[go: up one dir, main page]

JP2009303324A - Main circuit of wind energy conversion system - Google Patents

Main circuit of wind energy conversion system Download PDF

Info

Publication number
JP2009303324A
JP2009303324A JP2008152753A JP2008152753A JP2009303324A JP 2009303324 A JP2009303324 A JP 2009303324A JP 2008152753 A JP2008152753 A JP 2008152753A JP 2008152753 A JP2008152753 A JP 2008152753A JP 2009303324 A JP2009303324 A JP 2009303324A
Authority
JP
Japan
Prior art keywords
output
wind
contactor
standard deviation
individual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008152753A
Other languages
Japanese (ja)
Inventor
Takeshi Shioda
剛 塩田
Tsutomu Isaka
勉 井坂
Kazuichi Seki
和市 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2008152753A priority Critical patent/JP2009303324A/en
Publication of JP2009303324A publication Critical patent/JP2009303324A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of a conventional system that the number of revolutions of windmills decreases at large ripple of wind velocity, in a generating set for distributed power sources using a permanent magnet type generator which has many kinds of coils so as to get maximum output from wind power without a PWM converter. <P>SOLUTION: In the main circuit of a wind energy conversion system, which rectifies the AC output of the permanent magnet type generator that is driven by windmills and is constituted of a plurality of coils for generating different induced voltage effective values by individual rectifiers through individual reactors and adds the DC output of the individual rectifiers and outputs it to outside, the individual reactors are provided with taps, and a contactor, which short-circuits the taps of the individual reactors, is provided. This main circuit detects the standard deviation of wind velocity, and in case that the standard deviation of the wind velocity is larger than a certain value, it opens the above contactor, and in case that the standard deviation of the wind velocity is smaller than the certain value, it short-circuits the contactor thereby preventing the decrease of the number of revolutions of the windmills. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、風車により駆動される永久磁石型発電機から、風速の値に関わらず、風より風車が得ることができる概略の最大出力を取り出す風力発電装置の主回路に関し、特に、永久磁石型発電機よりPWMコンバータを用いずに定電圧電源への充電を行う風力発電装置の主回路に関するものである。   The present invention relates to a main circuit of a wind power generator that extracts a rough maximum output that can be obtained from a wind from a permanent magnet generator driven by a wind turbine, regardless of the value of wind speed, and in particular, a permanent magnet type. The present invention relates to a main circuit of a wind turbine generator that charges a constant voltage power source without using a PWM converter from a generator.

本出願人は先に、風車に接続された永久磁石型発電機より、PWMコンバータを用いずに交流を直流に変換して概略の最大出力を取り出すために、永久磁石型発電機の異なる誘起電圧を発生する複数の巻線の交流出力端子に各リアクトルを経て直列に各整流器を接続し、これらの整流器の直流出力を並列接続して外部に出力する風力発電装置について提案している(例えば、特許文献1参照。)。   In order to obtain an approximate maximum output from a permanent magnet generator connected to a wind turbine, the applicant first converts AC to DC without using a PWM converter. A wind turbine generator is proposed in which each rectifier is connected in series to each other through a reactor to an AC output terminal of a plurality of windings that generate power, and the DC outputs of these rectifiers are connected in parallel and output to the outside (for example, (See Patent Document 1).

かかる先願技術を、図8の風車に接続された風力発電装置の主回路図を参照して詳述する。
図8において、1は先願技術の風力発電装置、2は永久磁石型発電機、31,32は第1および第2のリアクトル、41,42は第1および第2の整流器、10は風車、11は正側出力端子、12は負側出力端子、13はバッテリである。
図8においては、永久磁石型発電機2は、2種類の巻数を有し、3相の場合を示している。
This prior application technique will be described in detail with reference to the main circuit diagram of the wind turbine generator connected to the wind turbine of FIG.
In FIG. 8, 1 is a wind power generator of the prior application, 2 is a permanent magnet generator, 31 and 32 are first and second reactors, 41 and 42 are first and second rectifiers, 10 is a windmill, 11 is a positive output terminal, 12 is a negative output terminal, and 13 is a battery.
In FIG. 8, the permanent magnet generator 2 has two types of winding numbers and shows a three-phase case.

