[go: up one dir, main page]

JP2009523658A - 分散型飛行制御システムのバックアップ制御のための装置及び方法 - Google Patents

分散型飛行制御システムのバックアップ制御のための装置及び方法 Download PDF

Info

Publication number
JP2009523658A
JP2009523658A JP2008551421A JP2008551421A JP2009523658A JP 2009523658 A JP2009523658 A JP 2009523658A JP 2008551421 A JP2008551421 A JP 2008551421A JP 2008551421 A JP2008551421 A JP 2008551421A JP 2009523658 A JP2009523658 A JP 2009523658A
Authority
JP
Japan
Prior art keywords
control signal
actuator
backup
controller
main control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008551421A
Other languages
English (en)
Inventor
ユッカ・マッティ・ヒルヴォネン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gulfstream Aerospace Corp
Original Assignee
Gulfstream Aerospace Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gulfstream Aerospace Corp filed Critical Gulfstream Aerospace Corp
Publication of JP2009523658A publication Critical patent/JP2009523658A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0055Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
    • G05D1/0077Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements using redundant signals or controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/38Transmitting means with power amplification
    • B64C13/50Transmitting means with power amplification using electrical energy
    • B64C13/504Transmitting means with power amplification using electrical energy using electro-hydrostatic actuators [EHA's]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/38Transmitting means with power amplification
    • B64C13/50Transmitting means with power amplification using electrical energy
    • B64C13/505Transmitting means with power amplification using electrical energy having duplication or stand-by provisions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Safety Devices In Control Systems (AREA)
  • Feedback Control In General (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Selective Calling Equipment (AREA)

Abstract

本発明の実施形態は、飛行中に航空機を制御する飛行制御システムに関する。飛行制御システムは、パイロットからの入力を受け取って主制御信号を出力する主コントローラと、主コントローラに接続されて主制御信号を中継する主伝送路と、を有する。また、飛行制御システムは、パイロットからの入力を受け取ってバックアップ制御信号を出力するバックアップコントローラと、バックアップコントローラに接続されてバックアップ制御信号を中継するバックアップ伝送路と、を有する。さらに、飛行制御システムは、主制御信号とバックアップ制御信号を受け取り、主制御信号が利用できるか及び有効かどうかを判断するリモートエレクトロニクスユニットを備えたアクチュエータを有する。リモートエレクトロニクスユニットは、主制御信号が利用でき且つ有効な場合は、主制御信号に基づいてアクチュエータコマンドを出力し、主制御信号が利用できない又は無効である場合は、バックアップ制御信号に基づいてアクチュエータコマンドを出力するように構成される。

