[go: up one dir, main page]

JP2010153140A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2010153140A
JP2010153140A JP2008328571A JP2008328571A JP2010153140A JP 2010153140 A JP2010153140 A JP 2010153140A JP 2008328571 A JP2008328571 A JP 2008328571A JP 2008328571 A JP2008328571 A JP 2008328571A JP 2010153140 A JP2010153140 A JP 2010153140A
Authority
JP
Japan
Prior art keywords
electrolyte
layer
current collector
active material
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008328571A
Other languages
Japanese (ja)
Inventor
Yasunari Hisamitsu
泰成 久光
Hideaki Horie
英明 堀江
Shinichi Tazaki
信一 田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008328571A priority Critical patent/JP2010153140A/en
Publication of JP2010153140A publication Critical patent/JP2010153140A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte secondary battery capable of preventing deterioration of battery output and suppressing shortage of electrolytic solution. <P>SOLUTION: The non-aqueous electrolyte secondary battery has a power generation element having a unit battery layer in which a negative electrode forming a negative electrode active material layer containing a negative electrode active material on the surface of a current collector including a conductive layer 25, an electrolyte layer containing a nonaqueous electrolyte, and a positive electrode forming a positive electrode active material layer containing a positive electrode active material on the surface of a current collector including the conductive layer 25 are laminated in order. At least one of the current collectors included in the power generation element is an electrolytic solution retaining current collector which further includes an electrolytic solution retaining portion 26 for retaining the electrolytic solution. Furthermore, at least one of the conductive layers 25 has holes 29 in which the electrolytic solution can penetrate in lamination direction of the current collectors in the conductive substrate 28. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は非水電解質二次電池に関する。より詳細には容量特性および出力特性の優れた非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery. More specifically, the present invention relates to a nonaqueous electrolyte secondary battery having excellent capacity characteristics and output characteristics.

近年、地球温暖化に対処するため、二酸化炭素量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池の開発が盛んに行われている。   In recent years, in order to cope with global warming, reduction of the amount of carbon dioxide is eagerly desired. In the automobile industry, there is a great expectation for reducing carbon dioxide emissions by introducing electric vehicles (EV) and hybrid electric vehicles (HEV), and the development of secondary batteries for motor drive that holds the key to commercialization of these is thriving. Has been done.

モータ駆動用二次電池としては、携帯電話やノートパソコン等に使用される民生用リチウムイオン二次電池と比較して極めて高い出力特性、及び高いエネルギーを有することが求められている。従って、全ての電池の中で最も高い理論エネルギーを有するリチウムイオン二次電池が注目を集めており、現在急速に開発が進められている。   As a secondary battery for driving a motor, it is required to have extremely high output characteristics and high energy as compared with a consumer lithium ion secondary battery used in a mobile phone, a notebook personal computer or the like. Therefore, lithium ion secondary batteries having the highest theoretical energy among all the batteries are attracting attention, and are currently being developed rapidly.

リチウムイオン二次電池は、一般に、バインダーを用いて正極活物質等を正極集電体の両面に塗布した正極と、バインダーを用いて負極活物質等を負極集電体の両面に塗布した負極とが、電解質層を介して接続され、電池ケースに収納される構成を有している。   Generally, a lithium ion secondary battery includes a positive electrode in which a positive electrode active material or the like is applied to both surfaces of a positive electrode current collector using a binder, and a negative electrode in which a negative electrode active material or the like is applied to both surfaces of a negative electrode current collector using a binder. However, it has the structure connected through an electrolyte layer and accommodated in a battery case.

従来、リチウムイオン二次電池の負極には充放電サイクルの寿命やコスト面で有利な炭素・黒鉛系材料が用いられてきた。しかし、炭素・黒鉛系の負極材料ではリチウムイオンの黒鉛結晶中への吸蔵・放出により充放電がなされる。その結果、最大リチウム導入化合物であるLiCから得られる理論容量372mAh/g以上の充放電容量が得られないという欠点がある。このため、炭素・黒鉛系負極材料で車両用途の実用化レベルを満足する容量、エネルギー密度を得るのは困難であると予想される。 Conventionally, carbon / graphite-based materials that are advantageous in terms of charge / discharge cycle life and cost have been used for negative electrodes of lithium ion secondary batteries. However, in a carbon / graphite negative electrode material, charging / discharging is performed by insertion / extraction of lithium ions into / from graphite crystals. As a result, there is a drawback that a charge / discharge capacity of a theoretical capacity of 372 mAh / g or more obtained from LiC 6 which is the maximum lithium introduction compound cannot be obtained. For this reason, it is expected that it is difficult to obtain a capacity and energy density that satisfy the practical use level of the vehicle application with the carbon / graphite negative electrode material.

これに対し、リチウムと合金化する材料を負極活物質として用いた電池は、従来の炭素・黒鉛系負極材料と比較しエネルギー密度が向上するため、車両用途における負極材料として期待されている。例えば、Si材料は、充放電において下記の反応式のように1molあたり4.4molのリチウムイオンを吸蔵放出し、Li22Siにおいては2000mAh/g程度もの理論容量を有する。 On the other hand, a battery using a material alloyed with lithium as a negative electrode active material is expected to be used as a negative electrode material for vehicles because the energy density is improved as compared with a conventional carbon / graphite negative electrode material. For example, the Si material occludes and releases 4.4 mol of lithium ions per mol as shown in the following reaction formula in charge and discharge, and Li 22 Si 5 has a theoretical capacity of about 2000 mAh / g.

Figure 2010153140
Figure 2010153140

しかし、リチウムと合金化する材料を負極活物質として用いたリチウムイオン二次電池は、充放電時の負極の膨張収縮が大きい。例えば、リチウムイオンを吸蔵した場合の体積膨張は、黒鉛では約1.2倍であるのに対し、Si材料では約4倍にも達する。このため、電極層内では電極の膨張により空隙が生じやすく、その結果、電極間の電解液不足が生じ、充放電の容量の低下を招きやすいといった欠点を有する。   However, a lithium ion secondary battery using a material that forms an alloy with lithium as a negative electrode active material has a large negative electrode expansion and contraction during charge and discharge. For example, the volume expansion when lithium ions are occluded is about 1.2 times that of graphite, but about 4 times that of Si material. For this reason, voids are easily generated in the electrode layer due to the expansion of the electrodes, and as a result, there is a drawback that the electrolyte solution between the electrodes is insufficient, and the capacity of charge / discharge is likely to decrease.

このような充放電時における電解液不足を補う方法として、負極とセパレータとの間に電解液吸液層を形成することによって、正負極の膨潤による負極の電解液の不足を補う方法が開示されている(特許文献1を参照)。
特開昭63−143743号公報
As a method for making up for the lack of electrolyte during charging and discharging, a method for making up for the lack of electrolyte in the negative electrode due to swelling of the positive and negative electrodes by forming an electrolyte absorption layer between the negative electrode and the separator is disclosed. (See Patent Document 1).
JP-A-63-143743

しかし、特許文献1に記載の電池では、電解液吸液層が正極と負極との間に設置されるため、電極間距離が増大する。その結果、充放電時の電解液不足は抑制されうるものの、電池の出力が低下するという問題がある。   However, in the battery described in Patent Document 1, since the electrolyte solution absorbing layer is disposed between the positive electrode and the negative electrode, the distance between the electrodes increases. As a result, the shortage of the electrolyte during charging / discharging can be suppressed, but there is a problem that the output of the battery decreases.

そこで本発明の目的は、電池の出力の低下を防止するとともに電解液の不足を抑制しうる手段を提供することを目的とする。   Therefore, an object of the present invention is to provide means capable of preventing a decrease in battery output and suppressing a shortage of electrolyte.

本発明者らは上記課題を解決すべく、鋭意研究を行った。その結果、発電要素内の電極間以外で、電解液を補給するための電解液保持部を集電体に設置することにより、上記課題が解決されうることを見出し、本発明を完成するに至った。   The present inventors have intensively studied to solve the above problems. As a result, it has been found that the above problem can be solved by installing an electrolyte holding part for replenishing the electrolyte other than between the electrodes in the power generation element, and the present invention has been completed. It was.

すなわち、本発明の非水電解質二次電池は、負極活物質を含む負極活物質層が導電性層を含む集電体の表面に形成されてなる負極と、非水電解質を含む電解質層と、正極活物質を含む正極活物質層が導電性層を含む集電体の表面に形成されてなる正極と、が順に積層されてなる単電池層を有する発電要素を含む。そして、前記発電要素に含まれる前記集電体の少なくとも1つは電解液を保持する電解液保持部をさらに含む電解液保持集電体である。   That is, the nonaqueous electrolyte secondary battery of the present invention includes a negative electrode in which a negative electrode active material layer containing a negative electrode active material is formed on the surface of a current collector containing a conductive layer, an electrolyte layer containing a nonaqueous electrolyte, A power generation element having a single battery layer in which a positive electrode formed by forming a positive electrode active material layer including a positive electrode active material on a surface of a current collector including a conductive layer is sequentially included. At least one of the current collectors included in the power generation element is an electrolyte solution holding current collector that further includes an electrolyte solution holding unit that holds the electrolyte solution.

本発明によれば、集電体の電解液保持部から、電極間距離が増大することなく電解液を電極に補給できる。したがって、充放電時の電極の膨張収縮による電解液の不足を抑制するとともに、電池の出力特性が維持できる。   According to the present invention, the electrolyte can be supplied to the electrodes without increasing the distance between the electrodes from the electrolyte holding part of the current collector. Therefore, the shortage of the electrolyte due to the expansion and contraction of the electrode during charging and discharging can be suppressed, and the output characteristics of the battery can be maintained.

以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、本発明の技術的範囲は特許請求の範囲の記載に基づいて定められるべきであり、以下の形態のみには制限されない。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The technical scope of the present invention should be determined based on the description of the scope of claims, and is not limited to the following modes. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.

[積層型電池]
本発明の一実施形態は、積層型の非水電解液二次電池(以下、「積層型電池」とも称する)である。
[Stacked battery]
One embodiment of the present invention is a laminated nonaqueous electrolyte secondary battery (hereinafter also referred to as “laminated battery”).

積層型電池は、一の集電体の両面とそれぞれ電気的に結合した正極活物質層を含む正極と、他の集電体の両面とそれぞれ電気的に結合した負極活物質層を含む負極と、前記正極および前記負極の間に配置された電解質層とが交互に積層されてなる。   The stacked battery includes a positive electrode including a positive electrode active material layer electrically coupled to both surfaces of one current collector, and a negative electrode including a negative electrode active material layer electrically coupled to both surfaces of another current collector. The electrolyte layer disposed between the positive electrode and the negative electrode is alternately laminated.

図1は、本発明の代表的な一実施形態である、積層型の非水電解質二次電池を示す模式断面図である。以下、図1に示す積層型電池を例に挙げて詳細に説明するが、本発明の技術的範囲はかような形態のみに制限されない。例えば、本発明の電池は、双極型の非水電解質二次電池であってもよい。   FIG. 1 is a schematic cross-sectional view showing a laminated nonaqueous electrolyte secondary battery which is a typical embodiment of the present invention. Hereinafter, the laminated battery shown in FIG. 1 will be described in detail as an example, but the technical scope of the present invention is not limited to such a form. For example, the battery of the present invention may be a bipolar non-aqueous electrolyte secondary battery.

図1に示す本実施形態の積層型電池10は、実際に充放電反応が進行する略矩形の発電要素17が、外装であるラミネートシート22の内部に封止された構造を有する。   The stacked battery 10 of this embodiment shown in FIG. 1 has a structure in which a substantially rectangular power generation element 17 in which a charge / discharge reaction actually proceeds is sealed inside a laminate sheet 22 that is an exterior.

図1に示すように、本実施形態の積層型電池10の発電要素17は、単電池層(=電池単位ないし単セル)16を含む。単電池層16は、正極活物質層15が正極集電体14の表面に形成されてなる正極24と、電解質層13と、負極活物質層12が負極集電体11の表面に形成されてなる負極23とが順に積層された構成を有する。なお、単電池層16の積層構造において、電解質層13の一方の面は負極活物質層12と接触し、電解質層13の他方の面は正極活物質層15と接触している。   As shown in FIG. 1, the power generation element 17 of the stacked battery 10 of this embodiment includes a single battery layer (= battery unit or single cell) 16. The single battery layer 16 includes a positive electrode 24 in which the positive electrode active material layer 15 is formed on the surface of the positive electrode current collector 14, an electrolyte layer 13, and a negative electrode active material layer 12 formed on the surface of the negative electrode current collector 11. And a negative electrode 23 formed in this order. In the laminated structure of the unit cell layers 16, one surface of the electrolyte layer 13 is in contact with the negative electrode active material layer 12, and the other surface of the electrolyte layer 13 is in contact with the positive electrode active material layer 15.

本実施形態に用いられる集電体(正極集電体14および負極集電体11)は導電性層を含む。そして、発電要素17に含まれる正極集電体14および負極集電体11の少なくとも1つは導電性層に加えて電解液保持部を含む構成を有する(以下、かような構成を有する集電体を「電解液保持集電体」とも称する)。   The current collector (the positive electrode current collector 14 and the negative electrode current collector 11) used in the present embodiment includes a conductive layer. At least one of the positive electrode current collector 14 and the negative electrode current collector 11 included in the power generation element 17 has a configuration including an electrolyte solution holding portion in addition to the conductive layer (hereinafter, a current collector having such a configuration). The body is also referred to as “electrolyte holding current collector”).

さらに、図1に示すように、正極集電体14および負極集電体11内の導電性層は発電要素17の端部において集められ、それぞれ正極リード21および負極リード20を経て、超音波溶接などの手法によって正極タブ19および負極タブ18に電気的に接続される。そして、正極タブ19および負極タブ18が外部に電力を取り出すことを目的として、ラミネートシート22の外部に導出されるように、発電要素17が外装であるラミネートシート22により封止されている。   Further, as shown in FIG. 1, the conductive layers in the positive electrode current collector 14 and the negative electrode current collector 11 are collected at the end of the power generation element 17 and are ultrasonically welded through the positive electrode lead 21 and the negative electrode lead 20, respectively. Thus, the positive electrode tab 19 and the negative electrode tab 18 are electrically connected. The power generation element 17 is sealed with a laminate sheet 22 as an exterior so that the positive electrode tab 19 and the negative electrode tab 18 are led out of the laminate sheet 22 for the purpose of taking out electric power to the outside.

なお、図1に示す積層型電池10においては、負極活物質層12が正極活物質層15よりも一回り大きいが、かような形態のみには制限されない。   In the stacked battery 10 shown in FIG. 1, the negative electrode active material layer 12 is slightly larger than the positive electrode active material layer 15, but is not limited to such a form.

以下、本実施形態の積層型電池10を構成する部材について説明するが、下記の形態のみに制限されることはなく、従来公知の形態が同様に採用されうる。   Hereinafter, although the member which comprises the laminated battery 10 of this embodiment is demonstrated, it is not restrict | limited only to the following form, A conventionally well-known form may be employ | adopted similarly.

[集電体]
(集電体の構造)
集電体(正極集電体および負極集電体)は、導電性層を含む。集電体は導電性層を介して正極活物質層と負極活物質層とが電気的に接続され、電力を外部に取り出すことができる。そして、本発明の電池において、発電要素に含まれる集電体(正極集電体および負極集電体)の少なくとも1つは導電性層に加えて電解液保持部を含む形態(電解液保持集電体)である。一方、当該形態以外の他の集電体は電解液保持部を含まない形態(以下、「電解液非保持集電体」とも称する)でありうる。すなわち、本発明の非水電解質二次電池においては、集電体の全てが電解液保持集電体である形態であってもよいし、集電体の一部が電解液保持集電体であり、その他の集電体が電解液非保持集電体である形態であってもよい。
[Current collector]
(Current collector structure)
The current collector (the positive electrode current collector and the negative electrode current collector) includes a conductive layer. In the current collector, the positive electrode active material layer and the negative electrode active material layer are electrically connected via the conductive layer, and power can be taken out to the outside. In the battery of the present invention, at least one of the current collectors (positive electrode current collector and negative electrode current collector) included in the power generation element includes an electrolyte solution holding portion in addition to the conductive layer (electrolyte solution holding current collector). Electric body). On the other hand, the current collector other than the above form may be in a form not including the electrolytic solution holding part (hereinafter also referred to as “electrolytic solution non-retaining current collector”). That is, in the non-aqueous electrolyte secondary battery of the present invention, all of the current collector may be an electrolyte holding current collector, or a part of the current collector is an electrolyte holding current collector. The other current collector may be an electrolyte non-holding current collector.

電解液保持集電体の構造としては、導電性層と電解液保持部とを積層させた多層構造を有していてもよいし、導電性層内部に電解液保持部を形成させた一体型の単層構造を有していてもよい。なお、電解液保持部と導電性層とは必ずしも接触した形態である必要はなく、電解液保持部からの電解液の需給が可能である限り、電解液保持部と導電性層との間に空隙または他の層を含んでいてもよい。ただし、好ましくは、電解液保持部と発電要素が接触する形態を有する。かような形態においては電解液保持部と導電性層との間の界面抵抗を低下させることができ、これにより電池の出力低下を防止することができる。また、電解液保持部と導電性層とが接触する形態としては、電極の膨張時に電解液保持部が導電性層に接触しうる形態であればよく、必ずしも充放電の全過程で電解液保持部が導電性層に物理的に接触している必要はない。   The structure of the electrolytic solution holding current collector may have a multilayer structure in which a conductive layer and an electrolytic solution holding unit are laminated, or an integrated type in which an electrolytic solution holding unit is formed inside the conductive layer. It may have a single layer structure. Note that the electrolyte solution holding unit and the conductive layer do not necessarily have to be in contact with each other, and as long as the electrolyte solution can be supplied and supplied from the electrolyte solution holding unit, the electrolyte solution holding unit and the conductive layer are disposed between the electrolyte solution holding unit and the conductive layer. Voids or other layers may be included. However, it preferably has a configuration in which the electrolytic solution holding portion and the power generation element are in contact with each other. In such a form, the interface resistance between the electrolytic solution holding part and the conductive layer can be reduced, and thereby the output of the battery can be prevented from being lowered. In addition, the form in which the electrolytic solution holding part and the conductive layer are in contact with each other is not limited as long as the electrolytic solution holding part can be in contact with the conductive layer when the electrode is expanded. The portion need not be in physical contact with the conductive layer.

図2は本発明の代表的な一実施形態に用いられる電解液保持集電体の模式断面図(発電要素の積層方向に平行な面における模式断面図)である。図2に示すように、本実施形態の電解液保持集電体は、2つの導電性層25により電解液保持部26が挟持されてなる、多層形態の積層体である。かような電解液保持集電体は、導電性層と電解液保持部とを積層させることにより簡便に作製することができる。また、本実施形態の導電性層25においては、導電性基材28に複数の貫通孔29が形成されている。   FIG. 2 is a schematic cross-sectional view (schematic cross-sectional view in a plane parallel to the stacking direction of the power generation elements) of the electrolyte solution holding current collector used in a typical embodiment of the present invention. As shown in FIG. 2, the electrolyte solution holding current collector of the present embodiment is a multilayered laminate in which an electrolyte solution holding unit 26 is sandwiched between two conductive layers 25. Such an electrolyte solution holding current collector can be easily produced by laminating a conductive layer and an electrolyte solution holding part. In the conductive layer 25 of the present embodiment, a plurality of through holes 29 are formed in the conductive base material 28.