図8において、永久磁石型発電機2の巻数が少ないために誘起電圧実効値の低い第1の巻線の交流出力端子W1は、第1のリアクトル31に接続され、さらに第1の整流器41に接続される。
巻数が多い第2の巻線の交流出力端子W2は、第2のリアクトル32に接続され、さらに第2の整流器42に接続される。
上記第1、第2の整流器41,42の各々の直流側は、正側出力端子11及び負側出力端子12に並列接続され、各巻線の合計出力がバッテリ13に充電される。
In FIG. 8, since the number of turns of the permanent magnet generator 2 is small, the AC output terminal W1 of the first winding having a low induced voltage effective value is connected to the first reactor 31 and further to the first rectifier 41. Connected.
The AC output terminal W2 of the second winding having a large number of turns is connected to the second reactor 32 and further connected to the second rectifier 42.
The direct current sides of the first and second rectifiers 41 and 42 are connected in parallel to the positive output terminal 11 and the negative output terminal 12, and the total output of each winding is charged in the battery 13.

このように構成される風力発電装置1より、概略の風車最大出力を得る方法を以下に示す。
図7は、風車の周速比βと出力係数Cpの関係を説明する図である。このように風車の形状が決まると、周速比β(=2π×風車回転数/風速)に対する出力係数Cpが一義的に定まる。すなわち、風車最大出力となる周速比βが一定なので、風車最大出力となる風車回転数は比例関係にある。また、風車最大出力は風速の3乗に比例するので、風車最大出力は風車回転数に対して3乗特性を有することになる。
A method for obtaining an approximate maximum wind turbine output from the wind turbine generator 1 configured as described above will be described below.
FIG. 7 is a diagram for explaining the relationship between the peripheral speed ratio β of the windmill and the output coefficient Cp. When the shape of the windmill is determined in this way, the output coefficient Cp with respect to the peripheral speed ratio β (= 2π × windmill speed / wind speed) is uniquely determined. That is, since the peripheral speed ratio β that is the maximum output of the windmill is constant, the rotational speed of the windmill that is the maximum output of the windmill is proportional. Further, since the maximum output of the windmill is proportional to the cube of the wind speed, the maximum output of the windmill has a cube characteristic with respect to the number of rotations of the windmill.

すなわち、風から最大出力を得るためには、風車回転数Nが決まると、その時の永久磁石型発電機2の出力Pを一義的に、最大出力曲線Pt上の値に定めれば良いことを表している。実際には、永久磁石型発電機2の入力と風車最大出力とを一致させるという表現が好ましいが、この特許明細書では、永久磁石型発電機2を含む風力発電装置1の損失は無視して説明する。   That is, in order to obtain the maximum output from the wind, once the wind turbine rotation speed N is determined, the output P of the permanent magnet generator 2 at that time may be uniquely set to a value on the maximum output curve Pt. Represents. In practice, the expression of matching the input of the permanent magnet generator 2 and the maximum output of the wind turbine is preferable. However, in this patent specification, the loss of the wind power generator 1 including the permanent magnet generator 2 is ignored. explain.

図6は、先願技術が対象とする風力発電装置1の直流出力をバッテリ等の定電圧電源に接続した場合の説明図であり、風力発電装置1の永久磁石型発電機2の第1、第2の巻線の各出力は、各巻線の誘起電圧実効値の違い、及び各巻線内部インダクタンスと各出力端子に接続されるリアクトルによる電圧降下のために、図6の風車回転数対出力特性に示すP1、P2のようになる。   FIG. 6 is an explanatory diagram in the case where the direct current output of the wind turbine generator 1 targeted by the prior application technology is connected to a constant voltage power source such as a battery, and the first and second permanent magnet generators 2 of the wind turbine generator 1 are shown in FIG. Each output of the second winding is different from the effective value of the induced voltage of each winding, and the voltage drop due to the internal inductance of each winding and the reactor connected to each output terminal. P1 and P2 shown in FIG.