Description

本発明の実施態様は一般的に航空機飛行制御システムに関し、より具体的には、分散型フライ・バイ・ワイヤ(FBW)飛行制御システムのための冗長なバックアップ制御システムの実現に関する。
航空機の技術、増え続ける飛行エンベロープ、及び総合的な性能の急速な発展に伴い、現代の航空機内で実現される飛行制御システムは、極度に複雑になってきている。それ故、飛行性能、燃料効率、安全性などの様々な航空機の特性に取り組む先進的な飛行制御システムが、開発されてきている。現代の航空機の主飛行制御システムは、一般的には、パイロット制御、航空機センサ、電子プロセッサ、電子配線又はデータバス、アクチュエータ、及び操縦翼面(control surface)を含む、複雑な構成要素の組み合わせを含む。不運にも、主飛行制御システムがより複雑になると、航空機は、システムの故障又はプロセッサの故障に対してますます脆弱になる。
飛行規定に従って且つ頑丈な航空機の開発のために、現代の航空機は、主制御システムが機能しなくなった場合、すなわちシステム故障に陥った場合に使用される、補助的な又は冗長な要素又はシステムを有する。プロセッサを利用した制御システムの故障の確立は低いにもかかわらず、飛行制御システムは、送信媒体の又は主飛行制御システムのコマンド処理の一般的な障害の問題に対処できないことがしばしばある。主制御システムの冗長な要素を安全対策として含めることは可能であるけれども、主要な処理又は送信媒体で発生する一般的な障害は、主制御システムだけでなく、冗長な要素の機能も無効にし、ある場合には、分離しているバックアップシステムにまで伝搬する。米国特許第6,860,452号に開示されている飛行制御システムなどの制御システムは、この問題に対処する、主チャネル及び冗長チャネルの群の間に相違点を含む集中型の主システムと十分に冗長なバックアップシステムを採用している。しかし、このようなアプローチは、極度に慎重な分析と、相違点が主飛行制御に必要とされる全体の複雑な電子機器の経路にわたって真に適合することを確実にする設計努力と、を必要とする。
主飛行制御システムが、例えば、冗長センサと双方向のデジタルデータバスにより、システムのインテグリティ(integrity)を検証することが一般的に可能である間、バックアップ飛行制御システムは、それ自身を監視する又は使用されないときの適当な機能を確保する十分な手段を欠いていても良い。例えば、一定の高度、姿勢、機首方位、及び対気速度で標準の飛行動作が行われている間、主システム及びバックアップシステムからの制御信号は、長時間、一定のままであってもよい。主システム及びバックアップシステムからの信号は、これらの状態のもとで適当に対応するけれども、バックアップシステムが故障しているか又は動かなくなっていても、一時的に正確な信号を出力している可能性がある。それ故、バックアップシステムは、利用できない又は無効であるのに、適切に機能しているように見え、パイロットとオペレータに安全だという錯覚を起こさせるかもしれない。
分散型制御システムにおいて、操縦翼面アクチュエータのアクチュエータ制御ループは、アクチュエータ自身又はアクチュエータ近傍で閉じられ、航空機のレベル制御法則は、計算プラットフォーム(飛行制御コンピュータ(FCC)として一般に知られ、一般的に航空機のコックピットに又はその近くに設置されている。)上で、実行される。いくつかの処理能力を有するスマートアクチュエータを導入することにより、アクチュエータで特定のプロセッサ機能を実行する能力が追加されてきた。ここで定義されたスマートアクチュエータは、水圧シリンダとそれに関連する制御バルブ又は電子機械駆動装置のような、機械的な駆動装置と、リモートエレクトロニクスユニット(REU)と、を含む。リモートエレクトロニクスユニットは、アクチュエータの不可欠な部分、アクチュエータに装備された列線交換ユニット(LRU)、又はアクチュエータの近くに装備されたユニットである。航空機の操縦翼面の一つに関連付けられたリモートエレクトロニクスユニットは、飛行制御コンピュータ(FCC)から操縦翼面位置コマンドを受け取り、アクチュエータへの特定の信号を生成することにより、作動する。アクチュエータがフィードバックセンサとフィードバック信号を含む場合、リモートエレクトロニクスユニットは、FCCをあてにせずに、操縦翼面位置のフィードバック制御を実行する。FCCは、例えば、航空電子機器収納室、一般的にはコックピットの近くに配置される。REUを用いることにより、飛行制御システムは、飛行制御コンピュータにおいて必要とされる処理量を低減することができる。
分散型制御システムは、異なる種類のデータ転送媒体の使用を可能にする。データバスは、制御システムを監視するスマートアクチュエータと共に用いられ、スマートアクチュエータのリモートエレクトロニクスユニットが、制御信号(端から端まで)のインテグリティを保証し、アクチュエータ特定コマンドのためのデータバスを監視することを可能にする。さらに、スマートアクチュエータは、データバス転送媒体(ARINC429又はCANバス又はそれらの派生物など)の使用を可能にし、従来の飛行制御システムと比較して、転送配線の数と重さを著しく低減する。いくつかのスマートアクチュエータ制御システムでは、スマートアクチュエータの全てをプロセッサ又は制御コンピュータに接続するのに、1つの二線式バス(single two wire bus)が用いられる。他のさらに保守的なスマートアクチュエーション制御システムでは、複数の専用のポイントツーポイントデータバスが集中型の飛行制御コンピュータ又は同等のものを各個々のスマートアクチュエータに接続するのに用いられる。また、1以上の主ポイントツーポイントデータバスが、さまざまなレベルの冗長性に従って、飛行制御コンピュータと所定のスマートアクチュエータとの間に設けられる場合がある。
米国特許第6860452号明細書
スマートアクチュエータ制御システムは発達しているにもかかわらず、スマートアクチュエータ飛行制御システムは、しばしば、送信媒体の一般的な故障の問題又は主飛行制御システムのコマンド処理に対処することができない。本発明の実施形態によれば、複雑な主制御システムで一般的な故障が発生した場合、航空機を保護するために、簡易化バックアップ制御システムが用いられる。たいてい、パイロットは、簡易化バックアップ制御システムを「空路帰国モード(fly home mode)」と呼ぶ。簡易化バックアップ制御システムは、航空機操縦翼面に、より具体的には、いわゆる航空機の最小許容制御(MAC)を提供するアクチュエータに適用されるだけであってもよい。例えば、ある航空機では、MACは、少なくとも1又は2の補助翼と1又は2の昇降蛇及び方向舵とを動かすアクチュエータを制御するように、実現されてもよい。他の場合では、MACを達成するために、方向蛇が省略されてもよいし、又は一対のスポイラがロール(roll)制御のために必要とされてもよい。当業者に理解されるように、MACは、機体の構造とその空気力学特性(すなわち、種々の対気速度での航空機の重心の周りの操縦翼面誘発航空力学モーメント)とに非常に依存してもよい。
本発明の実施形態は、2つの分散型飛行制御システム、すなわち、互いに独立し及び類似していない、主飛行制御システムと簡易なバックアップ飛行制御システムとを有するように構成されてもよい。また、主制御システムは、バックアップ飛行制御システムの簡易さ及び信頼性を危うくすることなく、飛行中に、両システムのインテグリティを監視し及び保証するように構成されてもよい。例えば、本発明の実施形態によるバックアップ制御システムは、非常に簡素であって、直接的な監視機能を備えていなくてもよい。さらに複雑な主飛行制御システムは、標準動作の間、バックアップ制御システムを監視して、その有効性を保証してもよい。本発明の実施形態は、主制御システムとバックアップ制御システムの相違点を検証するための重要な分析と設計上の努力の必要性を排除するのに用いられても良い。バックアップ制御システムは、アナログ又はプログラマブル論理ベースの制御システム又はソフトウェアベースの制御システムとして実行されてもよい。
本出願は、2006年1月17日に出願された、名称“先進飛行制御システムアーキテクチャ(Advanced Flight Control System Architecture)”の同時係属の米国仮特許出願60/759,028(本発明の譲受人に譲渡され、参照することにより、その全体がここに組み込まれる。)の優先権を主張する。本出願は、2007年1月17日に出願された、名称“統合バックアップ制御システムのためのシステム及び方法(System and Method for an Integrated Backup Control System)”の同時係属の米国特許出願(本発明の譲受人に譲渡され、参照することにより、その全体がここに組み込まれる。)に関連する。
本開示は、本発明の様々な実施形態が示されている図面を参照して、より完全に記述される。しかしながら、この開示の対象は、多くの異なる形態で具体化されることが可能であり、ここで説明される実施形態に限定されると解釈されるべきではない。
本発明の実施形態は、独立し及び相違する、主飛行制御システム及びバックアップ飛行制御システムを用いる分散型飛行制御システムを対象とする。バックアップ制御システムは、例えば、簡易化又は最小許容制御(MAC)システムとして構成されてもよい。さらに、主飛行制御システムは、バックアップ制御システムの独立及び相違した特性を危うくすることなく、使用中、主飛行制御システム及びバックアップ飛行制御システムのインテグリティと伝送路とを検証するように構成されてもよい。
図1Aは、本発明の実施形態に従って準備された主及びバックアップの制御を備えた分散型フライ・バイ・ワイヤ(Fly-By-Wire)制御システムの例を概略的に示している。当業者に理解されるように、図1Aの主及びバックアップの制御システムは、航空機の構造とサイズに従って、翼面の数を増加又は減少させることにより、他の代替の構造及び航空機のために変更可能である。図示されているように、主コマンドの経路は、全て“P”のラベルが付けられ、バックアップのコマンド経路は全て“B”のラベルが付けられている。
図1Aの総合的な分散型飛行制御システムは、主飛行制御コンピュータ(FCC)チャネル401、402と、バックアップコントローラ403と、アクチュエータと、を有する。簡単にするため、図1Aにおいて、左補助翼410を制御するアクチュエータ420、430のみがラベル付けされている。しかしながら、ここでのアクチュエータに関する考察は、図1Aに示される全てのアクチュエータに適用されることは考慮されるべきである。アクチュエータ420、430のそれぞれは、スマートアクチュエータを表し、アクチュエータに又はアクチュエータのすぐ近くに据え付けられたリモートエレクトロニクスユニット(REU)を有する。主FCCチャネル401及び402は、局所の破壊発生を緩和するために、チャネルを物理的に分離することにより、一般的には、図1Aに示されるように、左チャネル及び右チャネルとして、2以上の群に分割される。例えば、チャネル401及び402が分離されると、火又はバードストライクに起因する損傷を軽減することが可能となる。また、局所な破壊発生をさらに軽減するために、航空機のさらに別の位置にバックアップコントローラ403を据え付けることが多くの場合に有用である。
図1Aにおいて、アクチュエータ420及び430は、補助翼面410に取り付けられている。これらのアクチュエータは、アクチュエータ420及び430の両方が補助翼410の位置を制御するように構成されていてもよい。また、これらのアクチュエータは、一つのアクチュエータが補助翼410を積極的に制御している間、他のアクチュエータは待機し、動作中のアクチュエータが故障した場合に他のアクチュエータのみが動作状態になるように、構成されていてもよい。例えば、アクチュエータ420は、補助翼410を制御するアクティブなアクチュエータであって、アクチュエータ420が故障した場合にスタンバイのアクチュエータ430のみが動作状態になる。
本発明の実施形態によれば、アクチュエータ420及び430はスマートアクチュエータであって、自己のREUにより制御される。アクチュエータ420はREU421に結合され、アクチュエータ430はREU431に結合されている。標準動作の間、REU421及び431は、主コマンド経路422を介して、主制御チャネル401及び402から主翼面位置コマンドを受け取る。図1Aに示されるように、各REUは、主コマンド経路、すなわちPで示されるデータバスを介して、主チャネル401及び402に接続されている。
図1Aに示されるように、バックアップコントローラ403は、バックアップコマンド経路433を介して、アクチュエータ430に接続されるが、アクチュエータ420には接続されない。同様に、バックアップコントローラ403は、いくつかのREU及びアクチュエータに接続されるが、全てには接続されない。バックアップコントローラは、より完全な冗長制御システムにおいては、全てのアクチュエータに接続されうるけれども、図1Aは、バックアップ制御システムが選ばれた数及び配置のアクチュエータ及び操縦翼面のみに接続する、本発明の一実施形態を示している。例えば、図1Aに示されるように、左の内側のスポイラは、バックアップコントローラ403に接続されていない。本発明の一実施形態では、バックアップコントローラ403に接続されるアクチュエータの数は低減され、所定の航空機のための最小許容制御(MAC)を提供するアクチュエータのみに接続してもよい。MACを提供するのに必要なアクチュエータの位置と数は、航空機の種類とサイズに従って大きく変化する。
より詳細を後述するように、各アクチュエータに結合されたREUは、主経路422上の主制御信号の有効性を判断し、アクチュエータに主制御コマンドを渡すように構成されている。例えば、REU421及び431は、主経路422上の主コマンド信号が有効であることを判断し、アクチュエータ420及び430に主コマンド信号を送信してもよい。しかし、主チャネル401及び402が一般的な故障を起こした場合やREUが主制御信号が無効である又は欠けていると判断した場合は、REUはバックアップ制御信号に戻して、アクチュエータのためにバックアップ制御信号を用いても良い。例えば、REU431は主経路422上の主コマンド信号が無効であると判断すると、補助翼410の位置を制御するために、経路433上のバックアップコマンド信号に戻してもよい。REU421は、主コマンド信号が無効であると判断すると、アクチュエータ420を待機モードにしてもよい。これにより、アクチュエータ430が補助翼410を完全に制御することが可能になる。
図1Bは、図1Aに示す分散型飛行制御システムの位置を概略的に示している。図1Bは、センサ11及び12とスマートアクチュエータ30とを備えた分散型飛行制御システム10を示す。飛行制御システム10は、2つの独立した及び異なる制御システムである、主飛行制御システムとバックアップ飛行制御システムとを有する。図1Bに示される主制御システムは、センサ11、主コントローラ又は主プロセッサ20、制御送信媒体22、及びスマートアクチュエータ30に関連付けられた主I/O及び検証24を有する。図1Bの主コントローラ20は、図1Aに示す主チャネル401及び401の両方を表すことは理解されるべきである。同様に、図1Bの送信媒体22は、図1Aのコマンド経路422を表している。図1Bのスマートアクチュエータ30(破線の箱で示されている。)は、主チャネル401及び402とバックアップコントローラ403の両方に接続されている、図1AのいずれのREU及びアクチュエータを表しているとみなされてもよい。例えば、スマートアクチュエータ30は、アクチュエータ430及びREU431を表している。