図3Aおよび図3Bに本発明の他の実施形態に用いられる電解液保持集電体の模式断面図(発電要素の積層方向に平行な面および垂直な面における模式断面図)をそれぞれ示す。図3Aおよび図3Bに示す実施形態の電解液保持集電体は、導電性層25内に電解液保持部26が形成された一体型の形態である。   3A and 3B are schematic cross-sectional views (schematic cross-sectional views in a plane parallel to and perpendicular to the stacking direction of the power generation elements) of the electrolyte solution holding current collector used in another embodiment of the present invention. The electrolyte solution holding current collector of the embodiment shown in FIGS. 3A and 3B is an integrated type in which an electrolyte solution holding part 26 is formed in the conductive layer 25.

かような一体型の電解液保持集電体は、電解液を電解液保持部の外部へ供給するため、導電性層25内に形成された電解液保持部26は導電性層25の表面に開口部27を有する必要がある。ただし、電解液保持部はかような開口部を導電性層の一方の面上に少なくとも一つ有すればよく、導電性層の両面に開口部を有する必要はない。   Such an integrated electrolyte solution holding current collector supplies the electrolyte solution to the outside of the electrolyte solution holding unit, so that the electrolyte solution holding unit 26 formed in the conductive layer 25 is formed on the surface of the conductive layer 25. It is necessary to have the opening 27. However, the electrolytic solution holding part only needs to have at least one such opening on one surface of the conductive layer, and does not need to have openings on both sides of the conductive layer.

積層型電池の場合には、電解液の均一な需給の観点から、かような開口部を導電性層の両面に有することが好ましい。しかし、後述する双極型電池においては、導電性層の両方の面に電解液保持部の開口部を存在する場合には、集電体内で電極反応が生じ、双極型電池として機能することができない。このため、双極型電池の場合には、導電性層の一方の面のみに開口部を有する必要がある。   In the case of a laminated battery, it is preferable to have such openings on both sides of the conductive layer from the viewpoint of uniform supply and demand of the electrolyte. However, in the bipolar battery described later, when there are openings for the electrolyte solution holding part on both sides of the conductive layer, an electrode reaction occurs in the current collector and it cannot function as a bipolar battery. . For this reason, in the case of a bipolar battery, it is necessary to have an opening only on one surface of the conductive layer.

本発明において電解液保持集電体は発電要素内の中央層に存在することが好ましい。本発明において、「中央層」とは複数の単電池層を積層させた積層構造を有する発電要素において、発電要素の積層方向における中央部に位置する層を意味する。ここで、中央部に位置する層とは、積層構造の積層方向のちょうど真ん中の位置に配置された層のみならず、当該真ん中の層に隣接する複数の層をも含む。より具体的には、発電要素の積層方向において、積層体の上部から30%〜70%の範囲の位置にある層を意味する。   In the present invention, the electrolyte solution holding current collector is preferably present in the central layer in the power generation element. In the present invention, the “central layer” means a layer located at the center in the stacking direction of the power generation elements in the power generation element having a stacked structure in which a plurality of single battery layers are stacked. Here, the layer located in the central portion includes not only a layer arranged at the center position in the stacking direction of the stacked structure but also a plurality of layers adjacent to the center layer. More specifically, it means a layer located at a position in the range of 30% to 70% from the top of the stack in the stacking direction of the power generation elements.

複数の単電池層を含む発電要素内の中央層は充放電反応により昇温しやすく、電解液の不足が生じやすい。したがって、電解液の不足が生じやすい中央層に電解液保持集電体を配置させることにより、電解液が不足した活物質層に近傍に存在する電解液保持部から電解液が迅速にかつ効率よく供給されうる。特に、後述する双極型電池は単電池層の積層数が大きいため、中央層における電解液不足が発生しやすい。このため、双極型電池ではかかる形態による効果が顕著に発揮されうる。   The central layer in the power generation element including the plurality of unit cell layers is likely to be heated by the charge / discharge reaction, and the electrolyte is likely to be insufficient. Therefore, by disposing the electrolytic solution holding current collector in the central layer where the shortage of the electrolytic solution is likely to occur, the electrolytic solution can be quickly and efficiently supplied from the electrolytic solution holding part existing in the vicinity of the active material layer where the electrolytic solution is insufficient. Can be supplied. In particular, since the bipolar battery described later has a large number of single battery layers, an electrolyte shortage tends to occur in the central layer. For this reason, in a bipolar battery, the effect by this form can be exhibited notably.

また、充放電時の体積膨張は正極に比べて負極が大きいため、電解液不足の問題は主に負極側で生じる。このため、負極側の集電体(負極集電体)が電解液保持部を含んで形成されることが好ましい。電解液不足の生じる負極側の集電体に電解液保持部を設置することによって、電解液の不足を防止し、電極の抵抗の上昇をより効果的に抑制することが可能となる。   In addition, since the negative electrode has a larger volume expansion during charge / discharge than the positive electrode, the problem of insufficient electrolyte mainly occurs on the negative electrode side. For this reason, it is preferable that the negative electrode side current collector (negative electrode current collector) is formed to include an electrolyte solution holding portion. By installing the electrolytic solution holding part on the current collector on the negative electrode side where shortage of the electrolytic solution occurs, it is possible to prevent shortage of the electrolytic solution and more effectively suppress the increase in the resistance of the electrode.

図4は本発明の一実施形態に用いられる電解液非保持集電体の模式断面図(発電要素の積層方向に平行な面における模式断面図)である。図4に示すように、電解液非保持集電体は、例えば、導電性層25からなる構成を有する。   FIG. 4 is a schematic cross-sectional view (schematic cross-sectional view in a plane parallel to the stacking direction of the power generating elements) of the electrolyte non-holding current collector used in one embodiment of the present invention. As shown in FIG. 4, the electrolyte non-holding current collector has a configuration including, for example, a conductive layer 25.

以下、集電体を構成する部材について説明する。   Hereinafter, members constituting the current collector will be described.

(導電性層)
導電性層は本発明の非水電解質電池において集電機能を有し、導電性を有する基材(導電性基材)で構成される。
(Conductive layer)
The conductive layer has a current collecting function in the nonaqueous electrolyte battery of the present invention, and is composed of a conductive base material (conductive base material).

導電性を有する基材としては、特に制限されるものではなく、電池用の集電体材料として従来用いられている材料が適宜採用されうる。具体的には、鉄、ステンレス鋼、クロム、ニッケル、マンガン、チタン、モリブデン、バナジウム、ニオブ、アルミニウム、銅、銀、金、白金およびカーボンからなる群より選択されてなる少なくとも1種の集電体材料で構成された導電性層を用いることができる。これらの中でも、電子伝導性、電池作動電位という観点からは、アルミニウム、銅が好ましい。   The base material having conductivity is not particularly limited, and a material conventionally used as a current collector material for a battery can be appropriately employed. Specifically, at least one current collector selected from the group consisting of iron, stainless steel, chromium, nickel, manganese, titanium, molybdenum, vanadium, niobium, aluminum, copper, silver, gold, platinum, and carbon A conductive layer made of a material can be used. Among these, aluminum and copper are preferable from the viewpoints of electronic conductivity and battery operating potential.

本発明の非水電解質二次電池は、発電要素に含まれる集電体の少なくとも1つが導電性層に加えて電解液保持部を含むことを特徴とする。以下、図2に示す電解液保持集電体を例に挙げて詳細に説明するが、本発明の技術的範囲はかような形態のみに制限されない。   The nonaqueous electrolyte secondary battery of the present invention is characterized in that at least one of the current collectors included in the power generation element includes an electrolyte solution holding portion in addition to the conductive layer. Hereinafter, the electrolytic solution holding current collector shown in FIG. 2 will be described in detail as an example, but the technical scope of the present invention is not limited to such a form.

電解液保持集電体において、電解液保持部は活物質層との間で電解液の需給を行うが、このような電解液の需給は導電性層を通して、または導電性層外の空間を通してなされる。このため、前記電解液保持部を含む集電体、すなわち電解液保持集電体を構成する導電性層の少なくとも1つは、電解液が電解液保持集電体の積層方向に貫通しうる孔(貫通孔)を有することが好ましい。かような形態を有する場合には、電解液保持部から貫通孔を通して活物質層全体に均一にかつ迅速に電解液を供給することができる。特に、電解液不足が生じやすい負極への電解液の供給を良好なものとするためにも、負極活物質層の片面に接触する導電性層(負極集電体を構成する導電性層)が貫通孔を有することが好ましい。   In the electrolytic solution holding current collector, the electrolytic solution holding part supplies and supplies the electrolytic solution to and from the active material layer, and such supply and demand of the electrolytic solution is made through the conductive layer or through a space outside the conductive layer. The For this reason, at least one of the current collectors including the electrolytic solution holding part, that is, the conductive layer constituting the electrolytic solution holding current collector, has a hole through which the electrolytic solution can penetrate in the stacking direction of the electrolytic solution holding current collector. It is preferable to have (through hole). When it has such a form, electrolyte solution can be uniformly and rapidly supplied to the whole active material layer through a through-hole from an electrolyte solution holding | maintenance part. In particular, in order to improve the supply of the electrolytic solution to the negative electrode where the electrolyte shortage is likely to occur, a conductive layer (conductive layer constituting the negative electrode current collector) in contact with one side of the negative electrode active material layer is provided. It is preferable to have a through hole.

導電性層における貫通孔の形態としては、電解液が電解液保持部と活物質層との間を移動できるものであれば特に制限されず、任意の形状をとることができる。貫通孔の断面形状は、特に制限されず、円形状、楕円形状、三角形状、四角形状、星型形状、十文字型形状、その他多角形状などの特定の形状のほか、不定形状であってもよい。また、これらの形状を単独で用いても良いし、複数の形状を組み合わせて用いてもよい。   The form of the through hole in the conductive layer is not particularly limited as long as the electrolytic solution can move between the electrolytic solution holding part and the active material layer, and can take any shape. The cross-sectional shape of the through hole is not particularly limited, and may be an indefinite shape in addition to a specific shape such as a circular shape, an elliptical shape, a triangular shape, a quadrangular shape, a star shape, a cross shape, or other polygonal shapes. . In addition, these shapes may be used alone, or a plurality of shapes may be used in combination.

貫通孔の平均孔径は、電解液の円滑な需給の観点から、10nm以上であることが好ましい。貫通孔の平均孔径の上限値については、集電体の機械的強度が確保される限り特に制限されないが、1mm以下であることが好ましい。なお、本発明において「貫通孔の平均孔径」とは、導電性層に存在する貫通孔の直径の平均値をいい、本発明では、貫通孔の孔径の絶対最大長を貫通孔の直径として用いる。貫通孔の平均孔径の測定方法は特に制限されないが、例えばSEMにより観察される導電性層における貫通孔の孔径を測定し、これらを算術平均する方法を用いることができる。   The average pore diameter of the through holes is preferably 10 nm or more from the viewpoint of smooth supply and demand of the electrolytic solution. The upper limit of the average hole diameter of the through holes is not particularly limited as long as the mechanical strength of the current collector is ensured, but is preferably 1 mm or less. In the present invention, the “average diameter of through-holes” refers to the average value of the diameters of the through-holes existing in the conductive layer. In the present invention, the absolute maximum length of the diameter of the through-holes is used as the diameter of the through-holes. . The method for measuring the average hole diameter of the through holes is not particularly limited. For example, a method of measuring the hole diameters of the through holes in the conductive layer observed by SEM and arithmetically averaging them can be used.

均一かつ迅速な電解液の供給という観点から、導電性層は複数の貫通孔を有しているのが好ましい。ただし、導電性層における貫通孔の占有体積が大きい場合には、導電性層の機械的強度を確保できなくなるおそれがある。したがって、導電性層における貫通孔の占有体積は、好ましくは10%〜70%であり、より好ましくは20%〜70%であり、特に好ましくは30%〜70%である。   From the viewpoint of uniform and rapid supply of the electrolytic solution, the conductive layer preferably has a plurality of through holes. However, when the volume occupied by the through holes in the conductive layer is large, the mechanical strength of the conductive layer may not be ensured. Therefore, the occupied volume of the through holes in the conductive layer is preferably 10% to 70%, more preferably 20% to 70%, and particularly preferably 30% to 70%.

また、複数の貫通孔の配列形態は特に制限されず、規則的な配列形態であっても不規則な配列形態であってもよい。また、導電性層内で異なる貫通孔が結合していてもよい。ただし、活物質層と電解液保持部との間の均一な電解液の需給の観点から、導電性層内に均質に貫通孔が配置されていることが好ましい。   Further, the arrangement form of the plurality of through holes is not particularly limited, and may be a regular arrangement form or an irregular arrangement form. Further, different through holes may be combined in the conductive layer. However, from the viewpoint of supply and demand of a uniform electrolyte solution between the active material layer and the electrolyte solution holding part, it is preferable that the through holes are uniformly arranged in the conductive layer.

かような貫通孔の形成方法は特に制限されず、従来公知の方法を使用することができる。例えば、設ける貫通孔の形態に応じてパンチングプレス加工等の機械的処理、エッチングなどの化学的処理、レーザー処理等を適宜行えばよい。   The method for forming such a through hole is not particularly limited, and a conventionally known method can be used. For example, mechanical processing such as punching press processing, chemical processing such as etching, laser processing, or the like may be performed as appropriate in accordance with the form of the through hole to be provided.

参考のため、図5に本発明の一実施形態に用いられうる貫通孔を有する導電性層の模式断面図(発電要素の積層方向に垂直な面における模式断面図)を示す。なお、図5に示す導電性層の模式断面図は、図2に示す実施形態の集電体を構成する導電性層25を発電要素の積層方向に垂直な面で切断したときの模式断面図に相当する。図5に示す導電性層25においては、導電性基材28に複数の円形状の貫通孔29が規則的に形成されている。   For reference, FIG. 5 shows a schematic cross-sectional view (schematic cross-sectional view in a plane perpendicular to the stacking direction of power generation elements) of a conductive layer having a through hole that can be used in an embodiment of the present invention. The schematic cross-sectional view of the conductive layer shown in FIG. 5 is a schematic cross-sectional view when the conductive layer 25 constituting the current collector of the embodiment shown in FIG. 2 is cut along a plane perpendicular to the stacking direction of the power generation elements. It corresponds to. In the conductive layer 25 shown in FIG. 5, a plurality of circular through holes 29 are regularly formed in the conductive substrate 28.

導電性層の厚みについては、特に制限されないが、通常は1μm〜100μm程度であり、好ましくは5μm以上50μm以下である。かような範囲にあれば、エネルギー密度が低下することなく集電機能を発揮しうる。   Although there is no restriction | limiting in particular about the thickness of an electroconductive layer, Usually, they are about 1 micrometer-100 micrometers, Preferably they are 5 micrometers or more and 50 micrometers or less. If it is in such a range, the current collecting function can be exhibited without lowering the energy density.

(電解液保持部)
電解液保持部は、電解液を保持する層である。電解液保持部は電極の膨張・収縮時に電解液の放出・吸収を行い、電極の膨張収縮によって不足した電解液の需給層として機能する。
(Electrolyte holding part)
The electrolytic solution holding unit is a layer that holds the electrolytic solution. The electrolytic solution holding part releases and absorbs the electrolytic solution when the electrode expands and contracts, and functions as a supply and demand layer for the electrolytic solution that is insufficient due to the expansion and contraction of the electrode.

電解液保持部の形態は、電解液の保持が可能であれば特に制限されず、様々な形態でありうる。例えば、本発明の電解液保持部は電解質保持基材の空孔部に電解液が保持される形態を有しうる。   The form of the electrolytic solution holding part is not particularly limited as long as the electrolytic solution can be held, and may be various forms. For example, the electrolyte solution holding part of the present invention may have a form in which the electrolyte solution is held in the pores of the electrolyte holding substrate.

電解液保持部における空孔部の配置は、十分な量の電解液が保持でき、円滑な電解液の需給ができるものであれば特に制限されない。例えば、空孔部が電解液保持部全体に均一に形成されて電解液が分散保持されていてもよいし、電解液保持部の一部に空孔部が設けられて電解液が保持されていてもよい。   The arrangement of the holes in the electrolyte solution holding part is not particularly limited as long as a sufficient amount of electrolyte solution can be held and smooth supply and demand of the electrolyte solution can be achieved. For example, the pores may be formed uniformly throughout the electrolyte holding part and the electrolyte may be dispersed and held, or the holes may be provided in a part of the electrolyte holding part to hold the electrolyte. May be.

電解液保持部の空孔率は20〜70%であることが好ましく、30〜70%であることがより好ましく、40〜70%であることがさらに好ましい。空孔率が上記範囲にある場合には、電解液の保持量および電解液保持部の機械的強度の両方を確保することができる。   The porosity of the electrolytic solution holding part is preferably 20 to 70%, more preferably 30 to 70%, and further preferably 40 to 70%. When the porosity is in the above range, both the retained amount of the electrolytic solution and the mechanical strength of the electrolytic solution holding unit can be ensured.

本発明において電解液保持部の空孔率とは、電解液保持部の体積に対する、電解液保持部内部に存在する空孔(細孔)の総体積の割合を意味する。空孔率の測定方法は特に制限されないが、例えば最終製品の電解液保持部の嵩密度ρと電解液保持部を構成する原材料の真密度ρから下記式を用いて算出することができる。ここで「嵩密度」とは電解液保持部内部の空孔を考慮した密度をいい、「真密度」とは電解液保持部を構成する原材料の空孔を考慮しない理論密度をいう。また、水銀圧入法による細孔分布測定などにより電解液保持部内部に存在する空孔(微細孔)の体積を測定し、電解液保持部の体積に対する割合として求めることもできる。 In the present invention, the porosity of the electrolytic solution holding part means the ratio of the total volume of pores (pores) existing inside the electrolytic solution holding part to the volume of the electrolytic solution holding part. The method for measuring the porosity is not particularly limited. For example, the porosity can be calculated from the bulk density ρ of the electrolytic solution holding part of the final product and the true density ρ 0 of the raw material constituting the electrolytic solution holding part using the following formula. Here, “bulk density” refers to the density in consideration of the pores inside the electrolyte solution holding portion, and “true density” refers to the theoretical density that does not consider the pores of the raw material constituting the electrolyte solution holding portion. Further, the volume of pores (micropores) existing inside the electrolyte holding part can be measured by pore distribution measurement by a mercury intrusion method or the like, and can be obtained as a ratio to the volume of the electrolyte holding part.

