JP2009293991A - Sheath earth circuit surveillance device - Google Patents
Sheath earth circuit surveillance device Download PDFInfo
- Publication number
- JP2009293991A JP2009293991A JP2008145944A JP2008145944A JP2009293991A JP 2009293991 A JP2009293991 A JP 2009293991A JP 2008145944 A JP2008145944 A JP 2008145944A JP 2008145944 A JP2008145944 A JP 2008145944A JP 2009293991 A JP2009293991 A JP 2009293991A
- Authority
- JP
- Japan
- Prior art keywords
- sheath
- current
- earth
- ground
- current transformer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012544 monitoring process Methods 0.000 claims abstract description 28
- 238000012806 monitoring device Methods 0.000 claims description 24
- 238000001514 detection method Methods 0.000 claims 3
- 230000007257 malfunction Effects 0.000 description 14
- 230000005540 biological transmission Effects 0.000 description 10
- 238000009413 insulation Methods 0.000 description 9
- 230000007547 defect Effects 0.000 description 8
- 230000009466 transformation Effects 0.000 description 6
- 230000005856 abnormality Effects 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Emergency Protection Circuit Devices (AREA)
- Electric Cable Installation (AREA)
Abstract
Description
本発明は、シースアース回路監視装置に関し、特に、シースが両端接地された電力ケーブルに設けられたシースアース回路に不具合が生じたか否かを監視するのに好適なシースアース回路監視装置に関する。 The present invention relates to a sheath ground circuit monitoring device, and more particularly to a sheath ground circuit monitoring device suitable for monitoring whether or not a failure has occurred in a sheath ground circuit provided in a power cable whose sheath is grounded at both ends.
従来、シースが両端接地された電力ケーブルを内部事故から保護するための電力ケーブル保護継電器として、電流差動方式のものが使用されている。
また、電力ケーブルにはシールドアースが施工されているが、電力ケーブル保護継電器用の変流器は貫通形であるため、電力ケーブルのシースに流れるシース電流を打ち消すようにシースアース線を変流器内に引き戻している。
2. Description of the Related Art Conventionally, a current differential type is used as a power cable protection relay for protecting a power cable whose sheath is grounded at both ends from an internal accident.
In addition, the power cable has a shield earth, but the current transformer for the power cable protection relay is a penetration type, so the sheath ground wire is used to cancel the sheath current flowing through the sheath of the power cable. Pull back in.
たとえば図5に示すように、架空送電線Lに電力ケーブルCが接続されている場合には、架空送電線Lの負荷端側に設置された送電線変流器2(貫通形)と電力ケーブルCの負荷端と反対側に設置されたケーブル変流器3(貫通形)とを差接続し、送電線変流器2の2次出力電流(以下、「送電線変流器2次電流iL」と称する。)とケーブル変流器3の2次出力電流(以下、「ケーブル変流器2次電流iC」と称する。)との差電流(=iL−iC)を入力電流iinとして電流差動方式電力ケーブル保護継電器1(以下、「電力ケーブル保護継電器1」と称する。)に入力することにより、電力ケーブル保護継電器1が入力電流iinに基づいて内部事故を検出すると、架空送電線Lの負荷端側に設置された遮断器4を遮断するようにしている。 For example, as shown in FIG. 5, when the power cable C is connected to the overhead transmission line L, the transmission line current transformer 2 (through-type) installed on the load end side of the overhead transmission line L and the power cable A cable current transformer 3 (through-type) installed on the opposite side to the load end of C is connected to the secondary output current of the transmission line current transformer 2 (hereinafter referred to as “transmission line current transformer secondary current i”). L ”) and the secondary output current of the cable current transformer 3 (hereinafter referred to as“ cable current transformer secondary current i C ”), the difference current (= i L −i C ) i in the current differential scheme power cable protection relay 1 (hereinafter, referred to as "power cable protection relay 1".) by entering, when the power cable protection relay 1 detects an internal fault based on the input current i in The circuit breaker 4 installed on the load end side of the overhead power transmission line L is cut off. .