非常に簡略化して図1Bに示されているセンサ11及び12は、センサと制御システム10への関連接続とを表していることは理解されるべきである。同様に、簡略化のために、一つのスマートアクチュエータ30のみが図1Bに示されているけれども、制御システム10は多くの制御システムアクチュエータを含み、スマートアクチュエータ30は、補助翼、昇降蛇、方向蛇などの操縦翼面を制御する航空機制御アクチュエータを表している。ここで用いられているように、分散型システムは、高度な航空機レベル制御法則がFCC内で計算されている間に、アクチュエータレベル制御ループの閉鎖が、REU内のアクチュエータで又はその近くで発生する(すなわち、この機能は航空機の周りで分散化されている。)飛行制御システムのことを記述している。また、FCCは、当業者により理解される航空機レベルフィードバック制御ループを含んでもよい。主プロセッサ20は一つの構成要素として表されているけれども、主プロセッサは、1以上のプロセッサ、飛行コンピュータ又はエビオニクス一式などを含んでもいいことは理解されるべきである。さらに、スマートアクチュエータ30は、1以上のスマートアクチュエータ又はアクチュエータの集まりを含み、その全てが主プロセッサ20に接続されても良い。
図1Bに示すように、主コントローラ20はセンサ11からの入力を受信する。センサ11は、様々なセンサ/入力、及び/又は主コントローラ20に接続されたセンサ入力系統を表す。例えば、センサ11は、パイロット操縦桿などの特定の航空機センサ、又は高度、姿勢、対気速度などのシステムセンサを表しても良い。典型的な操縦桿は、主制御システムについて軸毎に3つ(二軸で合計6)の主位置センサと、バックアップ制御システムについて軸あたり一つのバックアップ位置センサと、を含む。さらに、センサ11は、同調して、有効信号を主コントローラ20に返す一対のセンサを含んでも良い。センサ11は、機体の速度センサや、必須の監視及びインテグリティの要件を満たす主制御システムにより使用される他のセンサなどの複数の他の種類のセンサを表しても良い。
動作中、主コントローラ20は、センサ11からの入力信号を受け取り、航空機の種々の操縦翼面に対するコマンド信号又は制御信号を生成するように構成される。それから、主コントローラ20は、飛行中、操縦翼面を調整又は維持するために、制御信号を航空機のスマートアクチュエータに送信する。例えば、主コントローラ20は、主伝送路又は媒体22を用いて、いくつもの航空機操縦翼面を制御するように割り当てられたスマートアクチュエータ30にコマンド信号を送信する。スマートアクチュエータ30の主I/O及び検証モジュール24は、伝送路22を介して、主コントローラ20から制御信号を受け取り、スマートアクチュエータ30のプログラム可能な装置又はアクチュエータ駆動エレクトロニクス50にその制御信号を渡してもよい。アクチュエータ駆動エレクトロニクス50による処理後、アナログ制御信号52は、直接、アクチュエータ54に供給されて、補助翼、昇降蛇、又は他の航空機操縦翼面などの操縦翼面の位置を調整してもよい。
図1Bに示すように、飛行制御システム10は、バックアップ制御システムを有する。バックアップ制御システムは、センサ12、バックアップコントローラ又はプロセッサ40、バックアップ制御送信媒体42、及びスマートアクチュエータ30のバックアップI/O及び検証44を有する。図1Bに示されるバックアップコントローラ40及び送信媒体42は、図1Aに示されるバックアップコントローラ403及びバックアップコマンド経路433を表している。
動作中、バックアップコントローラ40は、センサ12からの入力を受け取る。センサ11と同様に、センサ12は、種々のセンサ/入力、又はバックアップコントローラ40へのセンサ入力系統を表すことは理解されるべきである。航空機レベル復原力がバックアップ制御システムのために必要とされる場合、ヨーダンピング(yaw damping)など、センサ12はレートジャイロセンサ又は加速度計を表してもよい。さらに、センサ12は、いくつかのセンサと制御が主制御システムとバックアップ制御システムの両方により共有され、いくつかのセンサと制御が完全に冗長であるような、冗長センサ系統を表してもよい。
本発明の実施形態によれば、バックアップコントロールシステムは、特定の航空機操縦翼面と、より具体的には、航空機のMACを提供するアクチュエータに適用するようにのみ構成されてもよい。そのようなものとして、主コントローラ20と主制御システムは、航空機の各スマートアクチュエータ30に接続されて各スマートアクチュエータ30を制御し、バックアップコントローラ44とバックアップ制御システムは、MACに必須のサブセットのみなどの、スマートアクチュエータ30のサブセットに接続されるように構成されてもよい。これを成し遂げるために、バックアップ制御システムは、車輪、柱、及び(方位制御が必要な場合)ラダーペダルなどのパイロットコントローラ軸毎の単一のセンサに接続されてもよい。
バックアップ制御システムは、通常の動作中は、航空機のアクティブ制御を行わないため、バックアップ制御システムのセンサの故障と関連する故障の過渡現象は、標準飛行にとっては重要な安全性の関心事項ではない。しかし、バックアップ制御システムが必要なときに(すなわち、全ての主コントローラが故障したときに)、自己監視機能を備えていないバックアップ制御システムは、緊急事態のための強固な(robust)及び簡単な制御システムを提供する。
バックアップ制御システムを独立及び異なるようにして維持するために、バックアップ制御システムは、主飛行制御システム、乗員警告システム(Crew Alerting System)又は航空機の他の監視機能などの、他の航空機システムにデータを供給するように構成されてもよい。しかし、本発明のいくつかの実施形態では、バックアップ制御システムは、他のシステム(航空機電力系統のようなシステムを含まない。)が、データをバックアップ制御システムに提供せず、その動作を必要とされないように、構成されてもよい。従って、バックアップ制御システムは、航空機の他のシステムから分離されて、完全に独立したバックアップ制御システムとして構成されてもいい。このように、バックアップ制御システムは、他の航空機システムの一般的な欠陥又は故障がバックアップ制御システムに伝搬することから保護されるようにしてもよい。これにより、必要なときにバックアップ制御システムの有効性を最大限にできる。
図1Bには、一つのスマートアクチュエータ30しか示されていないけれども、バックアップ制御システムは、航空機上の全てのスマートアクチュエータに接続されてもいいし、いくつかのより少ないスマートアクチュエータのセットに接続されてもよい。上述したように、バックアップ制御システムは、MAC要件を満たすのに十分な、バックアップ又は選択されたアクチュエータを備えた限られた数の航空機操縦翼面のみを制御するように構成されてもよい。補助翼などの所定の操縦翼面について、バックアップアクチュエータ(図示せず)は、スマートアクチュエータ30内に示されているアクチュエータ54に加えて含まれてもいいと考えられる。バックアップアクチュエータは、主制御システムにより制御される主アクチュエータから独立し及び異なっていてもよい。同一の航空機操縦翼面に取り付けられた主アクチュエータが、(主)制御信号を失うとすぐに、主アクチュエータを待機モード又はバイパスモードに設定することを必要としてもよい。これは、バックアップアクチュエータが、アクティブになりバックアップコントローラにより制御されるときに、他のアクチュエータと争うことなく、バックアップ制御信号に従って操縦翼面を動かすことを確実にする。
バックアップコントローラ40は、センサ12からの入力信号を受け取り、航空機上の種々の操縦翼面を制御するコマンド信号又は制御信号を生成するように構成されてもよい。バックアップコントローラ40は、バックアップ伝送路又は媒体42を用いて、航空機のスマートアクチュエータ30に接続されてもよい。スマートアクチュエータ30のバックアップI/O及び検証モジュール44は、伝送路42を介してバックアップコントローラ20から制御信号を受け取り、スマートアクチュエータ30のアクチュエータ駆動エレクトロニクス50に制御信号を転送してもよい。アクチュエータ駆動エレクトロニクス50による処理後、制御信号52が直接アクチュエータ54に供給されて、操縦翼面の位置を調整してもよい。分離されたバックアップアクチュエータが用いられる場合、アクチュエータ54がバイパスモードのときに、アクチュエータ駆動エレクトロニクス50は、制御信号52をバックアップアクチュエータに提供してもよい。
本発明の一実施形態では、送信媒体22及び42は異なる種類のものであってもよい。本発明の一実施形態では、これらの媒体の種類は、主送信媒体22としてデジタルデータバス(例えば、電線又は光ファイバ)を使用し、バックアップ送信媒体42としてアナログのデータバスを使用するなど、完全に異なる媒体を含んでも良い。さらに、一方の媒体が従来の有線方式に基づき、他方の媒体が無線送信方式に基づくなど、完全に異なる送信方式を確保してもよい。本発明の他の実施形態では、2つの送信媒体22及び42は、同一のプロトコルを使用してもいいが、完全に冗長な構成部品を使用してもよい。例えば、送信媒体22及び42は、両方とも、それぞれの経路について分離及び異なるハードウェアを備えたARINC429を使用しても良い。しかし、同一の送信媒体が用いられる場合、バックアップ制御システムと主制御システムは、バックアップ制御システムの他の要素の異なるハードウェア及びソフトウェアを実行することにより、相違点をさらに維持してもよい。
制御チャネルの数と主制御システムの複雑性を低減することは、飛行エンベロープと性能についての増え続ける要求のために難しいかもしれない。しかしながら、バックアップ飛行制御システムの複雑性を低減することで、非常の場合及び/又は主制御システムの障害の場合の、強固で簡素なバックアップ制御システムの設計を補足できる。
アクチュエータ駆動エレクトロニクス50は、主制御システムをデフォルトとし、主制御信号が無効又は欠けている場合にバックアップ制御システムに逆戻りするように構成されてもよい。これを成し遂げるため、スマートアクチュエータ30は、後述するように、主送信媒体22上の制御信号の実行可能性を評価することが可能な処理ハードウェア及びソフトウェアを含んでもよい。主制御システムが、スマートアクチュエータ30の主I/O及び検証装置24により有効であると判断される場合、主制御システムからの制御信号は、制御信号52としてアクチュエータ54に転送されても良い。しかし、制御信号が欠けている又は主I/O及び検証装置24により無効であると判断される場合は、アクチュエータ駆動エレクトロニクス50はバックアップ制御システムに逆戻りし、バックアップ送信媒体42から受け取ったバックアップ制御信号が処理されて、制御信号52としてアクチュエータ54に転送されても良い。主制御信号とバックアップ制御信号のいずれもが無効でない又は欠けていない場合、アクチュエータはセーフモードに設定されてもよい。
送信媒体22でスマートアクチュエータ30に送信される主制御信号の有効性確認は、当業者に知られているいくつかの手段により成し遂げられても良い。一つのアプローチでは、主I/O及び検証装置24が、スマートアクチュエータ30により受信されるような主コントローラ20コマンド信号をそのまま主コントローラ20に戻すことであってもよい。主コントローラ20が、受信したエコーが主制御コマンドに合致すると判断した場合に、信号は有効であると宣言され、指令がスマートアクチュエータ30に送信されて、主制御信号が使用されてもよい。エコーが特定の継続期間内に合致しない場合、その信号は無効であると宣言されてもよい。有効性検証のための他のアプローチは、巡回冗長検査(CRC)などの誤り検出コーディングを使用することを含んでも良い。この場合、主コントローラ20は、所定のCRC多項式に基づいてCRC値を計算し、スマートアクチュエータ30にCRCを送信してもよい。スマートアクチュエータ30は、CRCを生成するのに用いられた同一の多項式により、受信したCRCを除算し、この除算の余りがゼロの場合に、データ転送は有効であると見なされても良い。余りがゼロでなければ、データ転送は無効であると見なされてもよい。当業者に知られている他の種類の検証が用いられても良い。バックアップ制御信号に逆戻りすることの決定は、パイロットにより制御されてもいいし、主制御信号が適当な継続期間内に無効であると判断されたかどうかの事実に基づいて制御されてもよい。
主制御システムとバックアップ制御システムをさらに異ならせるため、バックアップ制御システムは、一般的な主制御システムで用いられる、より先進的ゲインスケジュールとは対照的に、単純な離散のHI/LOゲインスケジュールを使用してもよい。例えば、当業者により理解されるように、主飛行制御システムは、その主要な制御処理の一部として、滑らかな対気速度、衝撃圧力、又は同等のものを利用したゲインスケジュールを含んでも良い。しかし、バックアップ制御システムは全ての操縦性の要件を満たす必要がないため、簡易化バックアップ制御システムでは、このタイプのゲインスケジュールは必須でなくてもよい。代わりに、バックアップ制御システムとバックアップコントローラ40は、航空機の要件に従って、高速ゲインと低速ゲインなどの他の簡易化した離散ゲインスケジュールを使用してもよい。主制御システムがバックアップ制御システムを効率的に監視するために、主制御システムは、バックアップ制御信号がこれらのバックアップ制御法則の形式に従っていることを検証するように構成されてもよい。バックアップ制御法則の形式は、当業者に理解されるように主コントローラのソフトウェアにより容易に実現される。
図1Bに示されるスマートアクチュエータ30の例が、図2に概略的に示されている。REU500は、データリンク510を介して、主飛行制御コマンドを受信する。図2に示す油圧アクチュエータの場合、REU500は、データリンク510を介する飛行制御コマンドに基づいて、電気−油圧サーボバルブ(EHSV)501へのコマンド信号530を生成するように構成されてもよい。位置フィードバックセンサ502は、アクチュエータ位置フィードバック信号520をREU500に返しても良い。スマートアクチュエータのフィードバック制御は、コマンド信号530とアクチュエータ位置フィードバックセンサ信号520とに基づいて成し遂げられる。当業者により理解されるように、図2に示されるサーボループ閉鎖は、所定のアプリケーション又はソフトウェアのための最適解に従って、アナログ又はデジタルのエレクトロニクスで実行されうる。
バックアップ制御システムがパイロットにより起動され又は有効な主制御システムの信号が欠けている場合に使用されるときに、REU500はデータリンク540を介してバックアップ制御コマンドを使用してもよい。それから、REU500は、バックアップ制御に基づいて制御信号530を生成する。データリンク540経由のバックアップ制御信号は、デジタルデータバスとして又はアナログフォーマットで実行されてもよい。それから、REU500は、バックアップ制御コマンドに基づいて、アクチュエータ501へのコマンド信号530を生成する。また、上述したように、フィードバックセンサ信号520が使用されて、コマンド信号530が生成される。
図3を参照すると、本発明の他の実施形態は、局所的に拡張したバックアップ制御システムの構造を組み込むことを含む。ある航空機、静安定緩和や航空機の特定の自然動作を備えた最も顕著な航空機では、例えば、ヨーダンパー(yaw damper)を介してダッチロール(Dutch-roll)の動きを抑制するなど、特定の動きを抑制することが必要であってもよい。このような場合、航空機の角速度など、特定の増加(augmentation)信号をバックアップ又はバックアップ制御システムに供給することが必要であってもよい。増加信号は、主センサ及び/又はバックアップセンサの両方を含む種々のソースから集められることは理解されるべきである。
図3において、主コントローラ140は、例えば、操縦桿又は他のパイロット制御を表す、パイロット入力センサ150からの入力を受け取る。コントローラ140は、主制御システムに特有の冗長主レートジャイロセンサなどの航空機センサ160を受け入れる。主コントローラ140は、空力操縦翼面105についての制御信号を生成し、主コマンド経路111及び113(それぞれ、REU110及びREU112に接続している。)の操縦翼面アクチュエータに主コマンド信号を供給する。一例として、操縦翼面105とREU110及び112は、図1Aの左補助翼410とREU421及び421を表している。