Figure 2010153140
Figure 2010153140

Figure 2010153140
Figure 2010153140

空孔部の形状については、電解液が電解液保持部と活物質層との間を移動できるものであれば特に制限されず、任意の形状をとることができる。また、空孔部の断面形状についても特に制限されず、円形状、楕円形状、三角形状、四角形状、星型形状、十文字型形状、その他多角形状などの特定の形状のほか、不定形状であってもよい。これらの形状を単独で用いてもよいし、複数の形状を組み合わせて用いてもよい。なお、電解液の吸収・放出が可能となるように、電解液保持部の空孔部は少なくとも一つの開口部を有することが好ましい。   The shape of the hole is not particularly limited as long as the electrolytic solution can move between the electrolytic solution holding unit and the active material layer, and can take any shape. Further, the cross-sectional shape of the hole portion is not particularly limited, and may be an indefinite shape in addition to a specific shape such as a circular shape, an elliptical shape, a triangular shape, a quadrangular shape, a star shape, a cross shape, or other polygonal shapes. May be. These shapes may be used alone, or a plurality of shapes may be used in combination. In addition, it is preferable that the void | hole part of an electrolyte solution holding | maintenance part has at least 1 opening part so that absorption and discharge | release of electrolyte solution are attained.

電解液保持部は、電解液を保持できるだけでなく、電極反応時には電極層内へ電解液をスムーズに供給できるものが適している。このため、好ましい形態において空孔部は1つまたは複数の細孔から形成され、細孔状でありうる。電解液保持部の空孔径(細孔径)は100nm以上10μm以下であることが好ましく300nm以上10μm以下であることがより好ましく、500nm以上10μm以下であることが特に好ましい。空孔径が10μm以下であれば活物質の平均粒子径よりも空孔径が小さいため、活物質の電解液保持部への侵入による目詰まりを防止でき、かつ、電解液保持部の機械的強度を確保できる。一方、空孔径が100nm以上であれば電解液保持部内の電解液の拡散が良好となり、電解液の吸収放出がスムーズに行われるため好ましい。   As the electrolytic solution holding part, one that can not only hold the electrolytic solution but also can smoothly supply the electrolytic solution into the electrode layer at the time of electrode reaction is suitable. For this reason, in a preferred embodiment, the pores are formed from one or more pores and may be in the form of pores. The pore diameter (pore diameter) of the electrolytic solution holding part is preferably 100 nm or more and 10 μm or less, more preferably 300 nm or more and 10 μm or less, and particularly preferably 500 nm or more and 10 μm or less. If the pore diameter is 10 μm or less, the pore diameter is smaller than the average particle diameter of the active material, so that clogging due to penetration of the active material into the electrolyte holding section can be prevented, and the mechanical strength of the electrolyte holding section can be increased. It can be secured. On the other hand, if the pore diameter is 100 nm or more, the diffusion of the electrolytic solution in the electrolytic solution holding part is good, and the electrolytic solution is smoothly absorbed and released, which is preferable.

本発明において「空孔径」とは電解液保持部内部に存在する空孔部の空孔直径の平均値をいう。なお、本発明では、空孔の絶対最大長を空孔直径として用いる。空孔径の測定方法は特に制限されないが、例えば水銀圧入法による細孔分布測定によって測定可能である。   In the present invention, the “hole diameter” means an average value of the hole diameters of the hole portions existing in the electrolyte solution holding portion. In the present invention, the absolute maximum length of the holes is used as the hole diameter. The method for measuring the pore diameter is not particularly limited, but for example, it can be measured by pore distribution measurement by mercury porosimetry.

さらに、活物質層への電解液の供給をより均一に行うという観点から、電解液保持部は多孔体から構成されることが好ましい。本発明において「多孔体」とは、多数の連続または不連続な空孔を有するものを意味する。多孔体の形状や構造は多孔質である限り特に限定されず、3次元の網の目状、ハニカム状、スポンジ状等の多様な形態でありうる。   Furthermore, from the viewpoint of more uniformly supplying the electrolytic solution to the active material layer, the electrolytic solution holding part is preferably composed of a porous body. In the present invention, the “porous body” means one having a large number of continuous or discontinuous pores. The shape and structure of the porous body are not particularly limited as long as it is porous, and may be various forms such as a three-dimensional network, honeycomb, and sponge.

電解液保持部が多孔体である場合には、電解液保持部が多孔体内部に多数の空孔(細孔)を有するため、十分な量の電解液を電解液保持部内に均一に保持することができ、電解液需給能力を向上させることができる。   When the electrolytic solution holding part is a porous body, since the electrolytic solution holding part has a large number of pores (pores) inside the porous body, a sufficient amount of the electrolytic solution is uniformly held in the electrolytic solution holding part. And the electrolyte supply and demand capability can be improved.

かような多孔体を構成する材料としては、上記のような構成を有するものであれば特に制限されず、従来公知のものを用いることができる。例えば、ポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン、PP/PE/PPの3層構造をした積層体、ポリイミド、アラミド等のような微多孔質フィルム;アラミド、レーヨン、ガラス不織布、ポリエステル、ポリイミド、綿、アセテート、ナイロン、セラミック等のような不織布などを用いることができる。また、これらを単独で用いてもよいし、複数を組み合わせて用いてもよい。   As a material which comprises such a porous body, if it has the above structures, it will not restrict | limit, A conventionally well-known thing can be used. For example, polyolefins such as polyethylene (PE) and polypropylene (PP), laminates having a three-layer structure of PP / PE / PP, microporous films such as polyimide and aramid; aramid, rayon, glass nonwoven fabric, polyester, Nonwoven fabrics such as polyimide, cotton, acetate, nylon, and ceramic can be used. Moreover, these may be used independently and may be used in combination.

また、電解液保持部は弾性体から構成されることが好ましい。弾性体である電解液保持部は柔軟性に富むため、電極の膨張収縮に伴うセルの厚みの変化を吸収することが可能となる。すなわち、電解液保持部がセル厚みの変化を吸収する緩衝層として機能し、膨張収縮によるセルの体積変化を抑制することができる。   Moreover, it is preferable that an electrolyte solution holding | maintenance part is comprised from an elastic body. Since the electrolytic solution holding part which is an elastic body is rich in flexibility, it becomes possible to absorb the change in the cell thickness accompanying the expansion and contraction of the electrode. That is, the electrolytic solution holding part functions as a buffer layer that absorbs the change in cell thickness, and the volume change of the cell due to expansion and contraction can be suppressed.

弾性体としては、電極の膨張収縮の際に緩衝層として機能しうるものであればよく、特に制限されない。ただし、弾性率が10cN/dtex以上150cN/dtexであることが好ましく、10cN/dtex以上120cN/dtex以下であることがより好ましく、10cN/dtex以上100cN/dtex以下であることが特に好ましい。上記範囲の弾性率を有する電解液保持部は緩衝層として機能するために十分な強度および柔軟性が確保されるため好ましい。本発明における弾性率とは、JIS L1013に規定される初期引張抵抗度を意味し、当該規定に準じて測定することができる。   The elastic body is not particularly limited as long as it can function as a buffer layer when the electrode expands and contracts. However, the elastic modulus is preferably 10 cN / dtex or more and 150 cN / dtex, more preferably 10 cN / dtex or more and 120 cN / dtex or less, and particularly preferably 10 cN / dtex or more and 100 cN / dtex or less. An electrolyte solution holding part having an elastic modulus in the above range is preferable because sufficient strength and flexibility are secured to function as a buffer layer. The elastic modulus in the present invention means an initial tensile resistance specified in JIS L1013 and can be measured according to the specification.

かような弾性体を構成する材料としては、上記のような構成を有するものであれば特に制限されず、従来公知のものを用いることができる。例えば、ポリオレフィン、ポリスチレン、ポリエステル、ポリアミド、ポリイミド、ポリウレタン等のエラストマーフィルム;アラミド、レーヨン、ガラス不織布、ポリエステル、ポリイミド、綿、アセテート等のような不織布などが挙げられる。また、これらを単独で用いてもよいし、複数を組み合わせて用いてもよい。   The material constituting such an elastic body is not particularly limited as long as it has the above-described configuration, and conventionally known materials can be used. Examples thereof include elastomer films such as polyolefin, polystyrene, polyester, polyamide, polyimide, polyurethane; and nonwoven fabrics such as aramid, rayon, glass nonwoven fabric, polyester, polyimide, cotton, acetate, and the like. Moreover, these may be used independently and may be used in combination.

本発明において電解液保持部は発電要素内部の集電体内に配置される。このように電解液保持部が電極間以外に設置されるため、正極と負極との電極間距離を増大させることがなく、これにより電池の出力特性の低下を防止しうる。また、電解液保持部は発電要素の内部に配置されるので、発電要素の外部に配置される場合に必要となることの多い複雑な電解液供給手段を必要とせず、電解液を容易かつ効果的に需給することが可能である。   In the present invention, the electrolytic solution holding part is disposed in a current collector inside the power generation element. As described above, since the electrolytic solution holding part is installed other than between the electrodes, the distance between the positive electrode and the negative electrode is not increased, thereby preventing the output characteristics of the battery from being deteriorated. In addition, since the electrolytic solution holding part is disposed inside the power generation element, it does not require complicated electrolytic solution supply means that are often required when disposed outside the power generation element, and makes the electrolytic solution easy and effective. Supply and demand.

電極の膨張時には不足した電解液を補給するための電解液が電解液保持部から活物質層内に供給され、一方、電極の収縮時には活物質層内の余剰な電解液が電解液保持部に吸収される。このように本発明の電解液保持部は活物質層との間で電解液の吸収および放出を行う。電解液保持部がない場合には、膨張の大きな負極およびその近傍で局所的な電解液不足が生じやすい。そして、過剰量の電解液を存在させた場合においても、過剰量の電解液を吸収する部位が存在しないため、電池の充放電を通して、電解液の保持が不均一となり、膨張収縮の大きな活物質層において依然として電解液が不足するおそれがある。本発明では、収縮時に活物質層において過剰となる電解液を近傍の電解液保持部に保持することができる一方で、膨張時には近傍の電解液保持部から活物質層に不足した電解液が供給されるため、発電要素内で均一に電解液を保持することができる。   When the electrode expands, an electrolyte for replenishing the insufficient electrolyte is supplied from the electrolyte holding part into the active material layer. On the other hand, when the electrode contracts, excess electrolyte in the active material layer is supplied to the electrolyte holding part. Absorbed. Thus, the electrolytic solution holding part of the present invention absorbs and discharges the electrolytic solution with the active material layer. When there is no electrolytic solution holding part, local shortage of the electrolytic solution is likely to occur in the negative electrode having large expansion and in the vicinity thereof. Even when an excessive amount of the electrolytic solution is present, there is no portion that absorbs the excessive amount of the electrolytic solution, so that the retention of the electrolytic solution becomes uneven through charge / discharge of the battery, and the active material has a large expansion and contraction. There may still be a shortage of electrolyte in the layer. In the present invention, an electrolyte that becomes excessive in the active material layer during contraction can be held in the nearby electrolyte holding part, while an insufficient electrolyte is supplied to the active material layer from the nearby electrolyte holding part during expansion. Therefore, the electrolytic solution can be held uniformly in the power generation element.

電解液保持部は電解液の吸液率(吸収率)が活物質層(正極活物質層および負極活物質層)の吸液率(吸収率)以下である材料で構成されることが好ましい。本発明において「吸液率」とは、乾燥状態の電解液保持部または活物質層の質量に対する、電解液保持部または活物質層内に吸収される電解液の総質量の割合を意味し、下記式により算出することができる。   The electrolytic solution holding part is preferably made of a material having a liquid absorption rate (absorption rate) of the electrolytic solution that is equal to or lower than the liquid absorption rate (absorption rate) of the active material layer (positive electrode active material layer and negative electrode active material layer). In the present invention, the “liquid absorption rate” means the ratio of the total mass of the electrolyte solution absorbed in the electrolyte solution holding part or active material layer to the mass of the electrolyte solution holding part or active material layer in a dry state, It can be calculated by the following formula.

Figure 2010153140
Figure 2010153140

上記吸液率は、例えば、JIS R2205に準拠した方法により測定することが可能である。   The liquid absorption rate can be measured, for example, by a method based on JIS R2205.

電解液保持部の電解液の吸液率が活物質層の電解液の吸液率の値以下である場合、活物質層から電解液保持部への必要以上の電解液の移動(吸収)を抑制することができる。したがって、電解液が不足した活物質層に必要な量の電解液をスムーズに供給するとともに、活物質層が電解液過剰となった場合に余剰量の電解液のみを電解液保持部に保持することができる。ただし、十分な量の電解液が確保されていれば活物質層への電解液の供給が可能であるため、活物質層よりも大きな吸液率を有する材料で構成されていてもよい。   If the liquid absorption rate of the electrolytic solution in the electrolytic solution holding part is less than the value of the liquid absorption rate of the electrolytic solution in the active material layer, transfer (absorption) of the electrolytic solution from the active material layer to the electrolytic solution holding part is more than necessary Can be suppressed. Therefore, the required amount of electrolyte is smoothly supplied to the active material layer lacking the electrolyte, and when the active material layer becomes excessive, only the excess amount of electrolyte is held in the electrolyte holder. be able to. However, since an electrolytic solution can be supplied to the active material layer as long as a sufficient amount of the electrolytic solution is ensured, the electrolyte may be made of a material having a larger liquid absorption rate than the active material layer.

電解液保持部は導電性を有していても、有していなくてもよい。集電体は導電性層を介してタブ部で接触するため、電解液保持部は必ずしも導電性を有する必要はない。   The electrolytic solution holding part may or may not have conductivity. Since the current collector is in contact with the tab portion via the conductive layer, the electrolyte solution holding portion does not necessarily have conductivity.

電解液保持部の厚みについては、特に制限されないが、好ましくは5μm以上500μm以下、より好ましくは5μm以上300μm以下、特に好ましくは5μm以上100μm以下である。5μm以上であれば、電極の膨張収縮時の電極厚みの変化の吸収および電解液の保液量の確保が可能となる。一方、500μm以下であれば体積あたりの電池の容量を大きくでき、エネルギー密度の向上が図られる。   The thickness of the electrolytic solution holding part is not particularly limited, but is preferably 5 μm or more and 500 μm or less, more preferably 5 μm or more and 300 μm or less, and particularly preferably 5 μm or more and 100 μm or less. When the thickness is 5 μm or more, it is possible to absorb the change in the electrode thickness during the expansion and contraction of the electrode and to secure the amount of electrolyte retained. On the other hand, if it is 500 micrometers or less, the capacity | capacitance of the battery per volume can be enlarged, and the improvement of an energy density will be aimed at.

上記のように、本発明に用いられる電解液保持部は、非水電解質二次電池において電解液需給層、セルの厚みの変化の緩衝層としての機能を有しうる。なお、本発明の電解液保持部は単一の材質により構成された単層形態であってもよいし、複数の材質で構成された層を積層させた多層形態であってもよい。   As described above, the electrolyte solution holding unit used in the present invention can function as an electrolyte supply / demand layer and a buffer layer for cell thickness change in the nonaqueous electrolyte secondary battery. In addition, the electrolyte solution holding | maintenance part of this invention may be the single layer form comprised with the single material, and the multilayer form which laminated | stacked the layer comprised with the several material may be sufficient as it.

(電解液)
電解液保持部に保持させる電解液としては、充放電時に正負極間を移動するリチウムイオンのキャリアーとしての機能を有し、電解液保持部の基材に含浸しうるものであれば特に限定されず、固体の形態を除く電解質を用いることができる。具体的には、液体電解質またはゲルポリマー電解質が用いられうる。
(Electrolyte)
The electrolytic solution to be held in the electrolytic solution holding part is not particularly limited as long as it has a function as a lithium ion carrier that moves between the positive and negative electrodes during charge and discharge and can be impregnated into the base material of the electrolytic solution holding part. Alternatively, an electrolyte excluding a solid form can be used. Specifically, a liquid electrolyte or a gel polymer electrolyte can be used.

液体電解質は、可塑剤である有機溶媒に支持塩であるリチウム塩が溶解した形態を有する。可塑剤として用いられうる有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)等のカーボネート類が例示される。また、支持塩(リチウム塩)としては、LiPF、LiBF、LiClO、LiAsF、LiTaF、LiAlCl、Li10Cl10等の無機酸陰イオン塩;LiCFSO、Li(CFSON、Li(CSON等の有機酸陰イオン塩などの電極の活物質層に添加されうる化合物が同様に採用されうる。 The liquid electrolyte has a form in which a lithium salt as a supporting salt is dissolved in an organic solvent as a plasticizer. Examples of the organic solvent that can be used as the plasticizer include carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), and diethyl carbonate (DEC). As the supporting salt (lithium salt), LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiTaF 6, LiAlCl 4, Li 2 B 10 Cl 10 and the like inorganic acid anionic salt; LiCF 3 SO 3, Li ( Compounds that can be added to the active material layer of the electrode, such as organic acid anion salts such as CF 3 SO 2 ) 2 N, Li (C 2 F 5 SO 2 ) 2 N, can be similarly employed.

ゲルポリマー電解質は、ポリマー電解質の1種であり、イオン伝導性ポリマーからなるマトリックスポリマー(ホストポリマー)に、上記の液体電解質が注入されてなる構成を有する。マトリックスポリマー(ホストポリマー)として用いられるイオン伝導性ポリマーとしては、特に限定されない。例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデンとヘキサフルオロプロピレンの共重合体(PVDF−HFP)、ポリエチレングリコール(PEG)、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PMMA)およびこれらの共重合体等が挙げられる。ここで、上記のイオン伝導性ポリマーは、正極活物質層および負極活物質層において電解質として用いられるイオン伝導性ポリマーと同じであってもよく、異なっていてもよいが、同じであることが好ましい。電解液(電解質塩および可塑剤)の種類は特に制限されず、上記で例示したリチウム塩などの電解質塩およびカーボネート類などの可塑剤が用いられうる。   The gel polymer electrolyte is a kind of polymer electrolyte, and has a configuration in which the liquid electrolyte is injected into a matrix polymer (host polymer) made of an ion conductive polymer. The ion conductive polymer used as the matrix polymer (host polymer) is not particularly limited. For example, polyethylene oxide (PEO), polypropylene oxide (PPO), polyvinylidene fluoride (PVDF), a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVDF-HFP), polyethylene glycol (PEG), polyacrylonitrile (PAN), Examples thereof include polymethyl methacrylate (PMMA) and copolymers thereof. Here, the ion conductive polymer may be the same as or different from the ion conductive polymer used as the electrolyte in the positive electrode active material layer and the negative electrode active material layer, but is preferably the same. . The type of the electrolytic solution (electrolyte salt and plasticizer) is not particularly limited, and an electrolyte salt such as the lithium salt exemplified above and a plasticizer such as carbonates may be used.

ゲルポリマー電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、ポリマー電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。   The matrix polymer of the gel polymer electrolyte can exhibit excellent mechanical strength by forming a crosslinked structure. In order to form a cross-linked structure, polymerization such as thermal polymerization, ultraviolet polymerization, radiation polymerization, and electron beam polymerization is performed on a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte, using an appropriate polymerization initiator. What is necessary is just to process.