また、ケーブル変流器3では、電力ケーブルCのシースに流れるシース電流ISの2次出力電流がケーブル変流器2次電流iCに含まれないようにするために、電力ケーブルCのケーブル変流器3側のシースアース線(以下、「第1のシースアース線E1」と称する。また、電力ケーブルCのケーブル変流器3と反対側のシースアース線を「第2のシースアース線E2」と称する。)をケーブル変流器3内に引き戻して、シース電流ISと第1のシースアース線E1に流れるシースアース電流とを相殺するようにしている。 Further, in the cable current transformer 3, in order to prevent the secondary output current of the sheath current I S flowing through the sheath of the power cable C from being included in the cable current transformer secondary current i C , the cable of the power cable C The sheath ground wire on the current transformer 3 side (hereinafter referred to as “first sheath ground wire E 1 ”). The sheath ground wire on the side opposite to the cable current transformer 3 of the power cable C is referred to as “second sheath ground wire”. Line E 2 ”) is pulled back into the cable current transformer 3 to cancel the sheath current I S and the sheath ground current flowing through the first sheath ground line E 1 .
なお、下記の特許文献1には、ケーブル遮蔽層の切断とシースのメグ異常とを同時に検出してケーブル線路の健全性を確認できるように、中間に接地のないケーブル線路の片端をコンデンサ接地し、他端をコンデンサ若しくは高抵抗接地とし、コンデンサ接地端から常時遮蔽層に直流電圧を印加してシース洩れ電流の測定を行ってシースメグの異常を検出し、他端ではシース電位を常時測定して遮蔽層切断を検出するようにした、ケーブル遮蔽層,シース異常監視方法が開示されている。
また、下記の特許文献2には、高電圧で運転中の電力ケーブルの絶縁状態をそのまま診断、監視できるように、電力ケーブルの接地線に電流変流器が緩嵌されており、電流変流器に励磁電源が接続されており、電流変流器の二次側から商用周波数と異なる周波数の励磁電源により励磁すると、接地線に絶縁診断・監視用の電圧を重畳することが可能となり、また、電力ケーブルに零相変流器が緩嵌されており、零相変流器に絶縁監視盤が接続されており、零相変流器の出力と絶縁診断・監視用の電圧とを絶縁監視盤に入力すると、絶縁監視盤の内部でベクトル演算が行われ、電力ケーブルの絶縁抵抗および誘電正接が測定されるようにした、電力ケーブルの絶縁診断・監視システムが開示されている。
Further, in Patent Document 2 below, a current transformer is loosely fitted to the ground line of the power cable so that the insulation state of the power cable operating at a high voltage can be diagnosed and monitored as it is. When an excitation power source is connected to the generator, and excitation is performed from the secondary side of the current transformer with an excitation power source having a frequency different from the commercial frequency, it is possible to superimpose a voltage for insulation diagnosis / monitoring on the ground wire. The zero-phase current transformer is loosely fitted to the power cable, and the insulation monitoring board is connected to the zero-phase current transformer, and insulation monitoring is performed between the output of the zero-phase current transformer and the voltage for insulation diagnosis and monitoring. A power cable insulation diagnosis / monitoring system is disclosed in which a vector operation is performed inside the insulation monitoring board when input to the board is performed, and the insulation resistance and dielectric loss tangent of the power cable are measured.