バックアップコントローラ100は、パイロット入力センサ120からの入力信号を受け取り、且つレートジャイロ又は加速度計センサ130からの増加信号を受け取るように構成されている。バックアップコントローラ100は、センサ130から受け取ったデータを少なくとも部分的に用いて、ダッチロールなど、ある航空機の動作を抑制するように構成されてもよい。バックアップ制御信号を生成するとき、バックアップコントローラ100は、バックアップ制御信号をバックアップコマンド経路101を介してREU110に送信するように構成される。本発明の他の実施形態と同様に、バックアップコマンド経路101は一方向データバスとして構成され、主コマンド経路111及び113は双方向データバスとして構成されてもよい。
上述したように、REU110及び112は、主制御信号を確認し、全ての主制御信号が無効である場合にのみバックアップ制御信号に戻すように構成される。例えば、操縦翼面105のような2アクチュエータ操縦翼面について、REU110及びREU112は主制御信号を使用し、REU110のみが、両方の主経路113及び111の主制御信号の両方が無効であると判断した場合に、バックアップ制御信号を戻すように、構成される。REU110のバックアップコントローラ100のコマンドの早期関与を防ぐため、例えば、経路111の主制御信号が無効であり、経路113の主制御信号がまだ有効であるとき、REU112及びREU110間に示されるステータス信号114は、実行されてもよい。この信号は、アクチュエータ制御の非常に基本のコマンド信号(アクチュエータモード選択バルブ制御信号など)に基づいていてもよい。信号11は、アナログ又は離散のインターフェースなどの非常に簡易な通信要素を使用し、信号114は冗長接続上で送信され、一つの接続の障害が、操縦翼面105のバックアップ制御システムの早期関与をもたらさないことをさらに保証してもよい。ステータス信号114が、REU112が有効な主制御システムを受け入れていることを示している限りは、たとえ主経路111が利用できない場合であっても、REU110はバックアップコントローラ100からのバックアップ制御信号に戻さない。その間、REU110は、関連アクチュエータ(図示せず)を待機モードにし、REUが単独で操縦翼面105を制御できるように構成されてもよい。
図4は、分散型制御システム200の位置を概略的に示す。分散型制御システム200は、2つの類似していない飛行制御システムである、異なる送信媒体を備えた、主制御システムとバックアップ制御システムを含む。図4に示される要素は、図1Aの航空機レベルの図に示されている要素を表すことは再度理解されるべきである。例えば、図4の、主コントローラ240、バックアップコントローラ220、主送信媒体242、バックアップ送信媒体222及び224、補助翼REU260、及び昇降蛇REU270は、すべて、図1Aの要素を表している。
制御システム200は、図4に示されるものの他に、追加のセンサ、コントローラ、アクチュエータ、及び他の要素を含んでも良い。動作中、スマートアクチュエータが、作動のために、主飛行制御信号又はバックアップ飛行制御信号を使用するかどうかを判断するように構成されることが、検討される。図4の本発明の実施形態において、バックアップ制御システムは、当業者により理解されるように、デジタルデータバスに組み込まれている固有の信号のインテグリティの特徴を備えた、簡単に再構成可能なデジタル配線及びプログラム可能な装置で実行されてもよい。
図4に示す制御システム200は、パイロット入力210を含むように構成される。パイロット入力は、操縦桿又は他のパイロット制御を含む。入力は、冗長センサ212及び214(一方のセンサが主飛行制御システムに専用であり、他方がバックアップ飛行制御システムに専用である。)により、検知される。機械的冗長性、冗長配線、又はある場合には図4に示されるセンサ212及び214を備えた完全な冗長性を含む、センサーレベルで、冗長性の種々のレベルが実行されることは理解されるべきである。
図4に示される主飛行制御システムを参照すると、入力210は、センサ214により検知され、主飛行コントローラ220により受信される手段を任意の数だけ含んでもよい。必要な情報を処理し、適当な制御信号を計算するとき、主コントローラ220は、データバスにより制御信号を種々のアクチュエータ又は航空機の操縦翼面に供給してもよい。例えば、図4に示されるように、主コントローラ220は、データバス222を使用して、補助翼REU260に制御信号を供給する。さらに、主コントローラ220は、データバス224を使用して、昇降蛇REUに制御信号を供給してもよい。主飛行コントローラ220は、他の伝送路により、他の機能のためのデータを供給してもよい。例えば、経路280により、乗員警告システム(CAS)と整備の通知のためのデータを供給してもよい。また、経路232により、アクティブな制御機能230のためのデータ又はコックピットやパイロットのための他のフィードバック装置のためのデータを供給してもよい。
本発明の一実施形態によれば、改良ARINC429又はRS485データバスなどの双方向データバスが、図4に示されるように、主コントローラ220とアクチュエータ260及び270との間で使用されてもよい。当業者により理解されるように、簡易の双方向送信タイプは、十分立証された、簡易で、且つ強固なものである。さらに、既存の保守ツール(データバスリーダなど)が、システムの動作とインテグリティを分析し監視するのに使用されてもよい。
個々のデータバス(各アクチュエータに対して、一つのデータバスが専用に設けられる。)は、主飛行コントローラ220を航空機アクチュエータに接続するように構成されているけれども、全てのアクチュエータに対して、単一のデータバスが設けられてもいいことは理解されるべきである。言い換えると、当業者により知られているように、各制御信号が分類され又は区別が付けられるようにした状態で、単一のデータバスが、主コントローラ220を航空機のアクチュエータの全てに接続するために使用されても良い。例えば、ARINC429データバスは、全てのアクチュエータを主コントローラに接続するのに使用され、種々のアクチュエータへの制御信号がARINC429データラベルにより分類されるようにしてもよい。単一配線の障害は全てのアクチュエータへのデータ送信に同時に影響を与えるため、一つ以上のデータバスが使用されることを冗長性の要件としてもよい。しかし、制御の損失がそんなに危険ではない無人航空機などの乗り物においては、単一のデータバスが使用されてもよい。
バックアップ飛行制御システムを参照すると、バックアップ又はバックアップコントローラ240は、冗長センサ212からの入力を受け取る。主飛行制御システム内で使用されるような双方向データバスの代わりに、一方向データバス242がバックアップコントローラ240をアクチュエータ260及び270に接続するために使用される。図4では、単一のデータバス242がバックアップ制御システムの接続を形成するために用いられているが、各アクチュエータに対して、個々のデータバスが使用されてもよい。
バックアップ制御システムの一方向データバス242は、バックアップシステムに、簡易性とロバスト性を提供する。さらに簡易化したバックアップコントローラは、主コントローラの高性能な駆動機能を備えずに、基本の制御システムの機能を提供するように構成されてもよい。これにより、バックアップ飛行制御システムは、プログラムと維持を低価格でより簡単にするにもかかわらず、全体として、飛行中、故障しにくくなる。
上述したように、スマートアクチュエータは、プロセスを実行し且つ主制御信号のインテグリティを監視するREU装置を有する。図4において、アクチュエータ260及び270は、スマートアクチュエータとして、構成されている。主制御システム上の双方向データバス222及び224により、スマートアクチュエータ260及び270は、主制御システムのインテグリティを監視し及び検証するように構成されている。これは、主制御システムの状態(health)と有効性を監視するために、双方向データバス222及び224を引き返して、主コントローラ220に、検証データ又は他のタイプのデータを送信することにより、成し遂げられる。
図4に示されるように、主コントローラ220は、データバス290により、バックアップコントローラ240に接続される。主制御システムとバックアップ制御システムは完全に独立し、データバス290以外では分離されている。データバス290は双方向であってもいいけれども、2つの離散制御システムとしての、主制御システムとバックアップ制御システム間のより大きな分離と相違性を導くのに、単方向のデータバス290が使用されてもよい。
バックアップ又はバックアップ飛行制御システムは、標準動作中、監視され、少なくとも、必要とされるときにその存在が保証されてもよい。本発明の一実施形態の例では、バックアップコントローラ240及び一方向バス242から、スマートアクチュエータ260により受信されるバックアップ制御信号は、主制御システムを介して検証され又は監視されてもよい。バックアップ制御信号は、例えばスマートアクチュエータ260により、処理され、双方向バス222により主コントローラ220に送信されてもよい。主制御システムは、バックアップ制御信号を分析し、バックアップ制御システムのインテグリティを確実にする。主コントローラ220により受信されるバックアップ制御信号が正確でない場合、パイロット又はオペレータは警告されてもよい。
本発明の他の実施形態では、全バックアップ制御信号を送信及び評価する主制御システムに負担をかけずに、バックアップ制御システムのインテグリティ及び/又は利用可能性を監視する手段として、簡易な及び制限された検証データを用いて、バックアップ飛行制御システムが監視されてもよい。双方向データバス222のトラフィックが、全バックアップ制御信号を主コントローラ220に戻すことを妨げる場合、又はバックアップ制御信号の監視が、主コントローラの重要な処理能力を消費する場合は、これは重大である。ここで用いられるように、検証データは、バックアップ制御システムの通信とともに送信される単一のビットである、離散の単一のストローブビット(strobe bit)又は刺激ビット(stimulus bit)を含む。検証データが、ワードなど、ビットより大きな他の形式のデータを含んでもいいことは、理解されるべきである。
図5は、検証データを用いてバックアップ制御システムの利用可能性が監視される、本発明の一実施形態を概略的に示す。図5に示されるように、主制御システムは、全バックアップ制御信号を検証することなく、主制御経路222の双方向の性質を用いて、バックアップ制御システムの存在を監視するように構成されている。主コントローラ220は、データバス290にストローブビットを提供するストローブビット生成器226を有する。ストローブビットは、以下に説明するように、バックアップ制御システムを検証する、主コントローラ220内の遅延228に提供される。
ストローブビットは、バックアップコントローラ240により受信され、離散データワードに挿入される。図示されるように、当業者により理解されるように、離散データワードは、ラベル300から始まり、SSM320で終わる。データワード330は、ラベル300とSSM320との間に、一方向データバス242でアクチュエータ260などのスマートアクチュエータに送信される、情報と制御信号を含む。
バックアップコントローラ240からデータワードを送信すると、そのデータワードはスマートアクチュエータ260により受信される。アクチュエータ260のREUは、REUバックアップパーティション262とREU主パーティション264とを有する。REUバックアップパーティション262は、ラベル300、SSM320、及びストローブビットを含むデータワード330を受信するように構成される。また、REUバックアップパーティション262は、伝送路266を使用して、ストローブビットとSSM320をREU主パーティション264に送信するように構成される。
伝送路266と伝送路290は、一方向データバス、双方向データバス、及び/又は光リンクを用いた接続路(リンク)として構成されてもよいことは理解されるべきである。一つの制御システムの故障が、リンクを介して他の制御システムに伝搬しないように、これらのリンク266及びリンク290は分離されている(光分離など)。これらのリンクは、リンクが両方の制御システムの制御機能に影響を与えず、リンク266及び290の両方の損失(loss)が両方の制御システムの動作に影響を与えないように、構成されてもよい。リンク266とリンク290は、実際の制御のためではなく、伝送路のインテグリティを監視するためにのみ機能するように構成されてもよい。さらに、ストローブビットが使用されて、バックアップ伝送路の存在と動作が検証されてもいいが、バックアップ制御信号の実際のインテグリティと精度は検証されなくてもよい。
実際には、(より大きな処理能力を備えた)主コントローラ220は、上述した分離データリンク290を介して、バックアップコントローラ240に送信されるストローブビットを生成する。このストローブビットは、バックアップコントローラ240からスマートアクチュエータ260のREUバックアップパーティション262への離散ステータスデータワード送信信号(transmission)に含まれる。離散データワードは、有効なSSM320と共に受信された場合、もう一つの分離経路横断リンク266を用いて、主経路に結び付けられる。REU主パーティション264の主機能の一つは、双方向主経路222を介して主コントローラ220に戻る送信信号にストローブビットを含める(wrap)ことである。
主コントローラは、REU主パーティション264から受信したストローブビット送信信号を、ストローブビット生成器226により生成され遅延228を介して受信したストローブビット送信信号と比較するように構成されている。適当に遅延及び持続することにより(伝送の待ち時間(latencies)の原因となる。)、REU主パーティション264から戻るストローブビットは、比較器340により、原始のストローブビットと比較される。比較器340からの有効ステータスは、乗員警告及び整備システムなどの他の航空機システムに送信される。比較器からの無効ステータスが受信される場合、航空機搭乗員は、航空機搭乗員又は整備士が、バックアップ制御経路内の故障を特定することにより、適当な行動を取ることができるように、警告されてもよい。よって、バックアップ制御経路のインテグリティは、バックアップ制御システムが使用中でなくても、監視されてもよい。
図5に示されるような検証データとしてストローブビットを使用する代わりに、他のタイプのデータがバックアップ制御システムの刺激(stimulus)として使用されてもよい。例えば、ストローブビット生成器を、バックアップ制御システムのデータワードに数字を挿入する増加カウンタに置き換えることができる。数字は、増加カウンタがリセットするまで、送信する毎に増加してもよい。REUにより返される数字が送信数と合致する場合、バックアップ制御システムは、他の航空機システムに送信されてもよい。また、連続的な飛行中の監視の代わりに、システムの飛行前点検の一部として、検証データを使用することが検討される。
上述した実施形態は、無線伝送路や簡易な指向性RFリンクなど、他の伝送技術を用いて構成されてもいいことは理解されるべきである。また、ストローブビットを用いた検証は、無線技術を用いて確立及び実行されてもよい。バックアップ制御システムのためのRFリンクのインテグリティは、標準のシステム動作中、バックアップ制御経路がアクティブに使用されていないときであっても、監視されてもよい。
本発明の特定の実施形態の上述した記述は、実例と記載のために提示したものである。それらは、徹底的であること及び本発明を開示された形態そのものに限定することを目的としていない。当業者によれば、特許請求の範囲で定義された本発明の精神と範囲から逸脱することなく、ここに開示された実施形態に他の変更を加えてもいいことが明確に理解されるであろう。
本発明の実施形態の航空機レベルの分散型飛行制御システムを概略的に示す図 本発明の実施形態の分散型飛行制御システムを概略的に示す図 本発明の実施形態のリモートエレクトロニクスユニットを用いたスマートアクチュエータの例を概略的に示す図 本発明の実施形態の分散型飛行制御システムの他の例を概略的に示す図 本発明の実施形態の他の分散型飛行制御システムを概略的に示す図 本発明の実施形態の分散型飛行制御システムの一部を概略的に示す図