なお、電解液保持部に含まれる電解質は、1種単独であってもよいし、2種以上であってもよい。また、後述する電解質層および/または活物質層に用いた電解質と異なる電解質を用いてもよいが、電解質および/または活物質層に用いた電解質と同一の電解質を用いることが好ましい。   In addition, the electrolyte contained in the electrolytic solution holding unit may be one type alone or two or more types. In addition, an electrolyte different from the electrolyte used for the electrolyte layer and / or the active material layer described later may be used, but it is preferable to use the same electrolyte as the electrolyte used for the electrolyte and / or the active material layer.

電解液保持層における電解液の保持量についても特に制限はない。ただし、電池の放電(電極の収縮)時には電解液保持層の電解液保持率(電解液保持部に電解液が保持されている割合)が電極の電解液保持率(電極層内の空隙部に電解液が保持されている割合)よりも小さい状態であることが好ましい。一方、電池の充電(電極の膨張)時には電解液保持層の電解液保持率が電極の電解液保持率よりも大きい状態となることが好ましい。かような形態を有する場合には、活物質層内の電解液が不足した場合に活物質層へ十分な量の電解液を供給することができる。その上、活物質層内の電解液が過剰となった場合に過剰量の電解液を電解液保持層に収容できるため、均一かつ円滑な電解液の吸収・供給が可能となる。   There is no restriction | limiting in particular also about the holding | maintenance amount of the electrolyte solution in an electrolyte solution holding layer. However, when the battery is discharged (electrode contraction), the electrolyte retention rate of the electrolyte retention layer (the proportion of the electrolyte retained in the electrolyte retention portion) is the electrolyte retention rate of the electrode (the void in the electrode layer). The ratio is preferably smaller than the ratio of the electrolytic solution being retained. On the other hand, when the battery is charged (electrode expansion), the electrolyte retention rate of the electrolyte retention layer is preferably greater than the electrolyte retention rate of the electrode. In the case of such a configuration, when the electrolyte in the active material layer is insufficient, a sufficient amount of electrolyte can be supplied to the active material layer. In addition, when the amount of the electrolyte in the active material layer becomes excessive, an excessive amount of the electrolyte can be accommodated in the electrolyte holding layer, so that the electrolyte can be uniformly and smoothly absorbed and supplied.

一体型の電解液保持集電体を用いる場合には、導電性層の内部に電解液を保持するための空孔部を設け、当該空孔部に電解液を保持させて電解液保持層としてもよい。あるいは、導電性層の内部に電解液保持基材を設置して、当該電解液保持基材の空孔部に電解液を保持させて電解液保持層としてもよい。導電性層の内部に設けられた電解液保持層の形状や材質については上述したものと同様のものを好適に用いることができる。   When using an integrated electrolyte holding current collector, a hole for holding the electrolyte is provided inside the conductive layer, and the electrolyte is held in the hole to form an electrolyte holding layer. Also good. Alternatively, an electrolyte solution holding substrate may be installed inside the conductive layer, and the electrolyte solution may be held in the pores of the electrolyte solution holding substrate to form an electrolyte solution holding layer. As the shape and material of the electrolyte solution holding layer provided inside the conductive layer, the same ones as described above can be suitably used.

なお、一体型の電解液保持集電体の厚みは、好ましくは5μm以上700μm以下であり、より好ましくは5μm以上500μm以下であり、特に好ましくは10μm以上100μm以下である。   Note that the thickness of the integrated electrolytic solution holding current collector is preferably 5 μm or more and 700 μm or less, more preferably 5 μm or more and 500 μm or less, and particularly preferably 10 μm or more and 100 μm or less.

本発明の非水電解質二次電池はかような電解液保持層を有するため、電池の出力特性を低下させることなく、充放電時の電極の膨張収縮による電解液の不足を防止し、電極の抵抗の上昇を抑制しうる。したがって、充放電サイクル特性に優れた非水電解質二次電池が得られる。   Since the nonaqueous electrolyte secondary battery of the present invention has such an electrolyte solution holding layer, it prevents the lack of electrolyte solution due to the expansion and contraction of the electrode during charge and discharge without deteriorating the output characteristics of the battery. An increase in resistance can be suppressed. Therefore, a nonaqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics can be obtained.

[負極活物質層]
負極活物質層は負極活物質を含み、必要に応じて電気伝導性を高めるための導電剤、バインダー、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるための電解質支持塩(リチウム塩)などをさらに含んで構成される。
[Negative electrode active material layer]
The negative electrode active material layer contains a negative electrode active material, and a conductive agent, binder, electrolyte (polymer matrix, ion conductive polymer, electrolytic solution, etc.) for increasing electrical conductivity and an electrolyte for increasing ion conductivity as required. It further comprises a supporting salt (lithium salt) and the like.

負極活物質層中に含まれる成分の配合比は特に限定されず、非水電解質二次電池についての公知の知見を適宜参照することにより、調整されうる。また、活物質層の厚さについても特に制限はなく、非水電解質二次電池についての従来公知の知見が適宜参照されうる。一例を挙げると、活物質層の厚さは、2〜100μm程度である。   The compounding ratio of the components contained in the negative electrode active material layer is not particularly limited, and can be adjusted by appropriately referring to known knowledge about the nonaqueous electrolyte secondary battery. Moreover, there is no restriction | limiting in particular also about the thickness of an active material layer, The conventionally well-known knowledge about a nonaqueous electrolyte secondary battery can be referred suitably. For example, the thickness of the active material layer is about 2 to 100 μm.

(負極活物質)
本発明の非水電解質二次電池に用いられる負極活物質はリチウムを可逆的に吸蔵および放出できるものであれば特に制限されないが、リチウムと合金化する元素を含むことが好ましい。リチウムと合金化する元素を用いることにより、従来の炭素系材料に比べて高いエネルギー密度を有する高容量の電池を得ることが可能となる。また、リチウムと合金化する元素を含む材料は充電時に大きな体積膨張を起こし、これに伴い電解質を大量に消費する。本発明では放電時に電解液保持部により電解液が供給され、不足した電解液が補給される点に特徴を有し、体積変化の大きな活物質を用いた場合に本発明の効果が最も発揮される。リチウムと合金化する元素を含む形態としては、リチウムと合金化する元素の単体、これらの元素を含む酸化物等が挙げられる。
(Negative electrode active material)
The negative electrode active material used in the nonaqueous electrolyte secondary battery of the present invention is not particularly limited as long as it can reversibly occlude and release lithium, but preferably contains an element that forms an alloy with lithium. By using an element that forms an alloy with lithium, it is possible to obtain a high-capacity battery having a higher energy density than conventional carbon-based materials. In addition, a material containing an element that is alloyed with lithium causes a large volume expansion during charging, and accordingly, a large amount of electrolyte is consumed. The present invention is characterized in that the electrolytic solution is supplied by the electrolytic solution holding part during discharge and the insufficient electrolytic solution is replenished, and the effect of the present invention is most exhibited when an active material having a large volume change is used. The Examples of the form containing an element that forms an alloy with lithium include a single element that forms an alloy with lithium, an oxide containing these elements, and the like.

上記のリチウムと合金化する元素としては、以下に制限されることはないが、具体的には、Si、Ge、Sn、Pb、Al、In、Zn、H、Ca、Sr、Ba、Ru、Rh、Ir、Pd、Pt、Ag、Au、Cd、Hg、Ga、Tl、C、N、Sb、Bi、O、S、Se、Te、Cl等が挙げられる。これらの中でも、容量およびエネルギー密度に優れた電池を構成できる観点から、Si、Ge、Sn、Pb、Al、In、およびZnからなる群より選択される少なくとも1種以上の元素を含むことが好ましく、SiまたはSnの元素を含むことがより好ましく、Siを含むことが特に好ましい。これらは1種単独で使用しても良いし、2種以上を併用しても良い。   The element alloying with lithium is not limited to the following, but specifically, Si, Ge, Sn, Pb, Al, In, Zn, H, Ca, Sr, Ba, Ru, Rh, Ir, Pd, Pt, Ag, Au, Cd, Hg, Ga, Tl, C, N, Sb, Bi, O, S, Se, Te, Cl, and the like. Among these, it is preferable that at least one element selected from the group consisting of Si, Ge, Sn, Pb, Al, In, and Zn is included from the viewpoint that a battery having excellent capacity and energy density can be configured. More preferably, Si, or Sn is contained, and Si is particularly preferred. These may be used alone or in combination of two or more.

この他、グラファイト、ソフトカーボン、ハードカーボン等の炭素材料、金属材料、リチウム−チタン複合酸化物(チタン酸リチウム:LiTi12)等のリチウム−遷移金属複合酸化物、およびその他の従来公知の負極活物質が使用可能である。場合によっては、2種以上の負極活物質が併用されてもよい。 In addition, carbon materials such as graphite, soft carbon, and hard carbon, metal materials, lithium-transition metal composite oxides such as lithium-titanium composite oxide (lithium titanate: Li 4 Ti 5 O 12 ), and other conventional materials A known negative electrode active material can be used. In some cases, two or more negative electrode active materials may be used in combination.

(導電剤)
導電剤とは、導電性を向上させるために配合される添加物をいう。本発明の非水電解質二次電池に用いられる導電剤は特に制限されず、従来公知のものを利用することができる。例えば、アセチレンブラック等のカーボンブラック、グラファイト、炭素繊維などの炭素材料が挙げられる。導電剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。
(Conductive agent)
The conductive agent refers to an additive blended to improve conductivity. The electrically conductive agent used for the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, and conventionally known ones can be used. Examples thereof include carbon materials such as carbon black such as acetylene black, graphite, and carbon fiber. When the conductive agent is included, an electronic network inside the active material layer is effectively formed, which can contribute to improvement of the output characteristics of the battery.

(バインダー)
負極活物質層はバインダーを含んでもよい。バインダーは活物質同士または活物質と集電体とを結着させて電極構造を維持するという役割を担う。バインダーとしては、以下に制限されることはないが、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリ酢酸ビニル、ポリイミド、およびアクリル樹脂などの熱可塑性樹脂、エポキシ樹脂、ポリウレタン樹脂、およびユリア樹脂などの熱硬化性樹脂、ならびにスチレンブタジエンゴム(SBR)などのゴム系材料が挙げられる。
(binder)
The negative electrode active material layer may contain a binder. The binder plays a role of maintaining the electrode structure by binding the active materials or the active material and the current collector. Examples of the binder include, but are not limited to, thermoplastic resins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl acetate, polyimide, and acrylic resins, epoxy resins, polyurethane resins, And thermosetting resins such as urea resins, and rubber-based materials such as styrene butadiene rubber (SBR).

(電解質・支持塩)
電解質としては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、それらの共重合体などのリチウム塩を含むイオン伝導性ポリマー(固体高分子電解質)などが挙げられるが、これらに制限されることはない。
(Electrolyte / Supporting salt)
Examples of the electrolyte include, but are not limited to, ion conductive polymers (solid polymer electrolytes) including lithium salts such as polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof. There is nothing.

支持塩(リチウム塩)としては、以下に制限されないが、LiPF、LiBF、LiClO、LiAsF、LiTaF、LiAlCl、Li10Cl10等の無機酸陰イオン塩;LiCFSO、Li(CFSON、Li(CSON等の有機酸陰イオン塩が挙げられる。これらの支持塩は、単独で使用されてもまたは2種以上混合して使用してもよい。 The supporting salt (lithium salt), but are not limited to, LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiTaF 6, LiAlCl 4, inorganic acid anion salts such as Li 2 B 10 Cl 10; LiCF 3 SO 3 , organic acid anion salts such as Li (CF 3 SO 2 ) 2 N and Li (C 2 F 5 SO 2 ) 2 N. These supporting salts may be used alone or in combination of two or more.

[正極活物質層]
正極活物質層は正極活物質を含み、必要に応じて導電剤、バインダー、電解質、電解質支持塩などをさらに含んで構成される。正極活物質層の構成要素のうち、正極活物質以外は、上記で説明した内容と同様であるので、ここでは説明を省略する。正極活物質層中に含まれる成分の配合比および正極活物質層の厚さについても特に限定されず、非水電解質二次電池についての従来公知の知見が適宜参照されうる。
[Positive electrode active material layer]
The positive electrode active material layer includes a positive electrode active material, and further includes a conductive agent, a binder, an electrolyte, an electrolyte supporting salt, and the like as necessary. Since the components other than the positive electrode active material among the components of the positive electrode active material layer are the same as those described above, the description thereof is omitted here. The compounding ratio of the components contained in the positive electrode active material layer and the thickness of the positive electrode active material layer are not particularly limited, and conventionally known knowledge about the nonaqueous electrolyte secondary battery can be referred to as appropriate.

(正極活物質)
本発明の非水電解質二次電池に用いられる正極活物質は特にリチウムの吸蔵放出が可能な材料であれば限定されず、リチウムイオン二次電池に通常用いられる正極活物質を利用することができる。具体的には、リチウム−遷移金属複合酸化物が好ましく、例えば、LiMnなどのLi−Mn系複合酸化物、LiNiOなどのLi−Ni系複合酸化物、LiNi0.5Mn0.5などのLi−Ni−Mn系複合酸化物が挙げられる。場合によっては、2種以上の正極活物質が併用されてもよい。
(Positive electrode active material)
The positive electrode active material used in the non-aqueous electrolyte secondary battery of the present invention is not particularly limited as long as it is a material capable of occluding and releasing lithium, and a positive electrode active material usually used in lithium ion secondary batteries can be used. . Specifically, a lithium-transition metal composite oxide is preferable. For example, a Li—Mn composite oxide such as LiMn 2 O 4, a Li—Ni composite oxide such as LiNiO 2 , LiNi 0.5 Mn 0. A Li—Ni—Mn based composite oxide such as 5 O 2 can be given. In some cases, two or more positive electrode active materials may be used in combination.

[電解質層]
電解質層は、非水電解質を含む層である。電解質層に含まれる非水電解質(具体的には、リチウム塩)は、充放電時に正負極間を移動するリチウムイオンのキャリアーとしての機能を有する。非水電解質としてはかような機能を発揮できるものであれば特に限定されないが、電解液保持部において例示した液体電解質およびゲルポリマー電解質に加えて、真性ポリマー電解質を使用することができる。液体電解質およびゲルポリマー電解質の具体的な形態については、電解液保持部で説明した形態と同様のものを使用することができるため、詳細はここでは省略する。
[Electrolyte layer]
The electrolyte layer is a layer containing a non-aqueous electrolyte. A nonaqueous electrolyte (specifically, a lithium salt) contained in the electrolyte layer has a function as a carrier of lithium ions that moves between the positive and negative electrodes during charge and discharge. Although it will not specifically limit if such a function can be exhibited as a non-aqueous electrolyte, In addition to the liquid electrolyte illustrated in the electrolyte solution holding | maintenance part and the gel polymer electrolyte, an intrinsic polymer electrolyte can be used. About the specific form of a liquid electrolyte and a gel polymer electrolyte, since the thing similar to the form demonstrated by the electrolyte solution holding | maintenance part can be used, the detail is abbreviate | omitted here.

真性ポリマー電解質は、ポリマー電解質の1種であり、電解液を含まない形態を有する。具体的には、真性ポリマー電解質は、イオン伝導性ポリマーからなるマトリックスポリマー(ホストポリマー)に支持塩(リチウム塩)が溶解してなる構成を有し、可塑剤である有機溶媒を含まない。したがって、電解質として真性ポリマー電解質を用いることで電池からの液漏れの心配がなく、電池の信頼性が向上しうる。   The intrinsic polymer electrolyte is a kind of polymer electrolyte and has a form that does not contain an electrolytic solution. Specifically, the intrinsic polymer electrolyte has a structure in which a supporting salt (lithium salt) is dissolved in a matrix polymer (host polymer) made of an ion conductive polymer, and does not include an organic solvent that is a plasticizer. Therefore, by using an intrinsic polymer electrolyte as the electrolyte, there is no fear of liquid leakage from the battery, and the battery reliability can be improved.

マトリックスポリマー(ホストポリマー)および支持塩(リチウム塩)としては、電解液保持部で例示したものが同様に使用可能である。また、真性ポリマー電解質のマトリックスポリマーは、ゲルポリマー電解質と同様に、適切な重合処理によって架橋構造を形成させてもよい。電解液保持部に含まれる非水電解質は、1種単独であってもよいし、2種以上であってもよい。   As the matrix polymer (host polymer) and the supporting salt (lithium salt), those exemplified in the electrolytic solution holding part can be used similarly. Further, the matrix polymer of the intrinsic polymer electrolyte may form a cross-linked structure by an appropriate polymerization treatment, similarly to the gel polymer electrolyte. The nonaqueous electrolyte contained in the electrolytic solution holding part may be one kind alone, or two or more kinds.

なお、電解質層が液体電解質やゲルポリマー電解質から構成される場合には、電解質層にセパレータを用いてもよい。セパレータの具体的な形態としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィンからなる微多孔膜が挙げられる。   In addition, when an electrolyte layer is comprised from a liquid electrolyte or a gel polymer electrolyte, you may use a separator for an electrolyte layer. Specific examples of the separator include a microporous film made of polyolefin such as polyethylene or polypropylene.

電解質層の厚さは、内部抵抗を低減させるには薄ければ薄いほどよいと言える。電解質層の厚さは、1〜100μm、好ましくは5〜50μm、とするのがよい。   It can be said that the thinner the electrolyte layer, the better to reduce the internal resistance. The thickness of the electrolyte layer is 1 to 100 μm, preferably 5 to 50 μm.

[タブ]
積層型電池10では、電池外部に電流を取り出す目的で、それぞれの負極集電体11(11aを含む)および正極集電体14内の導電性層が発電要素17の端部において集められ、タブ(正極タブ19および負極タブ18)に電気的に接続される。さらに、これらのタブ(18、19)が外装であるラミネートシート22の外部に取り出される。具体的には、それぞれの負極集電体11、11aに電気的に接続された負極タブ19と、それぞれの正極集電体14に電気的に接続された正極タブ18とが、外装であるラミネートシート22の外部に取り出される。
[tab]
In the laminated battery 10, the conductive layers in the respective negative electrode current collectors 11 (including 11 a) and the positive electrode current collector 14 are collected at the end of the power generation element 17 for the purpose of taking out current to the outside of the battery. It is electrically connected to (positive electrode tab 19 and negative electrode tab 18). Further, these tabs (18, 19) are taken out of the laminate sheet 22 which is an exterior. Specifically, a laminate in which a negative electrode tab 19 electrically connected to each of the negative electrode current collectors 11 and 11 a and a positive electrode tab 18 electrically connected to each of the positive electrode current collectors 14 are exteriors. The sheet 22 is taken out.

タブ(正極タブ19および負極タブ18)を構成する材料は特に制限されず、積層型電池用のタブとして従来用いられている公知の材料が用いられうる。タブの構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等が例示される。なお、正極タブ19と負極タブ18とでは、同一の材質が用いられてもよいし、異なる材質が用いられてもよい。接続方法としては、本実施形態のように、別途準備したタブ(18、19)を集電体(11、14)に接続してもよいし、集電体を延長することによりタブとしてもよい。また、集電体(11、14)とタブ(18、19)との間を正極端子リード21、負極端子リード20を介して電気的に接続してもよい。   The material which comprises a tab (the positive electrode tab 19 and the negative electrode tab 18) is not restrict | limited in particular, The well-known material conventionally used as a tab for laminated batteries can be used. Examples of the constituent material of the tab include aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof. The positive electrode tab 19 and the negative electrode tab 18 may be made of the same material or different materials. As a connection method, a separately prepared tab (18, 19) may be connected to the current collector (11, 14) as in this embodiment, or the current collector may be extended to form a tab. . Further, the current collector (11, 14) and the tab (18, 19) may be electrically connected via the positive terminal lead 21 and the negative terminal lead 20.

