | 2023-11-09 | 주식회사 엘지에너지솔루션 | Negative electrode for lithium secondary battery, method for manufacturing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode |
WO2023236152A1 (en) * | 2022-06-09 | 2023-12-14 | 宁德时代新能源科技股份有限公司 | Secondary battery, battery module comprising secondary battery, battery pack, and electric device |
WO2024054016A1 (en) * | 2022-09-07 | 2024-03-14 | 주식회사 엘지에너지솔루션 | Negative electrode for lithium secondary battery, method for manufacturing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode |
CN117686924B (en) * | 2024-02-01 | 2024-05-24 | 宁德时代新能源科技股份有限公司 | Evaluation method for effective replenishment level of active ions of secondary ion battery |
CN117686924A (en) * | 2024-02-01 | 2024-03-12 | 宁德时代新能源科技股份有限公司 | Evaluation method for effective replenishment level of active ions of secondary ion battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010160984A (en) | Anode for lithium-ion secondary battery and lithium-ion secondary battery | |
JP5481904B2 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same | |
JP5402411B2 (en) | Lithium ion secondary battery and manufacturing method thereof | |
JP5428407B2 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same | |
JP5387011B2 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same | |
JP5672671B2 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same | |
JP5286972B2 (en) | Negative electrode for lithium ion secondary battery | |
JP5957947B2 (en) | Bipolar electrode and bipolar lithium ion secondary battery using the same | |
JP5458605B2 (en) | Bipolar secondary battery | |
JP2010205609A (en) | Electrode and battery using this | |
JP2010160982A (en) | Anode for lithium-ion secondary battery and lithium-ion secondary battery | |
JP2009245925A (en) | Electrode for battery, battery using it, and its method for manufacturing | |
JP2011029075A (en) | Negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the same | |
JP2010160985A (en) | Lithium ion secondary cell negative electrode and lithium ion secondary cell using the same | |
JP5309421B2 (en) | Lithium ion secondary battery | |
JP2010160983A (en) | Nonaqueous electrolyte secondary battery and its electrode | |
JP2007109636A (en) | Electrode for battery | |
JP2012009209A (en) | Negative electrode for lithium ion secondary battery | |
JP2009093924A (en) | Lithium ion secondary battery | |
JP2009211949A (en) | Nonaqueous electrolyte secondary battery | |
JP2007257862A (en) | Electrode for secondary battery, and secondary battery | |
JP2011003318A (en) | Lithium ion secondary battery | |
JP2020035634A (en) | Nonaqueous electrolyte secondary battery | |
JP5376036B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2009238681A (en) | Electrode for lithium-ion battery |