[go: up one dir, main page]

JP2010105051A - Diesinking electric discharge machining method and diesinking electric discharge machine - Google Patents

Diesinking electric discharge machining method and diesinking electric discharge machine Download PDF

Info

Publication number
JP2010105051A
JP2010105051A JP2007033960A JP2007033960A JP2010105051A JP 2010105051 A JP2010105051 A JP 2010105051A JP 2007033960 A JP2007033960 A JP 2007033960A JP 2007033960 A JP2007033960 A JP 2007033960A JP 2010105051 A JP2010105051 A JP 2010105051A
Authority
JP
Japan
Prior art keywords
tool electrode
workpiece
electric discharge
electrode
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007033960A
Other languages
Japanese (ja)
Inventor
Tatsushi Sato
達志 佐藤
Hidetaka Katogi
英隆 加藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007033960A priority Critical patent/JP2010105051A/en
Priority to PCT/JP2008/052306 priority patent/WO2008099832A1/en
Publication of JP2010105051A publication Critical patent/JP2010105051A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/26Apparatus for moving or positioning electrode relatively to workpiece; Mounting of electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/26Apparatus for moving or positioning electrode relatively to workpiece; Mounting of electrode
    • B23H7/28Moving electrode in a plane normal to the feed direction, e.g. orbiting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/26Apparatus for moving or positioning electrode relatively to workpiece; Mounting of electrode
    • B23H7/30Moving electrode in the feed direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric discharge machining method and an electric discharge machine for machining a deep and thin slit. <P>SOLUTION: In this diesinking electric discharge machining method, pulse-like voltage is applied between a workpiece 2 and a belt-like tool electrode 11 while gripping the tool electrode 11 by a frame 18 and moving the tool electrode 11 relatively in the transverse direction of the tool electrode 11 in such a way that the vertical direction of thickness of the tool electrode 11 becomes the direction of advance of machining for forming the slit to perform electric discharge machining. This method comprises a fixing process for sticking the workpiece 2 to a holder 36 while maintaining electric conductivity and a machining process for machining the workpiece 2 to form the slit in it by using the tool electrode 11. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、長さよりも幅、幅よりも厚さが著しく小さい、帯状、リボン状、ブレード状の工具電極を用いて、被加工物に工具電極の厚さ程度の幅を持つスリット形状を加工する形彫放電加工方法および形彫放電加工装置に関するものである。   The present invention uses a strip-like, ribbon-like, or blade-like tool electrode that has a width that is significantly smaller than its length and a thickness that is significantly smaller than its width. The present invention relates to a sculpting electric discharge machining method and a sculpting electric discharge machining apparatus.

工具電極を用いて被加工物を放電加工する技術として、ワイヤ状の電極を繰り出しつつ、ワイヤの軌跡を制御することにより任意の形状を加工するワイヤ放電加工や、工具電極の形状を被加工物に転写する形彫放電加工がある。このような放電加工では、工具電極と被加工物との間にアーク放電を発生させて被加工物を微小量ずつ溶融除去するので、工具電極と被加工物とが非接触の状態で加工される。   As a technique for electric discharge machining of a workpiece using a tool electrode, wire electric discharge machining that processes an arbitrary shape by controlling the trajectory of a wire while feeding a wire-shaped electrode, or the shape of a tool electrode There is a sculpture electric discharge machining to transfer to. In such electric discharge machining, an arc discharge is generated between the tool electrode and the work piece to melt and remove the work piece by minute, so that the tool electrode and the work piece are machined in a non-contact state. The

このような放電加工を用いて、被加工物にスリットを形成するスリット加工は、従来ワイヤ放電加工が広く用いられていた。しかしながら、ワイヤ放電加工では、通常φ0.3mm程度のワイヤ電極を用いるため、ワイヤを断線させることなく付与可能な張力は、あまり大きくない。そのため、加工中のワイヤ振動を十分に抑制できず、被加工物の上下端面付近(すなわち、ワイヤの両支持点近傍)の加工スリット幅に比べて、被加工物の板厚方向中央付近(すなわち、ワイヤの両支持点から等距離の中央部近傍)の加工スリット幅が広くなり、スリット部分の加工形状精度が低下するという難点がある。   Conventionally, wire electric discharge machining has been widely used for slit machining for forming a slit in a workpiece using such electric discharge machining. However, in wire electric discharge machining, since a wire electrode having a diameter of about 0.3 mm is usually used, the tension that can be applied without breaking the wire is not so large. Therefore, the wire vibration during processing cannot be sufficiently suppressed, and the vicinity of the center of the workpiece in the plate thickness direction (that is, the vicinity of the upper and lower end surfaces of the workpiece (that is, the vicinity of both support points of the wire) Further, there is a problem that the processing slit width in the vicinity of the center portion equidistant from both the support points of the wire is widened, and the processing shape accuracy of the slit portion is lowered.

なお、この傾向はワイヤが細くなるほど顕著になるとともに、ワイヤの支持点間の距離が長くなるほど顕著になるので、加工するスリットの幅が細いほど加工スリット幅の精度が悪化し、被加工物が厚いほど加工スリット幅の精度が悪化する。また、複数の電極を用いて一度に複数のスリットを加工する場合には、各ワイヤ電極毎に繰り出しと巻き取りの機構が必要となるため機構が複雑化する。したがって、多数の電極を同時に使用して、一度に多くのスリットを加工する方法は現実的ではなかった。   This tendency becomes more prominent as the wire becomes thinner, and becomes more prominent as the distance between the support points of the wire becomes longer. Therefore, as the slit width to be processed becomes thinner, the accuracy of the processing slit width deteriorates, and the workpiece becomes The greater the thickness, the worse the processing slit width accuracy. Further, when a plurality of slits are processed at a time using a plurality of electrodes, a mechanism for feeding and winding is required for each wire electrode, which complicates the mechanism. Therefore, it is not practical to process many slits at the same time by using many electrodes at the same time.

一方、被加工物へのスリット加工において、ブレード状の工具電極を用いた形彫放電加工が特許文献1に記載されている。特許文献1に記載された技術は、ブレード状電極の両端を非常に強い張力で把持し、形彫放電加工を行うものである。ワイヤ放電加工を用いた加工スリットと同じ幅のスリットを加工するためには、ブレード状電極の厚さをワイヤ電極の直径と同程度とする必要があるが、ブレード状電極の幅はワイヤ電極の直径よりも数十倍〜数百倍以上大きくすることができるため、ブレード状電極にはワイヤ電極よりも著しく強い張力を付与できる。したがって、ブレード状の工具電極を用いた場合には、ワイヤ電極を用いる場合よりも加工中の工具電極振動を大幅に減少できるので、厚い被加工物に細いスリットを加工する場合に形状精度の高いスリットを加工できる。   On the other hand, Patent Document 1 discloses a sculpting electric discharge machining using a blade-like tool electrode in slit machining on a workpiece. In the technique described in Patent Document 1, both ends of a blade-like electrode are gripped with very strong tension to perform sculpting electric discharge machining. In order to machine a slit having the same width as a machining slit using wire electric discharge machining, it is necessary to make the thickness of the blade-like electrode approximately the same as the diameter of the wire electrode. Since the diameter can be several tens to several hundred times larger than the diameter, the blade-like electrode can be given a significantly stronger tension than the wire electrode. Therefore, when a blade-shaped tool electrode is used, the tool electrode vibration during processing can be greatly reduced as compared with the case of using a wire electrode. Therefore, when a thin slit is processed on a thick workpiece, the shape accuracy is high. Can process slits.

ところで、工具電極を用いて被加工物を放電加工する際には、工具電極と被加工物の間に発生する加工屑などを効率良く排出しながら、迅速に被加工物を加工していく必要があり、特許文献1に記載の放電加工では、工具電極の長手方向と同一ライン上に工具電極よりも厚さの薄い加工溝清掃用プレートを設け、放電条件の切り替え毎にワークテーブルを移動させることで加工溝に堆積する加工屑を排除しながら被加工物に溝加工を施している。   By the way, when electric discharge machining a workpiece using a tool electrode, it is necessary to process the workpiece quickly while efficiently discharging machining waste generated between the tool electrode and the workpiece. In electric discharge machining described in Patent Document 1, a machining groove cleaning plate having a thickness smaller than that of the tool electrode is provided on the same line as the longitudinal direction of the tool electrode, and the work table is moved each time the discharge conditions are switched. Thus, grooving is performed on the workpiece while eliminating the processing waste accumulated in the processing groove.

特開平1−188233号公報JP-A-1-188233

上記特許文献1では、放電条件の切替えごとに加工溝清掃用薄板を加工間隙(溝)内に移動させて加工屑を排出している。このため、加工中には加工屑を排出できず、加工屑を排出させるためには加工を中断する必要がある。加工屑の排出には、工具電極の端に位置している加工溝清掃用薄板を、加工溝の全長にわたって移動させる必要があるから、加工屑の排出動作には多くの時間を要する。したがって、この方法のみで加工屑の滞留による異常放電を防止しつつ加工能率の著しい低下を避けることは、実際には困難であった。   In Patent Document 1, each time the discharge condition is switched, the processing groove cleaning thin plate is moved into the processing gap (groove) to discharge the processing waste. For this reason, machining waste cannot be discharged during machining, and machining needs to be interrupted in order to discharge the machining waste. Since the processing groove cleaning thin plate positioned at the end of the tool electrode needs to be moved over the entire length of the processing groove in order to discharge the processing waste, a long time is required for the operation of discharging the processing waste. Therefore, it has been difficult in practice to avoid a significant decrease in machining efficiency while preventing abnormal discharge due to stagnation of machining waste only with this method.

そこで、加工間隙内の加工屑を排出するための一般的な形彫放電加工で実現されている周知のジャンプ動作、すなわち、工具電極と被加工物を数秒周期で定期的に引き離しては接近させることにより、工具電極と被加工物の間に形成される加工間隙の体積変化に伴うポンプ作用を生ぜしめて、加工間隙内の加工液の流出および流入に伴って加工屑を排出させる動作、を併用する必要がある。   Therefore, a well-known jump operation realized by general sculpting electric discharge machining for discharging machining scraps in the machining gap, that is, the tool electrode and the work piece are periodically separated in a period of several seconds and brought close to each other. In combination, the pumping action associated with the change in the volume of the machining gap formed between the tool electrode and the workpiece is generated, and the operation of discharging the machining waste as the machining fluid flows out and flows in the machining gap is also used. There is a need to.

しかしながら、ブレード状の電極を用いたスリット加工の場合には、加工されたスリットが深くなった場合に、ジャンプ動作では十分な加工屑の排出作用を得られない問題がある。   However, in the case of slit machining using a blade-shaped electrode, there is a problem that when the machined slit becomes deep, sufficient jumping action cannot be obtained in the jump operation.

ジャンプ動作で加工屑の排出作用を得るためには、電極をジャンプさせることによって加工間隙の体積を大きく変化させ、外部から加工間隙に清浄な加工液を流入させることが必要である。ジャンプ動作では、加工部分から外部へ引き出された工具電極の体積に相当する加工液が加工間隙へ流入することになるから、ジャンプ動作の前には加工された部分のほとんどを工具電極が占めていて、ジャンプ動作により工具電極の多くの部分が加工部分から引き出されるような場合には、加工屑の排出効果が十分に得られることになる。しかし、ブレード電極を用いたスリット加工の場合には、加工深さ方向の工具電極の幅が小さいため、加工スリットが深くなると、ジャンプ動作では加工済みのスリット内部で工具電極が移動するのみで、加工スリット部分から外部へ工具電極が引き出されない。したがって、この場合のジャンプ動作は、加工されたスリット内部に存在する加工液の循環を図る作用しか持ちえず、加工スリット部分の外部から加工間隙への加工液の流入作用がほとんど期待できないため、十分な加工屑の排出作用が得られない。   In order to obtain a machining waste discharging action by the jump operation, it is necessary to change the volume of the machining gap by jumping the electrode and to allow a clean machining fluid to flow into the machining gap from the outside. In the jump operation, since the machining fluid corresponding to the volume of the tool electrode drawn out from the machining part flows into the machining gap, the tool electrode occupies most of the machined part before the jump operation. Thus, when many parts of the tool electrode are pulled out from the machining part by the jumping operation, the machining waste discharging effect is sufficiently obtained. However, in the case of slit machining using a blade electrode, the width of the tool electrode in the machining depth direction is small, so when the machining slit becomes deep, the jump operation only moves the tool electrode inside the machined slit, The tool electrode is not pulled out from the machining slit. Therefore, the jump operation in this case can only have the effect of circulating the machining fluid existing inside the machined slit, and the flow of machining fluid from the outside of the machining slit part to the machining gap can hardly be expected, Sufficient machining waste discharging action cannot be obtained.

すなわち、特許文献1に開示された技術は、それのみでは加工能率の低下を避けつつ加工屑を効率的に排除して異常放電を防止することは実質的に困難であり、電極のジャンプ動作を併用した場合においても、加工深さが電極の加工進行方向の幅よりも大きいと十分な加工屑排出効果が得られない。したがって、特許文献1に開示された技術は、加工深さが電極の加工進行方向の幅と同程度の浅いスリット加工を対象とした技術である。   That is, with the technique disclosed in Patent Document 1, it is substantially difficult to effectively eliminate machining waste and prevent abnormal discharge while avoiding a reduction in machining efficiency. Even when they are used together, if the machining depth is larger than the width of the electrode in the machining progress direction, a sufficient machining waste discharging effect cannot be obtained. Therefore, the technique disclosed in Patent Document 1 is a technique for a shallow slit process in which the processing depth is approximately the same as the width of the electrode in the processing progress direction.