すなわち、風車回転数Nが低い場合には、永久磁石型発電機2内の第1および第2の巻線の発生電圧がバッテリ電圧Vbより低いために、バッテリ13には充電されない。
しかし、風車回転数Nが上昇して、N2付近になると、第2の巻線の発生電圧がバッテリ電圧Vb以上になるので、第2の巻線に電流が流れ始め、風車回転数Nの上昇と共に電流が上昇し、第2の巻線による出力はP2のようになる。
この時、風車回転数Nが上昇して誘起電圧が上昇しても、バッテッリ電圧は、ほぼ一定であるが、第2の巻線の内部インダクタンスおよび第2のリアクトル5によるインピーダンスが周波数に比例するために、出力P2は漸増するに留まる。
第1の巻線については、さらに回転数Nが上昇することにより出力が取れ始めるが、第1の巻線の内部インダクタンスおよび第1のリアクトル4が小さいために大きな出力が取れる。
That is, when the wind turbine rotational speed N is low, the voltage generated in the first and second windings in the permanent magnet generator 2 is lower than the battery voltage Vb, so the battery 13 is not charged.
However, when the wind turbine rotational speed N increases and becomes near N2, the voltage generated by the second winding becomes equal to or higher than the battery voltage Vb, so that current starts to flow through the second winding, and the wind turbine rotational speed N increases. At the same time, the current rises and the output by the second winding becomes P2.
At this time, even if the wind turbine rotation speed N is increased and the induced voltage is increased, the battery voltage is substantially constant, but the internal inductance of the second winding and the impedance by the second reactor 5 are proportional to the frequency. Therefore, the output P2 only increases gradually.
As for the first winding, output begins to be obtained as the rotational speed N further increases, but a large output can be obtained because the internal inductance of the first winding and the first reactor 4 are small.

図5は、先願が対象とする風力発電装置のバッテリ等の定電圧源への出力を示す図である。
永久磁石型発電機2内の第1、第2の巻線の出力P1、P2を加算して得られる合計出力は近似出力曲線Psとなる。
特開2004−64928(図1)
FIG. 5 is a diagram illustrating an output to a constant voltage source such as a battery of a wind turbine generator targeted by the prior application.
The total output obtained by adding the outputs P1 and P2 of the first and second windings in the permanent magnet generator 2 is an approximate output curve Ps.
JP 2004-64928 (FIG. 1)

風車が大きな慣性モーメントを有するために、風速に大きな変動があっても、風車回転数はほとんど変化せず、風車が発生する平均トルクが減少する。この関係を図4において説明する。図4において、風速が平均値に対して変動すると、風車回転数はほとんど変化しないので、周速比βが風速に反比例して変化する。図7の相関する周速比変動幅を示すように、周速比変動幅の範囲内で周速比が極端に大きい箇所と小さい箇所で出力係数が小さくなって、トルクも小さくなる。従って、特に、図4の時間A点に示すように、風速が大きくなった場合はトルクが大きくなるのが通常であるが、周速比が小さくなって、風車トルクが減少するということが起こる。
このようにして、風車トルクの平均値が減少して、風車回転数は減少するので、風力発電装置の出力も減少するという問題がある。風車回転数が減少すると、図7の周速比変動幅の下限が下がって、さらに風車トルクが減少するという悪循環になる。
Since the windmill has a large moment of inertia, even if the wind speed fluctuates greatly, the windmill rotation speed hardly changes, and the average torque generated by the windmill decreases. This relationship will be described with reference to FIG. In FIG. 4, when the wind speed fluctuates with respect to the average value, the rotational speed of the windmill hardly changes, so the peripheral speed ratio β changes in inverse proportion to the wind speed. As shown by the correlated circumferential speed ratio fluctuation range in FIG. 7, the output coefficient becomes small and the torque becomes small at locations where the circumferential speed ratio is extremely large and small within the range of the circumferential speed ratio variation range. Therefore, in particular, as shown at time point A in FIG. 4, when the wind speed increases, the torque usually increases. However, the peripheral speed ratio decreases and the wind turbine torque decreases. .
In this way, the average value of the wind turbine torque is reduced, and the wind turbine rotation speed is reduced. Therefore, there is a problem that the output of the wind turbine generator is also reduced. When the wind turbine rotational speed is decreased, the lower limit of the peripheral speed ratio fluctuation range in FIG. 7 is lowered, and a vicious circle is further formed in which the wind turbine torque is further decreased.