Claims (34)

  1. 航空機を制御する飛行制御システムであって、
    第1の入力を受け取り、主制御信号を出力する第1のコントローラと、
    前記第1のコントローラに接続され、前記主制御信号を中継する第1の伝送路と、
    第2の入力を受け取り、バックアップ制御信号を出力する第2のコントローラと、
    前記第2のコントローラに接続され、前記バックアップ制御信号を中継する第2の伝送路と、
    前記第1の伝送路を介して前記主制御信号を受け取り、前記第2の伝送路を介して前記バックアップ制御信号を受け取り、前記主制御信号が有効かどうかを判断するアクチュエータエレクトロニクスを備えたアクチュエータと、
    を有し、
    前記アクチュエータエレクトロニクスは、主コントローラから遠く離れ、且つ前記アクチュエータに隣接するように設置され、前記主制御信号が有効な場合、少なくとも部分的に、前記主制御信号に基づいて、アクチュエータコマンドを出力し、前記主制御信号が有効でない場合、少なくとも部分的に、前記バックアップ制御信号に基づいて、アクチュエータコマンドを出力する、飛行制御システム。
  2. 前記第1のコントローラは、主センサから前記第1の入力を受け取り、
    前記第2のコントローラは、冗長センサから前記第2の入力を受け取る、請求項1に記載の飛行制御システム。
  3. 前記主制御信号と前記バックアップ制御信号のいずれも有効でなければ、前記アクチュエータは所定のセーフモードに設定される、請求項1に記載の飛行制御システム。
  4. 前記アクチュエータエレクトロニクスは、アクチュエータセンサ入力を受け取り、少なくとも部分的に、前記アクチュエータセンサ入力と、前記主制御信号又は前記バックアップ制御信号の少なくとも一つと、に基づいて、前記アクチュエータコマンドを計算するように構成されている、請求項1に記載の飛行制御システム。
  5. 前記第1の伝送路は双方向の伝送路である、請求項1に記載の飛行制御システム。
  6. 前記第2の伝送路は一方向の伝送路である、請求項5に記載の飛行制御システム。
  7. 前記アクチュエータエレクトロニクスは、前記第1の伝送路を介して、前記バックアップ制御信号を前記第1のコントローラに転送するようにさらに構成され、
    前記第1のコントローラは、前記バックアップ制御信号を監視し、バックアップ制御システムステータス信号を生成するようにさらに構成されている、請求項6に記載の飛行制御システム。
  8. 前記第1のコントローラと前記第2のコントローラとの間の第1のデータリンクと、
    前記第1のコントローラ内の検証データ生成器と、
    前記検証データ生成器により生成され、前記データリンクを介して前記第2のコントローラに転送され、前記バックアップ制御信号に含まれる、検証データと、
    をさらに有する、請求項6に記載の飛行制御システム。
  9. 前記アクチュエータエレクトロニクスは、前記バックアップ制御信号において前記検証データを前記第1の伝送路を介して前記第1のコントローラに転送するようにさらに構成され、
    前記第1のコントローラは、少なくとも部分的に、前記第2のコントローラに転送された前記検証データと、前記アクチュエータエレクトロニクスから受け取った前記検証データとの比較に基づいて、バックアップ制御システムステータス信号を生成するようにさらに構成される、請求項8に記載の飛行制御システム。
  10. 前記アクチュエータエレクトロニクスは、
    前記第1の伝送路に接続された第1の入力/出力と、
    前記第2の伝送路に接続され、前記第1の入力/出力から分離及び独立している、第2の入力/出力と、
    前記第2の入力/出力と前記第1の入力/出力との間の第2のデータリンクと、
    をさらに有し、
    前記検証データは、前記第2の入力/出力から前記第1の入力/出力に転送され、前記第1の入力/出力は、前記検証データを前記第1のコントローラに転送する、請求項9に記載の飛行制御システム。
  11. 前記第1のデータリンクと前記第2のデータリンクは、光リンクである、請求項10に記載の飛行制御システム。
  12. 前記第2のコントローラは、前記第1のコントローラから分離及び独立している、請求項1に記載の飛行制御システム。
  13. 前記第2の伝送路は、前記第1の伝送路から分離及び独立している、請求項1に記載の飛行制御システム。
  14. 前記アクチュエータは、第1の複数のアクチュエータを含み、
    各アクチュエータは、前記第1の伝送路を介して前記主制御信号を受信し、前記第2の伝送路を介して前記バックアップ制御信号を受信し、前記主制御信号が有効かどうかを判断するアクチュエータエレクトロニクスを備え、
    前記第1の複数のアクチュエータとアクチュエータエレクトロニクスの各々は、前記主制御信号が有効でない場合に前記バックアップ制御信号を用いるように構成されている、請求項1に記載の飛行制御システム。
  15. 前記主伝送路を介して前記主制御信号を受け取るように構成されているが、前記バックアップ制御信号を受け取るように構成されていない、第2の複数のアクチュエータをさらに有する、請求項14に記載の飛行制御システム。
  16. 前記第1の複数のアクチュエータは、最低限許容可能な制御ができる一組の操縦翼面に接続されている、請求項15に記載の飛行制御システム。
  17. 飛行制御システムのためのバックアップ制御信号監視システムであって、
    前記飛行制御システムは、
    第1の入力を受け取り、主制御信号を出力する第1のコントローラと、
    前記第1のコントローラに接続され、前記主制御信号を中継する第1の伝送路と、
    第2の入力を受け取り、バックアップ制御信号を出力する第2のコントローラと、
    前記第2のコントローラは前記第1のコントローラから分離及び独立しており、
    前記第2のコントローラに接続され、前記バックアップ制御信号を中継する第2の伝送路と、
    前記第2の伝送路は前記第1の伝送路から分離及び独立しており、
    主コントローラから遠く離れ、且つ前記アクチュエータに隣接するように設置されたアクチュエータエレクトロニクスを備えたアクチュエータと、
    を有し、
    前記アクチュエータエレクトロニクスは、前記第1の伝送路を介して前記主制御信号を受け取り、前記第2の伝送路を介して前記バックアップ制御信号を受け取り、前記第1の伝送路を介して、前記第1のコントローラにバックアップ検証データを送信し、
    前記第1のコントローラは、少なくとも部分的に、前記バックアップ検証データに基づいて、バックアップ制御システムステータス信号を生成するようにさらに構成されている、バックアップ制御信号監視システム。
  18. 前記第2の伝送路は一方向である、請求項17に記載の監視システム。
  19. 前記バックアップ検証データは、前記バックアップ制御信号を含む、請求項17に記載の監視システム。
  20. 前記第1のコントローラと前記第2のコントローラとの間の第1のデータリンクと、
    前記第1のコントローラ内の検証データ生成器と、
    をさらに有し、
    前記検証データは前記検証データ生成器により生成され、前記データリンクを介して、前記第2のコントローラに送信され、
    前記検証データは、前記アクチュエータエレクトロニクスにより受け取られる前記バックアップ制御信号に含まれている、請求項17に記載の監視システム。
  21. 前記バックアップ制御システムステータス信号は、少なくも部分的に、前記第2のコントローラに転送される検証データと前記アクチュエータエレクトロニクスから受け取った検証データとの比較に基づいている、請求項20に記載の監視システム。
  22. 前記検証データはビットである、請求項21に記載の監視システム。
  23. 第1の入力を受け取り、主制御信号を出力する第1のプロセッサと、
    前記第1のプロセッサに接続され、前記主制御信号を中継する第1の経路と、
    第2の入力を受け取り、バックアップ制御信号を出力する第2のプロセッサと、
    前記第2のコントローラは、前記第1のコントローラから分離及び独立し、
    前記第2のプロセッサに接続され、前記バックアップ制御信号を中継する第2の経路と、
    前記第2の経路は、前記第1の経路から分離及び独立し、
    航空機操縦翼面に接続された第1のアクチュエータと、
    前記第1のアクチュエータは前記第1の経路に接続された第1のアクチュエータエレクトロニクスを備え、前記第1のアクチュエータエレクトロニクスは、前記主制御信号を受け取り、前記主制御信号が有効かどうかを判断するように構成されており、
    前記航空機操縦翼面に接続された第2のアクチュエータと、を有し、
    前記第2のアクチュエータは前記第1の経路及び前記第2の経路に接続された第2のアクチュエータエレクトロニクスを備え、前記第2のアクチュエータエレクトロニクスは、前記主制御信号と前記バックアップ制御信号とを受け取り、前記主制御信号が有効かどうかを判断するように構成されており、
    前記第2のアクチュエータエレクトロニクスは、前記第1のアクチュエータエレクトロニクスと前記第2のアクチュエータエレクトロニクスが前記主制御信号が有効でないと判断した場合にのみ、前記バックアップ制御信号を用いて、前記航空機操縦翼面を制御するように構成されている、飛行制御システム。
  24. 前記第1のアクチュエータエレクトロニクスと前記第2のアクチュエータエレクトロニクスとの間に接続されたステータスリンクをさらに有し、
    前記第2のアクチュエータエレクトロニクスは、前記ステータスリンクを介して、前記第1のアクチュエータエレクトロニクスが前記主制御信号が有効でないと判断したかどうかを示す情報を受け取る、請求項23に記載の制御システム。
  25. 前記第1の経路は、
    前記第1のコントローラと前記第1のアクチュエータエレクトロニクスとの間に接続され、前記第1のアクチュエータエレクトロニクスに前記主制御信号を中継する、第1の主経路と、
    前記第1のコントローラと前記第2のアクチュエータエレクトロニクスとの間に接続され、前記第2のアクチュエータエレクトロニクスに前記主制御信号を中継する、前記第1の主経路から分離している、第2の主経路と、
    を含む、請求項24に記載の制御システム。
  26. 第1のプロセッサからの主制御信号を、前記第1のプロセッサから分離及び独立しているアクチュエータエレクトロニクス内で受け取るステップと、
    第2のプロセッサからのバックアップ制御信号を、前記第2のプロセッサから分離及び独立している前記アクチュエータエレクトロニクス内で受け取るステップと、
    前記主制御信号が有効かどうかを判断するステップと、
    前記主制御信号が有効である場合は、少なくとも部分的に、前記主制御信号に基づいて、前記アクチュエータエレクトロニクスによりアクチュエータコマンド信号を生成するステップと、
    前記主制御信号が有効でない場合は、少なくとも一部分において、前記バックアップ制御信号に基づいて、前記アクチュエータエレクトロニクスにより、前記アクチュエータコマンド信号を生成するステップと、
    前記アクチュエータコマンド信号に基づいてアクチュエータを作動し、航空機操縦翼面を制御するステップと、
    を含む、航空機操縦翼面を制御する方法。
  27. 前記主制御信号と前記バックアップ制御信号のいずれも有効でなければ、前記アクチュエータを所定のセーフモードに設定するステップをさらに含む、請求項26に記載の方法。
  28. 前記アクチュエータエレクトロニクス内で、アクチュエータ位置フィードバック信号を受信するステップをさらに有し、
    前記アクチュエータコマンド信号の生成は、前記主制御信号が有効である場合は、少なくとも一部分においては、前記アクチュエータ位置フィードバック信号と前記主制御信号とに基づいており、
    前記アクチュエータコマンド信号の生成は、前記主制御信号が有効でない場合は、少なくとも一部分においては、前記アクチュエータ位置フィードバック信号と前記バックアップ制御信号に基づいている、
    請求項26に記載の方法。
  29. 第1のプロセッサからの主制御信号を、前記第1のプロセッサから分離及び独立しているアクチュエータエレクトロニクス内で受け取るステップと、
    第2のプロセッサからのバックアップ制御信号を、前記第2のプロセッサから分離及び独立している前記アクチュエータエレクトロニクス内で受け取るステップと、
    前記アクチュエータエレクトロニクスからのバックアップ検証データを前記第1のプロセッサに送信するステップと、
    少なくとも部分的に、前記バックアップ検証データに基づいて、バックアップ制御システムステータス信号を生成するステップと、
    少なくとも部分的に、前記主制御信号又は前記バックアップ制御信号の少なくとも一つに基づいて、前記アクチュエータエレクトロニクスにより、アクチュエータコマンド信号を生成するステップと、
    前記アクチュエータコマンド信号に基づいてアクチュエータを作動して、航空機操縦翼面を制御するステップと、
    を有する、飛行制御システムを動作させる方法。
  30. 前記バックアップ検証データは、前記バックアップ制御信号を含む、請求項29に記載の方法。
  31. 前記第1のコントローラ内の検証データ生成器内で前記バックアップ検証データを生成するステップと、
    前記第1のプロセッサと前記第2のプロセッサとの間の第1のデータリンクを越えて、前記バックアップ検証データを送信するステップと、
    前記アクチュエータエレクトロニクスにより受信される前記バックアップ制御信号に前記バックアップ検証データを含めるステップと、
    をさらに有する、請求項29に記載の方法。
  32. 前記第1のデータリンクを越えて前記第2のプロセッサに送信される前記バックアップ検証データを比較するステップをさらに有し、
    前記バックアップ制御システムステータス信号は、少なくとも部分的に、前記第2のプロセッサに送信される前記バックアップ検証データと、前記アクチュエータエレクトロニクスから受け取る前記バックアップ検証データとの比較に基づいている、請求項31に記載の方法。
  33. 第1のプロセッサからの主制御信号を、前記第1のプロセッサから分離及び独立している第1のアクチュエータエレクトロニクス内で受け取るステップと、
    前記第1のプロセッサからの主制御信号を、前記第1のプロセッサから分離及び独立している第2のアクチュエータエレクトロニクス内で受け取るステップと、
    第2のプロセッサからのバックアップ制御信号を、前記第2のプロセッサから分離及び独立している前記第2のアクチュエータエレクトロニクス内で受け取るステップと、
    前記第1のアクチュエータエレクトロニクス内で、前記主制御信号が有効かどうかを判断するステップと、
    前記第2のアクチュエータエレクトロニクス内で、前記主制御信号が有効かどうかを判断するステップと、
    前記第1のアクチュエータエレクトロニクスが、前記主制御信号が有効であると判断した場合は、少なくとも部分的に、前記主制御信号に基づいて、前記第1のアクチュエータエレクトロニクス内で、第1のアクチュエータコマンド信号を生成するステップと、
    前記第2のアクチュエータエレクトロニクスが、前記主制御信号が有効であると判断した場合は、少なくとも部分的に、前記主制御信号に基づいて、前記第2のアクチュエータエレクトロニクス内で、第2のアクチュエータコマンド信号を生成するステップと、
    前記第1のアクチュエータエレクトロニクス及び前記第2のアクチュエータエレクトロニクスが、前記主制御信号が有効でないと判断した場合は、少なくとも部分的に、前記バックアップ制御信号に基づいて、前記第2のアクチュエータエレクトロニクス内で、前記第2のアクチュエータコマンド信号を生成するステップと、
    前記第1のアクチュエータコマンド信号に基づいて第1のアクチュエータを作動し、航空機操縦翼面を制御するステップと、
    前記第2のアクチュエータコマンド信号に基づいて第2のアクチュエータを作動し、前記航空機操縦翼面を制御するステップと、
    を有する、航空機操縦翼面を制御する方法。
  34. 前記第1のアクチュエータエレクトロニクスと前記第2のアクチュエータエレクトロニクスとの間のステータスリンクを越えてステータス情報を送信するステップと、
    少なくとも部分的に前記ステータス情報に基づいて、前記第1のアクチュエータエレクトロニクスが前記主制御信号が有効でないと判断したかどうかを、前記第2のアクチュエータエレクトロニクス内で判断するステップと、
    をさらに有する、請求項33に記載の方法。
JP2008551421A 2006-01-17 2007-01-17 分散型飛行制御システムのバックアップ制御のための装置及び方法 Pending JP2009523658A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US75902806P 2006-01-17 2006-01-17
PCT/US2007/001462 WO2007084679A2 (en) 2006-01-17 2007-01-17 Apparatus and method for backup control in a distributed flight control system