特許文献1に開示された技術が、比較的浅いスリット加工を対象としていることは、電極を把持する構成からも判明する。また、特許文献1に開示された技術は、加工された2本のスリットの間隔が比較的広い加工を対象としていることも判明する。なぜならば、特許文献1に開示された技術では、電極本体の両側に溝加工用の薄板電極を設置し、電極本体の両端に設けた把持部により薄板電極に張力を付与している。したがって、加工スリットが深くなった場合には、加工された2本のスリットの間に残った被加工物が、電極本体と干渉する状態となるため、あまり深くスリットを加工できない。また、2枚の溝加工用薄板電極の間に電極本体が位置しているが、この電極本体を用いて溝加工用薄板電極に張力を付与するため、電極本体は比較的厚い構造を有する必要がある。したがって、この電極本体の両側に位置している2枚の溝加工用薄板電極の間隔を狭くできないので、加工スリットの間隔も狭くできず、被加工物を薄くスライスできない。   The fact that the technique disclosed in Patent Document 1 is intended for relatively shallow slit processing is also found from the configuration for gripping the electrodes. Moreover, it turns out that the technique disclosed in Patent Document 1 is intended for processing in which the distance between two processed slits is relatively wide. This is because, in the technique disclosed in Patent Document 1, thin plate electrodes for groove processing are installed on both sides of an electrode body, and tension is applied to the thin plate electrodes by gripping portions provided at both ends of the electrode body. Accordingly, when the machining slit becomes deep, the workpiece remaining between the two machined slits interferes with the electrode main body, so that the slit cannot be machined too deeply. In addition, the electrode body is located between the two thin plate electrodes for groove processing. In order to apply tension to the thin plate electrode for groove processing using this electrode body, the electrode body must have a relatively thick structure. There is. Therefore, since the interval between the two thin plate electrodes for groove processing located on both sides of the electrode body cannot be reduced, the interval between the machining slits cannot be reduced, and the workpiece cannot be sliced thinly.

したがって、以上に述べたような技術では、被加工物を薄くかつ僅かな切り代で高精度に切断したり、深く細いスリットを加工するといった、例えば、太陽電池等に用いられるシリコンブロックの加工に適用することが、従来のワイヤ放電加工或いはブレード状電極を用いた形彫放電加工では実現できなかった。   Therefore, in the technology as described above, for example, for processing a silicon block used in a solar cell or the like, such as cutting a workpiece with high precision with a thin and small cutting margin, or processing a deep and narrow slit. Application has not been realized by conventional wire electric discharge machining or sculpting electric discharge machining using a blade-like electrode.

本発明は、上記に鑑みてなされたものであって、被加工物を薄くかつ僅かな切り代で高精度に切断したり、深く細いスリットを加工するといった技術を放電加工により確立することを目的とするものである。   The present invention has been made in view of the above, and it is an object of the present invention to establish a technique for cutting a workpiece with high precision with a thin and small cutting allowance, or processing a deep and narrow slit by electric discharge machining. It is what.

また、加工に際しては、工具電極と被加工物の間に発生する加工屑を効率良く排出しながら迅速に被加工物を加工する放電加工方法および放電加工装置を得ることを目的とする。   Another object of the present invention is to obtain an electric discharge machining method and an electric discharge machining apparatus that can quickly process a workpiece while efficiently discharging machining waste generated between the tool electrode and the workpiece.

帯状の工具電極の厚さの垂直方向がスリット形成加工進行方向となるように、前記工具電極を把持し、前記工具電極を相対的に移動させつつ、被加工物と前記工具電極との間にパルス状の電圧を印加し、放電加工を行う形彫放電加工方法において、前記被加工物を被加工物保持部材に導電性を維持して接着する固着工程と、前記被加工物をスリット加工する加工工程と、を備えたことを特徴とする。   While gripping the tool electrode and moving the tool electrode relatively so that the vertical direction of the thickness of the strip-shaped tool electrode becomes the slit forming processing progress direction, the workpiece electrode is interposed between the work electrode and the tool electrode. In a sculpting electric discharge machining method in which a pulsed voltage is applied to perform electric discharge machining, a fixing step of bonding the workpiece to a workpiece holding member while maintaining conductivity, and slitting the workpiece. And a processing step.

被加工物を被加工物保持部材に導電性を維持して接着しているので、被加工物が加工された後に落下することはなく、深く細いスリットを加工することが可能になるという効果を奏する。   Since the work piece is bonded to the work piece holding member while maintaining conductivity, the work piece does not fall after being processed, and it is possible to process a deep and narrow slit. Play.

以下に、本発明に係る形彫放電加工方法および形彫放電加工装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   DESCRIPTION OF EMBODIMENTS Embodiments of a sculpting electric discharge machining method and a sculpting electric discharge machining apparatus according to the present invention will be described below in detail based on the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
まず、本実施の形態に係る放電加工の概念について説明する。図1は、本実施の形態に係る放電加工の概念を説明するための説明図であり、説明の便宜上、以下では工具電極11の長手方向をZ軸方向、短手(幅)方向をX軸方向、厚さ方向をY軸方向として説明する。
Embodiment 1 FIG.
First, the concept of electric discharge machining according to the present embodiment will be described. FIG. 1 is an explanatory diagram for explaining the concept of electric discharge machining according to the present embodiment. For convenience of explanation, the longitudinal direction of the tool electrode 11 is hereinafter referred to as the Z-axis direction, and the short (width) direction is referred to as the X-axis. The direction and the thickness direction will be described as the Y-axis direction.

図に示される如く、形彫放電を行なうブレード状(薄板の帯状)の工具電極11を用いて太陽電池用シリコンブロックなどの被加工物2を放電加工する際に、工具電極11を厚さ方向(Y軸方向)と垂直な平面(すなわち、X軸方向およびZ軸方向に平行な平面)に沿って進めることにより、工具電極11の厚さより放電間隙長分だけ幅の広い溝を被加工物2に加工する。図に示されるように、工具電極11を直立させて、工具電極11の幅方向(X軸方向)を加工進行方向と一致させる方法が最も一般的と考えられるため、以下では便宜上X軸方向を加工進行方向として説明する。しかし、本発明における放電加工は、これに限られるわけではなく、例えば工具電極11を鉛直方向から傾けた状態で加工を水平方向へ進行させるなど、加工進行方向と工具電極11の幅方向が異なっている場合も含まれる。なお、実際には、工具電極11を複数枚並べて被加工物2に加工を行い、複数の加工スリット(加工溝)を一度に加工する。   As shown in the drawing, when the workpiece 2 such as a silicon block for solar cells is subjected to electric discharge machining using a blade-like (thin strip-like) tool electrode 11 for sculpting discharge, the tool electrode 11 is moved in the thickness direction. By moving along a plane perpendicular to the (Y-axis direction) (that is, a plane parallel to the X-axis direction and the Z-axis direction), a groove having a width wider than the thickness of the tool electrode 11 by the discharge gap length is formed. Process to 2. As shown in the figure, the most common method is to make the tool electrode 11 upright and make the width direction (X-axis direction) of the tool electrode 11 coincide with the machining progress direction. It demonstrates as a process advancing direction. However, the electric discharge machining in the present invention is not limited to this, and the machining progress direction and the width direction of the tool electrode 11 are different, for example, the machining is advanced in the horizontal direction with the tool electrode 11 tilted from the vertical direction. It is also included. In practice, a plurality of tool electrodes 11 are arranged side by side to process the workpiece 2, and a plurality of processing slits (processing grooves) are processed at a time.

次に、本発明の実施の形態に係る放電加工装置について、図2を用いて説明する。放電加工装置100は、保持具36に保持された被加工物2に対し、電極機構1により複数保持されたブレード状の工具電極11を用いて、形彫り放電加工を実行してスリット溝を加工する装置であり、以下に述べる構成となっている。   Next, an electric discharge machining apparatus according to an embodiment of the present invention will be described with reference to FIG. The electric discharge machining apparatus 100 processes the slit groove by performing the engraving electric discharge machining on the workpiece 2 held by the holder 36 using the blade-shaped tool electrode 11 held by the electrode mechanism 1. The apparatus is configured as follows.

ブレード状の工具電極11は電極機構1に複数枚並べられた状態で保持される。電極機構1は主軸3に接続され、NC制御装置31の指令に基づきZ軸方向、すなわち工具電極11の長手方向に駆動制御されている。また、被加工物2が載置された定盤35は、NC制御装置31の加工プログラムからの指令に基づきモータ32を介して加工槽33と共にXY軸方向に移動する。   A plurality of blade-shaped tool electrodes 11 are held in a state of being arranged in the electrode mechanism 1. The electrode mechanism 1 is connected to the main shaft 3 and driven and controlled in the Z-axis direction, that is, the longitudinal direction of the tool electrode 11 based on a command from the NC control device 31. Further, the surface plate 35 on which the workpiece 2 is placed moves in the XY axis direction together with the machining tank 33 via the motor 32 based on a command from the machining program of the NC control device 31.

加工電源37は、電極機構1を介した工具電極11と、定盤35、保持具36を介した被加工物2の間にパルス電圧を供給し、これにより油性液や脱イオン水等の加工液を貯留した加工槽33内で放電加工が行われる。なお、加工電源37は、各工具電極11毎に個別にパルス電圧を印加可能な構成となっており、一般的には各工具電極11毎に接続された複数の独立した電源の集合体である。加工電源37内のそれぞれの電源は、各工具電極11毎に、被加工物2に対して低ピーク短パルスの小エネルギー放電を高い周波数で繰り返し発生させて被加工物2を加工するため、例えばパルス幅1μsec〜4μsecで、放電のピーク電流が10A〜50Aの範囲となるような群パルス電圧を各工具電極11に印加する。なお、加工電源37が印加する電圧パルスは、単極性でもよいし両極性でもよい。   The machining power source 37 supplies a pulse voltage between the tool electrode 11 via the electrode mechanism 1 and the workpiece 2 via the surface plate 35 and the holder 36, thereby processing oily liquid, deionized water or the like. Electric discharge machining is performed in the machining tank 33 storing the liquid. The machining power source 37 is configured to be able to individually apply a pulse voltage to each tool electrode 11 and is generally an assembly of a plurality of independent power sources connected to each tool electrode 11. . Each power source in the processing power source 37 processes the workpiece 2 by repeatedly generating a small energy discharge of a low peak short pulse at a high frequency with respect to the workpiece 2 for each tool electrode 11. A group pulse voltage having a pulse width of 1 μsec to 4 μsec and a discharge peak current in the range of 10 A to 50 A is applied to each tool electrode 11. The voltage pulse applied by the machining power source 37 may be unipolar or bipolar.

保持具36は、被加工物2の少なくとも一つの面で被加工物2との導電性を維持しつつ被加工物2を保持するものであり、保持には導電性接着剤による接着などの方策が用いられる。なお、図2に示したように、工具電極11の長手方向を鉛直方向に設定し、被加工物2の前側面から加工を開始する場合、保持具36は被加工物2の底面と上面、および加工終了時に最後に加工される背側面の少なくともいずれか一つの面から被加工物2を保持する。被加工物2の底面や上面から保持具36により保持される構成の場合には、被加工物2の加工と同時に被加工物2を保持している保持具36も共にスリット加工が施される。また、被加工物2の背側面から保持される構成の場合には、保持具36の保持面が僅かに加工される位置まで加工が施される。   The holder 36 holds the workpiece 2 while maintaining electrical conductivity with the workpiece 2 on at least one surface of the workpiece 2, and measures such as adhesion with a conductive adhesive are used for the holding. Is used. As shown in FIG. 2, when the longitudinal direction of the tool electrode 11 is set to the vertical direction and the machining is started from the front side surface of the workpiece 2, the holder 36 has the bottom and top surfaces of the workpiece 2, And the workpiece 2 is hold | maintained from the at least any one surface of the back side surface processed at the end of a process. In the case of a configuration in which the workpiece 2 is held by the holder 36 from the bottom or top surface of the workpiece 2, the holder 36 holding the workpiece 2 is simultaneously slitted simultaneously with the processing of the workpiece 2. . Further, in the case of a configuration in which the workpiece 2 is held from the back side surface, the processing is performed to a position where the holding surface of the holder 36 is slightly processed.

また、加工液調整部38は、クーラーにより加工槽33内の加工液34を所定の温度に調整し、フィルタにより加工液34内の加工屑を除去するなど、放電加工を継続する上で加工液に必要な循環管理を実行する。   Further, the machining liquid adjusting unit 38 adjusts the machining liquid 34 in the machining tank 33 to a predetermined temperature with a cooler, and removes machining debris in the machining liquid 34 with a filter. Execute the necessary circular management.

NC制御装置31は、工具電極11と被加工物2が微小間隙を隔てて対向するようサーボ制御を行い、モータ32を制御することで、工具電極11と被加工物2の加工進行方向の相対位置を制御する。また、NC制御装置31は、主軸3を制御して、電極機構1を間歇的にもしくは連続的にZ軸方向に往復運動させる。換言すると、NC制御装置31は、電極機構1に摺動動作を行なわせる。なお、ここでのNC制御装置31が特許請求の範囲に記載の摺動手段に対応する。   The NC control device 31 performs servo control so that the tool electrode 11 and the workpiece 2 are opposed to each other with a minute gap, and controls the motor 32 so that the tool electrode 11 and the workpiece 2 are relative to each other in the machining progress direction. Control the position. Further, the NC control device 31 controls the main shaft 3 to reciprocate the electrode mechanism 1 in the Z-axis direction intermittently or continuously. In other words, the NC control device 31 causes the electrode mechanism 1 to perform a sliding operation. The NC control device 31 here corresponds to the sliding means described in the claims.

なお、ここでは主軸3が電極機構1を往復運動させる構成としたが、主軸3で保持具36及び被加工物2を保持し、定盤35に固定した電極機構1に保持される工具電極11との間で放電加工を実行しつつ、保持具36及び被加工物2を工具電極11の長手方向に往復運動させる構成としてもよい。   Here, the main shaft 3 is configured to reciprocate the electrode mechanism 1, but the tool electrode 11 that is held by the electrode mechanism 1 that holds the holder 36 and the workpiece 2 by the main shaft 3 and is fixed to the surface plate 35. It is good also as a structure which makes the holder 36 and the to-be-processed object 2 reciprocate in the longitudinal direction of the tool electrode 11, performing electrical discharge machining between.