本発明は上記事情に鑑みなされたものであって、主として、その目的とするところは、風速が大きく変化するような場合にも、風車回転数を減速させることなく、永久磁石型発電機よりPWMコンバータを用いずに定電圧電源への充電を行う風力発電装置の主回路を提供することである。   The present invention has been made in view of the above circumstances. The main object of the present invention is to perform PWM control from a permanent magnet generator without decelerating the rotational speed of the windmill even when the wind speed changes greatly. It is to provide a main circuit of a wind turbine generator that charges a constant voltage power source without using a converter.

従って、本発明では、風車により駆動されて、異なる誘起電圧実効値を発生する複数の巻線により構成される永久磁石型発電機の交流出力を、個別のリアクトルを経て個別の整流器により整流し、該個別の整流器の直流出力を加算して外部に出力する風力発電装置の主回路において、風速の標準偏差を検出し、前記個別のリアクトルにタップを設け、前記風速の標準偏差がある値より大きい場合には個別のリアクトルのタップを開放し、前記風速の標準偏差がある値より小さい場合には個別のリアクトルのタップを短絡する接触器を有するものである。   Therefore, in the present invention, the alternating current output of a permanent magnet generator that is driven by a wind turbine and includes a plurality of windings that generate different induced voltage effective values is rectified by individual rectifiers through individual reactors, In the main circuit of the wind turbine generator that adds the direct current output of the individual rectifier and outputs it to the outside, the standard deviation of the wind speed is detected, a tap is provided in the individual reactor, and the standard deviation of the wind speed is larger than a certain value. In some cases, the taps of the individual reactors are opened, and when the standard deviation of the wind speed is smaller than a certain value, a contactor for short-circuiting the taps of the individual reactors is provided.

風速の変動が大きい場合には、上記接触器を開放することにより、近似出力曲線Psを最大出力曲線Ptよりも右側にシフトさせて、風車より最大出力は得られないが、風車10の回転を容易にし、風速の変動が小さい場合には、上記接触器を短絡することにより、最大出力曲線Ptと近似出力曲線Psをほぼ一致させることにより風車より最大出力を得る風力発電装置の主回路を提供できる。   When the fluctuation of the wind speed is large, by opening the contactor, the approximate output curve Ps is shifted to the right side of the maximum output curve Pt, and the maximum output cannot be obtained from the windmill. A main circuit of a wind turbine generator that obtains the maximum output from the windmill by making the maximum output curve Pt and the approximate output curve Ps substantially coincident by short-circuiting the contactor when the wind speed fluctuation is small is provided. it can.

本発明では、風車により駆動されて、異なる誘起電圧実効値を発生する複数の巻線により構成される永久磁石型発電機の交流出力を、個別のリアクトルを経て個別の整流器により整流し、該個別の整流器の直流出力を加算して外部に出力する風力発電装置の主回路において、前記個別のリアクトルにタップを設け、該個別のリアクトルのタップを短絡する接触器を設け、風速の標準偏差を検出し、該風速の標準偏差がある値より大きい場合には前記接触器を開放し、前記風速の標準偏差がある値より小さい場合には前記接触器を短絡するものである。   In the present invention, the AC output of a permanent magnet generator composed of a plurality of windings driven by a wind turbine and generating different induced voltage effective values is rectified by individual rectifiers through individual reactors, In the main circuit of the wind turbine generator that adds the DC output of the rectifier and outputs it to the outside, a tap is provided on the individual reactor, and a contactor that short-circuits the tap of the individual reactor is provided to detect the standard deviation of the wind speed When the standard deviation of the wind speed is larger than a certain value, the contactor is opened, and when the standard deviation of the wind speed is smaller than a certain value, the contactor is short-circuited.

図1は、本発明の、風車より直流出力を得る風力発電装置の主回路を説明するための図である。
同図において、51および52は第1および第2のタップ付きリアクトル、61および62は第1および第2の接触器、7は風速偏差演算回路、8は接触器制御回路であり、図7と同一番号は同一構成部品を表す。以下、図1について、本発明における原理を説明した図2、図3を参照しつつ説明する。
FIG. 1 is a diagram for explaining a main circuit of a wind turbine generator that obtains a DC output from a windmill according to the present invention.
In the figure, 51 and 52 are first and second tapped reactors, 61 and 62 are first and second contactors, 7 is a wind speed deviation calculating circuit, 8 is a contactor control circuit, and FIG. The same number represents the same component. Hereinafter, FIG. 1 will be described with reference to FIGS. 2 and 3 illustrating the principle of the present invention.