Publications (1)

Publication Number Publication Date
JP2009523658A true JP2009523658A (ja) 2009-06-25

Family

ID=38288266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008551421A Pending JP2009523658A (ja) 2006-01-17 2007-01-17 分散型飛行制御システムのバックアップ制御のための装置及び方法

Country Status (7)

Country Link
US (2) US7984878B2 (ja)
EP (1) EP1977297A4 (ja)
JP (1) JP2009523658A (ja)
BR (1) BRPI0706613A2 (ja)
CA (1) CA2637226A1 (ja)
IL (1) IL192853A0 (ja)
WO (1) WO2007084679A2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037375A (ja) * 2009-08-11 2011-02-24 Honda Motor Co Ltd 車両用シートベルト装置
JP2017100712A (ja) * 2015-12-01 2017-06-08 サフラン ヘリコプター エンジンズ 航空機用の起動システム
JP2017109528A (ja) * 2015-12-14 2017-06-22 学校法人立命館 風力発電機を備えた係留気球及びその制御方法
JP2017132451A (ja) * 2015-08-18 2017-08-03 ザ・ボーイング・カンパニーThe Boeing Company 航空メッセージモニター
JP2019081534A (ja) * 2017-09-29 2019-05-30 ザ・ボーイング・カンパニーThe Boeing Company フライトコントロールシステムおよび使用の方法
EP3708490A1 (en) 2019-03-12 2020-09-16 Subaru Corporation Aircraft