また、ここではモータ32により定盤35を駆動し、主軸3により電極機構1を駆動したが、工具電極11と被加工物2が相対的にXYZ軸方向に駆動されるような、いかなる駆動方式を用いてもよい。   Here, the surface plate 35 is driven by the motor 32, and the electrode mechanism 1 is driven by the main shaft 3. However, any driving system in which the tool electrode 11 and the workpiece 2 are driven in the XYZ axial directions relatively. May be used.

つぎに、電極機構1の詳細な構成について、図3、図4、図5、図6を用いて説明する。薄くて細長いブレード形状をなした導電性材料よりなる複数の工具電極11は、図3および図4に示すように、少なくとも表面がセラミックスなどの不導体であるスペーサ12と交互に積み重ねられ、工具電極11の長手方向の両端部に設けられた各穴と、スペーサ12に設けられた穴に電極保持部14A,14Bを貫通させることによって、平行かつ所定間隔のすだれ状に位置決め固定されている。換言すると、工具電極11は、工具電極11の一端を櫛歯状に固定されている。なお、ここでの電極保持部14A,14Bが特許請求の範囲に記載の連結部材に対応する。なお、電極保持部14Aおよび14Bは、工具電極11に設けられた穴と接する表面が不導体材料からなっており、それぞれの工具電極11が電極保持部14A、14Bを介して互いに導通状態とならないよう構成されている。また、それぞれの工具電極11には、それぞれ個別の給電線51が、加工電源37を構成するそれぞれ独立の電源より接続されている。   Next, a detailed configuration of the electrode mechanism 1 will be described with reference to FIGS. 3, 4, 5, and 6. As shown in FIGS. 3 and 4, the plurality of tool electrodes 11 made of a thin and elongated blade-shaped conductive material are alternately stacked with spacers 12 whose surfaces are non-conductors such as ceramics. The electrode holding portions 14A and 14B are passed through the holes provided at both ends in the longitudinal direction of 11 and the holes provided in the spacer 12, so that the electrodes are positioned and fixed in a parallel shape at a predetermined interval. In other words, the tool electrode 11 has one end of the tool electrode 11 fixed in a comb shape. Here, the electrode holding portions 14A and 14B correspond to the connecting members described in the claims. Note that the electrode holding portions 14A and 14B are made of a non-conductive material on the surface in contact with the hole provided in the tool electrode 11, and the respective tool electrodes 11 are not electrically connected to each other via the electrode holding portions 14A and 14B. It is configured as follows. Each tool electrode 11 is connected with an individual power supply line 51 from an independent power source constituting the machining power source 37.

そして、図5に示すように、工具電極11の両端に設けられた穴の間隔より僅かに広い間隔で電極保持部14A,14Bがフレーム18に固定されることにより、工具電極11は長手方向に所定の張力が付与され、電極機構1が形成される。なお、工具電極11の厚さが100μm程度の場合には、工具電極11の長手方向に付与する張力は1kgf以上、望ましくは3kgf以上で30kgf程度以下、さらに望ましくは10kgf程度である。   Then, as shown in FIG. 5, the electrode holding portions 14A and 14B are fixed to the frame 18 at intervals slightly wider than the intervals between the holes provided at both ends of the tool electrode 11, whereby the tool electrode 11 is moved in the longitudinal direction. A predetermined tension is applied, and the electrode mechanism 1 is formed. When the thickness of the tool electrode 11 is about 100 μm, the tension applied in the longitudinal direction of the tool electrode 11 is 1 kgf or more, preferably 3 kgf or more and about 30 kgf or less, more preferably about 10 kgf.

ここで、被加工物2の厚さが150mm程度であって、加工するスリットの幅が100μm程度の場合、工具電極11のY軸方向の厚さは50〜100μm程度、短手方向すなわちX軸方向の幅は1〜3mm程度、長手方向すなわちZ軸方向の高さは180〜220mm程度が望ましい。また、材質は洋白(洋銀)、リン青銅、ベリリウム銅などの導電性のバネ材料が望ましいが、純銅、鉄などの一般の金属材料でもよく、これらの材質からなるリボン状の箔で工具電極は構成される。   Here, when the thickness of the workpiece 2 is about 150 mm and the width of the slit to be processed is about 100 μm, the thickness of the tool electrode 11 in the Y-axis direction is about 50 to 100 μm, the short direction, that is, the X-axis. The width in the direction is preferably about 1 to 3 mm, and the height in the longitudinal direction, that is, the Z-axis direction is preferably about 180 to 220 mm. The material is preferably a conductive spring material such as white (silver), phosphor bronze, and beryllium copper, but it may be a general metal material such as pure copper or iron, and a ribbon-like foil made of these materials as a tool electrode. Is composed.

また、電極機構1のZ軸方向の往復運動によってスペーサ12と被加工物2とが衝突することを避けるため、上側のスペーサ12と下側のスペーサ12との間の間隔は、往復運動の片道工程距離と、被加工物2のZ軸方向の厚さと、保持具36の厚みの和よりも大きく設定されている。   Further, in order to avoid the collision between the spacer 12 and the workpiece 2 due to the reciprocating motion of the electrode mechanism 1 in the Z-axis direction, the distance between the upper spacer 12 and the lower spacer 12 is one way of the reciprocating motion. The distance is set larger than the sum of the process distance, the thickness of the workpiece 2 in the Z-axis direction, and the thickness of the holder 36.

さらに、工具電極11を保持するフレーム18は、スリットを深くまで加工しても被加工物2と干渉しないように、次のような構造となっている。フレーム18は、Y軸方向(すなわち工具電極11の厚さ方向)には被加工物2のY軸方向の厚さよりも大きい空間であって、Z軸方向(すなわち工具電極の長手方向)には被加工物2および保持具36のZ軸方向の厚さと工具電極11の往復運動の片道工程距離の和よりも大きい空間を、Y軸方向およびZ軸方向の三方もしくは四方から取り囲む構造となっている。換言すると、フレーム18は、工具電極11を囲繞する位置に配設された壁面であって、工具電極11をスリット形成加工進行方向に進めた際に壁面が工具電極11によって加工される被加工物2の加工位置を通過しない壁面を用いて工具電極11を保持している。このように、フレーム18は、工具電極11を外側で保持する外側保持具であり、工具電極11で形成するスリット部分に被加工物2の加工領域全てが内包されるように被加工物2が載置されている。多くの場合、工具電極11のうち電極保持部14A,14Bを貫通させる穴などの放電加工しない部位を除いた部分は、この空間内に保持される構成となるが、フレーム18が取り囲む空間と工具電極11のうち放電加工する部位との位置が加工進行方向にずれていても支障はない。   Further, the frame 18 that holds the tool electrode 11 has the following structure so as not to interfere with the workpiece 2 even if the slit is processed deeply. The frame 18 is a space larger than the thickness of the workpiece 2 in the Y-axis direction in the Y-axis direction (that is, the thickness direction of the tool electrode 11), and in the Z-axis direction (that is, the longitudinal direction of the tool electrode). The space is larger than the sum of the thickness of the workpiece 2 and the holder 36 in the Z-axis direction and the one-way process distance of the reciprocating motion of the tool electrode 11 from three or four directions in the Y-axis direction and the Z-axis direction. Yes. In other words, the frame 18 is a wall surface disposed at a position surrounding the tool electrode 11, and the workpiece whose wall surface is processed by the tool electrode 11 when the tool electrode 11 is advanced in the slit forming processing advance direction. The tool electrode 11 is held using a wall surface that does not pass through the machining position 2. Thus, the frame 18 is an outer holding tool for holding the tool electrode 11 on the outside, and the workpiece 2 is placed so that the entire machining area of the workpiece 2 is included in the slit portion formed by the tool electrode 11. It is placed. In many cases, a portion of the tool electrode 11 excluding a portion not subjected to electric discharge machining, such as a hole penetrating the electrode holding portions 14A and 14B, is configured to be held in this space, but the space surrounded by the frame 18 and the tool There is no problem even if the position of the electrode 11 with respect to the part to be subjected to electric discharge machining is shifted in the machining progress direction.

加工の進行に伴って、工具電極11と、被加工物2および保持具36との加工進行方向の相対位置が変化し、図6に示すような位置関係となるが、フレーム18が上記のように被加工物2のY軸方向およびZ軸方向の外側から工具電極11を保持する構成となっているので、フレーム18は加工開始から終了まで被加工物2および保持具36の外側を通過し、フレーム18と被加工物2および保持具36が干渉することはない。   As the machining progresses, the relative position of the tool electrode 11, the workpiece 2 and the holder 36 in the machining progress direction changes, and the positional relationship as shown in FIG. 6 is obtained, but the frame 18 is as described above. Since the tool electrode 11 is held from the outside of the workpiece 2 in the Y-axis direction and the Z-axis direction, the frame 18 passes outside the workpiece 2 and the holder 36 from the start to the end of the processing. The frame 18, the workpiece 2 and the holder 36 do not interfere with each other.

なお実用上は、フレーム18が取り囲む空間のY軸方向の幅を、被加工物2のY軸方向の厚さよりも10mm程度以上大きくし、フレーム18が取り囲む空間のZ軸方向の幅を、被加工物2のZ軸方向の厚さと工具電極11と被加工物2のZ軸方向の相対的な往復運動の片道工程距離の和よりも10mm程度以上大きくなるようにフレーム18を構成すれば、上記が容易に実現できる。   Practically, the width in the Y-axis direction of the space surrounded by the frame 18 is made about 10 mm or more larger than the thickness of the workpiece 2 in the Y-axis direction, and the width in the Z-axis direction of the space surrounded by the frame 18 is If the frame 18 is configured to be about 10 mm or more larger than the sum of the thickness of the workpiece 2 in the Z-axis direction and the one-way process distance of the relative reciprocation of the tool electrode 11 and the workpiece 2 in the Z-axis direction, The above can be easily realized.

また、上記ではフレーム18により被加工物2を取り囲む構成としたが、電極保持部14Aや14Bなど、電極機構1の構成要素のうち工具電極11を保持する要素をフレーム18の一部として代用して被加工物2を取り囲む構成としても同様の効果を奏する。   In the above description, the workpiece 2 is surrounded by the frame 18, but elements that hold the tool electrode 11 among the components of the electrode mechanism 1 such as the electrode holding portions 14 </ b> A and 14 </ b> B are used as a part of the frame 18. Thus, the same effect can be obtained as a configuration surrounding the workpiece 2.

つぎに、各工具電極11からそれぞれの給電線51を加工電源37へ接続する方法について、図7を用いて説明する。各工具電極11からそれぞれ個別に放電を発生させるため、各工具電極11と接続される給電線51を、各工具電極11毎に並列に加工電源37を構成するそれぞれの電源へ接続する必要がある。しかし、工具電極11やスペーサ12が薄い場合には、隣接する工具電極11や給電線51と接触させることなく、目的の工具電極11のみに給電線51を接続することが困難である。そのため、例えば各工具電極11に給電線51と接続させるための凸部状の電源接続部を段階状に設け、隣接する工具電極11や給電線51との接触を防止する。具体的には、図7に示される如く、工具電極11の長手方向の端部近傍に、工具電極における長手方向の位置が異なる電源接続部52A〜52Cの何れかを設ける。これにより、各工具電極11とスペーサ12を交互に重ねた場合に、各電源接続部52A〜52Cは、所定間隔離間して位置することになるから、目的の工具電極11のみに給電線51を接続することが容易となり、各工具電極11間の導通を防止できる。   Next, a method of connecting each power supply line 51 from each tool electrode 11 to the machining power source 37 will be described with reference to FIG. In order to generate discharge from each tool electrode 11 individually, it is necessary to connect the power supply line 51 connected to each tool electrode 11 to each power source constituting the machining power source 37 in parallel for each tool electrode 11. . However, when the tool electrode 11 or the spacer 12 is thin, it is difficult to connect the power supply line 51 only to the target tool electrode 11 without making contact with the adjacent tool electrode 11 or power supply line 51. Therefore, for example, each tool electrode 11 is provided with a convex power supply connection portion for connecting to the power supply line 51 in a stepped manner to prevent contact with the adjacent tool electrode 11 or power supply line 51. Specifically, as shown in FIG. 7, any one of the power supply connection portions 52 </ b> A to 52 </ b> C having a different position in the longitudinal direction on the tool electrode is provided in the vicinity of the longitudinal end portion of the tool electrode 11. As a result, when the tool electrodes 11 and the spacers 12 are alternately stacked, the power connection portions 52A to 52C are positioned at a predetermined interval. It becomes easy to connect and conduction between the tool electrodes 11 can be prevented.

なお、工具電極11において長手方向の位置が異なる電源接続部を2種類または4種類以上準備しておき、これらの電源接続部を備えた工具電極11を組み合わせて電極機構1を構成してもよい。また、電源接続部の種類数は、工具電極11とスペーサ12の厚さ、給電線51の太さ、給電線51と工具電極11の接合部に必要な大きさなどに基づいて設定する。   In addition, the electrode mechanism 1 may be configured by combining two or four or more types of power connection portions having different longitudinal positions in the tool electrode 11 and combining the tool electrodes 11 having these power connection portions. . Further, the number of types of the power supply connection portion is set based on the thickness of the tool electrode 11 and the spacer 12, the thickness of the power supply line 51, the size necessary for the joint between the power supply line 51 and the tool electrode 11, and the like.

次に、図8を用いて、実際の加工動作について説明する。被加工物2及び電極機構1は、加工液34で満たされた加工槽33内に対向設置され、X軸方向で相対的に近づけて加工電源37よりパルス電圧を印加することで、工具電極11と被加工物2との間に放電を発生させる。その結果、電極機構1によるX軸方向の加工が進行し、工具電極11の厚さよりも僅かに大きい幅のスリットが工具電極11の枚数分だけ被加工物2に形成される。   Next, an actual machining operation will be described with reference to FIG. The workpiece 2 and the electrode mechanism 1 are placed opposite to each other in a machining tank 33 filled with a machining liquid 34, and are applied relatively close to each other in the X-axis direction to apply a pulse voltage from a machining power source 37, whereby the tool electrode 11 A discharge is generated between the workpiece 2 and the workpiece 2. As a result, machining in the X-axis direction by the electrode mechanism 1 proceeds, and slits having a width slightly larger than the thickness of the tool electrode 11 are formed in the workpiece 2 by the number of tool electrodes 11.