巻数の少ない第1の巻線W1の交流出力端子には、直列に第1のタップ付きリアクトル51が接続され、さらに第1の整流器41が接続される。第1のタップ付きリアクトル51には並列に第1の接触器61が接続される。巻数の多い第2の巻線W2の交流出力端子には、直列に第2のタップ付きリアクトル52が接続され、さらに第2の整流器42が接続される。第2のタップ付きリアクトル52には並列に第2の接触器62が接続される。
第1の整流器41および第2の整流器42の出力は、並列に接続され、その合計直流出力がバッテリ13に充電される。
A first tapped reactor 51 and a first rectifier 41 are connected in series to the AC output terminal of the first winding W1 having a small number of turns. A first contactor 61 is connected to the first tapped reactor 51 in parallel. A second tapped reactor 52 is connected in series to the AC output terminal of the second winding W2 having a large number of turns, and a second rectifier 42 is further connected. A second contactor 62 is connected in parallel to the second tapped reactor 52.
The outputs of the first rectifier 41 and the second rectifier 42 are connected in parallel, and the total DC output is charged in the battery 13.

第1および第2の接触器61および62をOFFにして第1および第2タップ付きリアクトル51および52のインダクタンス値を大きくした場合の永久磁石型発電機2の交流出力を図2および図3に示す。巻数の多い第2の巻線W2の交流出力端子には、図6の出力P2に比べて小さな電流が流れて、図3の出力P2´になる。巻数の少ない第1の巻線W1の出力は、図6のP1と比べて小さな電流が流れて、図3の出力P1´になる。巻数の多い第2の巻線W2と巻数の少ない第1の巻線W1の合計直流出力が、図2に示すように、近似出力曲線Ps´となり最大出力曲線Ptよりも右側にシフトさせた出力を得ることができる。すなわち、風力発電装置1の出力が減少する。   FIGS. 2 and 3 show the AC output of the permanent magnet generator 2 when the first and second contactors 61 and 62 are turned OFF and the inductance values of the first and second tapped reactors 51 and 52 are increased. Show. A current smaller than the output P2 of FIG. 6 flows through the AC output terminal of the second winding W2 having a large number of turns, and becomes the output P2 ′ of FIG. The output of the first winding W1 having a small number of turns is smaller than that of P1 in FIG. 6, and becomes an output P1 ′ in FIG. As shown in FIG. 2, the total DC output of the second winding W2 having a large number of turns and the first winding W1 having a small number of turns becomes an approximate output curve Ps' and is shifted to the right side of the maximum output curve Pt. Can be obtained. That is, the output of the wind power generator 1 decreases.

第1および第2の接触器61および62がONになると、永久磁石型発電機2の交流出力に接続されるインピーダンスが小さくなるために、大きな電流が流れて、図5および図6に示すように、最大出力曲線Ptと近似出力曲線Psをほぼ一致させて風車より最大出力を得ることができる。このような近似出力は従来発明品と同一である。   When the first and second contactors 61 and 62 are turned ON, since the impedance connected to the AC output of the permanent magnet generator 2 is reduced, a large current flows, as shown in FIG. 5 and FIG. In addition, the maximum output curve Pt and the approximate output curve Ps can be substantially matched to obtain the maximum output from the windmill. Such approximate output is the same as that of the conventional invention.