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0407491A (pt) 2003-02-15 2006-02-14 Gulfstream Aerospace Corp métodos para redução da probabilidade de formação de trombose da veia profunda, para elevação de concentração de oxigênio atmosférico, e de concentração de nitrogênio, para monitoração de pressão parcial de oxigênio, para controle do grau de deslocamento de oxigênio/nitrogênio de ar de chegada em resposta à pressão parcial de oxigênio, para remisturar a atmosfera nas áreas ocupadas e não ocupadas da aeronave, para abaixamento da pressão parcial de oxigênio para abaixo do nìvel natural, e para ajuste de concentrações de nitrogênio e oxigênio no interior de regiões de uma aeronave
US20080237402A1 (en) * 2005-12-19 2008-10-02 Marc Ausman Aircraft trim safety system and backup controls
CA2637331A1 (en) * 2006-01-17 2007-07-26 Gulfstream Aerospace Corporation System and method for an integrated backup control system
JP2009523658A (ja) 2006-01-17 2009-06-25 ガルフストリーム・エアロスペース・コーポレイション 分散型飛行制御システムのバックアップ制御のための装置及び方法
US9189195B2 (en) * 2006-10-16 2015-11-17 Sandel Avionics, Inc. Integrity monitoring
US7840316B2 (en) * 2007-12-17 2010-11-23 Honeywell International Inc. Limited authority and full authority mode fly-by-wire flight control surface actuation control system
US8200379B2 (en) * 2008-07-03 2012-06-12 Manfredi Dario P Smart recovery system
FR2941912B1 (fr) * 2009-02-10 2011-02-18 Airbus France Systeme de commande de vol et aeronef le comportant
FR2943036B1 (fr) * 2009-03-11 2011-04-15 Airbus France Systeme distribue de commande de vol implemente selon une architecture avionique modulaire integree.
JP5437687B2 (ja) * 2009-04-14 2014-03-12 ナブテスコ株式会社 アクチュエータ監視回路、制御装置、およびアクチュエータユニット
US9494933B1 (en) * 2009-06-19 2016-11-15 The Boeing Company Processing packets in an aircraft network data processing system
US8340793B2 (en) * 2009-10-09 2012-12-25 Hamilton Sundstrand Corporation Architecture using integrated backup control and protection hardware
JP5391086B2 (ja) * 2010-01-12 2014-01-15 ナブテスコ株式会社 飛行制御システム
EP2525064A4 (en) * 2010-01-15 2014-07-30 Toyota Motor Co Ltd SYSTEM WITH VARIABLE VALVE WORKING ANGLE
US8335609B2 (en) * 2010-01-25 2012-12-18 United Technologies Corporation Method and system for exposing and recording embedded avionics data
US8453160B2 (en) * 2010-03-11 2013-05-28 Honeywell International Inc. Methods and systems for authorizing an effector command in an integrated modular environment
FR2959835B1 (fr) * 2010-05-10 2012-06-15 Airbus Operations Sas Systeme de commande de vol et aeronef le comportant
FR2962617A1 (fr) * 2010-07-07 2012-01-13 Eurocopter France Reseau de communication distribue, modulaire et configurable pour un systeme avionique embarque.
CN101916111A (zh) * 2010-08-19 2010-12-15 中国航空工业第六一八研究所 一种电传飞行控制系统结构
US8534599B2 (en) * 2011-03-31 2013-09-17 Hamilton Sundstrand Corporation Redundant two stage electro-hydraulic servo actuator control
CN102289208A (zh) * 2011-04-22 2011-12-21 支怡 一种arinc429数据总线仿真测试系统
US8935015B2 (en) * 2011-05-09 2015-01-13 Parker-Hannifin Corporation Flight control system with alternate control path
CN102938713A (zh) * 2011-08-15 2013-02-20 中国航空工业集团公司西安飞机设计研究所 一种1553b数据总线测试仿真系统
US9625894B2 (en) * 2011-09-22 2017-04-18 Hamilton Sundstrand Corporation Multi-channel control switchover logic
DE102011115359B4 (de) * 2011-10-07 2020-07-02 Liebherr-Aerospace Lindenberg Gmbh Elektronisches Gerät zur Positionsregelung eines Aktuators, hydraulischer Aktuator und Aktuator-Steuerungssystem
DE102011115362A1 (de) * 2011-10-07 2013-04-11 Liebherr-Aerospace Lindenberg Gmbh Modulares elektronisches Flugsteuerungssystem
DE102011115356A1 (de) * 2011-10-07 2013-04-11 Liebherr-Aerospace Lindenberg Gmbh Flugsteuerungssystem sowie ein Bussystem für ein Flugzeug
JP5893890B2 (ja) * 2011-10-18 2016-03-23 三菱重工業株式会社 航空機及び航空機の制御方法
US8874286B2 (en) 2012-02-27 2014-10-28 Textron Innovations, Inc. Yaw damping system and method for aircraft
US8620492B2 (en) 2012-02-27 2013-12-31 Textron Innovations Inc. Yaw damping system and method for aircraft
FR2989796B1 (fr) 2012-04-20 2014-04-11 Eurocopter France Instrument de secours pour aeronef combinant des informations de vol, une information de marge de puissance et une assistance au pilotage
US8690101B2 (en) 2012-05-18 2014-04-08 Rockwell Collins, Inc. Triplex cockpit control data acquisition electronics
JP6178587B2 (ja) * 2013-02-28 2017-08-09 三菱航空機株式会社 航空機のアクチュエータ装置、及び、航空機
EP2787401B1 (en) * 2013-04-04 2016-11-09 ABB Schweiz AG Method and apparatus for controlling a physical unit in an automation system
US9117579B2 (en) 2013-07-16 2015-08-25 The Boeing Company Redundant current-sum feedback actuator
EP3036156B1 (en) * 2013-08-23 2019-05-08 Bombardier Inc. Abnormal aircraft response monitor
US10570936B2 (en) * 2014-03-07 2020-02-25 Parker-Hannifin Corporation Symmetrically loaded dual hydraulic fly-by-wire actuator
US9870004B2 (en) 2014-05-21 2018-01-16 Bell Helicopter Textron Inc. High authority stability and control augmentation system
FR3029312B1 (fr) * 2014-11-27 2016-12-16 Sagem Defense Securite Procede de verification d'integrite de transmission de donnees entre une unite amont principale et une unite aval principale
US9493231B2 (en) * 2015-03-20 2016-11-15 The Boeing Company Flight control system command selection and data transport
US10962972B2 (en) 2016-01-05 2021-03-30 Carnegie Mellon University Safety architecture for autonomous vehicles
US11745857B2 (en) * 2016-03-30 2023-09-05 Goodrich Actuation Systems Sas Aircraft force-fight mechanism
DE102016117634B4 (de) 2016-09-19 2019-12-12 Deutsches Zentrum für Luft- und Raumfahrt e.V. Steuerung und Regelung von Aktoren, die aerodynamische Steuerflächen eines Luftfahrzeugs antreiben
EP3548977A1 (en) 2016-11-30 2019-10-09 Bombardier Inc. Aircraft control system with residual error containment
FR3061344B1 (fr) * 2016-12-23 2021-01-01 Thales Sa Systeme d'aide au pilotage d'aeronef
US10864981B2 (en) 2017-02-01 2020-12-15 Thales Canada Inc. Backup actuation control unit for controlling an actuator dedicated to a given surface and method of using same
FR3062730B1 (fr) * 2017-02-08 2019-03-15 Airbus Helicopters Systeme et procede de pilotage automatique d'un aeronef, et aeronef
US11148819B2 (en) 2019-01-23 2021-10-19 H55 Sa Battery module for electrically-driven aircraft
US11065979B1 (en) 2017-04-05 2021-07-20 H55 Sa Aircraft monitoring system and method for electric or hybrid aircrafts
US10479223B2 (en) 2018-01-25 2019-11-19 H55 Sa Construction and operation of electric or hybrid aircraft
US10854866B2 (en) 2019-04-08 2020-12-01 H55 Sa Power supply storage and fire management in electrically-driven aircraft
US11063323B2 (en) 2019-01-23 2021-07-13 H55 Sa Battery module for electrically-driven aircraft
DE102017111527A1 (de) 2017-05-26 2018-11-29 Liebherr-Aerospace Lindenberg Gmbh Flugsteuersystem
US10479484B2 (en) * 2017-06-14 2019-11-19 The Boeing Company Methods and apparatus for controlling aircraft flight control surfaces
US10382225B2 (en) 2017-07-27 2019-08-13 Wing Aviation Llc Asymmetric CAN-based communication for aerial vehicles
DE102017118771B4 (de) * 2017-08-17 2020-01-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Abtriebsstation für die Betätigung einer Klappe an einem Flugzeugflügel und Flugzeug mit solchen Abtriebsstationen
CN107608381A (zh) * 2017-09-30 2018-01-19 江西洪都航空工业集团有限责任公司 一种混合余度配置的电传飞控系统控制架构
US10671067B2 (en) * 2018-01-15 2020-06-02 Qualcomm Incorporated Managing limited safe mode operations of a robotic vehicle
US10942509B2 (en) 2018-01-19 2021-03-09 Ge Aviation Systems Llc Heterogeneous processing in unmanned vehicles
US11029985B2 (en) 2018-01-19 2021-06-08 Ge Aviation Systems Llc Processor virtualization in unmanned vehicles
US11131991B2 (en) * 2018-01-19 2021-09-28 Ge Aviation Systems Llc Autopilot control system for unmanned vehicles
US10843792B2 (en) * 2018-02-01 2020-11-24 Hamilton Sundstrand Corporation Autonomous reconfiguration of a multi-redundant actuator control system
KR102066219B1 (ko) * 2018-02-05 2020-01-14 주식회사 만도 리던던트 구조 기반의 차량 제어 장치 및 방법
JP2019179964A (ja) * 2018-03-30 2019-10-17 株式会社Subaru 航空機
DE102018111338A1 (de) * 2018-05-11 2019-11-14 Liebherr-Aerospace Lindenberg Gmbh System zum Steuern, Regeln und/oder Überwachen eines Luftfahrzeugs
US11176007B2 (en) * 2019-04-12 2021-11-16 Ghost Locomotion Inc. Redundant processing fabric for autonomous vehicles
FR3097530B1 (fr) * 2019-06-20 2022-09-02 Airbus Helicopters Poignée de pilotage et giravion hybride muni d’un rotor de sustentation et d’au moins un rotor propulsif à hélice générant une poussée
US11851088B2 (en) * 2020-03-11 2023-12-26 Baidu Usa Llc Method for determining capability boundary and associated risk of a safety redundancy autonomous system in real-time
DE102020119142B4 (de) 2020-07-21 2024-09-26 Liebherr-Aerospace Lindenberg Gmbh System zur Böenlastminderung in Flugzeugen
US11479344B2 (en) 2021-02-19 2022-10-25 Beta Air, Llc Methods and systems for fall back flight control configured for use in electric aircraft
US20240317175A1 (en) * 2023-03-23 2024-09-26 International Engine Intellectual Property Company, Llc Remote vehicle system actuation