このとき、主軸3を制御して電極機構1をZ軸方向に往復運動させながら、X軸方向の加工を行なうが、工具電極11を保持するフレーム18は、既に述べたように被加工物2及び被加工物2の底面や上面と接合している保持具36の外側を通過する構造となっているので、深くまで溝加工を行っても被加工物2や保持具36と干渉することはない。   At this time, the machining is performed in the X-axis direction while controlling the main shaft 3 to reciprocate the electrode mechanism 1 in the Z-axis direction, but the frame 18 holding the tool electrode 11 is the workpiece 2 as described above. In addition, since the structure passes through the outside of the holder 36 that is joined to the bottom surface and the top surface of the workpiece 2, interference with the workpiece 2 and the holder 36 even if the groove processing is performed deeply. Absent.

被加工物2を加工進行方向へ全て加工完了した後に、被加工物2と保持具36とを接着している接着剤を剥離させる薬液に浸漬させたり、加熱するなどの処理により保持具36から離脱させると、スペーサ12の厚さから所定の放電ギャップを減じた厚さの薄板が得られる。   After the workpiece 2 has been completely processed in the processing progress direction, the workpiece 2 is immersed in a chemical solution that peels off the adhesive that bonds the workpiece 2 and the holder 36, or is heated from the holder 36 by a process such as heating. When separated, a thin plate having a thickness obtained by subtracting a predetermined discharge gap from the thickness of the spacer 12 is obtained.

ここで、保持具36が被加工物2を底面や上面から保持している場合には、保持具36も被加工物2と共に放電加工されるが、被加工物2のうち加工されずに残された薄板部分の底面部もしくは上面部には保持具36も残留しているから、被加工物2が加工後に落下することはない。また、保持具36が被加工物2を背側面から保持している場合には、加工終了時に保持具36も僅かに加工されるが、被加工物2のうち加工されずに残された薄板部分に接している保持具36は引き続き被加工物2を保持しているから、被加工物2が加工後に落下することはない。   Here, when the holder 36 holds the workpiece 2 from the bottom surface or the upper surface, the holder 36 is also subjected to electric discharge machining together with the workpiece 2, but the workpiece 2 remains without being processed. Since the holder 36 also remains on the bottom surface or top surface of the thin plate portion, the workpiece 2 does not fall after processing. Further, when the holder 36 holds the workpiece 2 from the back side, the holder 36 is slightly processed at the end of processing, but the thin plate left unprocessed in the workpiece 2 is processed. Since the holder 36 that is in contact with the portion continues to hold the workpiece 2, the workpiece 2 does not fall after processing.

次に、工具電極11と被加工物2を、相対的にZ軸方向に往復運動させることの意義について説明する。なお、以下の説明では、便宜上、被加工物2を固定し、工具電極11を移動させる場合について説明するが、両者の相対的な運動に基づく効果であるから、どちらを移動させても同じ説明が成立する。   Next, the significance of reciprocating the tool electrode 11 and the workpiece 2 relatively in the Z-axis direction will be described. In the following description, for the sake of convenience, the case where the workpiece 2 is fixed and the tool electrode 11 is moved will be described. However, since the effect is based on the relative movement between the two, the same description will be given regardless of which is moved. Is established.

工具電極11がZ軸方向で往復運動を行なっている間、加工スリット内で工具電極11の周囲に存在する加工液34は、加工液34の粘性のため工具電極11とともに移動する。これにより、工具電極11のZ軸方向の往復運動によって加工スリット内の加工液の一部が工具電極11とともにZ軸方向へ移動して加工スリット外へ流出し、新たな加工液34が加工スリット外から工具電極11とともに加工スリット内へ流入する。   While the tool electrode 11 is reciprocating in the Z-axis direction, the machining liquid 34 existing around the tool electrode 11 in the machining slit moves together with the tool electrode 11 due to the viscosity of the machining liquid 34. As a result, a part of the machining fluid in the machining slit moves in the Z-axis direction together with the tool electrode 11 by the reciprocating motion of the tool electrode 11 in the Z-axis direction, and flows out of the machining slit. It flows into the machining slit together with the tool electrode 11 from the outside.

この加工液34の流出と流入に伴って、加工間隙内で発生した加工屑や気泡が加工スリット外へ排出される。工具電極11のZ軸方向の往復運動に伴って入れ替わる加工液34の量が多いほど加工屑の排出作用が強くなり、異常放電等を起こしにくくなることから加工精度が大きく向上する。なお、工具電極11の短手方向の幅が広いほど加工屑の排出作用が強くなり、また、工具電極11の往復運動の距離が長いほど加工屑の排出作用が強くなる。   Along with the outflow and inflow of the machining liquid 34, machining waste and bubbles generated in the machining gap are discharged out of the machining slit. The greater the amount of the machining fluid 34 that is exchanged with the reciprocating motion of the tool electrode 11 in the Z-axis direction, the stronger the machining waste discharge action, and the less likely it is to cause abnormal discharge, thereby greatly improving machining accuracy. It should be noted that the wider the width of the tool electrode 11 in the short direction, the stronger the machining waste discharging action, and the longer the tool electrode 11 reciprocating distance, the stronger the machining waste discharging action.

一方、工具電極11の幅が狭いほど、工具電極11の短手方向(幅方向)と加工進行方向の平行度の誤差による加工溝幅の誤差が小さくなり、また、往復運動の距離が短いほど、工具電極11の長手方向と往復運動方向の平行度の誤差による加工間隙長の変動が小さくなる。このため、工具電極11の短手方向の幅、往復運動の距離は、適宜実験により求めることで最適なパラメータを得ることが必要である。   On the other hand, the narrower the width of the tool electrode 11, the smaller the error of the machining groove width due to the parallelism error between the short direction (width direction) of the tool electrode 11 and the machining progress direction, and the shorter the reciprocating distance. The variation in the machining gap length due to an error in parallelism between the longitudinal direction of the tool electrode 11 and the reciprocating direction is reduced. For this reason, it is necessary to obtain optimum parameters by appropriately determining the width of the tool electrode 11 in the short direction and the distance of the reciprocating motion by experiments.

本実施の形態では、例えば、工具電極11の厚さ(Y軸方向)が10μm〜500μm程度の場合、工具電極11の短手方向の幅を500μm〜25mm程度に、往復運動の距離を100μm程度以上、被加工物のZ軸方向の厚さ以下、望ましくは5mm以下にすることで、平行度及び加工面粗さの向上を図ることができる。   In the present embodiment, for example, when the thickness (Y-axis direction) of the tool electrode 11 is about 10 μm to 500 μm, the width in the short direction of the tool electrode 11 is about 500 μm to 25 mm, and the reciprocating distance is about 100 μm. As described above, the parallelism and the roughness of the processed surface can be improved by setting the thickness of the workpiece to be equal to or less than the thickness in the Z-axis direction, preferably 5 mm or less.

なお、工具電極11の短手方向の幅や往復運動の距離は、加工液34の粘性、往復運動の速度、加工屑の大きさ、被加工物2の材質や厚さ、工具電極11の材質などに基づいて設定してもよい。   Note that the width of the tool electrode 11 in the short direction and the distance of the reciprocating motion are the viscosity of the machining liquid 34, the speed of the reciprocating motion, the size of the machining waste, the material and thickness of the workpiece 2, and the material of the tool electrode 11. You may set based on.

なお、本実施の形態の説明では、工具電極11の長手方向が鉛直方向となるよう電極機構1を配設して電極機構1を上下方向に往復運動させたが、工具電極11の長手方向が水平方向や斜め方向となるよう電極機構1を配設し、電極機構1を工具電極11の長手方向へ往復運動させながら被加工物2を加工してもよい。   In the description of the present embodiment, the electrode mechanism 1 is arranged so that the longitudinal direction of the tool electrode 11 is vertical, and the electrode mechanism 1 is reciprocated in the vertical direction. However, the longitudinal direction of the tool electrode 11 is The electrode mechanism 1 may be disposed so as to be in a horizontal direction or an oblique direction, and the workpiece 2 may be processed while the electrode mechanism 1 is reciprocated in the longitudinal direction of the tool electrode 11.

ただし、工具電極11の長手方向を鉛直方向に設定した場合には、加工間隙内で発生する加工屑と気泡の排出に、加工液の粘性だけでなく重力の作用も働く。これにより、加工屑は下方への排出が促進されるとともに、気泡は上方への排出が促進され、効率良く加工屑を排出することが可能となる。   However, when the longitudinal direction of the tool electrode 11 is set to the vertical direction, not only the viscosity of the machining liquid but also the action of gravity acts on the discharge of the machining waste and bubbles generated in the machining gap. Thereby, while discharge | emission of process waste is accelerated | stimulated downward, discharge | emission of air bubbles is accelerated | stimulated and it becomes possible to discharge | emit process waste efficiently.

また、本実施の形態の説明では、工具電極11のZ軸方向の移動速度については言及しなかった。一般の形彫り放電加工におけるジャンプ動作と同様に、工具電極11の移動に際し、往路と復路に同じ移動速度を用いてもよい。しかし、通常のジャンプ動作とは異なり、Z軸方向の往復運動中にも工具電極11と被加工物2は近接したままであるから、加工液の粘性による加工屑や気泡の移動は、工具電極11のZ軸方向の往復運動中にも生じている。したがって、工具電極11のZ軸方向における往復運動において、往路と復路で異なる運動(移動)速度を採用すれば、加工屑や気泡が徐々に一つの方向へ移動して排出されるため、加工屑や気泡をより多く排出できる。   In the description of the present embodiment, the moving speed of the tool electrode 11 in the Z-axis direction has not been mentioned. Similar to the jump operation in the general sculpture electric discharge machining, the same movement speed may be used for the forward path and the backward path when the tool electrode 11 is moved. However, unlike the normal jump operation, the tool electrode 11 and the workpiece 2 remain close to each other even during the reciprocating motion in the Z-axis direction. 11 also occurs during the reciprocating motion in the Z-axis direction. Accordingly, in the reciprocating motion of the tool electrode 11 in the Z-axis direction, if different movement (moving) speeds are adopted in the forward path and the backward path, the machining waste and bubbles gradually move in one direction and are discharged. And more bubbles can be discharged.

また、本実施の形態における工具電極11のZ軸方向の往復運動は、従来の形彫り放電加工におけるジャンプ動作のような、加工進行方向と反対方向の工具電極の移動を伴わない。このため、往復運動中も工具電極11と被加工物2の間の微小間隙を保つことができ、工具電極11と被加工物2の間に放電を発生させつづけることができる。すなわち、本実施の形態によれば、従来の形彫り放電加工におけるジャンプ動作と異なり、加工間隙から加工屑を排出している間も放電加工を同時並行的に実行できるから、高速なスリット加工が実現される。   Further, the reciprocating motion in the Z-axis direction of the tool electrode 11 in the present embodiment is not accompanied by the movement of the tool electrode in the direction opposite to the machining progress direction as in the jump operation in the conventional sculpting electric discharge machining. For this reason, a minute gap between the tool electrode 11 and the workpiece 2 can be maintained even during the reciprocating motion, and electric discharge can be continuously generated between the tool electrode 11 and the workpiece 2. That is, according to the present embodiment, unlike the jump operation in the conventional sculpture electric discharge machining, since the electric discharge machining can be performed in parallel while the machining waste is being discharged from the machining gap, high-speed slit machining is performed. Realized.

ただし、本実施の形態においては、従来の形彫り放電加工におけるジャンプ動作を併用しても、工具電極11のZ軸方向の往復運動による効果は得られるから、ジャンプ動作を併用しても支障はない。特に、加工スリットが浅い場合などに見られるように、ジャンプ動作による加工屑排出効果が加工中断による加工効率の低下を上回る場合には、ジャンプ動作の併用により加工性能が向上する。   However, in the present embodiment, even if the jump operation in the conventional sculpture electric discharge machining is used together, the effect by the reciprocating motion of the tool electrode 11 in the Z-axis direction can be obtained. Absent. In particular, as seen when the machining slit is shallow, the machining performance is improved by the combined use of the jump operation when the effect of discharging the machining waste by the jump operation exceeds the reduction in machining efficiency due to the machining interruption.

以上のように、本実施の形態によれば、被加工物をなす面のうち、ブレード状の工具電極が横断する面と、加工終了時に加工される面のうち少なくとも一つの面に保持具を固着し、被加工物と共に保持具も加工するため、加工終了後に残留した被加工物は保持具に保持されるので、被加工物の落下が防止される効果が得られる。   As described above, according to the present embodiment, the holder is provided on at least one of the surfaces that form the workpiece and the surface that the blade-shaped tool electrode crosses and the surface that is processed at the end of the processing. Since the workpiece is fixed and the holder is processed together with the workpiece, the workpiece remaining after the completion of processing is held by the holder, so that an effect of preventing the workpiece from falling can be obtained.

また、本実施の形態によれば、加工中に被加工物の外側から薄いブレード状工具電極を保持しつつ強い張力を付与する電極機構を用いて、工具電極の厚さ方向と垂直な方向へスリット加工を実行するので、被加工物を薄くかつ僅かな切り代で高精度に切断できる効果と、深いスリット加工の際にも工具電極以外の電極機構が被加工物と干渉しない効果が得られる。   In addition, according to the present embodiment, an electrode mechanism that applies a strong tension while holding a thin blade-shaped tool electrode from the outside of the workpiece during processing is used in a direction perpendicular to the thickness direction of the tool electrode. Since slit machining is performed, the effect of cutting the workpiece with high precision with a small cutting margin and the effect of preventing the electrode mechanism other than the tool electrode from interfering with the workpiece during deep slit machining are obtained. .