風速偏差演算回路7は、風車10周辺の風速を検出して風速の標準偏差σを求める。風速の標準偏差σは、例えば、図示しない風速計により1秒間隔毎に風速を測定し、10分間の平均風速を出すと共に、随時、風速の標準偏差σを演算して接触器制御回路8へ出力する。接触器制御回路8は、風速の標準偏差σが、ある一定以上の大きな値になると、第1および第2の接触器61および62をOFFにする接触器制御信号Sを出力し、第1および第2のタップ付きリアクトル51および52のインダクタンス値を大きくする。このときの出力は、図2に示すような近似出力曲線Ps´となる。
風速の標準偏差σが、ある一定値以下に下がると、第1および第2のタップ付きリアクトル51および52をONにする接触器制御信号Sを出力し、第1および第2のタップ付きリアクトル51および52のインダクタンス値を小さくする。このときの出力は、図5に示すような近似出力曲線Psとなる。
The wind speed deviation calculation circuit 7 detects the wind speed around the wind turbine 10 to obtain the standard deviation σ of the wind speed. As for the standard deviation σ of the wind speed, for example, the wind speed is measured at intervals of one second by an anemometer (not shown) to obtain an average wind speed for 10 minutes, and the standard deviation σ of the wind speed is calculated at any time to the contactor control circuit 8. Output. The contactor control circuit 8 outputs a contactor control signal S for turning off the first and second contactors 61 and 62 when the standard deviation σ of the wind speed becomes a large value greater than a certain value. The inductance values of the second tapped reactors 51 and 52 are increased. The output at this time is an approximate output curve Ps ′ as shown in FIG.
When the standard deviation σ of the wind speed falls below a certain value, the contactor control signal S for turning on the first and second tapped reactors 51 and 52 is output, and the first and second tapped reactors 51 are output. And the inductance value of 52 is made small. The output at this time is an approximate output curve Ps as shown in FIG.

このように風速の標準偏差値σが大きい時には、第1および第2のタップ付きリアクトル51および52を大きくすることで、風車に印加される負荷を軽くし、風速変動による風車10の平均トルクが下がっても、風車回転数Nが減少することなく安定した出力を、風車10より取り出すことができる。
ここで、第2のタップ付きリアクトル52のインダクタンス値を適正に選定して、接触器制御信号Sにより、第2の接触器62をON、OFFしても同様の出力増減効果を得ることができる。
Thus, when the standard deviation value σ of the wind speed is large, by increasing the first and second tapped reactors 51 and 52, the load applied to the windmill is reduced, and the average torque of the windmill 10 due to the wind speed fluctuation is reduced. Even if it falls, the stable output can be taken out from the windmill 10 without the windmill rotation speed N decreasing.
Here, the same output increase / decrease effect can be obtained even if the inductance value of the second tapped reactor 52 is appropriately selected and the second contactor 62 is turned ON / OFF by the contactor control signal S. .

本発明の、風車により駆動される風力発電装置の主回路を説明するための図である。It is a figure for demonstrating the main circuit of the wind power generator driven by the windmill of this invention. 本願が対象とする風力発電装置の出力を減少させた場合の実施例における合計出力を説明するための図である。It is a figure for demonstrating the total output in the Example at the time of reducing the output of the wind power generator which this application makes object. 本願が対象とする風力発電装置の出力を減少させた場合の実施例における各巻線の出力を説明するための図である。It is a figure for demonstrating the output of each coil | winding in the Example at the time of reducing the output of the wind power generator which this application makes object. 風速が変動した場合の風車トルクを出力を説明するための図である。It is a figure for demonstrating an output of the windmill torque when a wind speed fluctuates. 先願が対象とする風力発電装置の合計出力を説明するための図である。It is a figure for demonstrating the total output of the wind power generator which a prior application makes object. 先願が対象とする風力発電装置の各巻線の出力を説明するための図である。It is a figure for demonstrating the output of each coil | winding of the wind power generator which a prior application makes object. 風車の出力係数と周速比の関係を説明するための図である。It is a figure for demonstrating the relationship between the output coefficient of a windmill, and a circumferential speed ratio. 先願の風力発電装置の主回路図である。It is a main circuit diagram of the wind power generator of the prior application.

符号の説明Explanation of symbols

1 風力発電装置
2 永久磁石型発電機
31、32 第1、第2のリアクトル
41,42 第1、第2の整流器
51、52 第1、第2のタップ付きリアクトル
61、62 第1、第2の接触器
7 風速偏差演算回路
8 接触器制御回路
10 風車
11 正側出力端子
12 負側出力端子
13 バッテリ
DESCRIPTION OF SYMBOLS 1 Wind power generator 2 Permanent magnet generator 31, 32 1st, 2nd reactor 41, 42 1st, 2nd rectifier 51, 52 1st, 2nd reactor with a tap 61, 62 1st, 2nd 7 Contactor control circuit 10 Contactor control circuit 10 Windmill 11 Positive output terminal 12 Negative output terminal 13 Battery