しかしながら、上述したようにケーブル変流器3では電力ケーブルCの第1のシースアース線E1を引き戻して、シース電流ISと第1のシースアース線E1に流れるシースアース電流とを相殺するようにしているため、シースアース回路に不具合(シースアース線の地絡、シースアース線に接続されている保安用避雷器のパンク、シースアース線の絶縁被覆の損傷、ケーブル変流器3の内部劣化など)があると、シース電流ISと第1のシースアース線E1に流れるシースアース電流とが相殺されず、両者の差電流の2次出力電流(以下、「2次シース差電流ΔiS」と称する。)がケーブル変流器2次電流iCに含まれるため、電力ケーブル保護継電器1が外部事故によって誤動作するという問題があった。 However, as described above, the cable current transformer 3 pulls back the first sheath ground wire E 1 of the power cable C and cancels the sheath current I S and the sheath ground current flowing through the first sheath ground wire E 1. As a result, there is a problem in the sheath ground circuit (earth fault of the sheath ground wire, puncture of the safety arrester connected to the sheath ground wire, damage to the insulation coating of the sheath ground wire, internal deterioration of the cable current transformer 3 Etc.), the sheath current I S and the sheath ground current flowing through the first sheath ground line E 1 are not canceled out, and the secondary output current (hereinafter referred to as “secondary sheath difference current Δi S) of the difference between the two currents. ) Is included in the cable current transformer secondary current i C , there is a problem that the power cable protection relay 1 malfunctions due to an external accident.
すなわち、シースアース回路に不具合がない場合には、外部事故時に送電線変流器2次電流iLとケーブル変流器2次電流iCとは、架空送電線Lおよび電力ケーブルCに流れる事故電流Igの2次出力電流(以下、「2次事故電流ig」と称する。)となるため、図5に示すように電力ケーブル保護継電器1の入力電流iinは“0”となって、電力ケーブル保護継電器1は動作しない。 That is, when there is no defect in the sheath ground circuit, the transmission line current transformer secondary current i L and the cable current transformer secondary current i C are caused to flow through the overhead power transmission line L and the power cable C in the event of an external accident. Since this is the secondary output current of the current I g (hereinafter referred to as “secondary accident current i g ”), the input current i in of the power cable protection relay 1 is “0” as shown in FIG. The power cable protection relay 1 does not operate.
しかし、たとえば図6に示すように第1のシースアース線E1のケーブル変流器3よりも負荷端と反対側で地絡が生じると、第1のシースアース線E1に流れるシースアース電流はシース電流ISの1/2となるため、ケーブル変流器3の変流比nの逆数を“k”とすると、ケーブル変流器2次電流iCは、(1)式で示すように2次事故電流igからk(IS/2)を引いたものとなる。
iC=ig−ΔiS
=ig−k(IS/2) (1)
そのため、電力ケーブル保護継電器1の入力電流iinは、(2)式に示すようにk(IS/2)となる。
iin=iL−iC=ig−{ig−(k(IS/2)}=k(IS/2) (2)
その結果、電力ケーブル保護継電器1が誤動作してしまう。
However, for example, if the first ground fault sheath grounding wire cable current transformer 3 load end than the E 1 and on the opposite side as shown in FIG. 6 occurs, the sheath grounding current flowing through the first sheath grounding wire E 1 Is 1/2 of the sheath current I S , so that the reciprocal of the current transformation ratio n of the cable current transformer 3 is “k”, the cable current transformer secondary current i C is expressed by the equation (1). Is obtained by subtracting k (I S / 2) from the secondary fault current i g .
i C = i g -Δi S
= I g -k (I S / 2) (1)
Therefore, the input current i in of the power cable protection relay 1 is k (I S / 2) as shown in the equation (2).
i in = i L −i C = i g − {i g − (k (I S / 2)} = k (I S / 2) (2)
As a result, the power cable protection relay 1 malfunctions.
特に、シースアース回路の不具合のうちケーブル変流器3の内部劣化によりケーブル変流器3内でシース線が接地したような場合には、目視による監視が非常に困難であり、これによる電力ケーブル保護継電器1の外部事故による誤動作を防止することが非常に難しいという問題があった。 In particular, when the sheath wire is grounded in the cable current transformer 3 due to internal deterioration of the cable current transformer 3 among the defects of the sheath ground circuit, it is very difficult to visually monitor the power cable. There was a problem that it was very difficult to prevent malfunction of the protective relay 1 due to an external accident.