また、本実施の形態によれば、被加工物の厚さよりも長い複数のブレード状の工具電極を、互いに間隙を空けつつ、各工具電極の厚さ方向が平行となるように保持する電極機構を用いて、各工具電極の厚さ方向に垂直な方向へ形彫り放電加工を進行させることにより、被加工物に複数のスリットを同時に加工できるので、ワイヤ放電加工装置のように加工中に各工具電極11の巻き取り処理や繰り出し処理を行なう必要がなく、簡便な構成で被加工物に多数のスリット加工を行える効果が得られる。   In addition, according to the present embodiment, an electrode mechanism that holds a plurality of blade-shaped tool electrodes longer than the thickness of the workpiece so that the thickness directions of the tool electrodes are parallel to each other while leaving a gap therebetween. Can be used to process a plurality of slits in the workpiece at the same time by machining the EDM in the direction perpendicular to the thickness direction of each tool electrode. There is no need to perform a winding process or a feeding process of the tool electrode 11, and an effect of performing a large number of slits on the workpiece with a simple configuration is obtained.

また、本実施の形態によれば、段階状に複数の位置に給電部を設けたので、各工具電極の間隔が狭い場合にも、互いに短絡させることなく給電線を接続できる効果が得られる。また、本実施の形態によれば、薄いブレード状の工具電極の長手方向に往復運動させつつスリット加工を行うので、工具電極の幅よりも深いスリット加工の際にも加工屑を排出できるため、異常放電を発生させずに深いスリット加工を実現できる効果が得られる。   Further, according to the present embodiment, since the power supply portions are provided in a plurality of positions in a stepwise manner, even when the distance between the tool electrodes is narrow, an effect that the power supply lines can be connected without short-circuiting each other can be obtained. In addition, according to the present embodiment, since the slit processing is performed while reciprocating in the longitudinal direction of the thin blade-shaped tool electrode, it is possible to discharge the processing waste even in the slit processing deeper than the width of the tool electrode, An effect of realizing deep slit processing without causing abnormal discharge can be obtained.

また、本実施の形態によれば、ブレード状の工具電極と、その両端に薄板状のスペーサを交互に重ねて電極構造をなし、両端のスペーサ間の距離を被加工物の厚さより大きく設定したので、工具電極の長手方向への往復運動が可能となり、深いスリット加工が実現できる効果が得られる。   Further, according to the present embodiment, the electrode structure is formed by alternately laminating blade-shaped tool electrodes and thin plate-like spacers at both ends thereof, and the distance between the spacers at both ends is set larger than the thickness of the workpiece. Therefore, the tool electrode can be reciprocated in the longitudinal direction, and the effect of realizing deep slit processing can be obtained.

また、本実施の形態によれば、工具電極の長手方向を鉛直方向に設定するので、加工間隙内で発生する加工屑と気泡の排出に、加工液の粘性だけでなく重力の作用を働かせることができるため、効率良く加工屑を排出できる効果が得られる。   Further, according to the present embodiment, since the longitudinal direction of the tool electrode is set to the vertical direction, not only the viscosity of the machining fluid but also the action of gravity acts on the discharge of machining waste and bubbles generated in the machining gap. Therefore, the effect that the processing waste can be efficiently discharged is obtained.

また、本実施の形態では、工工具電極の長手方向の往復運動において、往路と復路で異なる移動速度を採用したので、加工屑や気泡が徐々に一つの方向へ移動して排出されるため、加工屑や気泡をより多く排出できる効果が得られる。また、本実施の形態では、工具電極の長手方向の往復運動中も放電を発生させつづけるので、高速なスリット加工を実現する効果が得られる。   In the present embodiment, in the reciprocating motion of the tool electrode in the longitudinal direction, different moving speeds are adopted for the forward path and the return path, so that the machining waste and bubbles gradually move in one direction and are discharged. An effect of discharging more processing waste and bubbles can be obtained. Further, in the present embodiment, since electric discharge is continuously generated during the reciprocating motion of the tool electrode in the longitudinal direction, an effect of realizing high-speed slit machining can be obtained.

実施の形態2.
本実施の形態では、電極機構1の他の変形例について、説明する。図9は、本実施の形態における工具電極11の長手方向に張力を与える機構を説明するための図、図10は、電極機構1をフレーム18に固定する構造を説明するための図である。
Embodiment 2. FIG.
In the present embodiment, another modification of the electrode mechanism 1 will be described. FIG. 9 is a diagram for explaining a mechanism for applying tension in the longitudinal direction of the tool electrode 11 in the present embodiment, and FIG. 10 is a diagram for explaining a structure for fixing the electrode mechanism 1 to the frame 18.

まず、本実施の形態における工具電極11の長手方向に張力を与える機構を説明する。本実施の形態における電極機構1は、電極保持部14A,14Bの両端に、中央部が凸部となり概略弓状の引張部13X,13Yを、図9に示すように弓状の頂部が外側(すなわち、工具電極11と反対側)を向く方向に装着したものである。さらに詳細に説明すれば、引張部13X,13Yの長手方向の両端部に設けた貫通穴に、工具電極11の貫通穴とスペーサ12の貫通穴に挿入した電極保持部14A,14Bの両端を挿入した後、電極保持部14A,14Bの両端にナット13Zをねじ込んで締結したり、接着剤にて固定する等の方策により装着する。なお、ナットにより締結する場合には、電極保持部14A、14Bの両端に図9に示すようなネジを形成する。引張部13X,13Yを電極保持部14A,14Bへ取り付けた状態で、引張部13X,13Yの湾曲した弓状の凸部を図9の矢印に示した方向へ押すことにより、湾曲部分が広がり、工具電極11は互いに平行を保ちながら長手方向に張力を付与されることになる。   First, a mechanism for applying tension in the longitudinal direction of the tool electrode 11 in the present embodiment will be described. In the electrode mechanism 1 in the present embodiment, the center portions are convex at both ends of the electrode holding portions 14A and 14B, and the generally arcuate tension portions 13X and 13Y are formed. As shown in FIG. That is, it is mounted in a direction facing the tool electrode 11 (opposite side). More specifically, both ends of the electrode holding portions 14A and 14B inserted in the through holes of the tool electrode 11 and the through holes of the spacer 12 are inserted into the through holes provided at both ends in the longitudinal direction of the tension portions 13X and 13Y. After that, the nuts 13Z are screwed into both ends of the electrode holding portions 14A and 14B and fastened, or fixed with an adhesive. When fastening with nuts, screws as shown in FIG. 9 are formed at both ends of the electrode holding portions 14A and 14B. With the tension portions 13X and 13Y attached to the electrode holding portions 14A and 14B, the curved portions are expanded by pushing the curved arcuate convex portions of the tension portions 13X and 13Y in the direction indicated by the arrows in FIG. The tool electrodes 11 are given tension in the longitudinal direction while being kept parallel to each other.

つぎに、このように構成された電極機構1をフレーム18に固定する構造を説明する。図10に示すように、電極保持部14A、14Bは、フレーム18のY軸方向の大きさよりも長く、その両端にはネジが形成されており、フレーム18に設けられた貫通穴41A、41Bに挿入されている。また、フレーム18には、引張部13X,13Yの頂部を押す際に用いるボルト17X,17Y用のネジ穴41X,41Yも設けられている。ここで、引張部13X,13Yの頂部をボルト17X,17Yにより押して工具電極1に張力を付与すると、電極保持部14Aと14Bの間の距離が大きくなるので、フレーム18に設けられた貫通穴41A、41Bのいずれか一方もしくは両方は、挿入される電極保持部14A、14Bの両端に形成されているネジの直径よりも、工具電極1の(少なくとも)長手方向には大きく形成され、この電極保持部14A、14B間の距離が増大しても締結可能となるように構成されている。   Next, a structure for fixing the electrode mechanism 1 thus configured to the frame 18 will be described. As shown in FIG. 10, the electrode holding portions 14A and 14B are longer than the size of the frame 18 in the Y-axis direction, and screws are formed at both ends thereof, and the through holes 41A and 41B provided in the frame 18 are formed in the through holes 41A and 41B. Has been inserted. The frame 18 is also provided with screw holes 41X and 41Y for bolts 17X and 17Y used when pressing the tops of the tension portions 13X and 13Y. Here, when tension is applied to the tool electrode 1 by pushing the top portions of the tension portions 13X and 13Y with the bolts 17X and 17Y, the distance between the electrode holding portions 14A and 14B increases, so that the through hole 41A provided in the frame 18 is increased. 41B or 41B is formed larger in the (at least) longitudinal direction of the tool electrode 1 than the diameter of the screw formed at both ends of the electrode holding portions 14A and 14B to be inserted. Even if the distance between 14A and 14B increases, it is comprised so that fastening is possible.

以上のような構成で、ボルト17X,17Yを締め付けることにより工具電極11の長手方向に張力を付与し、ナット15A、15Bをフレーム18の外側から電極保持部14A,14Bの両端のネジ部に装着して締め付けることにより、電極機構1をフレーム18に固定する。   With the above configuration, the bolts 17X and 17Y are tightened to apply tension in the longitudinal direction of the tool electrode 11, and the nuts 15A and 15B are attached to the screw portions at both ends of the electrode holding portions 14A and 14B from the outside of the frame 18. Then, the electrode mechanism 1 is fixed to the frame 18 by tightening.

なお、ボルト17X,17Yによる引張部13X、13Yへの押圧により電極保持部14Aと14Bの間の距離が大きくなるので、ナット15A、15Bのうち、電極保持部14A、14Bの両端に形成されているネジの直径よりも大きく形成された貫通穴41A、41Bを介して電極保持部14A、14Bを締め付けるナット(ナット15A、15Bが双方とも相当する場合には少なくともいずれか一方のナット)の締め付けは、ボルト17X,17Yの締め付けよりも後に実行する。   Since the distance between the electrode holding portions 14A and 14B is increased by pressing the tension portions 13X and 13Y with the bolts 17X and 17Y, the nuts 15A and 15B are formed at both ends of the electrode holding portions 14A and 14B. Tightening of a nut (at least one of the nuts 15A and 15B when both nuts 15A and 15B correspond) is tightened through through holes 41A and 41B formed larger than the diameter of the screw Executed after the tightening of the bolts 17X and 17Y.

なお、上記実施例では被加工物をY軸方向の両側とZ軸方向の片側の三方から取り囲むコの字形状のフレームを採用し、Z軸方向の残った一方向は電極保持部14Bを代用して取り囲む構成としたが、電極保持部14Bよりも外側にフレームの下辺も設けて左右を連結し、フレームをロの字形状になせば、より剛性の高い構成とすることができる。また、本実施の形態においても、実施の形態1で述べたような、段階状の給電部を設けることにより、隣接する工具電極や給電線との短絡を防止する方法を併用することが可能である。なお、本実施の形態におけるフレーム18が特許請求の範囲に記載の第1の保持部に対応する。   In the above embodiment, a U-shaped frame that surrounds the workpiece from three sides on both sides in the Y-axis direction and one side in the Z-axis direction is adopted, and the electrode holding portion 14B is substituted for the remaining direction in the Z-axis direction. However, if the lower side of the frame is also provided outside the electrode holding portion 14B to connect the left and right sides, and the frame is formed in a square shape, a more rigid configuration can be obtained. Also in the present embodiment, it is possible to use a method for preventing a short circuit with an adjacent tool electrode or power supply line by providing a stepped power supply unit as described in the first embodiment. is there. The frame 18 in the present embodiment corresponds to the first holding unit described in the claims.

以上のように、本実施の形態によれば、ボルトのねじ込み量を変化させることにより工具電極に付与する張力を調節できるので、工具電極の材質、幅、厚さ、長さ等を変更した場合にも、フレームを再製作することなく最適な張力を工具電極に付与できる。   As described above, according to the present embodiment, since the tension applied to the tool electrode can be adjusted by changing the screwing amount of the bolt, the material, width, thickness, length, etc. of the tool electrode are changed. In addition, the optimum tension can be applied to the tool electrode without remanufacturing the frame.

また、本実施の形態によれば、加工中に被加工物の外側から薄いブレード状工具電極を保持しつつ強い張力を付与する電極機構を用いて、工具電極の厚さ方向と垂直な方向へスリット加工を実行するので、被加工物を薄くかつ僅かな切り代で高精度に切断できる効果と、深いスリット加工の際にも工具電極以外の電極機構が被加工物と干渉しない効果が得られる。   In addition, according to the present embodiment, an electrode mechanism that applies a strong tension while holding a thin blade-shaped tool electrode from the outside of the workpiece during processing is used in a direction perpendicular to the thickness direction of the tool electrode. Since slit machining is performed, the effect of cutting the workpiece with high precision with a small cutting margin and the effect of preventing the electrode mechanism other than the tool electrode from interfering with the workpiece during deep slit machining are obtained. .

また、本実施の形態によれば、被加工物の厚さよりも長い複数のブレード状の工具電極を、互いに間隙を空けつつ、各工具電極の厚さ方向が平行となるように保持する電極機構を用いて、各工具電極の厚さ方向に垂直な方向へ形彫り放電加工を進行させることにより、被加工物に複数のスリットを同時に加工できるので、ワイヤ放電加工装置のように加工中に各工具電極11の巻き取り処理や繰り出し処理を行なう必要がなく、簡便な構成で被加工物に多数のスリット加工を行える効果が得られる。また、本実施の形態によれば、段階状に複数の位置に給電部を設けたので、各工具電極の間隔が狭い場合にも、互いに短絡させることなく給電線を接続できる効果が得られる。   In addition, according to the present embodiment, an electrode mechanism that holds a plurality of blade-shaped tool electrodes longer than the thickness of the workpiece so that the thickness directions of the tool electrodes are parallel to each other while leaving a gap therebetween. Can be used to process a plurality of slits in the workpiece at the same time by machining the EDM in the direction perpendicular to the thickness direction of each tool electrode. There is no need to perform a winding process or a feeding process of the tool electrode 11, and an effect of performing a large number of slits on the workpiece with a simple configuration is obtained. Further, according to the present embodiment, since the power supply portions are provided in a plurality of positions in a stepwise manner, even when the distance between the tool electrodes is narrow, an effect that the power supply lines can be connected without short-circuiting each other can be obtained.