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1026850A (en) * 1973-09-24 1978-02-21 Smiths Industries Limited Dual, simultaneously operating control system with fault detection
FR2344063A1 (fr) * 1976-03-10 1977-10-07 Smiths Industries Ltd Circuit numerique de commande a deux voies au moins
DE2807902C2 (de) 1978-02-24 1980-04-30 Messerschmitt-Boelkow-Blohm Gmbh, 8000 Muenchen Steuereinrichtung mit aktiver Kraft rückführung
US4198017A (en) 1978-10-13 1980-04-15 The United States Of America As Represented By The Secretary Of The Army Control augmentation system for flight vehicles
US4363098A (en) * 1980-06-24 1982-12-07 The Boeing Company Electric command spoiler system
US4370706A (en) * 1980-09-26 1983-01-25 The Bendix Corporation Controller for a dual servo system
US4542679A (en) * 1981-02-17 1985-09-24 Textron Inc. Multiple loop control system
US4517639A (en) * 1982-05-13 1985-05-14 The Boeing Company Fault scoring and selection circuit and method for redundant system
WO1984000071A1 (en) * 1982-06-16 1984-01-05 Boeing Co Autopilot flight director system
US4504233A (en) 1982-12-20 1985-03-12 The Singer Company High performance control loading system for manually-operable controls in a vehicle simulator
US4533097A (en) 1983-07-11 1985-08-06 Sundstrand Corporation Multi-motor actuation system for a power drive unit
GB2149556B (en) 1983-11-09 1986-12-10 Gec Avionics Aircraft display devices
US4598292A (en) 1983-12-23 1986-07-01 Grumman Aerospace Corporation Electronic standby flight instrument
US4672529A (en) * 1984-10-26 1987-06-09 Autech Partners Ltd. Self contained data acquisition apparatus and system
US4652417A (en) * 1985-02-07 1987-03-24 Westinghouse Electric Corp. Fault-tolerant analog output network
US4811230A (en) 1986-08-15 1989-03-07 Boeing Company Intervention flight management system
US4807516A (en) * 1987-04-23 1989-02-28 The Boeing Company Flight control system employing three controllers operating a dual actuator
US4887214A (en) * 1987-10-27 1989-12-12 The Boeing Company Flight control system employing two dual controllers operating a dual actuator
US5012423A (en) 1989-04-17 1991-04-30 Mcdonnell Douglas Corporation Back-up fly by wire control system
US5076517A (en) 1989-08-14 1991-12-31 United Technologies Corporation Programmable, linear collective control system for a helicopter
US5091847A (en) * 1989-10-03 1992-02-25 Grumman Aerospace Corporation Fault tolerant interface station
US5209661A (en) 1990-10-29 1993-05-11 Systems Control Technology, Inc. Motor control desired dynamic load of a simulating system and method
US5062594A (en) 1990-11-29 1991-11-05 The United States Of America As Represented By The Secretary Of The Air Force Flight control system with tactile feedback
US5274554A (en) * 1991-02-01 1993-12-28 The Boeing Company Multiple-voting fault detection system for flight critical actuation control systems
DE4227157C2 (de) * 1991-09-02 1994-11-24 Deutsche Aerospace Airbus Schaltungsanordnung für ein automatisches Bremssteuersystem
GB9123304D0 (en) * 1991-11-02 1992-09-23 Westland Helicopters Integrated vibration reducing and health monitoring systems
FR2686310B1 (fr) * 1992-01-20 1994-04-08 Aerospatiale Ste Nationale Indle Systeme pour la commande d'une surface aerodynamique d'un aeronef.
US5493497A (en) 1992-06-03 1996-02-20 The Boeing Company Multiaxis redundant fly-by-wire primary flight control system
US5264768A (en) 1992-10-06 1993-11-23 Honeywell, Inc. Active hand controller feedback loop
US5347204A (en) 1992-10-06 1994-09-13 Honeywell Inc. Position dependent rate dampening in any active hand controller
FR2708112B1 (fr) 1993-07-22 1995-09-01 Ratier Figeac Soc Dispositif de commande à manche de pilotage, notamment mini-manche asservi pour aéronef.
FR2711257B1 (fr) 1993-10-14 1995-12-22 Aerospatiale Système de commande de vol électrique pour avion avec protection en assiette au décollage.
US5412299A (en) 1993-12-21 1995-05-02 Honeywell, Inc. Variable servo loop compensation in an active hand controller
US5473235A (en) 1993-12-21 1995-12-05 Honeywell Inc. Moment cell counterbalance for active hand controller
US5515282A (en) * 1994-04-25 1996-05-07 The Boeing Company Method and apparatus for implementing a databus voter to select flight command signals from one of several redundant asynchronous digital primary flight computers
US5559415A (en) 1994-06-30 1996-09-24 Honeywell Inc. Integrator management for redundant active hand controllers
US5670856A (en) * 1994-11-07 1997-09-23 Alliedsignal Inc. Fault tolerant controller arrangement for electric motor driven apparatus
FR2728537A1 (fr) 1994-12-21 1996-06-28 Eurocopter France Dispositif pour l'actionnement d'un organe commande pour un aeronef, tel que notamment un helicoptere, a commandes de vol electriques
US5881971A (en) * 1995-05-15 1999-03-16 The Boeing Company Monitoring systems for detecting failures in fly-by-wire aircraft flight control systems
US5668542A (en) 1995-07-03 1997-09-16 The United States Of America As Represented By The Secretary Of The Air Force Color cockpit display for aircraft systems
US5694014A (en) 1995-08-22 1997-12-02 Honeywell Inc. Active hand controller redundancy and architecture
US5875998A (en) 1996-02-05 1999-03-02 Daimler-Benz Aerospace Airbus Gmbh Method and apparatus for optimizing the aerodynamic effect of an airfoil
US5743490A (en) 1996-02-16 1998-04-28 Sundstrand Corporation Flap/slat actuation system for an aircraft
US5806806A (en) 1996-03-04 1998-09-15 Mcdonnell Douglas Corporation Flight control mechanical backup system
US5806805A (en) * 1996-08-07 1998-09-15 The Boeing Company Fault tolerant actuation system for flight control actuators
JP2948153B2 (ja) 1996-08-27 1999-09-13 株式会社コミュータヘリコプタ先進技術研究所 操縦装置
FR2754515B1 (fr) 1996-10-14 1998-12-24 Aerospatiale Dispositif d'aide au pilotage sur un aeronef a commande de vol electrique
US5911390A (en) 1997-07-09 1999-06-15 Mcdonnell Douglas Corporation Bobweight assembly for establishing a force feedback on a manually movable control element
US6038498A (en) 1997-10-15 2000-03-14 Dassault Aviation Apparatus and mehod for aircraft monitoring and control including electronic check-list management
US6112141A (en) 1997-10-15 2000-08-29 Dassault Aviation Apparatus and method for graphically oriented aircraft display and control
US5978715A (en) 1997-10-15 1999-11-02 Dassault Aviation Apparatus and method for aircraft display and control
FR2771998B1 (fr) 1997-12-08 2000-02-25 Sfim Ind Actionneur de gouverne de commande de vol d'aeronef
US6189823B1 (en) * 1998-03-30 2001-02-20 Daiwa Seiko, Inc. Fishing reel having side plates efficiently attachable to and detachable from frames of reel body
FR2778163B1 (fr) 1998-04-29 2000-06-23 Aerospatiale Aeronef a efforts de voilure diminues
US6189836B1 (en) 1998-09-25 2001-02-20 Sikorsky Aircraft Corporation Model-following control system using acceleration feedback
US6356809B1 (en) 1999-06-11 2002-03-12 Cbi Systems Corporation Electro-statically shielded processing module
FR2811780B1 (fr) * 2000-07-13 2002-08-30 Aerospatiale Matra Airbus Procede et dispositif de commande d'organes de manoeuvre d'un aeronef, a modules de secours electriques
US6561463B1 (en) 2000-07-14 2003-05-13 Honeywell International Inc. Flight control module with integrated spoiler actuator control electronics
US6443399B1 (en) 2000-07-14 2002-09-03 Honeywell International Inc. Flight control module merged into the integrated modular avionics
US6381519B1 (en) 2000-09-19 2002-04-30 Honeywell International Inc. Cursor management on a multiple display electronic flight instrumentation system
US6459228B1 (en) 2001-03-22 2002-10-01 Mpc Products Corporation Dual input servo coupled control sticks
DE10116479C2 (de) 2001-04-03 2003-12-11 Eurocopter Deutschland Verfahren und Regeleinrichtung zur Verstellung einer im Rotorblatt eines Hubschraubers schwenkbar gelagerten Klappe
FR2825680B1 (fr) 2001-06-07 2003-09-26 Sagem Actionneur de commande de vol primaire a moteur a vibration
US6693558B2 (en) 2001-06-18 2004-02-17 Innovative Solutions & Support, Inc. Aircraft flat panel display system
US6573672B2 (en) 2001-06-29 2003-06-03 Honeywell International Inc. Fail passive servo controller
US6622972B2 (en) * 2001-10-31 2003-09-23 The Boeing Company Method and system for in-flight fault monitoring of flight control actuators
GB0127254D0 (en) 2001-11-13 2002-01-02 Lucas Industries Ltd Aircraft flight surface control system
JP3751559B2 (ja) 2001-12-26 2006-03-01 ナブテスコ株式会社 飛行制御システム
US6867711B1 (en) 2002-02-28 2005-03-15 Garmin International, Inc. Cockpit instrument panel systems and methods with variable perspective flight display
US6832138B1 (en) 2002-02-28 2004-12-14 Garmin International, Inc. Cockpit instrument panel systems and methods with redundant flight data display
US6735500B2 (en) 2002-06-10 2004-05-11 The Boeing Company Method, system, and computer program product for tactile cueing flight control
US20040078120A1 (en) 2002-10-16 2004-04-22 Edgar Melkers Non-linear compensation of a control system having an actuator and a method therefore
US20040078121A1 (en) 2002-10-22 2004-04-22 Cartmell Daniel H. Control system and method with multiple linked inputs
US6813527B2 (en) 2002-11-20 2004-11-02 Honeywell International Inc. High integrity control system architecture using digital computing platforms with rapid recovery
US6796526B2 (en) 2002-11-25 2004-09-28 The Boeing Company Augmenting flight control surface actuation system and method
ATE431944T1 (de) * 2003-01-23 2009-06-15 Supercomputing Systems Ag Fehlertolerantes computergesteuertes system
US6799739B1 (en) 2003-11-24 2004-10-05 The Boeing Company Aircraft control surface drive system and associated methods
US7307549B2 (en) 2005-07-05 2007-12-11 Gulfstream Aerospace Corporation Standby display aircraft management system
CA2637331A1 (en) * 2006-01-17 2007-07-26 Gulfstream Aerospace Corporation System and method for an integrated backup control system
JP2009523658A (ja) 2006-01-17 2009-06-25 ガルフストリーム・エアロスペース・コーポレイション 分散型飛行制御システムのバックアップ制御のための装置及び方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037375A (ja) * 2009-08-11 2011-02-24 Honda Motor Co Ltd 車両用シートベルト装置
JP2017132451A (ja) * 2015-08-18 2017-08-03 ザ・ボーイング・カンパニーThe Boeing Company 航空メッセージモニター
JP2017100712A (ja) * 2015-12-01 2017-06-08 サフラン ヘリコプター エンジンズ 航空機用の起動システム
JP2017109528A (ja) * 2015-12-14 2017-06-22 学校法人立命館 風力発電機を備えた係留気球及びその制御方法
JP2019081534A (ja) * 2017-09-29 2019-05-30 ザ・ボーイング・カンパニーThe Boeing Company フライトコントロールシステムおよび使用の方法
JP7168384B2 (ja) 2017-09-29 2022-11-09 ザ・ボーイング・カンパニー フライトコントロールシステムおよび使用の方法
EP3708490A1 (en) 2019-03-12 2020-09-16 Subaru Corporation Aircraft
US11537148B2 (en) 2019-03-12 2022-12-27 Subaru Corporation Aircraft including rotary wings

Also Published As

Publication number Publication date
EP1977297A2 (en) 2008-10-08
EP1977297A4 (en) 2010-02-24
US7984878B2 (en) 2011-07-26
US8235328B2 (en) 2012-08-07
BRPI0706613A2 (pt) 2011-04-05
IL192853A0 (en) 2009-02-11
US20070164166A1 (en) 2007-07-19
WO2007084679A3 (en) 2009-05-07
WO2007084679A2 (en) 2007-07-26
CA2637226A1 (en) 2007-07-26
US20110248121A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
US8235328B2 (en) Apparatus and method for backup control in a distributed flight control system
JP5808781B2 (ja) 無人航空機の飛行制御システム
US11247768B2 (en) Flight control system for an aircraft
CN102421667B (zh) 根据集成模块化航空电子设备架构实现的分布式飞行控制系统
US7878461B2 (en) System and method for an integrated backup control system
EP2374714A2 (en) Distributed fly-by-wire system
US8538602B2 (en) Flight control system and aircraft comprising it
CN102458983B (zh) 用于飞行器的增升系统、飞行器系统以及具有增升系统的螺旋桨飞行器
EP3422125B1 (en) Fault coverage for multiple failures in redundant systems
EP2619634B1 (en) Remote data concentrator
JPH07503090A (ja) アナログプロトコルコンバータシステムへのフェイルセーフデジタルバス
US20140303812A1 (en) Backup control system
CN110710164B (zh) 飞行控制系统
CN109581860A (zh) 飞行控制系统及其使用方法
Traverse et al. Airbus fly-by-wire: a process toward total dependability
Šegvić et al. A proposal for a Fully Distributed Flight Control System design
KR102750447B1 (ko) 무인 항공기용 뉴럴 네트워크 시스템, 이를 포함하는 무인 항공기 제어 시스템 및 이를 이용한 무인 항공기 제어 방법
KR20170074389A (ko) 비상 비행제어가 가능한 fbw 비행제어시스템
Murch et al. Software considerations for subscale flight testing of experimental control laws
Xue et al. The distributed dissimilar redundancy architecture of fly-by-wire flight control system
KR20130056652A (ko) 자동 추력 제어 시스템
EP4306431A1 (en) An electronic unit for a tactile cueing apparatus
Kornecki et al. Approaches to assure safety in fly-by-wire systems: Airbus vs. boeing.
Pranoto et al. Preliminary design of redundancy management for LSA-02 automatic flight control system
EP4209850A1 (en) Real-time artificial intelligence and/or machine learning (ai/ml) systems