本発明の目的は、電力ケーブルに設けられたシースアース回路に不具合があるか否かを監視することができるシースアース回路監視装置を提供することにある。 An object of the present invention is to provide a sheath ground circuit monitoring device capable of monitoring whether or not there is a defect in a sheath ground circuit provided in a power cable.
本発明のシースアース回路監視装置は、シースが両端接地された電力ケーブル(C)に設けられたシースアース回路に不具合が生じたか否かを監視するためのシースアース回路監視装置であって、シースアース線(E1)の前記電力ケーブルからの引出点近傍を流れる電流と該シースアース線の接地点近傍を流れる電流との差電流を検出する差電流検出手段と、該差電流検出手段によって検出された前記差電流に基づいて、前記シースアース回路に不具合が生じたか否かを監視する監視手段とを具備することを特徴とする。
ここで、前記差電流検出手段が、前記シースアース線の前記電力ケーブルからの引出点近傍に設けられた第1のアース変流器(111)と、該シースアース線の接地点近傍に設けられたかつ前記第1のアース変流器と差接続された第2のアース変流器(112)とを備え、前記監視手段が、前記第1のアース変流器の2次出力電流(i1S)と前記第2のアース変流器の2次出力電流(i2S)との差電流(i3S)が所定の値以上になると「前記シースアース回路に不具合が生じた」と判定してもよい。
前記差電流検出手段が、前記シースアース線の前記電力ケーブルからの引出点近傍に設けられた第1のクランプ形変流器(211)と、該シースアース線の接地点近傍に設けられた第2のクランプ形変流器(212)とを備え、前記監視手段が、前記第1および第2のクランプ形変流器からそれぞれ入力される電流の差電流を求め、該求めた差電流が所定の値以上になると「前記シースアース回路に不具合が生じた」と判定してもよい。
前記所定の値が、隣接変電所を事故点とした場合の外部地絡事故時の事故電流(Ig)でも前記監視手段が動作するように設定されていてもよい。
The sheath earth circuit monitoring device of the present invention is a sheath earth circuit monitoring device for monitoring whether or not a failure has occurred in a sheath earth circuit provided in a power cable (C) having both ends grounded. A difference current detecting means for detecting a difference current between a current flowing in the vicinity of the drawing point of the ground wire (E 1 ) from the power cable and a current flowing in the vicinity of the grounding point of the sheath ground wire; And monitoring means for monitoring whether or not a failure has occurred in the sheath earth circuit based on the difference current.
Here, the differential current detecting means is provided in the vicinity of the grounding point of the first ground current transformer (11 1 ) provided near the drawing point of the sheath grounding wire from the power cable. And a second earth current transformer (11 2 ) connected to the first earth current transformer and connected to the first earth current transformer, and the monitoring means includes a secondary output current of the first earth current transformer ( If the difference current (i 3S ) between i 1S ) and the secondary output current (i 2S ) of the second earth current transformer exceeds a predetermined value, it is determined that “the sheath earth circuit has failed”. May be.
The differential current detecting means is provided in the vicinity of the first clamp-type current transformer (21 1 ) provided in the vicinity of the drawing point of the sheath ground wire from the power cable, and in the vicinity of the grounding point of the sheath ground wire. A second clamp-type current transformer (21 2 ), and the monitoring means obtains a difference current between currents input from the first and second clamp-type current transformers, and the obtained difference current It may be determined that “a failure has occurred in the sheath earth circuit” when is equal to or greater than a predetermined value.
The predetermined value may be set so that the monitoring means operates even at an accident current (I g ) at the time of an external ground fault when an adjacent substation is the fault point.