実施の形態3.
本実施の形態では、電極機構1の他の変形例について、図11、12を用いて説明する。本実施の形態では、加工中に被加工物2を取り囲むフレーム18上に、工具電極11の位置を固定する位置ぎめピン22と、ブレード状の工具電極11を巻きつけて張力を付与するコマ23を設ける。
Embodiment 3 FIG.
In the present embodiment, another modification of the electrode mechanism 1 will be described with reference to FIGS. In the present embodiment, a positioning pin 22 for fixing the position of the tool electrode 11 on the frame 18 surrounding the workpiece 2 during processing, and a top 23 for applying tension by winding the blade-shaped tool electrode 11. Is provided.

フレーム18は、図11に示すような形状であって、実施の形態1と同様に、スリットを深くまで加工しても被加工物と干渉しないように、Y軸方向(すなわち工具電極11の厚さ方向)には被加工物のY軸方向の厚さよりも大きい空間であって、Z軸方向(すなわち工具電極の長手方向)には被加工物および保持具のZ軸方向の厚さと工具電極11の往復運動の片道工程距離の和よりも大きい空間を、Y軸方向およびZ軸方向の三方もしくは四方から取り囲むコの字形状もしくはロの字形状となっている。ただし、コの字形状の場合には、Z軸方向の両側とY軸方向の片側の三方から取り囲む形状を成している。   The frame 18 has a shape as shown in FIG. 11, and in the same manner as in the first embodiment, the Y-axis direction (that is, the thickness of the tool electrode 11 is set so as not to interfere with the workpiece even when the slit is processed deeply. In the Z-axis direction (that is, the longitudinal direction of the tool electrode) and the thickness in the Z-axis direction of the workpiece and the holder and the tool electrode. The space larger than the sum of the one-way process distances of 11 reciprocating motions is a U-shape or a B-shape that surrounds a space from three or four directions in the Y-axis direction and the Z-axis direction. However, in the case of a U-shape, it has a shape surrounding from both sides in the Z-axis direction and one side in the Y-axis direction.

工具電極11は、図11に示すように、位置ぎめピン22の側面を経由してコマ23に両端が巻きつけられている。位置ぎめピン22は、工具電極11の1枚につき、それぞれ工具電極11の長手方向に被加工物2を挟んだ両側に一つずつ、計二つ一組をフレーム18上に設ける。また、位置ぎめピン22は、側面が工具電極11の幅方向に平行となるように設置され、その側面位置により工具電極11の厚さ方向(すなわち、Y軸方向)の位置を確定させる。コマ23は、位置ぎめピン22の一つにつき一つがフレーム18上に設けられ、位置ぎめピン22の側面を経由した工具電極11を巻きつける。工具電極11の巻き取り量をコマ23の回転量により調整することにより、工具電極11には所定の張力が付与される。なお、コマ23の回転角はネジを用いた締結により設定および固定してもよいが、逆回転を防止するラチェット機構を採用すれば工具電極11の巻き取りとコマ23の回転角の設定作業が容易となる。   As shown in FIG. 11, both ends of the tool electrode 11 are wound around the top 23 via the side surface of the positioning pin 22. A set of two positioning pins 22 is provided on the frame 18, one for each of the tool electrodes 11, one on each side of the workpiece 2 in the longitudinal direction of the tool electrode 11. The positioning pin 22 is installed so that the side surface is parallel to the width direction of the tool electrode 11, and the position of the tool electrode 11 in the thickness direction (that is, the Y-axis direction) is determined by the position of the side surface. One piece 23 is provided on the frame 18 for each of the positioning pins 22, and the tool electrode 11 is wound around the side surface of the positioning pin 22. A predetermined tension is applied to the tool electrode 11 by adjusting the winding amount of the tool electrode 11 by the rotation amount of the top 23. The rotation angle of the top 23 may be set and fixed by fastening with a screw. However, if a ratchet mechanism that prevents reverse rotation is employed, the winding operation of the tool electrode 11 and the setting operation of the rotation angle of the top 23 can be performed. It becomes easy.

以上の構成を複数の工具電極11それぞれに対して施す。その際、図11に示すように、複数の位置ぎめピン22を、その側面の位置が少しずつずらされるように設置することにより、複数の工具電極11がY軸方向に微小な間隙を隔てて平行に設置される。なお、それぞれの工具電極11が、互いに電気的に絶縁され、個別にパルス電圧を印加可能な状態で加工電源に接続される必要がある点は、実施の形態1と同様である。この接続を実現するには、例えば工具電極11を、フレーム18、位置ぎめピン22、コマ23と絶縁し、工具電極11にはすでに図7を用いて説明したような段階的な電源接続部を設ける方法がある。   The above configuration is applied to each of the plurality of tool electrodes 11. At this time, as shown in FIG. 11, the plurality of positioning pins 22 are installed so that the positions of the side surfaces thereof are shifted little by little, so that the plurality of tool electrodes 11 are separated from each other by a minute gap in the Y-axis direction. Installed in parallel. It is to be noted that each tool electrode 11 is electrically insulated from each other and needs to be connected to a machining power source in a state where a pulse voltage can be individually applied, as in the first embodiment. In order to realize this connection, for example, the tool electrode 11 is insulated from the frame 18, the positioning pin 22, and the top 23, and the tool electrode 11 has a gradual power supply connection portion as already described with reference to FIG. There is a method of providing.

工具電極11をフレーム18と絶縁するには、例えば、工具電極11をフレーム18と直接接触しないように引き離して設置したり、フレーム18全体を絶縁性のセラミックスで構成したり、フレーム18の表面に絶縁性塗料を塗布するなどの方法が考えられ、工具電極11と位置ぎめピン22およびコマ23を絶縁する方法には、位置ぎめピン22とコマ23の工具電極11と接する表面を絶縁性材料で構成するなどの方法が考えられる。   In order to insulate the tool electrode 11 from the frame 18, for example, the tool electrode 11 is placed away from the frame 18 so as not to be in direct contact, the entire frame 18 is made of insulating ceramics, or the surface of the frame 18 is A method of applying an insulating paint or the like is conceivable. In order to insulate the tool electrode 11 from the positioning pin 22 and the top 23, the surface of the positioning pin 22 and the top 23 in contact with the tool electrode 11 is made of an insulating material. A method such as configuring is conceivable.

なお、上記実施の形態では工具電極を位置ぎめピンやコマから絶縁したが、各工具電極に対応する位置ぎめピンやコマを介して給電する構成も可能である。例えば、導電性の位置ぎめピンやコマを絶縁物で製作したブシュやスリーブを介してフレームに固定したり、絶縁物で製作したフレームに固定するなどの方策により、それぞれの位置ぎめピンとコマを互いに電気的に絶縁状態となした状態とし、そこに工具電極を設置すれば、各工具電極は、接触しているそれぞれの位置ぎめピンやコマとは導通状態であるが、他の工具電極および他の工具電極に接触している位置ぎめピンやコマとは非導通状態となるので、導通している位置ぎめピンやコマに給電線を接続することにより、各工具電極に個別に給電する構成が実現でき、電源接続部を省略できる効果が得られる。   In the above-described embodiment, the tool electrode is insulated from the positioning pin and the frame. However, a configuration in which power is supplied through the positioning pin and the frame corresponding to each tool electrode is also possible. For example, it is possible to fix each positioning pin and piece to each other by measures such as fixing the conductive positioning pin or piece to the frame via a bush or sleeve made of an insulator, or to the frame made of an insulator. If a tool electrode is installed in an electrically insulated state, each tool electrode is in a conductive state with its respective positioning pin or piece, but other tool electrodes and other Since the positioning pins and tops that are in contact with the tool electrodes are in a non-conducting state, it is possible to supply power separately to each tool electrode by connecting a power supply line to the positioning pins and tops that are in conduction. The effect which can implement | achieve and can omit a power supply connection part is acquired.

また、上記実施の形態ではフレーム18の片面に工具電極11を張りわたしたが、図12に示すように、フレーム18を2枚として位置ぎめピン22やコマ23の両端を保持する構成としたり、フレーム18の両面に工具電極11を交互に張るなどの方法を採用すれば、フレーム18が受ける張力の偏りを大きく減少させることができるので、多数の工具電極11を架設した場合の工具電極11の張力の偏りによるフレーム18の湾曲を防止できる。なお、本実施の形態におけるフレーム18が特許請求の範囲に記載の第2の保持部に対応する。   In the above embodiment, the tool electrode 11 is stretched on one side of the frame 18, but as shown in FIG. 12, the frame 18 is divided into two pieces to hold the both ends of the positioning pins 22 and the top 23, If a method such as alternately stretching the tool electrodes 11 on both surfaces of the frame 18 is adopted, the bias of the tension applied to the frame 18 can be greatly reduced, so that the tool electrode 11 when a large number of tool electrodes 11 are installed is used. The bending of the frame 18 due to the bias in tension can be prevented. The frame 18 in the present embodiment corresponds to the second holding portion described in the claims.

以上のように、本実施の形態によれば、各工具電極それぞれを対応する位置ぎめピンとコマにより個別に架設しているので、フレームを再製作することなく各工具電極毎に最適な張力を付与できる効果や、工具電極が一部損傷した場合にも全体を分解することなく損傷部分のみ交換可能となる効果が得られる。   As described above, according to the present embodiment, each tool electrode is individually installed with a corresponding positioning pin and frame, so that an optimum tension is applied to each tool electrode without remanufacturing the frame. In addition, even when the tool electrode is partially damaged, only the damaged part can be replaced without disassembling the whole.

また、本実施の形態によれば、導電性の位置ぎめピンやコマそれぞれを互いに電気的に絶縁状態となした状態で工具電極を設置し、位置ぎめピンやコマに給電線を接続したので、各工具電極に個別に給電する構成が容易に実現できる効果が得られる。   Further, according to the present embodiment, the tool electrode is installed in a state in which the conductive positioning pins and the pieces are electrically insulated from each other, and the feeder wire is connected to the positioning pins and the pieces. The effect that the structure which supplies electric power to each tool electrode individually can be realized easily is obtained.

また、本実施の形態によれば、フレーム18を2枚として位置ぎめピン22やコマ23の両端を保持する構成としたので、多数の工具電極11を架設した場合の工具電極11の張力の偏りによるフレーム18の湾曲を防止する効果が得られる。   Further, according to the present embodiment, since the frame 18 is used as two frames and both ends of the positioning pins 22 and the tops 23 are held, the tension of the tool electrodes 11 when the large number of tool electrodes 11 are installed is uneven. Thus, the effect of preventing the frame 18 from being bent can be obtained.

また、本実施の形態によれば、フレーム18の両面に工具電極11を交互に張る構成としたので、多数の工具電極11を架設した場合の工具電極11の張力の偏りによるフレーム18の湾曲を防止する効果が得られる。   In addition, according to the present embodiment, since the tool electrodes 11 are alternately stretched on both surfaces of the frame 18, the bending of the frame 18 due to the bias of the tension of the tool electrodes 11 when a large number of tool electrodes 11 are installed. The effect of preventing is obtained.

また、本実施の形態によれば、加工中に被加工物の外側から薄いブレード状工具電極を保持しつつ強い張力を付与する電極機構を用いて、工具電極の厚さ方向と垂直な方向へスリット加工を実行するので、被加工物を薄くかつ僅かな切り代で高精度に切断できる効果と、深いスリット加工の際にも工具電極以外の電極機構が被加工物と干渉しない効果が得られる。   In addition, according to the present embodiment, an electrode mechanism that applies a strong tension while holding a thin blade-shaped tool electrode from the outside of the workpiece during processing is used in a direction perpendicular to the thickness direction of the tool electrode. Since slit machining is performed, the effect of cutting the workpiece with high precision with a small cutting margin and the effect of preventing the electrode mechanism other than the tool electrode from interfering with the workpiece during deep slit machining are obtained. .

また、本実施の形態によれば、被加工物の厚さよりも長い複数のブレード状の工具電極を、互いに間隙を空けつつ、各工具電極の厚さ方向が平行となるように保持する電極機構を用いて、各工具電極の厚さ方向に垂直な方向へ形彫り放電加工を進行させることにより、被加工物に複数のスリットを同時に加工できるので、ワイヤ放電加工装置のように加工中に各工具電極11の巻き取り処理や繰り出し処理を行なう必要がなく、簡便な構成で被加工物に多数のスリット加工を行える効果が得られる。また、本実施の形態によれば、段階状に複数の位置に給電部を設けたので、各工具電極の間隔が狭い場合にも、互いに短絡させることなく給電線を接続できる効果が得られる。   In addition, according to the present embodiment, an electrode mechanism that holds a plurality of blade-shaped tool electrodes longer than the thickness of the workpiece so that the thickness directions of the tool electrodes are parallel to each other while leaving a gap therebetween. Can be used to process a plurality of slits in the workpiece at the same time by machining the EDM in the direction perpendicular to the thickness direction of each tool electrode. There is no need to perform a winding process or a feeding process of the tool electrode 11, and an effect of performing a large number of slits on the workpiece with a simple configuration is obtained. Further, according to the present embodiment, since the power supply portions are provided in a plurality of positions in a stepwise manner, even when the distance between the tool electrodes is narrow, an effect that the power supply lines can be connected without short-circuiting each other can be obtained.

実施の形態4.
本実施の形態では、工具電極11の往復運動の変形例について説明する。図13は、工具電極11の移動経路の一例を示す図であり、工具電極11と被加工物2をY軸方向から見た断面図を示している。
Embodiment 4 FIG.
In the present embodiment, a modification of the reciprocating motion of the tool electrode 11 will be described. FIG. 13 is a diagram illustrating an example of a movement path of the tool electrode 11, and shows a cross-sectional view of the tool electrode 11 and the workpiece 2 as viewed from the Y-axis direction.

実施の形態1では、工具電極11を長手方向へ往復運動させることにより加工屑および気泡を排出したが、本実施の形態では、往復運動の往路と復路のいずれか一方において、工具電極11を加工進行方向から僅かに後退させた状態で移動させる。   In the first embodiment, the processing electrode and the bubbles are discharged by reciprocating the tool electrode 11 in the longitudinal direction. However, in the present embodiment, the tool electrode 11 is processed in one of the forward path and the return path of the reciprocating movement. Move in a state slightly retracted from the direction of travel.