[外装]
非水電解質二次電池では、使用時の外部からの衝撃や環境劣化を防止するために、発電要素全体を電池外装材ないし電池ケースに収容するのが望ましい。外装材としては、従来公知の金属缶ケースを用いることができほか、アルミニウムを含むラミネートシートを用いた発電要素を覆うことができる袋状のケースを用いることができる。
[Exterior]
In a non-aqueous electrolyte secondary battery, it is desirable to accommodate the entire power generating element in a battery exterior material or battery case in order to prevent external impact and environmental degradation during use. As the exterior material, a conventionally known metal can case can be used, and a bag-like case that can cover a power generation element using a laminate sheet containing aluminum can be used.

金属缶ケースタイプの外装体は強度を有するため、缶内の発電要素が多少膨張収縮しても吸収でき、セルの厚み変化は生じない。また、缶の材質、板厚の設計および外装缶と発電要素のクリアランス等を検討することにより、所望の強度および大きさを有する缶ケースを得ることが可能である。   Since the metal can case type exterior body has strength, it can absorb even if the power generation element in the can expands and contracts somewhat, and the thickness of the cell does not change. Moreover, it is possible to obtain a can case having a desired strength and size by examining the material of the can, the design of the plate thickness, the clearance between the outer can and the power generation element, and the like.

上記高分子−金属複合ラミネートシートとしては、特に制限されず、高分子フィルム間に金属フィルムを配置し全体を積層一体化してなる従来公知のものを使用することができる。具体的には、高分子フィルムからなる外装保護層(ラミネート最外層)、金属フィルム層、高分子フィルムからなる熱融着層(ラミネート最内層)のように配置し全体を積層一体化してなるものが挙げられる。   The polymer-metal composite laminate sheet is not particularly limited, and a conventionally known sheet formed by arranging a metal film between polymer films and laminating and integrating the whole can be used. Specifically, it is arranged as an outer protective layer (laminated outermost layer) made of a polymer film, a metal film layer, a heat-sealing layer (laminated innermost layer) made of a polymer film, and the whole is laminated and integrated. Is mentioned.

中でも特に、形状の自由度の高いアルミラミネートフィルムの外装体を用いることが好ましい。本発明において、「アルミラミネート」とはアルミニウムを含む積層物をいう。   Among these, it is particularly preferable to use an aluminum laminate film outer package having a high degree of freedom in shape. In the present invention, “aluminum laminate” refers to a laminate containing aluminum.

アルミラミネートフィルムの具体的な形態としては、例えば、ポリプロピレン(PP)、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等が挙げられるが、これらに何ら制限されるものではない。   Specific examples of the aluminum laminate film include, but are not limited to, a three-layer laminate film in which polypropylene (PP), aluminum, and nylon are laminated in this order.

[双極型電池]
本発明の電池は、双極型の非水電解液二次電池(以下、「双極型電池」とも称する)でありうる。
[Bipolar battery]
The battery of the present invention may be a bipolar non-aqueous electrolyte secondary battery (hereinafter also referred to as “bipolar battery”).

双極型電池は、集電体の一方の面と電気的に結合した正極活物質層を有する正極と、前記集電体のもう一方の面と電気的に結合した負極活物質層を有する負極と、正極および負極の間に配置された電解質層と、が交互に積層されてなる非水電解液二次電池である。   The bipolar battery includes a positive electrode having a positive electrode active material layer electrically coupled to one surface of a current collector, and a negative electrode having a negative electrode active material layer electrically coupled to the other surface of the current collector. And a non-aqueous electrolyte secondary battery in which an electrolyte layer disposed between a positive electrode and a negative electrode is alternately laminated.

双極型電池は、積層型電池に比して一層の高出力密度および高電圧を有しうる利点があるため好ましい。積層型電池は正極および負極のそれぞれからリード線をとり、当該リード線を介して隣の電池と接続される。このため、リード線の長さに相当して電子の伝導パスが長くなり、電池の出力が低くなる。これに対して双極型電池は、集電体を介して縦方向(電極の積層方向)に電流が流れるため、電子の伝導パスを短くでき、高出力になる。   Bipolar batteries are preferred because they have the advantage of having a higher power density and higher voltage than stacked batteries. A stacked battery takes lead wires from each of a positive electrode and a negative electrode, and is connected to an adjacent battery via the lead wires. For this reason, the conduction path of electrons becomes longer corresponding to the length of the lead wire, and the output of the battery is lowered. On the other hand, in the bipolar battery, current flows in the vertical direction (electrode stacking direction) through the current collector, so that the electron conduction path can be shortened and the output is high.

図6は本発明の他の一実施形態である、双極型の非水電解質二次電池を示す模式断面図である。図6に示す本実施形態の双極型電池30は、実際に充放電反応が進行する略矩形の発電要素37が、外装であるラミネートシート42の内部に封止された構造を有する。   FIG. 6 is a schematic cross-sectional view showing a bipolar nonaqueous electrolyte secondary battery according to another embodiment of the present invention. The bipolar battery 30 of this embodiment shown in FIG. 6 has a structure in which a substantially rectangular power generation element 37 in which a charge / discharge reaction actually proceeds is sealed inside a laminate sheet 42 that is an exterior.

図6に示すように、本実施形態の双極型電池30の発電要素37は、複数の双極型電極34を含む。双極型電極34は、集電体31の片面に正極活物質層35を設けた正極と、他方の面に負極活物質層32を設けた負極を備えた構造を有している。すなわち、双極型電池30は、集電体31の一方の面上に正極活物質層35が形成された正極と、他方の面上に負極活物質層32が形成された負極を有する双極型電極34を、電解質層33を介して積層させてなる単電池層36を有する発電要素37を具備してなる。また、図6に示す形態において、電解質層33は、非水電解質を保持している。   As shown in FIG. 6, the power generation element 37 of the bipolar battery 30 of this embodiment includes a plurality of bipolar electrodes 34. The bipolar electrode 34 has a structure including a positive electrode in which a positive electrode active material layer 35 is provided on one surface of a current collector 31 and a negative electrode in which a negative electrode active material layer 32 is provided on the other surface. That is, the bipolar battery 30 includes a bipolar electrode having a positive electrode having a positive electrode active material layer 35 formed on one surface of a current collector 31 and a negative electrode having a negative electrode active material layer 32 formed on the other surface. 34 is provided with a power generation element 37 having a single cell layer 36 formed by laminating 34 through an electrolyte layer 33. In the form shown in FIG. 6, the electrolyte layer 33 holds a non-aqueous electrolyte.

そして、集電体31は導電性層を含み、発電要素37に含まれる集電体31の少なくとも1つは導電性層に加えて電解液保持部を含む構成を有する。双極型電池の場合には、電解液保持部を含む集電体(電解液保持集電体)が正極活物質層から負極活物質層に貫通孔を有しない形態、導電性層の一方の面のみに電解液保持部の開口部が存在する形態とする必要がある。正極活物質層から負極活物質層への貫通孔が電解液保持集電体内に存在すると、集電体内で電極反応が生じてしまうため、双極型電池として機能することができない。   The current collector 31 includes a conductive layer, and at least one of the current collectors 31 included in the power generation element 37 has a configuration including an electrolyte solution holding portion in addition to the conductive layer. In the case of a bipolar battery, the current collector (electrolyte holding current collector) including the electrolytic solution holding part has no through hole from the positive electrode active material layer to the negative electrode active material layer, and one surface of the conductive layer It is necessary to have a configuration in which the opening of the electrolytic solution holding part exists only. If a through hole from the positive electrode active material layer to the negative electrode active material layer exists in the electrolyte holding current collector, an electrode reaction occurs in the current collector, so that it cannot function as a bipolar battery.

また、単電池層36からの電解液の漏れによる液絡を防止するために単電池層36の周辺部には絶縁層(シール部)43が配置されている。絶縁層(シール部)43を設けることによって、隣接する集電体31間を絶縁し、隣接する電極(正極活物質層35および負極活物質層32)間の接触による短絡を防止することができる。   In addition, an insulating layer (seal part) 43 is disposed around the single cell layer 36 in order to prevent liquid junction due to leakage of the electrolyte from the single cell layer 36. By providing the insulating layer (seal part) 43, it is possible to insulate between the adjacent current collectors 31 and prevent a short circuit due to contact between the adjacent electrodes (the positive electrode active material layer 35 and the negative electrode active material layer 32). .

さらに、正極側の最外層集電体31b内の導電性層は、電気的に接続された正極タブ39に、負極側の最外層集電体31a内の導電性層は、電気的に接続された負極タブ38に接続される。そして、これらの正極タブ39および負極タブ38が外部に導出するように、発電要素37が、ラミネートシート42からなる外装材内に封止されている。なお、最外層集電体(31a、31b)とタブ(38、39)との間を正極端子リード41、負極端子リード40を介して電気的に接続してもよい。   Further, the conductive layer in the outermost layer current collector 31b on the positive electrode side is electrically connected to the positive electrode tab 39 electrically connected, and the conductive layer in the outermost layer current collector 31a on the negative electrode side is electrically connected. Connected to the negative electrode tab 38. And the electric power generation element 37 is sealed in the exterior material which consists of the laminate sheet 42 so that these positive electrode tabs 39 and the negative electrode tabs 38 may lead out outside. The outermost layer current collector (31a, 31b) and the tab (38, 39) may be electrically connected via the positive terminal lead 41 and the negative terminal lead 40.

以下、本実施形態の双極型電池30を構成する部材について簡単に説明するが、上記双極型電池の構成要素のうち、電極構成成分、タブおよび外装については上記に記載した内容と同様であるので、ここでは説明を省略する。   Hereinafter, although the member which comprises the bipolar battery 30 of this embodiment is demonstrated easily, since the electrode component, a tab, and an exterior are the same as the content described above among the components of the said bipolar battery. The description is omitted here.

[絶縁層]
双極型電池30においては、通常、各単電池層36の周囲に絶縁層(シール部)43が設けられる。この絶縁層(シール部)43は、電池内で隣り合う集電体31同士が接触したり、発電要素37における単電池層36の端部の僅かな不揃いなどによる短絡が起きたりするのを防止する目的で設けられる。かような絶縁層43の設置により、長期間の信頼性および安全性が確保され、高品質の双極型電池30が提供されうる。
[Insulation layer]
In the bipolar battery 30, an insulating layer (seal part) 43 is usually provided around each single battery layer 36. This insulating layer (seal part) 43 prevents the adjacent current collectors 31 in the battery from coming into contact with each other and short-circuiting due to slight irregularities at the end of the unit cell layer 36 in the power generation element 37. It is provided for the purpose. By providing such an insulating layer 43, long-term reliability and safety are ensured, and a high-quality bipolar battery 30 can be provided.

このように、双極型電池は単電池層の周囲に絶縁層(シール部)を設けた電極が積層されたセル構造を有するため、セルの厚みの変化、すなわちセル内の集電体の追動は絶縁層(シール部)の破断等をもたらし、電池の信頼性が低下するおそれがある。本発明の双極型電池においては、電解液保持部がセルの厚みの変化を吸収する緩衝層として機能しうる。このため、リチウム合金系負極材料を用いた場合にも、セルの厚みの変化がほとんど生じず、信頼性の高い双極型電池が提供されうる。   As described above, since the bipolar battery has a cell structure in which an electrode provided with an insulating layer (seal part) is stacked around a single battery layer, a change in cell thickness, that is, a follow-up of a current collector in the cell. May cause breakage of the insulating layer (seal portion), and may reduce the reliability of the battery. In the bipolar battery of the present invention, the electrolytic solution holding part can function as a buffer layer that absorbs changes in cell thickness. For this reason, even when a lithium alloy negative electrode material is used, the cell thickness hardly changes, and a highly reliable bipolar battery can be provided.

絶縁層としては、絶縁性、固体電解質の脱落に対するシール性や外部からの水分の透湿に対するシール性(密封性)、電池動作温度下での耐熱性などを有するものであればよい。例えば、ウレタン樹脂、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイミド樹脂、またはゴムなどが用いられうる。なかでも、耐蝕性、耐薬品性、作り易さ(製膜性)、経済性などの観点から、ウレタン樹脂またはエポキシ樹脂が好ましい。   Any insulating layer may be used as long as it has insulating properties, sealing properties against falling off of the solid electrolyte, sealing properties against moisture permeation from the outside (sealing properties), heat resistance at the battery operating temperature, and the like. For example, urethane resin, epoxy resin, polyethylene resin, polypropylene resin, polyimide resin, or rubber can be used. Of these, urethane resins or epoxy resins are preferred from the viewpoints of corrosion resistance, chemical resistance, ease of production (film forming properties), economy, and the like.

[電池の製造方法]
本実施形態の積層型電池および双極型電池の製造方法としては、特に制限されるものではなく、従来公知の方法を適用して作製することができる。以下、本発明の非水電解質二次電池の製造方法を説明するが、本発明の技術的範囲は特許請求の範囲の記載に基づいて定められるべきであり、以下の形態のみに制限されない。
[Battery manufacturing method]
The manufacturing method of the stacked battery and bipolar battery of the present embodiment is not particularly limited, and can be manufactured by applying a conventionally known method. Hereinafter, although the manufacturing method of the nonaqueous electrolyte secondary battery of this invention is demonstrated, the technical scope of this invention should be defined based on description of a claim, and is not restrict | limited only to the following forms.

本発明の他の一形態によれば、負極活物質を含む負極活物質層が導電性層を含む集電体の表面に形成されてなる負極と、非水電解質を含む電解質層と、正極活物質を含む正極活物質層が導電性層を含む集電体の表面に形成されてなる正極と、が順に積層されてなる単電池層を有する発電要素を含む非水電解質二次電池の製造方法が提供される。そして、当該非水電解質二次電池において、前記発電要素に含まれる前記集電体の少なくとも1つは電解液を保持する電解液保持部をさらに含む電解液保持集電体であることを特徴とする。   According to another aspect of the present invention, a negative electrode in which a negative electrode active material layer containing a negative electrode active material is formed on the surface of a current collector containing a conductive layer, an electrolyte layer containing a nonaqueous electrolyte, and a positive electrode active material A method for producing a non-aqueous electrolyte secondary battery including a power generation element having a single battery layer in which a positive electrode active material layer containing a substance is formed on the surface of a current collector containing a conductive layer Is provided. In the non-aqueous electrolyte secondary battery, at least one of the current collectors included in the power generation element is an electrolyte solution holding current collector further including an electrolyte solution holding unit that holds the electrolyte solution. To do.

本発明の一実施形態による製造方法は、導電性層と電解液保持部とを含む集電体を少なくとも1つ含む発電要素を作製する工程(発電要素の作製工程)と、外装体内部に前記発電要素を配置する工程(発電要素の配置工程)と、前記電解液保持部に電解液を真空下で含浸させる工程(電解液の含浸工程)とを有する。かような方法を用いることにより、容量特性および出力特性の優れた本発明の非水電解質二次電池を容易に得ることができる。以下、積層型電池である場合を例に挙げて説明する。   The manufacturing method according to an embodiment of the present invention includes a step of producing a power generation element including at least one current collector including a conductive layer and an electrolyte solution holding unit (a step of producing a power generation element), A step of arranging the power generation element (a step of arranging the power generation element), and a step of impregnating the electrolytic solution holding part with the electrolytic solution under vacuum (an impregnation step of the electrolytic solution). By using such a method, the nonaqueous electrolyte secondary battery of the present invention having excellent capacity characteristics and output characteristics can be easily obtained. Hereinafter, the case of a stacked battery will be described as an example.

[積層型電池]
1.発電要素の作製工程
まず、活物質、導電剤およびバインダーなどの電極材料を含む電極スラリーの混合物をスラリー粘度調製溶媒に分散して正極活物質スラリーおよび負極活物質スラリーを調製する。
[Stacked battery]
1. First, a positive electrode active material slurry and a negative electrode active material slurry are prepared by dispersing a mixture of electrode slurries containing electrode materials such as an active material, a conductive agent and a binder in a slurry viscosity adjusting solvent.

スラリー粘度調製溶媒としては、特に制限されることはないが、例えば、N−メチル−2−ピロリドン(NMP)などが挙げられる。スラリーはホモジナイザーまたは混練装置などを用いて溶媒および固形分よりインク化される。   The slurry viscosity adjusting solvent is not particularly limited, and examples thereof include N-methyl-2-pyrrolidone (NMP). The slurry is converted into ink from the solvent and the solid content using a homogenizer or a kneader.

次いで、導電性層の片面または両面に上記スラリーを塗布する。なお、導電性層の両面にスラリーが塗布された導電性層からは電解液保持部を有さない集電体(電解質非保持集電体)が作製される。一方、導電性層の片面のみにスラリーが塗布された導電性層の反対の面には後ほど電解液保持部が形成され、電解液保持部と導電性層とを積層させた多層形態の集電体(電解質保持集電体)が作製される。スラリーを導電性層に塗布するための塗布手段は特に限定されないが、例えば、自走型コーター、ドクターブレード法、スプレー法などの一般に用いられる手段が採用されうる。   Next, the slurry is applied to one side or both sides of the conductive layer. Note that a current collector (electrolyte non-retained current collector) that does not have an electrolytic solution holding portion is produced from the conductive layer in which the slurry is applied to both surfaces of the conductive layer. On the other hand, an electrolytic solution holding part is formed later on the opposite side of the conductive layer where the slurry is applied only on one side of the conductive layer, and a multilayer current collector in which the electrolytic solution holding part and the conductive layer are laminated. A body (electrolyte holding current collector) is produced. The application means for applying the slurry to the conductive layer is not particularly limited, and generally used means such as a self-propelled coater, a doctor blade method, and a spray method can be employed.

続いて、導電性層の表面に形成された塗膜を乾燥させる。これにより、塗膜中の溶媒が除去される。塗膜を乾燥させるための乾燥手段も特に制限されず、電極製造について従来公知の知見が適宜参照されうる。例えば、加熱処理が例示される。乾燥条件(乾燥時間、乾燥温度など)は、スラリーの塗布量やスラリー粘度調製溶媒の揮発速度に応じて適宜設定されうる。得られた乾燥物はプレスすることによって電極の密度、空孔率や厚みが調整され、導電性層の片面に活物質層が形成された正極もしくは負極、または導電性層の両面に活物質層が形成された正極もしくは負極(電解質非保持正極もしくは負極)が得られる。   Subsequently, the coating film formed on the surface of the conductive layer is dried. Thereby, the solvent in a coating film is removed. The drying means for drying the coating film is not particularly limited, and conventionally known knowledge about electrode production can be appropriately referred to. For example, heat treatment is exemplified. Drying conditions (drying time, drying temperature, etc.) can be appropriately set according to the amount of slurry applied and the volatilization rate of the slurry viscosity adjusting solvent. The resulting dried product is pressed to adjust the density, porosity, and thickness of the electrode, and a positive or negative electrode having an active material layer formed on one side of the conductive layer, or an active material layer on both sides of the conductive layer A positive electrode or negative electrode (electrolyte non-retained positive electrode or negative electrode) formed with is obtained.