Claims (1)

風車により駆動されて、異なる誘起電圧実効値を発生する複数の巻線により構成される永久磁石型発電機の交流出力を、個別のリアクトルを経て個別の整流器により整流し、該個別の整流器の直流出力を加算して外部に出力する風力発電装置の主回路において、前記個別のリアクトルにタップを設け、該個別のリアクトルのタップを短絡する接触器を設け、風速の標準偏差を検出し、該風速の標準偏差がある値より大きい場合には前記接触器を開放し、前記風速の標準偏差がある値より小さい場合には前記接触器を短絡することを特徴とする風力発電装置の主回路。
The AC output of a permanent magnet generator composed of a plurality of windings driven by a wind turbine and generating different induced voltage effective values is rectified by an individual rectifier through an individual reactor, and the direct current of the individual rectifier In the main circuit of the wind turbine generator that adds the output and outputs to the outside, the individual reactor is provided with a tap, a contactor that short-circuits the individual reactor tap is provided, a standard deviation of the wind speed is detected, and the wind speed A main circuit of a wind turbine generator, wherein the contactor is opened when a standard deviation of the wind speed is larger than a certain value, and the contactor is short-circuited when the standard deviation of the wind speed is smaller than a certain value.
JP2008152753A 2008-06-11 2008-06-11 Main circuit of wind energy conversion system Pending JP2009303324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008152753A JP2009303324A (en) 2008-06-11 2008-06-11 Main circuit of wind energy conversion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008152753A JP2009303324A (en) 2008-06-11 2008-06-11 Main circuit of wind energy conversion system

Publications (1)

Publication Number Publication Date
JP2009303324A true JP2009303324A (en) 2009-12-24

Family

ID=41549630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008152753A Pending JP2009303324A (en) 2008-06-11 2008-06-11 Main circuit of wind energy conversion system

Country Status (1)

Country Link
JP (1) JP2009303324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454550A (en) * 2013-09-23 2013-12-18 中国矿业大学 Method for diagnosing standard deviation of detail coefficients of faults of power converter of switched reluctance motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454550A (en) * 2013-09-23 2013-12-18 中国矿业大学 Method for diagnosing standard deviation of detail coefficients of faults of power converter of switched reluctance motor
CN103454550B (en) * 2013-09-23 2015-10-21 中国矿业大学 Power converter of switch reluctance motor details on faults factor standard difference diagnostic method

Similar Documents

Publication Publication Date Title
US8058739B2 (en) Main circuit of electric power generating apparatus for dispersed power supply
JP5605336B2 (en) Power supply
JP5636412B2 (en) Wind power generation system and excitation synchronous generator control method thereof
JP4587655B2 (en) Power generator for distributed power supply
JP4544855B2 (en) Structure of permanent magnet generator for distributed power supply
JP4093814B2 (en) Small wind power generator
JP2017163659A (en) Wind power generation system
JP4641823B2 (en) Rectifier circuit for power generator for distributed power supply
JP2009303324A (en) Main circuit of wind energy conversion system
JP2011019374A (en) Over-rotation preventing device for wind power generator
JP2013046450A (en) Overspeed prevention device of power generator for distributed power supply
JP2008187855A (en) Output circuit for distributed power supply generator
JP5761711B2 (en) Rectifier circuit for power generator for distributed power supply
JP4601348B2 (en) Power generator for distributed power supply
JP4508811B2 (en) Starting method of small wind power generator
JP2011254603A (en) Rectification circuit of power generator for dispersed power
JP2004248391A (en) Rectifying circuit of generator for distributed power supply
JP2009296782A (en) Main circuit of power generating device for distributed power supply
JP2004135422A (en) High-speed rotation prevention circuit of power generation apparatus for distributed power supply
JP2004147427A (en) Generator for distributed power supply
JP5761712B2 (en) Over-rotation prevention circuit for power generator for distributed power supply
JP2011004558A (en) Wind power generation apparatus
JP5858222B2 (en) Waste heat recovery device
JP2017163660A (en) Wind power generation system
JP5975561B2 (en) Rectifier circuit and power generator