例えば、図13に示すように、工具電極11がNC制御装置31のサーボ機能により加工進行方向に進んで、被加工物2へのスリット加工を進める(1)。この加工中に工具電極11をZ軸方向の例えば下方向に所定の距離(距離L)だけ移動させる(2)。これにより、被加工物2の加工によって発生した加工間隙内の加工屑と気泡が被加工物2の下面側から排出される。つぎに、往復運動の折り返し位置で工具電極11を加工進行方向と逆側に所定の微小距離(距離B)だけ後退させ、Z軸方向の上方向に所定の距離(距離L)だけ移動させ、さらに加工進行方向に所定の微小距離(距離B)だけ前進させる(3)。これにより、被加工物2の加工によって発生した加工間隙内の気泡が被加工物2の上面側から排出される。この処理(1)〜(3)を繰り返すことによって、加工を進行させる。なお、処理(1)と処理(2)は、同時に行なってもよい。   For example, as shown in FIG. 13, the tool electrode 11 advances in the machining progress direction by the servo function of the NC control device 31, and advances the slit machining to the workpiece 2 (1). During this processing, the tool electrode 11 is moved by a predetermined distance (distance L), for example, downward in the Z-axis direction (2). Thereby, the processing waste and bubbles in the processing gap generated by processing the workpiece 2 are discharged from the lower surface side of the workpiece 2. Next, the tool electrode 11 is retracted by a predetermined minute distance (distance B) in the direction opposite to the machining progress direction at the turn-back position of the reciprocating motion, and moved upward by a predetermined distance (distance L) in the Z-axis direction. Further, it is moved forward by a predetermined minute distance (distance B) in the processing progress direction (3). Thereby, bubbles in the processing gap generated by processing the workpiece 2 are discharged from the upper surface side of the workpiece 2. By repeating these processes (1) to (3), the processing is advanced. In addition, you may perform a process (1) and a process (2) simultaneously.

ここで、所定の微小距離Bは、加工中の加工間隙長である10μm前後の数倍以上がふさわしく、例えば100μm程度が採用される。したがって、上記の処理工程のうち、工具電極11が所定の微小距離Bだけ後退し、被加工物2との距離が増大する工程(3)では、放電がほとんど発生しない状態となり、何の効果も得られないように思われる。しかしながら、工程(1)では工具電極11と被加工物2とが近接しているため、工具電極11の移動により被加工物2近傍の加工屑および気泡も工具電極11の移動方向へ移動するが、微小距離Bだけ後退した工程(3)では工具電極11と被加工物2とが離れているため、工具電極11が移動しても被加工物2近傍の加工屑および気泡が工具電極11の移動方向へ移動しない状態が実現される。したがって、上記処理工程(1)〜(3)を繰り返すことにより、加工間隙に存在する加工屑や気泡は、工程(1)にて工具電極11が移動する方向へ移動を続け、ついには加工間隙外へ排出される。特に、図13に示したように、工程(1)にて工具電極を鉛直下方へ移動させる方法は、気泡に比べて排出の難しい加工屑を重力の方向と同じ方向へ移動させる作用を持っているので、加工屑を排出する効果が高い。   Here, the predetermined minute distance B is preferably several times or more of about 10 μm, which is the processing gap length during processing, for example, about 100 μm is adopted. Therefore, among the above processing steps, in the step (3) in which the tool electrode 11 is retracted by a predetermined minute distance B and the distance from the workpiece 2 is increased, almost no discharge occurs, and no effect is obtained. It seems not to be obtained. However, since the tool electrode 11 and the workpiece 2 are close to each other in the step (1), the machining waste and bubbles in the vicinity of the workpiece 2 are moved in the moving direction of the tool electrode 11 by the movement of the tool electrode 11. Since the tool electrode 11 and the workpiece 2 are separated from each other in the step (3) retracted by the minute distance B, even if the tool electrode 11 moves, the processing scraps and bubbles in the vicinity of the workpiece 2 remain on the tool electrode 11. A state of not moving in the moving direction is realized. Therefore, by repeating the above processing steps (1) to (3), the processing waste and bubbles existing in the processing gap continue to move in the direction in which the tool electrode 11 moves in step (1), and finally the processing gap. It is discharged outside. In particular, as shown in FIG. 13, the method of moving the tool electrode vertically downward in step (1) has the effect of moving the machining waste that is difficult to discharge in the same direction as the direction of gravity compared to bubbles. Therefore, the effect of discharging processing waste is high.

なお、本実施の形態においても、実施の形態1の説明で述べたような、工具電極の往復運動を往路と復路で異なる速度にて実行することにより加工屑の排出を促進する効果も併用できる。   In the present embodiment as well, the effect of promoting the discharge of the machining waste by executing the reciprocating motion of the tool electrode at different speeds in the forward path and the backward path as described in the description of the first embodiment can be used together. .

以上のように、本実施の形態によれば、工具電極を長手方向へ往復運動させる際に、往路と復路のいずれか一方において、工具電極を加工進行方向から僅かに後退させた状態で移動させるので、通常の形彫り放電加工で周知のジャンプ動作や本発明の実施の形態1に示した方法を用いても加工屑や気泡を排除できずに加工が不可能となるような難しい加工においても、効率的に加工屑や気泡を排除し、加工を継続できる効果が得られる。   As described above, according to the present embodiment, when the tool electrode is reciprocated in the longitudinal direction, the tool electrode is moved in a state slightly retracted from the machining progress direction in either the forward path or the return path. Therefore, even in difficult machining where machining jumps and air bubbles cannot be eliminated without using the known jumping operation in the normal sculpture electric discharge machining and the method shown in the first embodiment of the present invention. , It is possible to efficiently remove the processing waste and bubbles and continue the processing.

また、本実施の形態によれば、工具電極を後退させないで移動させる方向を鉛直下方としたので、気泡に比べて排出の難しい加工屑を重力の方向と同じ方向へ移動させることができ、さらに効率的に加工屑を排出する効果が得られる。   Further, according to the present embodiment, since the direction in which the tool electrode is moved without being retracted is set vertically downward, it is possible to move the processing waste that is difficult to discharge compared to the bubbles in the same direction as the direction of gravity, An effect of efficiently discharging the processing waste can be obtained.

また、本実施の形態では、工工具電極の長手方向の往復運動において、往路と復路で異なる移動速度を採用したので、加工屑や気泡が徐々に一つの方向へ移動して排出されるため、加工屑や気泡をより多く排出できる効果が得られる。   In the present embodiment, in the reciprocating motion of the tool electrode in the longitudinal direction, different moving speeds are adopted for the forward path and the return path, so that the machining waste and bubbles gradually move in one direction and are discharged. An effect of discharging more processing waste and bubbles can be obtained.

以上のように、本発明に係る形彫放電加工方法および形彫放電加工装置は、帯状の工具電極を用いて被加工物にスリット形状を加工する際の放電加工に適している。   As described above, the sculpting electric discharge machining method and the sculpting electric discharge machining apparatus according to the present invention are suitable for electric discharge machining when machining a slit shape on a workpiece using a strip-shaped tool electrode.

実施の形態に係る放電加工の概念を説明するための説明図である。It is explanatory drawing for demonstrating the concept of the electrical discharge machining which concerns on embodiment. 実施の形態に係る放電加工装置の構成を示す図である。It is a figure which shows the structure of the electric discharge machining apparatus which concerns on embodiment. 電極機構の構成を説明するための図(1)である。It is a figure (1) for demonstrating the structure of an electrode mechanism. 電極機構の構成を説明するための図(2)である。It is a figure (2) for demonstrating the structure of an electrode mechanism. 電極機構の構成を示す図である。It is a figure which shows the structure of an electrode mechanism. 工具電極と、被加工物および保持具との加工進行方向の相対位置を説明するための図である。It is a figure for demonstrating the relative position of the work progress direction of a tool electrode, a to-be-processed object, and a holder. 工具電極毎に加工電源を接続する場合の工具電極の構成を説明するための図である。It is a figure for demonstrating the structure of the tool electrode in the case of connecting a processing power supply for every tool electrode. 電極機構の構成および動作を説明するための図である。It is a figure for demonstrating the structure and operation | movement of an electrode mechanism. 工具電極に与える長手方向の張力を説明するための図である。It is a figure for demonstrating the tension | tensile_strength of the longitudinal direction given to a tool electrode. 引張部とともに工具電極をフレームに装着させた場合の電極機構の構成を示す図である。It is a figure which shows the structure of the electrode mechanism at the time of attaching a tool electrode to a flame | frame with a tension | pulling part. 電極機構の他の構成の一例を示す上面図である。It is a top view which shows an example of the other structure of an electrode mechanism. 2枚のフレームで工具電極を挟み込む場合の電極機構の構成を示す断面図である。It is sectional drawing which shows the structure of the electrode mechanism in the case of pinching a tool electrode with two flame | frames. 電極機構の移動経路の一例を示す図である。It is a figure which shows an example of the movement path | route of an electrode mechanism.

符号の説明Explanation of symbols

1 電極機構
2 被加工物
3 主軸
11 工具電極
12 スペーサ
13X,13Y 引張部
13Z,15A,15B ナット
14A,14B 電極保持部
17X,17Y ボルト
18 フレーム
22 位置ぎめピン
23 コマ
31 NC制御装置
32 モータ
33 加工槽
34 加工液
35 定盤
36 保持具
37 加工電源
38 加工液調整部
41A,41B 貫通穴
41X,41Y ネジ穴
51 給電線
52A〜52C 電源接続部
100 放電加工装置
DESCRIPTION OF SYMBOLS 1 Electrode mechanism 2 Work piece 3 Main shaft 11 Tool electrode 12 Spacer 13X, 13Y Tensile part 13Z, 15A, 15B Nut 14A, 14B Electrode holding part 17X, 17Y Bolt 18 Frame 22 Positioning pin 23 Top 31 NC controller 32 Motor 33 Processing tank 34 Processing liquid 35 Surface plate 36 Holder 37 Processing power supply 38 Processing liquid adjustment part 41A, 41B Through hole 41X, 41Y Screw hole 51 Feed line 52A-52C Power supply connection part 100 Electric discharge machining apparatus

Claims (25)