次に、電解液保持部の電解液保持基材を準備し、導電性層の片面のみに活物質層が形成された正極2つと電解液保持基材とを、2つの正極が電解液保持部を介して対向するように積層させる。同様にして、導電性層の片面のみに活物質層が形成された負極層2つと電解液保持基材とを、2つの負極が電解液保持部を介して対向するように積層させる。これにより、2つの導電性層に電解液保持部が挟持されてなる集電体(多層形態の電解質保持集電体)の表面に活物質層が形成された正極または負極(電解質保持正極または負極)が得られる。   Next, an electrolyte solution holding substrate of the electrolyte solution holding unit is prepared, and two positive electrodes each having an active material layer formed on only one surface of the conductive layer and the electrolyte solution holding substrate are connected to the two positive electrodes. Are stacked so as to face each other. Similarly, two negative electrode layers in which an active material layer is formed only on one side of the conductive layer and an electrolyte solution holding substrate are stacked so that the two negative electrodes face each other with the electrolyte solution holding part therebetween. Thus, a positive electrode or a negative electrode (electrolyte holding positive electrode or negative electrode) in which an active material layer is formed on the surface of a current collector (multilayer electrolyte holding current collector) formed by sandwiching an electrolyte solution holding portion between two conductive layers ) Is obtained.

なお、一体型の電解液保持集電体を用いる場合には、導電性層内に電解液保持部(または後に電解液を含浸させて電解液保持部となる電解液保持基材や空孔部)を設けた一体型の電解液保持集電体をあらかじめ作製する。そして、この一体型の電解液保持集電体の両面に上記スラリーを塗布して乾燥させた後にプレスすることによって、一体型の電解質保持集電体の表面に活物質層が形成された正極または負極(電解質保持正極または負極)が得られる。   When an integrated electrolyte holding current collector is used, an electrolytic solution holding part (or an electrolyte holding base material or a hole part that becomes an electrolyte holding part by impregnating the electrolytic solution later in the conductive layer) ) Is prepared in advance. The positive electrode having an active material layer formed on the surface of the integrated electrolyte holding current collector by applying the slurry on both sides of the integrated electrolytic solution holding current collector and drying it, followed by pressing. A negative electrode (electrolyte holding positive electrode or negative electrode) is obtained.

一体型の電解液保持集電体の作製方法としては、特に制限されず、従来公知の方法を参照することができる。例えば、エッチング等の化学処理を行うことにより、導電性の基材の表面に空孔部を設置し、電解液保持部とすればよい。空孔部の深さ等はエッチング時間、すなわち酸等のエッチング剤に曝される時間を調整することにより制御することが可能である。エッチング剤やエッチング条件等は特に制限されず、導電性の基材に合わせて従来公知のものを用いればよい。   The production method of the integrated electrolyte solution holding current collector is not particularly limited, and conventionally known methods can be referred to. For example, by performing chemical treatment such as etching, a hole portion may be provided on the surface of the conductive base material to form an electrolyte solution holding portion. The depth and the like of the pores can be controlled by adjusting the etching time, that is, the time of exposure to an etching agent such as an acid. Etching agents, etching conditions, and the like are not particularly limited, and conventionally known ones may be used in accordance with the conductive base material.

その後、上記で作製した電解質保持正極または負極、および必要に応じて電解質非保持正極または負極を、セパレータ(電解質層に相当)を介して正極と負極とが対向するように積層させることにより発電要素を作製することができる。   Thereafter, the electrolyte holding positive electrode or negative electrode prepared above and, if necessary, the electrolyte non-holding positive electrode or negative electrode are laminated so that the positive electrode and the negative electrode face each other via a separator (corresponding to an electrolyte layer). Can be produced.

2.発電要素の配置工程
続いて、上記で得た発電要素内の各正極と負極に含まれる導電性層を束ねてリードを溶接し、これをアルミニウムのラミネートフィルムバッグなどのような外装体の内部に配置させる。
2. Next, the conductive layer contained in each positive electrode and negative electrode in the power generation element obtained above is bundled to weld the lead, and this is placed inside an exterior body such as an aluminum laminate film bag. Arrange.

3.電解質の含浸工程
その後、外装体の内部に注液機により電解質を注入し、真空下で電解液保持部および電解質層に電解質を含浸させ、真空下で端部をシールして電池とする。この場合の真空度は特に制限されないが、好ましくは1.0kPa〜70kPaである。かような真空下では、電解質の含浸が良好であるため好ましい。
3. Electrolyte impregnation step Thereafter, the electrolyte is injected into the exterior body by a liquid injector, the electrolyte holding part and the electrolyte layer are impregnated under vacuum, and the end is sealed under vacuum to obtain a battery. The degree of vacuum in this case is not particularly limited, but is preferably 1.0 kPa to 70 kPa. Such a vacuum is preferable because the impregnation of the electrolyte is good.

ゲルポリマー電解質を用いる場合には、マトリックスポリマー、液体電解質、重合開始剤を含むゲルポリマー電解質前駆体溶液を調整し、このゲルポリマー電解質前駆体溶液を電解液保持部となる電解液保持基材や空孔部に塗布する。そして、真空下で電解液保持部に含浸させた後に加熱や紫外線等の照射によって架橋重合反応させ、乾燥させることにより、ゲルポリマー電解質が保持された電解液保持部が得られる。   When a gel polymer electrolyte is used, a gel polymer electrolyte precursor solution containing a matrix polymer, a liquid electrolyte, and a polymerization initiator is prepared, and the gel polymer electrolyte precursor solution is used as an electrolyte solution holding substrate or an electrolyte solution holding part. Apply to holes. Then, after impregnating the electrolytic solution holding part under vacuum, a crosslinking polymerization reaction is performed by heating or irradiation with ultraviolet rays or the like, and drying is performed, thereby obtaining an electrolytic solution holding part holding the gel polymer electrolyte.

また、上記と同様の方法で、導電性層に形成された活物質層の上面またはセパレータにゲルポリマー電解質前駆体溶液を塗布し、真空下で含浸させた後に架橋重合反応させ、乾燥させることにより、ゲルポリマー電解質を含む電解質層を作製することができる。   In addition, by applying the gel polymer electrolyte precursor solution to the upper surface of the active material layer formed on the conductive layer or the separator in the same manner as described above, impregnating under vacuum, cross-linking polymerization reaction, and drying An electrolyte layer containing a gel polymer electrolyte can be produced.

そして、ゲル電解質を有する電解液保持部や電解質層を用いて発電要素を作製し、外装体に配置後、真空下で端部をシールして電池とすることができる。   And a power generation element is produced using the electrolyte holding part and electrolyte layer which have gel electrolyte, and after arranging in an exterior body, an edge part can be sealed under vacuum and it can be set as a battery.

上記では、液体電解質やゲルポリマー電解質を用いた積層型電池を例に挙げて説明したが、その他の電解質層に真正ポリマー電解質を用いた場合や上記電解質を用いた双極型電池の作製についても、公知の技術を参照して実施可能であり、ここでは説明を省略する。   In the above, a laminated battery using a liquid electrolyte or a gel polymer electrolyte has been described as an example, but in the case where a genuine polymer electrolyte is used for other electrolyte layers or for the production of a bipolar battery using the above electrolyte, It can be implemented with reference to a known technique, and the description thereof is omitted here.

[組電池]
本発明の電池の複数個を、並列および/または直列に接続して、組電池としてもよい。本発明の電池は負極電極の膨張収縮が生じた場合においても、電解液保持部が電解液需給層として機能する。さらに、電解液保持部が弾性体である場合には、電解液保持部が緩衝層としての役割を果たすため、セルとしての厚み増減を抑制することができる。このため、リチウム合金系負極材料を用いた場合においても、従来電池と同様に容易に組電池化することができる。
[Battery]
A plurality of the batteries of the present invention may be connected in parallel and / or in series to form an assembled battery. In the battery of the present invention, even when the negative electrode expands and contracts, the electrolytic solution holding part functions as an electrolytic solution supply and demand layer. Furthermore, when the electrolytic solution holding part is an elastic body, since the electrolytic solution holding part plays a role as a buffer layer, increase or decrease in thickness as a cell can be suppressed. For this reason, even when a lithium alloy-based negative electrode material is used, an assembled battery can be easily formed as in the conventional battery.

図7は、本実施形態の組電池を示す斜視図である。   FIG. 7 is a perspective view showing the assembled battery of the present embodiment.

図7に示すように、組電池50は、上記の実施形態に記載の積層型電池10が複数個接続されることにより構成される。各積層型電池10の正極タブ19および負極タブ18がバスバーを用いて接続されることにより、各積層型電池10が接続されている。組電池50の一の側面には、組電池50全体の電極として、電極ターミナル(51、52)が設けられている。   As shown in FIG. 7, the assembled battery 50 is configured by connecting a plurality of the stacked batteries 10 described in the above embodiment. Each stacked battery 10 is connected by connecting the positive electrode tab 19 and the negative electrode tab 18 of each stacked battery 10 using a bus bar. On one side surface of the assembled battery 50, electrode terminals (51, 52) are provided as electrodes of the entire assembled battery 50.

組電池50を構成する複数個の積層型電池10を接続する際の接続方法は特に制限されず、従来公知の手法が適宜採用されうる。例えば、超音波溶接、スポット溶接などの溶接を用いる手法や、リベット、カシメなどを用いて固定する手法が採用されうる。かような接続方法によれば、組電池50の長期信頼性が向上しうる。   A connection method for connecting the plurality of stacked batteries 10 constituting the assembled battery 50 is not particularly limited, and a conventionally known method can be appropriately employed. For example, a technique using welding such as ultrasonic welding or spot welding, or a technique of fixing using rivets, caulking, or the like can be employed. According to such a connection method, the long-term reliability of the assembled battery 50 can be improved.

本発明の組電池50によれば、組電池50を構成する個々の積層型電池10が充放電サイクル特性に優れることから、充放電サイクル特性に優れる組電池が提供されうる。   According to the assembled battery 50 of the present invention, since the individual stacked batteries 10 constituting the assembled battery 50 are excellent in charge / discharge cycle characteristics, an assembled battery excellent in charge / discharge cycle characteristics can be provided.

なお、組電池50を構成する積層型電池10の接続は、複数個全て並列に接続してもよく、また、複数個全て直列に接続してもよく、さらに、直列接続と並列接続とを組み合わせてもよい。これにより、容量および電圧を自由に調節することが可能となる。   In addition, the connection of the stacked batteries 10 constituting the assembled battery 50 may be all connected in parallel, or may be connected in series, and a combination of series connection and parallel connection is also possible. May be. As a result, the capacity and voltage can be freely adjusted.

[組電池モジュール]
本発明では、上記の組電池を複数個接続して、組電池モジュールとしてもよい。
[Battery module]
In the present invention, a plurality of assembled batteries may be connected to form an assembled battery module.

図8は、本発明の一実施形態による組電池を複数個接続した組電池モジュール示す斜視図である。図8に示す組電池モジュール60は、前述した組電池50を複数個積層し、各組電池50の電極ターミナル51、52を導電バー61および62によって接続し、モジュール化したものである。   FIG. 8 is a perspective view showing an assembled battery module in which a plurality of assembled batteries according to an embodiment of the present invention are connected. The assembled battery module 60 shown in FIG. 8 is a module in which a plurality of the assembled batteries 50 described above are stacked and the electrode terminals 51 and 52 of each assembled battery 50 are connected by conductive bars 61 and 62.

このように、組電池50をモジュール化することによって、電池制御を容易にし、たとえば電気自動車やハイブリッド自動車などの車搭用として最適な組電池モジュールとなる。そして、この組電池モジュール60は、上述した組電池を用いたものであるから長期的信頼性の高いものとなる。なお、このような組電池モジュールも組電池の一種である。   As described above, by modularizing the assembled battery 50, battery control is facilitated, and for example, an assembled battery module that is optimal for mounting on an electric vehicle or a hybrid vehicle is obtained. Since the assembled battery module 60 uses the above-described assembled battery, it has high long-term reliability. Such an assembled battery module is also a kind of assembled battery.

このような組電池モジュールは、電気自動車などのモータ用の電源として使用することが好適である。組電池モジュールをモータ用電源として用いる自動車としては、たとえば電気自動車、ハイブリッド自動車など、車輪をモータによって駆動している自動車である。   Such an assembled battery module is preferably used as a power source for a motor such as an electric vehicle. An automobile using the assembled battery module as a power source for a motor is an automobile whose wheels are driven by a motor, such as an electric vehicle and a hybrid vehicle.

[車両]
本発明の電池は、上述した積層型電池10、双極型電池30、組電池50、または組電池モジュール60をモータ駆動用電源として車両に搭載されうる。積層型電池10、双極型電池30、組電池50、または組電池モジュール60をモータ用電源として用いる車両としては車輪をモータによって駆動する自動車、および他の車両(例えば電車)が挙げられる。上記の自動車としては、例えば、ガソリンを用いない完全電気自動車、シリーズハイブリッド自動車やパラレルハイブリッド自動車などのハイブリッド自動車、および燃料電池自動車などがある。これにより、従来に比して高寿命で信頼性の高い車両を製造することが可能となる。
[vehicle]
The battery of the present invention can be mounted on a vehicle using the above-described stacked battery 10, bipolar battery 30, assembled battery 50, or assembled battery module 60 as a motor driving power source. Examples of the vehicle using the stacked battery 10, the bipolar battery 30, the assembled battery 50, or the assembled battery module 60 as a motor power source include an automobile whose wheels are driven by a motor, and other vehicles (for example, a train). Examples of the automobile include a complete electric car that does not use gasoline, a hybrid automobile such as a series hybrid automobile and a parallel hybrid automobile, and a fuel cell automobile. As a result, it is possible to manufacture a vehicle having a longer life and higher reliability than conventional ones.

参考までに、図9に、組電池を搭載する自動車の概略図を示す。自動車70に搭載される組電池50は、上記で説明したような特性を有する。このため、組電池50を搭載する自動車70は充放電サイクル特性に優れた車両となる。   For reference, FIG. 9 shows a schematic diagram of an automobile equipped with an assembled battery. The assembled battery 50 mounted on the automobile 70 has the characteristics as described above. For this reason, the automobile 70 equipped with the assembled battery 50 is a vehicle having excellent charge / discharge cycle characteristics.

以上、本発明の好適な実施形態について示したが、本発明は、以上の実施形態に限られるものではなく、当業者によって種々の変更、省略、および追加が可能である。   The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above embodiments, and various modifications, omissions, and additions can be made by those skilled in the art.

以下、添付した図面(図10〜13)を参照しながら本発明を説明するが、本発明の技術的範囲はこれらの実施例に限定されるものではない。なお、図10〜13はそれぞれ実施例1〜4で作製した積層型電池または双極型電池を示す模式断面図である。   Hereinafter, the present invention will be described with reference to the accompanying drawings (FIGS. 10 to 13), but the technical scope of the present invention is not limited to these examples. 10 to 13 are schematic cross-sectional views showing the stacked battery or bipolar battery produced in Examples 1 to 4, respectively.

(積層型電池)
[実施例1]
(1)正極要素の作製
正極活物質として含リチウムマンガン酸ニッケル(平均粒子径:10μm)(90質量部)、導電剤としてカーボンブラック(6質量部)、および結着割としてポリフッ化ビニリデン(PVDF♯1300)(4質量部)を混合し、正極合剤とした。この正極合剤をスラリー粘度調整溶媒であるN−メチル−2−ピロリドンの適量に分散させ、正極活物質スラリーを調製した。
(Stacked battery)
[Example 1]
(1) Production of positive electrode element Lithium manganate (average particle size: 10 μm) (90 parts by mass) as a positive electrode active material, carbon black (6 parts by mass) as a conductive agent, and polyvinylidene fluoride (PVDF) as a binder # 1300) (4 parts by mass) was mixed to prepare a positive electrode mixture. This positive electrode mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone as a slurry viscosity adjusting solvent to prepare a positive electrode active material slurry.

導電性層として、厚さが20μmのアルミニウム(Al)箔を準備した。上記で調製したスラリーを導電性層の片面に塗布して乾燥・プレスすることで、導電性層25の一方の面上に厚みが70μmの正極活物質層15が形成された正極要素を作製した。   As the conductive layer, an aluminum (Al) foil having a thickness of 20 μm was prepared. The slurry prepared above was applied to one side of the conductive layer, dried and pressed to produce a positive electrode element in which the positive electrode active material layer 15 having a thickness of 70 μm was formed on one side of the conductive layer 25. .

(2)負極要素の作製
負極活物質、導電剤、および結着剤の前駆体溶液を混合し、負極合剤とした。なお、負極活物質としてはシリコン系活物質粉末(平均粒子径:10μm)(80質量部)、導電剤としてはカーボンブラック(10質量部)を用いた。結着剤の前駆体溶液としては、結着剤となるポリイミドの前駆体(ポリアミック酸)を含むN−メチル−2−ピロリドン溶液(ポリイミドとして10質量部に相当)を用いた。この負極合剤をスラリー粘度調整溶媒であるN−メチル−2−ピロリドン溶液の適量に分散させ、負極活物質スラリーを調製した。
(2) Production of negative electrode element A negative electrode active material, a conductive agent, and a precursor solution of a binder were mixed to obtain a negative electrode mixture. In addition, silicon-based active material powder (average particle diameter: 10 μm) (80 parts by mass) was used as the negative electrode active material, and carbon black (10 parts by mass) was used as the conductive agent. As a binder precursor solution, an N-methyl-2-pyrrolidone solution (corresponding to 10 parts by mass as polyimide) containing a polyimide precursor (polyamic acid) serving as a binder was used. This negative electrode mixture was dispersed in an appropriate amount of an N-methyl-2-pyrrolidone solution, which is a slurry viscosity adjusting solvent, to prepare a negative electrode active material slurry.

導電性層として、厚さが20μmの銅(Cu)箔を準備し、上記で調製したスラリーを導電性層の片面に塗布して乾燥・プレス後、250℃で真空乾燥することで、導電性層25の一方の面上に厚みが30μmの負極活物質層12が形成された負極要素を作製した。   As a conductive layer, a copper (Cu) foil having a thickness of 20 μm was prepared, and the slurry prepared above was applied to one side of the conductive layer, dried and pressed, and then vacuum dried at 250 ° C. A negative electrode element in which the negative electrode active material layer 12 having a thickness of 30 μm was formed on one surface of the layer 25 was produced.

(3)電解液保持部および電解質層の準備
電解液保持部に用いる電解液保持基材として、ポリオレフィンフィルム(材質:ポリエチレン(PE)製、厚み:10μm、空孔率:35%)を準備した。
(3) Preparation of electrolyte solution holding part and electrolyte layer A polyolefin film (material: made of polyethylene (PE), thickness: 10 μm, porosity: 35%) was prepared as an electrolyte solution holding substrate used for the electrolyte solution holding part. .