帯状の工具電極の厚さの垂直方向がスリット形成加工進行方向となるように、前記工具電極を把持し、前記工具電極を相対的に移動させつつ、被加工物と前記工具電極との間にパルス状の電圧を印加し、放電加工を行う形彫放電加工方法において、
前記被加工物を被加工物保持部材に導電性を維持して接着する固着工程と、
前記被加工物をスリット加工する加工工程と、
を備えたことを特徴とする形彫放電加工方法。
While gripping the tool electrode and moving the tool electrode relatively so that the vertical direction of the thickness of the strip-shaped tool electrode becomes the slit forming processing progress direction, the workpiece electrode is interposed between the work electrode and the tool electrode. In the sculpting electric discharge machining method that applies pulsed voltage and performs electric discharge machining,
An adhering step of adhering the workpiece to the workpiece holding member while maintaining conductivity;
A processing step of slitting the workpiece;
An electric discharge machining method characterized by comprising:
前記加工工程は、前記被加工物をスリット加工する際に前記被加工物保持部材ごとスリット加工することを特徴とする請求項1に記載の形彫放電加工方法。   2. The electric discharge machining method according to claim 1, wherein, in the machining step, the workpiece holding member is slit when the workpiece is slit. 前記加工工程は、所定間隔離間してスリットを形成するよう複数配置された帯状の工具電極を外側保持具で保持した電極部材を用い、該スリット部分に被加工物加工領域全てが内包されるように前記被加工物を載置し、加工を行うことを特徴とする請求項1または2に記載の形彫放電加工方法。   In the machining step, an electrode member in which a plurality of strip-shaped tool electrodes arranged to form a slit with a predetermined interval is held by an outer holder, and the entire workpiece machining area is included in the slit portion. The electric discharge machining method according to claim 1 or 2, wherein the workpiece is mounted on the workpiece. 前記加工工程は、前記工具電極を、前記被加工物に形成されたスリット中に介在させた状態で、前記工具電極の長手方向に、前記工具電極と被加工物とを相対的に移動させる摺動工程を備えたことを特徴とする請求項3に記載の形彫放電加工方法。   In the machining step, the tool electrode and the workpiece are relatively moved in the longitudinal direction of the tool electrode with the tool electrode interposed in a slit formed in the workpiece. 4. The electric discharge machining method according to claim 3, further comprising a moving step. 前記摺動工程は、前記被加工物の放電加工中に、前記被加工物と前記工具電極との間の放電を維持した状態で、前記工具電極と被加工物とを相対的に移動させることを特徴とする請求項4に記載の形彫放電加工方法。   The sliding step relatively moves the tool electrode and the workpiece while maintaining an electric discharge between the workpiece and the tool electrode during the electric discharge machining of the workpiece. The die-sinking electric discharge machining method according to claim 4. 前記摺動工程は、前記被加工物と前記工具電極との間の放電を休止した状態で、前記工具電極と被加工物とを相対的に移動させることを特徴とする請求項4に記載の形彫放電加工方法。   The said sliding process moves the said tool electrode and a to-be-processed object relatively in the state which stopped the discharge between the to-be-processed object and the said tool electrode. Die-sinking electrical discharge machining method. 前記摺動工程は、前記工具電極の長手方向に、前記工具電極と被加工物とを相対的に移動させる往復運動の際の往路と復路とで、前記工具電極の移動速度を異なる移動速度で移動させることを特徴とする請求項4〜6のいずれか1つに記載の形彫放電加工方法。   In the sliding step, the tool electrode and the workpiece are moved in the longitudinal direction of the tool electrode, and the tool electrode and the workpiece are moved in different directions. 7. The electric discharge machining method according to any one of claims 4 to 6, wherein the electric discharge machining method is moved. 前記摺動工程は、前記往復運動の際の工具電極の折り返し位置で、前記工具電極と前記被加工物との極間距離を離す方向に所定の距離だけ後退させることを特徴とする請求項7に記載の形彫放電加工方法。   8. The sliding step is configured to retract a predetermined distance in a direction in which an inter-electrode distance between the tool electrode and the workpiece is separated at a return position of the tool electrode during the reciprocating motion. The EDM method described in 1. 帯状の工具電極の厚さの垂直方向がスリット形成加工進行方向となるように、前記工具電極を外側保持具で把持し、前記工具電極を相対的に移動させつつ、被加工物と前記工具電極との間にパルス状の電圧を印加し、放電加工を行う形彫放電加装置において、
前記工具電極は、所定間隔離間してスリットを形成するよう複数配置され、該スリット部分は該スリット部分に被加工物加工領域全てが内包される大きさを有するものであることを特徴とする形彫放電加工装置。
The workpiece and the tool electrode are moved while the tool electrode is gripped by an outer holder and the tool electrode is moved relatively so that the vertical direction of the thickness of the band-shaped tool electrode becomes the slit forming process progressing direction. In the sculpting EDM device that applies a pulse voltage between and
A plurality of the tool electrodes are arranged so as to form slits spaced apart from each other by a predetermined distance, and the slit portion has such a size that the entire workpiece processing region is included in the slit portion. Engraving EDM.
前記工具電極を囲繞する位置に配設された壁面であって、前記工具電極をスリット形成加工進行方向に進めた際に前記壁面が前記工具電極によって加工される被加工物の加工位置を通過しない壁面を用いて前記工具電極は保持されることを特徴とする請求項9に記載の形彫放電加工装置。   A wall surface disposed at a position surrounding the tool electrode, and the wall surface does not pass a machining position of a workpiece to be machined by the tool electrode when the tool electrode is advanced in the slit formation machining direction. The electric discharge machining apparatus according to claim 9, wherein the tool electrode is held using a wall surface. 前記工具電極は、工具電極の一端を櫛歯状に固定したものであることを特徴とする請求項9に記載の形彫放電加工装置。   10. The electric discharge machining apparatus according to claim 9, wherein the tool electrode has one end fixed to a comb-teeth shape. 前記工具電極は、当該工具電極の両端近傍にスペーサを介して複数積層されると共に、前記スペーサ及び前記工具電極に設けられた貫通穴に連結部材を貫通させ、該連結部材を工具電極長手方向に張力を付与した状態で保持することを特徴とする請求項11に記載の形彫放電加工装置。   A plurality of the tool electrodes are stacked in the vicinity of both ends of the tool electrode via spacers, and a connecting member is passed through through holes provided in the spacer and the tool electrode so that the connecting member extends in the tool electrode longitudinal direction. The electric discharge machining apparatus according to claim 11, wherein the electric discharge machining apparatus is held in a state where tension is applied. 前記工具電極の表面側および裏面側から前記連結部材を保持する第1の保持部と、
前記第1の保持部に頂部を押接された状態で保持されるとともに両端近傍で前記連結部材が貫通する湾曲部材と、
を備え、
前記湾曲部材は、前記頂部の押接によって自身が伸ばされるとともに、自身の伸びによって前記連結部材に工具電極長手方向の張力を付与することを特徴とする請求項9〜12のいずれか1つに記載の形彫放電加工装置。
A first holding part for holding the connecting member from the front side and the back side of the tool electrode;
A curved member that is held in a state in which the top is pressed against the first holding part and through which the connecting member passes in the vicinity of both ends;
With
13. The bending member according to claim 9, wherein the bending member is stretched by the pressing of the top portion and applies tension in the longitudinal direction of the tool electrode to the connecting member by stretching of the bending member. The sculpture electric discharge machine described.
前記各工具電極は、前記工具電極毎にそれぞれの加工電源と接続する電源接続部を備え、
前記各電源接続部は、隣り合う電源接続部とは工具電極長手方向の位置が異なる位置に配設されていることを特徴とする請求項9〜13のいずれか1つに記載の形彫放電加工装置。
Each of the tool electrodes includes a power supply connection portion connected to each machining power source for each tool electrode,
14. The sculpture discharge according to claim 9, wherein each of the power supply connection portions is disposed at a position different from the position of the adjacent power supply connection portion in the longitudinal direction of the tool electrode. Processing equipment.
前記工具電極を円環状の一方の主面上で保持する第2の保持部をさらに備え、
前記工具電極は、前記主面と前記工具電極の短手方向が垂直となるよう前記主面上に複数配設されると共に、工具電極長手方向に張力が付与された状態で前記第2の保持部に保持されることを特徴とする請求項11に記載の形彫放電加工装置。
A second holding part for holding the tool electrode on one annular main surface;
A plurality of the tool electrodes are arranged on the main surface so that the main surface and the short direction of the tool electrode are perpendicular to each other, and the second holding is performed in a state where a tension is applied in the tool electrode longitudinal direction. The electric discharge machining apparatus according to claim 11, wherein the electric discharge machining apparatus is held by a portion.
前記工具電極の長手方向の端部を保持するとともに回転による前記工具電極の巻き取りによって前記工具電極の長手方向に張力を付与するコマと、
前記工具電極の主面と当接して回転するとともに前記工具電極の端部を前記コマへ導くピンと、
をさらに備えることを特徴とする請求項15に記載の形彫放電加工装置。
A top for holding a longitudinal end of the tool electrode and applying tension in the longitudinal direction of the tool electrode by winding the tool electrode by rotation,
A pin that rotates in contact with the main surface of the tool electrode and leads the end of the tool electrode to the top;
The EDM apparatus according to claim 15, further comprising:
前記工具電極は、前記コマまたはピンを介して給電されることを特徴とする請求項16に記載の形彫放電加工装置。   The electric discharge machining apparatus according to claim 16, wherein the tool electrode is supplied with power through the frame or pin. 前記第2の保持部は2枚からなり、かつ前記工具電極は前記第2の保持部の間に配設されることを特徴とする請求項15〜17のいずれか1つに記載の形彫放電加工装置。   The shape engraving according to any one of claims 15 to 17, wherein the second holding portion is composed of two sheets, and the tool electrode is disposed between the second holding portions. Electric discharge machine. 前記工具電極は、前記各第2の保持部が備えるそれぞれのコマに保持されることを特徴とする請求項16〜18のいずれか1つに記載の形彫放電加工装置。   The electric discharge machining apparatus according to any one of claims 16 to 18, wherein the tool electrode is held by each piece provided in each of the second holding portions. 前記工具電極を、前記被加工物に形成されたスリット中に介在させた状態で、前記工具電極の長手方向に、前記工具電極と被加工物とを相対的に移動させる摺動手段をさらに備えたことを特徴とする請求項9〜19のいずれか1つに記載の形彫放電加工装置。   The apparatus further comprises sliding means for relatively moving the tool electrode and the workpiece in the longitudinal direction of the tool electrode in a state where the tool electrode is interposed in a slit formed in the workpiece. The electric discharge machining apparatus according to any one of claims 9 to 19, wherein 前記摺動手段は、前記被加工物の放電加工中に、前記被加工物と前記工具電極との間の放電を維持した状態で、前記工具電極と被加工物とを相対的に移動させることを特徴とする請求項20に記載の形彫放電加工装置。   The sliding means relatively moves the tool electrode and the workpiece while maintaining the electric discharge between the workpiece and the tool electrode during the electric discharge machining of the workpiece. The die-sinking electric discharge machining apparatus according to claim 20. 前記摺動手段は、前記被加工物と前記工具電極との間の放電を休止した状態で、前記工具電極と被加工物とを相対的に移動させることを特徴とする請求項20に記載の形彫放電加工装置。   21. The sliding means according to claim 20, wherein the tool electrode and the workpiece are relatively moved in a state where the discharge between the workpiece and the tool electrode is suspended. Die-sinking EDM. 前記摺動手段は、前記工具電極の長手方向に、前記工具電極と被加工物とを相対的に移動させる往復運動の際の往路と復路とで、前記工具電極の移動速度を異なる移動速度で移動させることを特徴とする請求項20〜22のいずれか1つに記載の形彫放電加工装置。   The sliding means moves the tool electrode at different moving speeds in a forward direction and a return path in a reciprocating motion in which the tool electrode and the workpiece are relatively moved in the longitudinal direction of the tool electrode. The die-sinking electric discharge machining apparatus according to any one of claims 20 to 22, wherein the electric discharge machining apparatus is moved. 前記摺動手段は、前記往復運動の際の工具電極の折り返し位置で、前記工具電極と前記被加工物との極間距離を離す方向に所定の距離だけ後退させるとともに、その後、前記工具電極をスリット形成加工進行方向に進めて元の位置に戻すことを特徴とする請求項23に記載の形彫放電加工装置。   The sliding means retracts the tool electrode by a predetermined distance in a direction in which a distance between the tool electrode and the workpiece is separated at a position where the tool electrode is folded back during the reciprocating motion. 24. The die-sinking electric discharge machining apparatus according to claim 23, wherein the electric discharge machining apparatus is moved back to the original position by being advanced in the slit forming machining direction. 前記工具電極によって形成するスリットは、鉛直方向であることを特徴とする請求項9〜24のいずれか1つに記載の形彫放電加工装置。   The slit electric discharge machining apparatus according to any one of claims 9 to 24, wherein the slit formed by the tool electrode is in a vertical direction.
JP2007033960A 2007-02-14 2007-02-14 Diesinking electric discharge machining method and diesinking electric discharge machine Pending JP2010105051A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007033960A JP2010105051A (en) 2007-02-14 2007-02-14 Diesinking electric discharge machining method and diesinking electric discharge machine
PCT/JP2008/052306 WO2008099832A1 (en) 2007-02-14 2008-02-13 Electric discharge slice machining method, electric discharge slice machining apparatus, and semiconductor wafer manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007033960A JP2010105051A (en) 2007-02-14 2007-02-14 Diesinking electric discharge machining method and diesinking electric discharge machine

Publications (1)

Publication Number Publication Date
JP2010105051A true JP2010105051A (en) 2010-05-13

Family

ID=39690060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007033960A Pending JP2010105051A (en) 2007-02-14 2007-02-14 Diesinking electric discharge machining method and diesinking electric discharge machine

Country Status (2)

Country Link
JP (1) JP2010105051A (en)
WO (1) WO2008099832A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084277A1 (en) * 2012-11-28 2014-06-05 新日鉄住金マテリアルズ株式会社 Electric discharge machining device
CN104907648A (en) * 2015-07-08 2015-09-16 上海交通大学 Arc profile cutting discharge processing method based on combined arc breaking and efficient chip removal
CN112643160A (en) * 2020-12-25 2021-04-13 航天精工股份有限公司 Discontinuity inspection sample preparation device for high lock nut
KR102471140B1 (en) * 2021-08-30 2022-11-28 김득일 apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104858512B (en) * 2015-05-07 2017-03-08 北京航空航天大学 A Synchronous Electrolytic Segmentation Machining Device for Multiple Complex Surface Parts
JP7590497B2 (en) 2022-06-24 2024-11-26 日揚科技股▲分▼有限公司 Electric discharge machining equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224991U (en) * 1975-08-12 1977-02-22
JPS55147216U (en) * 1979-04-02 1980-10-23
JPS6292192U (en) * 1985-11-28 1987-06-12
JPH01188233A (en) * 1988-01-20 1989-07-27 Babcock Hitachi Kk Electrode for working thin groove
JPH08243981A (en) * 1995-03-08 1996-09-24 Sasa Eng:Kk Band knife tensile force display device and band knife tensile force adjusting device
JP4411837B2 (en) * 2002-12-05 2010-02-10 株式会社デンソー Semiconductor substrate manufacturing method and manufacturing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084277A1 (en) * 2012-11-28 2014-06-05 新日鉄住金マテリアルズ株式会社 Electric discharge machining device
CN104907648A (en) * 2015-07-08 2015-09-16 上海交通大学 Arc profile cutting discharge processing method based on combined arc breaking and efficient chip removal
CN112643160A (en) * 2020-12-25 2021-04-13 航天精工股份有限公司 Discontinuity inspection sample preparation device for high lock nut
KR102471140B1 (en) * 2021-08-30 2022-11-28 김득일 apparatus

Also Published As

Publication number Publication date
WO2008099832A1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP2010105051A (en) Diesinking electric discharge machining method and diesinking electric discharge machine
CN102166676A (en) Method and device for machining insulating ceramic by reciprocating wire-cut electrical discharge machining
JP2010260151A (en) Wire electric discharge machining apparatus and electric discharge machining method
CN103920948A (en) Device and method for controllable gas-film micro-electrochemical discharge wire-cutting processing
JP6033190B2 (en) Multi-wire processing apparatus and multi-wire processing method
CN113677470A (en) Wire electric discharge machine
CN110561627B (en) Cutting device and method applied to boron carbide
KR20160053825A (en) Apparatus and method for cutting semi/non-conductor using wedm
KR20070104676A (en) Electrolytic Processing Method and System
KR101649423B1 (en) Apparatus for electrochemical discharge machining
TWI878849B (en) Electrical discharge machining apparatus
JP5393501B2 (en) Wire electrical discharge machine
JP2017185604A (en) Discharge multi-blade saw
US20230415252A1 (en) Electrical discharge machining apparatus
JP6558542B2 (en) EDM method
WO2014084277A1 (en) Electric discharge machining device
TWI885293B (en) Electrical discharge machining apparatus
JP2012210664A (en) Wire electrical discharge machining device, wire electrical discharge machining method, method for manufacturing thin plate, and method for manufacturing semiconductor wafer
JP4271884B2 (en) Processing method of sintered silicon carbide
US20230415251A1 (en) Electrical discharge machining apparatus
JP2014172096A (en) Wire electrical discharge machining system, power supply device, and control method and program thereof
CN104259601B (en) A kind of processing technology utilizing spark erosion equipment control system
JP7667831B2 (en) Electric discharge machining apparatus and electric discharge machining method capable of adjusting machining parameters
CN218487397U (en) Electric discharge machining apparatus
JP2017087402A (en) Wire connection method