また、電解質層に用いるセパレータの基材についても、上記電解液保持部に用いた電解液保持基材と同様の基材を用いた。   Moreover, also about the base material of the separator used for the electrolyte layer, the same base material as the electrolytic solution holding base material used for the electrolytic solution holding part was used.

(4)発電要素の作製
上記で作製した正極要素および負極要素を電極部サイズが100mm×100mmとなるように、アルミニウム端子またはニッケル端子と溶接するタブ部を残して切り出した。セパレータおよび電解液保持部の電解液保持基材についても110mm×110mmのサイズに切り出した。
(4) Production of power generation element The positive electrode element and the negative electrode element produced above were cut out leaving a tab part to be welded to an aluminum terminal or a nickel terminal so that the electrode part size was 100 mm × 100 mm. The separator and the electrolyte holding substrate of the electrolyte holding unit were also cut out to a size of 110 mm × 110 mm.

このようにして準備した正極要素6枚、負極要素6枚、セパレータ6枚、および電解液保持基材5枚を、治具を用いて積層させ、図10に示す発電要素を作製した。その際、正極活物質層15と負極活物質層12とがセパレータ(電解質層)13を介して対向し、正極要素内の導電性層25同士または負極要素内の導電性層25同士が電解液保持基材(電解液保持部)26を介して対向するようにした。   The six positive electrode elements, the six negative electrode elements, the six separators, and the five electrolyte holding base materials prepared in this way were laminated using a jig to produce the power generation element shown in FIG. At that time, the positive electrode active material layer 15 and the negative electrode active material layer 12 face each other with a separator (electrolyte layer) 13 interposed therebetween, and the conductive layers 25 in the positive electrode element or the conductive layers 25 in the negative electrode element are in the electrolyte solution. It was made to oppose through the holding base material (electrolyte holding part) 26.

(5)発電要素の配置、電解液の含浸
上記で作製した発電要素内の導電性層25のそれぞれに端子リード(20、21)を溶接させた。なお、正極要素内の導電性層についてはアルミニウム製端子リード20を、負極要素内の導電性層についてはニッケル製端子リード21を溶接させた。次いで、当該発電要素を、発電要素のサイズに成形されたアルミラミネートフィルムの外装22の内部に入れ、電解液を注液する1辺を残し、残り3辺を熱融着して袋状にした。その内部に、真空下(真空度:50[kPa])で所定量の電解液を注入して含浸させた後、残りの1辺を真空封止して積層型電池を作製した。
(5) Arrangement of power generation element, impregnation with electrolyte solution Terminal leads (20, 21) were welded to each of the conductive layers 25 in the power generation element produced above. In addition, the aluminum terminal lead 20 was welded about the electroconductive layer in a positive electrode element, and the nickel terminal lead 21 was welded about the electroconductive layer in a negative electrode element. Next, the power generation element is put inside an aluminum laminate film exterior 22 molded to the size of the power generation element, leaving one side for injecting the electrolyte, and heat-sealing the remaining three sides to form a bag. . A predetermined amount of electrolyte was injected and impregnated in the interior under vacuum (degree of vacuum: 50 [kPa]), and then the remaining one side was vacuum-sealed to produce a stacked battery.

なお、電解液としては、エチレンカーボネート(EC)(30体積部)とジメチルカーボネート(DMC)(70体積部)との混合溶媒にリチウム塩であるLiPFが1mol・dm−3の濃度に溶解した溶液を用いた。また、電解液の使用量は上記セパレータおよび電解液保持基材のサイズ(体積)と空孔率とから算出される、電解液保持部および電解質層の理論上の全空孔体積に相当する量を用いた。 As the electrolyte, LiPF 6 is a lithium salt in a mixed solvent of ethylene carbonate (EC) (30 parts by volume) and dimethyl carbonate (DMC) (70 parts by volume) is dissolved in a concentration of 1 mol · dm -3 The solution was used. The amount of the electrolyte used is an amount corresponding to the theoretical total pore volume of the electrolyte holding part and the electrolyte layer, which is calculated from the size (volume) and the porosity of the separator and the electrolyte holding substrate. Was used.

以上により、図10に示す積層型電池を作製した。   Thus, the stacked battery shown in FIG. 10 was produced.

[実施例2]
(1)正極要素の作製
実施例1と同様にして正極活物質スラリーを調製した。
[Example 2]
(1) Production of positive electrode element A positive electrode active material slurry was prepared in the same manner as in Example 1.

導電性層として、厚さが20μmで、貫通孔(孔径:10μm、空孔率50%、円形状)を有するアルミニウム(Al)箔を準備した。上記で調製したスラリーを導電性層の片面に塗布してプレスすることで、導電性層25の一方の面上に厚みが70μmの正極活物質層15が形成された正極要素を作製した。   As the conductive layer, an aluminum (Al) foil having a thickness of 20 μm and having through holes (hole diameter: 10 μm, porosity of 50%, circular shape) was prepared. The slurry prepared above was applied to one side of the conductive layer and pressed to produce a positive electrode element in which the positive electrode active material layer 15 having a thickness of 70 μm was formed on one side of the conductive layer 25.

(2)負極要素の作製
実施例1と同様にして負極活物質スラリーを調製した。
(2) Production of negative electrode element A negative electrode active material slurry was prepared in the same manner as in Example 1.

導電性層として、厚さが20μmで、貫通孔(孔径:10μm、空孔率40%、円形状)を有する銅(Cu)箔を準備した。上記で調製したスラリーを導電性層の片面に塗布してプレス後、250℃で真空乾燥することで、導電性層25の一方の面上に厚みが30μmの負極活物質層12が形成された負極要素を作製した。   As the conductive layer, a copper (Cu) foil having a thickness of 20 μm and having a through hole (hole diameter: 10 μm, porosity of 40%, circular shape) was prepared. The slurry prepared above was applied to one side of the conductive layer, pressed, and vacuum dried at 250 ° C., whereby the negative electrode active material layer 12 having a thickness of 30 μm was formed on one side of the conductive layer 25. A negative electrode element was produced.

(3)発電要素の作製および配置、電解液の含浸
上記で作製した正極要素および負極要素を用いること以外は、実施例1と同様にして図11に示す積層型電池を作製した。
(3) Production and arrangement of power generation element, impregnation with electrolyte solution A laminated battery shown in FIG. 11 was produced in the same manner as in Example 1 except that the positive electrode element and the negative electrode element produced above were used.

[実施例3]
実施例2で作製した負極要素を用いること以外は、実施例1と同様にして図12に示す積層型電池を作製した。
[Example 3]
A laminated battery shown in FIG. 12 was produced in the same manner as in Example 1 except that the negative electrode element produced in Example 2 was used.

(双極型電池)
[実施例4]
(1)正極要素の作製
実施例1と同様にして正極活物質スラリーを調製した。
(Bipolar battery)
[Example 4]
(1) Production of positive electrode element A positive electrode active material slurry was prepared in the same manner as in Example 1.

導電性層として、厚さが20μmのアルミニウム(Al)箔を準備し、上記で調製したスラリーを導電性層の片面に塗布して乾燥・プレスすることで、導電性層45の一方の面上に厚みが70μmの正極活物質層35が形成された正極要素を作製した。   As a conductive layer, an aluminum (Al) foil having a thickness of 20 μm is prepared, and the slurry prepared above is applied to one side of the conductive layer, dried and pressed, so that one side of the conductive layer 45 is formed. A positive electrode element in which a positive electrode active material layer 35 having a thickness of 70 μm was formed was prepared.

(2)負極要素の作製
実施例1と同様にして負極活物質スラリーを調製した。
(2) Production of negative electrode element A negative electrode active material slurry was prepared in the same manner as in Example 1.

導電性層として、貫通孔(孔径:10μm、空孔率40%、円形状)を有する厚さが20μmの銅(Cu)箔を準備した。上記で調製したスラリーを導電性層の片面に塗布して乾燥・プレス後、250℃で真空乾燥することで、導電性層45の一方の面上に厚みが30μmの負極活物質層32が形成された負極要素を作製した。   A copper (Cu) foil having a thickness of 20 μm having through-holes (hole diameter: 10 μm, porosity 40%, circular shape) was prepared as the conductive layer. The slurry prepared above is applied to one side of the conductive layer, dried and pressed, and then vacuum dried at 250 ° C. to form the negative electrode active material layer 32 having a thickness of 30 μm on one side of the conductive layer 45. A negative electrode element was produced.

(3)電解液保持層および電解質層の準備、電解液の含浸
ポリエチレンオキシド(40質量部)と上記電解液(60質量部)とを混合し、マトリックスポリマーとした。このマトリックスポリマーに対して5000質量ppm相当の熱重合開始剤としてのアゾビスイソブチロニトリル(AIBN)を添加して、ゲルポリマー電解質前駆体溶液を調製した。
(3) Preparation of electrolyte solution holding layer and electrolyte layer, impregnation with electrolyte solution Polyethylene oxide (40 parts by mass) and the above electrolyte solution (60 parts by mass) were mixed to obtain a matrix polymer. The gel polymer electrolyte precursor solution was prepared by adding azobisisobutyronitrile (AIBN) as a thermal polymerization initiator corresponding to 5000 ppm by mass to the matrix polymer.

この前駆体溶液にセパレータおよび電解液保持基材を浸漬し、室温(25℃)の真空下(真空度:30[kPa])において、10分間、前駆体溶液をセパレータおよび電解質保持基材に含浸させた。なお、電解液保持基材およびセパレータとしては実施例1と同様にポリオレフィンフィルム(材質:ポリエチレン(PE)製、厚み:10μm、空孔率:35%)を用いた。   The separator and the electrolyte holding substrate are immersed in the precursor solution, and the separator and the electrolyte holding substrate are impregnated with the precursor solution for 10 minutes under a vacuum (degree of vacuum: 30 [kPa]) at room temperature (25 ° C.). I let you. As the electrolytic solution holding substrate and the separator, a polyolefin film (material: made of polyethylene (PE), thickness: 10 μm, porosity: 35%) was used as in Example 1.

そして、アルゴンガス雰囲気下、100℃で2時間加熱処理を行うことにより、ゲルポリマー電解質が保持された電解液保持層およびセパレータを得た。   And the electrolytic solution holding | maintenance layer and separator with which gel polymer electrolyte was hold | maintained were obtained by heat-processing at 100 degreeC for 2 hours in argon gas atmosphere.

(4)発電要素の作製、絶縁層によるシール
そして、得られた双極型電極、最外層正極、および最外層負極を140mm×140mmのサイズに切断し、切断された電極(正極および負極)の外周部(20mm)に形成された活物質層を剥がしとることにより、集電体であるSUS表面を露出させた。すなわち、電極面が100mm×100mmであり、電極の外周部20mmに集電体であるSUS箔が露出した双極型電極、最外層正極、および最外層負極を得た。それらを、セパレータ、電解液保持材と同じように前駆体溶液に浸漬して、室温(25℃)の真空下(真空度:30[kPa])において、10分間含浸させた。ついで、電極未塗布部分の前駆体溶液を拭き取った。その後、アルゴンガス雰囲気下、100℃で2時間加熱処理を行うことにより、ゲルポリマー電解質が保持された電解液保持層およびセパレータを得た。セパレータおよび電解液保持層の電解液保持基材については120mm×120mmのサイズに切り出したものを用いた。
(4) Production of power generation element, sealing with insulating layer And the obtained bipolar electrode, outermost layer positive electrode, and outermost layer negative electrode were cut into a size of 140 mm × 140 mm, and the outer periphery of the cut electrodes (positive electrode and negative electrode) The active material layer formed on the part (20 mm) was peeled off to expose the SUS surface as a current collector. That is, a bipolar electrode, an outermost layer positive electrode, and an outermost layer negative electrode in which the electrode surface was 100 mm × 100 mm and the SUS foil as a current collector was exposed on the outer peripheral part 20 mm of the electrode were obtained. They were immersed in the precursor solution in the same manner as the separator and the electrolyte solution holding material, and impregnated for 10 minutes in a vacuum (degree of vacuum: 30 [kPa]) at room temperature (25 ° C.). Subsequently, the precursor solution of the electrode non-application part was wiped off. Thereafter, a heat treatment was performed at 100 ° C. for 2 hours under an argon gas atmosphere to obtain an electrolyte solution holding layer and a separator in which the gel polymer electrolyte was held. As the electrolyte holding substrate of the separator and the electrolyte holding layer, a substrate cut out to a size of 120 mm × 120 mm was used.

次いで、ディスペンサを用い、双極型電極、最外層正極、および最外層負極中の集電体の外周部のSUS箔露出部分(電極未塗布部分)にシール前駆体を塗布した。なお、シール前駆体としては、一液性未硬化エポキシ樹脂を用いた。   Next, using a dispenser, the seal precursor was applied to the exposed portion of the SUS foil (the electrode uncoated portion) on the outer periphery of the current collector in the bipolar electrode, the outermost layer positive electrode, and the outermost layer negative electrode. Note that a one-component uncured epoxy resin was used as the seal precursor.

次いで、上記シール前駆体が塗布された導電性層が全て覆われるように、正極要素、電解液保持基材(電解液保持部)、負極要素を積層させ、シール前駆体が塗布された双極型電極を得た。その際、正極要素内の導電性層45と負極要素内の導電性層45とが電解液保持基材(電解液保持部)46を介して対向するようにした。上記手順を繰り返し、正極要素5枚、負極要素5枚、電解液保持基材5枚から双極型電極5枚を得た。   Next, the positive electrode element, the electrolyte solution holding substrate (electrolyte solution holding portion), and the negative electrode element are laminated so that the conductive layer coated with the seal precursor is completely covered, and the bipolar type coated with the seal precursor. An electrode was obtained. At that time, the conductive layer 45 in the positive electrode element and the conductive layer 45 in the negative electrode element were opposed to each other with the electrolyte solution holding substrate (electrolyte solution holding portion) 46 interposed therebetween. The above procedure was repeated to obtain five bipolar electrodes from five positive electrode elements, five negative electrode elements, and five electrolyte solution holding substrates.

以上で作製した双極型電極5枚、セパレータ6枚、正極要素1枚、負極要素1枚を下記のように治具を用いて積層させ、発電要素を作製した。その際、図13に示すように正極活物質層35と負極活物質層32とがセパレータ(電解質層)33を介して対向するようにした。   The five bipolar electrodes, six separators, one positive electrode element, and one negative electrode element produced as described above were laminated using a jig as described below to produce a power generation element. At that time, as shown in FIG. 13, the positive electrode active material layer 35 and the negative electrode active material layer 32 were arranged to face each other with a separator (electrolyte layer) 33 interposed therebetween.

作製した発電要素を、熱プレス機を用いて、面圧1kg/cm、80℃のの条件下で1時間熱プレスすることにより、未硬化のシール部(一液性未硬化エポキシ樹脂)を硬化させた。この工程によりシール部を所定の厚みまでプレスするとともに硬化させ、絶縁層43を形成させることが可能となる。これにより、6層積層された双極型発電要素を得た。 The produced power generation element is hot-pressed for 1 hour under the conditions of a surface pressure of 1 kg / cm 2 and 80 ° C. using a hot press machine, so that an uncured seal part (one-part uncured epoxy resin) is obtained. Cured. By this step, the sealing portion can be pressed to a predetermined thickness and cured to form the insulating layer 43. Thereby, a bipolar power generation element in which six layers were laminated was obtained.

(5)発電要素の配置
上記で作製した発電要素の最外層の導電性層(31a、31b)に端子リード(40、41)を溶接させた。この際、最外層の正極要素内の導電性層31bについてはアルミニウム製端子リード41を、最外層の負極要素内の導電性層31aについてはニッケル製端子リード40を溶接させた。その後、実施例1と同様に、当該発電要素をアルミラミネートフィルムの外装42の内部に入れ、真空封止することにより図13に示す双極型電池を作製した。
(5) Arrangement of power generation element The terminal leads (40, 41) were welded to the outermost conductive layers (31a, 31b) of the power generation element produced above. At this time, the aluminum terminal lead 41 was welded to the conductive layer 31b in the outermost positive electrode element, and the nickel terminal lead 40 was welded to the conductive layer 31a in the outermost negative electrode element. Thereafter, in the same manner as in Example 1, the power generation element was placed in an aluminum laminate film exterior 42 and vacuum sealed to produce a bipolar battery shown in FIG.

実施例1〜4で作製された積層型電池または双極型電池は、2つの導電性層により、多孔質のポリオレフィンフィルムから構成される電解液保持部が挟持された電解液保持集電体を有する。このため、電極間距離が増大することなく、十分な量の電解液を簡便に電極に補給できる。また、これらの電池においては、発電要素内の中央層に電解液保持集電体が存在するため、電解液の不足が生じやすい中央層に位置する活物質層に電解液保持部から電解液が迅速かつ効率よく供給されうる。さらに、電解質保持基材であるポリオレフィンフィルムは弾性体であるため、電極の膨張収縮に伴うセル厚みの変化を吸収する緩衝層として機能しうる。さらに、負極活物質として、リチウムと合金化するSi材料を用いているため、高いエネルギー密度を有する高容量の電池を得ることができる。   The stacked battery or bipolar battery produced in Examples 1 to 4 has an electrolyte solution holding current collector in which an electrolyte solution holding part composed of a porous polyolefin film is sandwiched between two conductive layers. . Therefore, a sufficient amount of electrolyte can be easily supplied to the electrodes without increasing the distance between the electrodes. In these batteries, since the electrolyte holding current collector exists in the central layer in the power generation element, the electrolytic solution is supplied from the electrolyte holding unit to the active material layer located in the central layer where the lack of the electrolytic solution is likely to occur. It can be supplied quickly and efficiently. Furthermore, since the polyolefin film which is an electrolyte holding substrate is an elastic body, it can function as a buffer layer that absorbs changes in cell thickness accompanying expansion and contraction of the electrode. Furthermore, since a Si material alloyed with lithium is used as the negative electrode active material, a high-capacity battery having a high energy density can be obtained.

実施例2や実施例4のように導電性層が電解液保持集電体の積層方向に貫通した孔を有する場合には、電解液保持部から貫通孔を通して活物質層全体に均一にかつ迅速に電解液を供給することができる。   When the conductive layer has holes penetrating in the stacking direction of the electrolyte solution holding current collector as in Example 2 or Example 4, the entire active material layer can be uniformly and quickly passed through the through hole from the electrolyte solution holding unit. An electrolyte can be supplied to the battery.

本発明の代表的な一実施形態である、積層型の非水電解質二次電池を示す模式断面図である。1 is a schematic cross-sectional view showing a laminated nonaqueous electrolyte secondary battery which is a typical embodiment of the present invention. 本発明の代表的な一実施形態に用いられる電解液保持集電体の模式断面図(発電要素の積層方向に平行な面における模式断面図)である。1 is a schematic cross-sectional view (a schematic cross-sectional view in a plane parallel to the stacking direction of power generation elements) of an electrolytic solution holding current collector used in a typical embodiment of the present invention. 本発明の他の実施形態に用いられる電解液保持集電体の模式断面図(発電要素の積層方向に平行な面における模式断面図)である。It is a schematic cross section (schematic cross section in a plane parallel to the laminating direction of a power generation element) of an electrolyte solution holding current collector used for other embodiments of the present invention. 本発明の他の実施形態に用いられる電解液保持集電体の模式断面図(発電要素の積層方向に垂直な面における模式断面図)である。It is a schematic cross section (schematic cross section in a plane perpendicular to the laminating direction of a power generation element) of an electrolyte solution holding current collector used for other embodiments of the present invention. 本発明の一実施形態に用いられる電解液非保持集電体の模式断面図(発電要素の積層方向に平行な面における模式断面図)である。It is a schematic cross section (schematic cross section in the plane parallel to the laminating direction of a power generation element) of the non-electrolyte holding current collector used for one embodiment of the present invention. 本発明の一実施形態に用いられうる貫通孔を有する導電性層の模式断面図(発電要素の積層方向に垂直な面における模式断面図)であるIt is a schematic cross section (schematic cross section in a plane perpendicular to the laminating direction of a power generation element) of a conductive layer having a through hole that can be used in an embodiment of the present invention. 本発明の他の一実施形態である、双極型の非水電解質二次電池を示す模式断面図である。It is a schematic cross section which shows the bipolar non-aqueous electrolyte secondary battery which is other one Embodiment of this invention. 本発明の一実施形態による積層型電池を複数個接続して得られる組電池を示す斜視図である。It is a perspective view showing an assembled battery obtained by connecting a plurality of stacked batteries according to an embodiment of the present invention. 本発明の一実施形態による組電池を複数個接続した組電池モジュール示す斜視図である。It is a perspective view which shows the assembled battery module which connected the assembled battery by one Embodiment of this invention. 本発明の一実施形態による組電池を搭載する自動車の概略図である。It is the schematic of the motor vehicle carrying the assembled battery by one Embodiment of this invention. 実施例1で作製した積層型電池を示す模式断面図である。1 is a schematic cross-sectional view showing a stacked battery produced in Example 1. FIG. 実施例2で作製した積層型電池を示す模式断面図である。3 is a schematic cross-sectional view showing a stacked battery produced in Example 2. FIG. 実施例3で作製した積層型電池を示す模式断面図である。6 is a schematic cross-sectional view showing a stacked battery produced in Example 3. FIG. 実施例4で作製した双極型電池を示す模式断面図である。6 is a schematic cross-sectional view showing a bipolar battery produced in Example 4. FIG.

符号の説明Explanation of symbols

10 積層型電池、
11 負極集電体、
11a 最外層負極集電体、
12、32 負極活物質層、
13、33 電解質層、
14 正極集電体、
14a 最外層正極集電体、
15、35 正極活物質層、
16、36 単電池層、
17、37 発電要素、
18、38 負極タブ(端子)、
19、39 正極タブ(端子)、
20、40 負極端子リード、
21、41 正極端子リード、
22、42 外装体(ラミネートシート)、
23 負極、
24 正極、
25、45 導電性層、
26、46 電解液保持部、
27 開口部、
28 導電性基材、
29 貫通孔、
30 双極型電池、
31 集電体、
31a 負極側の最外層集電体、
31b 正極側の最外層集電体、
34 双極型電極、
34a、34b 最外層に位置する電極、
43 絶縁層、
50 組電池、
51、52 電極ターミナル、
60 組電池モジュール、
61、62 導電バー、
70 自動車。
10 stacked battery,
11 negative electrode current collector,
11a outermost layer negative electrode current collector,
12, 32 negative electrode active material layer,
13, 33 electrolyte layer,
14 positive electrode current collector,
14a outermost layer positive electrode current collector,
15, 35 positive electrode active material layer,
16, 36 cell layer,
17, 37 Power generation element,
18, 38 Negative electrode tab (terminal),
19, 39 Positive electrode tab (terminal),
20, 40 Negative terminal lead,
21, 41 Positive terminal lead,
22, 42 Exterior body (laminate sheet),
23 negative electrode,
24 positive electrode,
25, 45 conductive layer,
26, 46 Electrolyte holding part,
27 opening,
28 conductive substrate,
29 through holes,
30 Bipolar battery,
31 current collector,
31a The outermost layer current collector on the negative electrode side,
31b The outermost layer current collector on the positive electrode side,
34 Bipolar electrode,
34a, 34b The electrode located in the outermost layer,
43 Insulating layer,
50 battery packs,
51, 52 electrode terminal,
60 battery module,
61, 62 Conductive bar,
70 cars.

Claims (11)

負極活物質を含む負極活物質層が導電性層を含む集電体の表面に形成されてなる負極と、非水電解質を含む電解質層と、正極活物質を含む正極活物質層が導電性層を含む集電体の表面に形成されてなる正極と、が順に積層されてなる単電池層を有する発電要素を含む非水電解質二次電池であって、
前記発電要素に含まれる前記集電体の少なくとも1つは電解液を保持する電解液保持部をさらに含む電解液保持集電体であることを特徴とする非水電解質二次電池。
A negative electrode in which a negative electrode active material layer including a negative electrode active material is formed on the surface of a current collector including a conductive layer, an electrolyte layer including a nonaqueous electrolyte, and a positive electrode active material layer including a positive electrode active material are conductive layers. A non-aqueous electrolyte secondary battery including a power generation element having a single battery layer formed by sequentially laminating a positive electrode formed on a surface of a current collector including:
The non-aqueous electrolyte secondary battery, wherein at least one of the current collectors included in the power generation element is an electrolyte solution holding current collector further including an electrolyte solution holding unit for holding an electrolyte solution.
前記負極活物質は、リチウムと合金化する元素を含むことを特徴とする、請求項1に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material includes an element that forms an alloy with lithium. 前記電解液保持集電体は2つの導電性層により電解液保持部が挟持されてなることを特徴とする、請求項1または2に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the electrolyte solution holding current collector has an electrolyte solution holding portion sandwiched between two conductive layers. 前記電解液保持集電体を構成する導電性層の少なくとも1つは、電解液が前記電解液保持集電体の積層方向に貫通しうる孔を有することを特徴とする、請求項3に記載の非水電解質二次電池。   The at least one of the conductive layers constituting the electrolytic solution holding current collector has a hole through which the electrolytic solution can penetrate in the stacking direction of the electrolytic solution holding current collector. Non-aqueous electrolyte secondary battery. 前記電解液保持部は、多孔体から構成されることを特徴とする、請求項1〜4のいずれか1項に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the electrolyte solution holding unit is formed of a porous body. 前記電解液保持部は、弾性体から構成されることを特徴とする、請求項1〜5のいずれか1項に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the electrolyte solution holding unit is made of an elastic body. 前記電解液保持集電体は発電要素内の中央層に存在することを特徴とする、請求項1〜6のいずれか1項に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the electrolyte solution holding current collector is present in a central layer in the power generation element. 導電性層と電解液保持部とを含む集電体を少なくとも1つ含む発電要素を作製する工程と、
外装体内部に前記発電要素を配置する工程と、
前記電解液保持部に電解液を真空下で含浸させる工程と、
を有する非水電解質二次電池の製造方法。
Producing a power generation element including at least one current collector including a conductive layer and an electrolyte solution holding unit;
Arranging the power generating element inside the exterior body;
Impregnating the electrolytic solution holding part with an electrolytic solution under vacuum; and
The manufacturing method of the nonaqueous electrolyte secondary battery which has this.
請求項1〜7のいずれか1項に記載の非水電解質二次電池または請求項8に記載の製造方法により製造された非水電解質二次電池を用いたことを特徴とする組電池。   An assembled battery using the nonaqueous electrolyte secondary battery according to any one of claims 1 to 7 or the nonaqueous electrolyte secondary battery produced by the production method according to claim 8. 請求項9に記載の組電池を複数個接続した、組電池モジュール。   An assembled battery module in which a plurality of assembled batteries according to claim 9 are connected. 請求項1〜7のいずれか1項に記載の非水電解質二次電池もしくは請求項8に記載の製造方法により製造された非水電解質二次電池、請求項9に記載の組電池、または請求項10に記載の組電池モジュールを駆動用電源として搭載した、車両。   The nonaqueous electrolyte secondary battery according to any one of claims 1 to 7, or the nonaqueous electrolyte secondary battery produced by the production method according to claim 8, the assembled battery according to claim 9, or a claim Item 11. A vehicle equipped with the assembled battery module according to Item 10 as a driving power source.
JP2008328571A 2008-12-24 2008-12-24 Non-aqueous electrolyte secondary battery Pending JP2010153140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008328571A JP2010153140A (en) 2008-12-24 2008-12-24 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008328571A JP2010153140A (en) 2008-12-24 2008-12-24 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2010153140A true JP2010153140A (en) 2010-07-08

Family

ID=42572023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008328571A Pending JP2010153140A (en) 2008-12-24 2008-12-24 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2010153140A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066863A1 (en) * 2010-11-18 2012-05-24 日産自動車株式会社 Secondary battery
JP2012109212A (en) * 2011-08-26 2012-06-07 Nissan Motor Co Ltd Secondary battery
WO2013002055A1 (en) * 2011-06-29 2013-01-03 シャープ株式会社 Current collector and electrode for use in non-aqueous secondary cell, and non-aqueous secondary cell
JPWO2012160652A1 (en) * 2011-05-24 2014-07-31 トヨタ自動車株式会社 Sulfide-based solid battery module
JP2014519139A (en) * 2011-04-29 2014-08-07 ジー4 シナジェティクス, インコーポレイテッド Lamination and encapsulation configurations for energy storage devices
WO2015141799A1 (en) * 2014-03-19 2015-09-24 積水化学工業株式会社 Sheet-laminated lithium ion secondary battery and production method for sheet-laminated lithium ion secondary battery
CN110073514A (en) * 2016-10-14 2019-07-30 伊奈维特有限责任公司 It is configured to establish the contact plate electrically engaged with the battery unit in battery module
CN111725482A (en) * 2020-07-27 2020-09-29 江西星盈科技有限公司 Thick electrode and battery
JP2020161298A (en) * 2019-03-26 2020-10-01 トヨタ自動車株式会社 Stacked battery
JP2021034143A (en) * 2019-08-20 2021-03-01 国立研究開発法人産業技術総合研究所 A current collector for use as an electrode for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and an electrode for a non-aqueous electrolyte secondary battery.
CN114041219A (en) * 2021-03-30 2022-02-11 宁德新能源科技有限公司 Composite current collector, electrochemical device, and electronic device
CN115136408A (en) * 2020-02-13 2022-09-30 株式会社村田制作所 Solid-state battery
WO2022209112A1 (en) * 2021-03-31 2022-10-06 パナソニックIpマネジメント株式会社 Secondary battery electrode, secondary battery, and method for producing secondary battery electrode
JP2022166718A (en) * 2021-04-21 2022-11-02 プライムプラネットエナジー&ソリューションズ株式会社 Current collector for secondary battery, and secondary battery
WO2023142430A1 (en) * 2022-01-28 2023-08-03 厦门海辰储能科技股份有限公司 Composite current collector, method for preparing composite current collector, electrode plate, battery, and electric device
JP2024167593A (en) * 2023-05-22 2024-12-04 ソフトバンク株式会社 Current collector, electrode, battery, flying vehicle, method for producing current collector, method for producing electrode, and method for producing battery
US12183909B2 (en) 2014-11-05 2024-12-31 24M Technologies, Inc. Electrochemical cells having semi-solid electrodes and methods of manufacturing the same
US12347874B2 (en) 2015-06-18 2025-07-01 24M Technologies, Inc. Single pouch battery cells and methods of manufacture
US12362398B2 (en) 2020-02-07 2025-07-15 24M Technologies, Inc. Divided energy electrochemical cell systems and methods of producing the same

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10763461B2 (en) 2010-11-18 2020-09-01 Envision Aesc Japan Ltd. Secondary battery
US10763462B2 (en) 2010-11-18 2020-09-01 Envision Aesc Japan Ltd. Secondary battery
JP2012124150A (en) * 2010-11-18 2012-06-28 Nissan Motor Co Ltd Secondary battery
WO2012066863A1 (en) * 2010-11-18 2012-05-24 日産自動車株式会社 Secondary battery
CN103594662A (en) * 2010-11-18 2014-02-19 日产自动车株式会社 Secondary battery
TWI450430B (en) * 2010-11-18 2014-08-21 Nissan Motor Secondary battery
RU2529499C1 (en) * 2010-11-18 2014-09-27 Ниссан Мотор Ко., Лтд. Accumulator battery
CN103594662B (en) * 2010-11-18 2016-01-13 日产自动车株式会社 Secondary cell
TWI478416B (en) * 2010-11-18 2015-03-21 Nissan Motor Secondary battery
JP2014519139A (en) * 2011-04-29 2014-08-07 ジー4 シナジェティクス, インコーポレイテッド Lamination and encapsulation configurations for energy storage devices
JPWO2012160652A1 (en) * 2011-05-24 2014-07-31 トヨタ自動車株式会社 Sulfide-based solid battery module
WO2013002055A1 (en) * 2011-06-29 2013-01-03 シャープ株式会社 Current collector and electrode for use in non-aqueous secondary cell, and non-aqueous secondary cell
JPWO2013002055A1 (en) * 2011-06-29 2015-02-23 シャープ株式会社 Current collector and electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2012109212A (en) * 2011-08-26 2012-06-07 Nissan Motor Co Ltd Secondary battery
CN106104901B (en) * 2014-03-19 2020-08-11 积水化学工业株式会社 Sheet-laminated lithium ion secondary battery and method for manufacturing sheet-laminated lithium ion secondary battery
EP3121891A4 (en) * 2014-03-19 2017-10-25 Sekisui Chemical Co., Ltd. Sheet-laminated lithium ion secondary battery and production method for sheet-laminated lithium ion secondary battery
US10297867B2 (en) 2014-03-19 2019-05-21 Sekisui Chemical Co., Ltd. Sheet-laminated lithium ion secondary battery and production method for sheet-laminated lithium ion secondary battery
JPWO2015141799A1 (en) * 2014-03-19 2017-04-13 積水化学工業株式会社 Sheet laminated lithium ion secondary battery and method for producing sheet laminated lithium ion secondary battery
CN106104901A (en) * 2014-03-19 2016-11-09 积水化学工业株式会社 Sheet lamination-type lithium rechargeable battery and the manufacture method of sheet lamination-type lithium rechargeable battery
WO2015141799A1 (en) * 2014-03-19 2015-09-24 積水化学工業株式会社 Sheet-laminated lithium ion secondary battery and production method for sheet-laminated lithium ion secondary battery
US12183909B2 (en) 2014-11-05 2024-12-31 24M Technologies, Inc. Electrochemical cells having semi-solid electrodes and methods of manufacturing the same
US12347874B2 (en) 2015-06-18 2025-07-01 24M Technologies, Inc. Single pouch battery cells and methods of manufacture
CN110073514A (en) * 2016-10-14 2019-07-30 伊奈维特有限责任公司 It is configured to establish the contact plate electrically engaged with the battery unit in battery module
JP2020161298A (en) * 2019-03-26 2020-10-01 トヨタ自動車株式会社 Stacked battery
JP7196720B2 (en) 2019-03-26 2022-12-27 トヨタ自動車株式会社 laminated battery
JP2021034143A (en) * 2019-08-20 2021-03-01 国立研究開発法人産業技術総合研究所 A current collector for use as an electrode for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and an electrode for a non-aqueous electrolyte secondary battery.
JP7426039B2 (en) 2019-08-20 2024-02-01 国立研究開発法人産業技術総合研究所 Current collector for use in electrodes for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary batteries, and electrodes for non-aqueous electrolyte secondary batteries
US12362398B2 (en) 2020-02-07 2025-07-15 24M Technologies, Inc. Divided energy electrochemical cell systems and methods of producing the same
CN115136408A (en) * 2020-02-13 2022-09-30 株式会社村田制作所 Solid-state battery
CN115136408B (en) * 2020-02-13 2024-02-09 株式会社村田制作所 Solid-state battery
CN111725482A (en) * 2020-07-27 2020-09-29 江西星盈科技有限公司 Thick electrode and battery
CN114041219A (en) * 2021-03-30 2022-02-11 宁德新能源科技有限公司 Composite current collector, electrochemical device, and electronic device
WO2022209112A1 (en) * 2021-03-31 2022-10-06 パナソニックIpマネジメント株式会社 Secondary battery electrode, secondary battery, and method for producing secondary battery electrode
JP7343540B2 (en) 2021-04-21 2023-09-12 プライムプラネットエナジー&ソリューションズ株式会社 Secondary battery current collector and secondary battery
JP2022166718A (en) * 2021-04-21 2022-11-02 プライムプラネットエナジー&ソリューションズ株式会社 Current collector for secondary battery, and secondary battery
WO2023142430A1 (en) * 2022-01-28 2023-08-03 厦门海辰储能科技股份有限公司 Composite current collector, method for preparing composite current collector, electrode plate, battery, and electric device
JP2024167593A (en) * 2023-05-22 2024-12-04 ソフトバンク株式会社 Current collector, electrode, battery, flying vehicle, method for producing current collector, method for producing electrode, and method for producing battery
JP7686694B2 (en) 2023-05-22 2025-06-02 ソフトバンク株式会社 Current collector, electrode, battery, flying vehicle, method for producing current collector, method for producing electrode, and method for producing battery

Similar Documents

Publication Publication Date Title
JP2010153140A (en) Non-aqueous electrolyte secondary battery
KR101004184B1 (en) Secondary Battery and Manufacturing Method Thereof
JP5470817B2 (en) Battery electrode, battery using the same, and manufacturing method thereof
JP6240176B2 (en) Secondary battery electrode, manufacturing method thereof, secondary battery including the same, and cable-type secondary battery
JP5286972B2 (en) Negative electrode for lithium ion secondary battery
JP5428407B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2009211949A (en) Nonaqueous electrolyte secondary battery
JP2010160984A (en) Anode for lithium-ion secondary battery and lithium-ion secondary battery
JP2015518643A (en) Secondary battery electrode, manufacturing method thereof, secondary battery including the same, and cable-type secondary battery
JP4972862B2 (en) Method for manufacturing battery electrode
JP2004253168A (en) Bipolar battery
JP5672671B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2010160983A (en) Nonaqueous electrolyte secondary battery and its electrode
JP2010160986A (en) Anode for lithium-ion secondary battery and lithium-ion secondary battery using this
JP2010160982A (en) Anode for lithium-ion secondary battery and lithium-ion secondary battery
JP5326553B2 (en) Nonaqueous electrolyte secondary battery
JP2008269890A (en) Nonaqueous electrolyte secondary battery electrode
JP2010160985A (en) Lithium ion secondary cell negative electrode and lithium ion secondary cell using the same
JP5376036B2 (en) Nonaqueous electrolyte secondary battery
JP2004362859A (en) Lithium-ion secondary battery
JP2005174691A (en) Bipolar battery
JP2011003318A (en) Lithium ion secondary battery
JP4551539B2 (en) Nonaqueous electrolyte secondary battery
JP4802217B2 (en) Nonaqueous electrolyte secondary battery
JP2010135265A (en) Nonaqueous electrolyte secondary battery