本発明のシースアース回路監視装置は、以下に示す効果を奏する。
(1)シースアース回路不具合時にケーブル変流器の2次出力電流に含まれる2次シース電流はシースアース線の電力ケーブルからの引出点近傍を流れる電流とシースアース線の接地点近傍を流れる電流との差電流に応じた電流となるため、この差電流の大きさを検出することにより、シースアース回路に不具合があるか否かを監視することができる。
(2)シースアース回路に不具合があった場合には電流差動方式電力ケーブル保護継電器をロックすることにより、電流差動方式電力ケーブル保護継電器の誤動作を防止することができるため、不要な電力供給支障をなくすことができる。
(3)差電流の大きさを検出するのにクランプ形変流器を用いることにより、既設設備についても容易にシースアース回路監視装置を設置することができる。
The sheath earth circuit monitoring device of the present invention has the following effects.
(1) When the sheath ground circuit malfunctions, the secondary sheath current included in the secondary output current of the cable current transformer is the current flowing in the vicinity of the extraction point of the sheath ground wire from the power cable and the current flowing in the vicinity of the ground point of the sheath ground wire. Therefore, by detecting the magnitude of this difference current, it is possible to monitor whether or not there is a defect in the sheath earth circuit.
(2) If there is a malfunction in the sheath ground circuit, it is possible to prevent malfunction of the current differential power cable protection relay by locking the current differential power cable protection relay. The trouble can be eliminated.
(3) By using a clamp-type current transformer to detect the magnitude of the difference current, it is possible to easily install a sheath earth circuit monitoring device for existing equipment.
上記の目的を、シースアース線の電力ケーブルからの引出点近傍に設けられた第1のアース変流器の2次出力電流とシースアース線の接地点近傍に設けられた第2のアース変流器の2次出力電流との差電流の大きさが所定の値以上になると「シースアース回路に不具合が生じた」と判定することにより実現した。 For the above purpose, the secondary output current of the first earth current transformer provided near the drawing point of the sheath ground wire from the power cable and the second earth current transformation provided near the ground point of the sheath earth wire. This was realized by determining that “a failure occurred in the sheath earth circuit” when the magnitude of the difference current from the secondary output current of the device exceeded a predetermined value.
以下、本発明のシースアース回路監視装置の実施例について図面を参照して説明する。
本発明の一実施例によるシースアース回路監視装置は、図1に示すように、差接続された第1および第2のアース変流器111,112(貫通形)と、監視装置12とを具備する。
Hereinafter, embodiments of the sheath earth circuit monitoring device of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a sheath earth circuit monitoring device according to an embodiment of the present invention includes first and second earth current transformers 11 1 and 11 2 (through-type) connected to each other, a monitoring device 12, and It comprises.
ここで、第1のアース変流器111は第1のシースアース線E1の電力ケーブルCからの引出点近傍に設けられている。
また、第1のアース変流器111は、図2および図3に示すように、変流比が1:1のものであり、第1のアース変流器111の2次側からは、第1のシースアース線E1の引出点近傍(第1のアース変流器111の1次側)を流れるシースアース電流と同じ大きさの第1の2次シースアース電流i1Sが出力される。
Here, the first earth current transformer 11 1 is provided in the vicinity of the drawing point of the first sheath earth wire E 1 from the power cable C.
Further, as shown in FIGS. 2 and 3, the first earth current transformer 11 1 has a current transformation ratio of 1: 1, and from the secondary side of the first earth current transformer 11 1. The first secondary sheath ground current i 1S having the same magnitude as the sheath ground current flowing in the vicinity of the drawing point of the first sheath ground wire E 1 (primary side of the first ground current transformer 11 1 ) is output. Is done.
第2のアース変流器112は第1のシースアース線E1の接地点近傍に設けられている。
また、第2のアース変流器112は、図2および図3に示すように、変流比が1:1のものであり、第2のアース変流器112の2次側からは、第1のシースアース線E1の接地点近傍(第2のアース変流器112の1次側)を流れるシースアース電流と同じ大きさの第2の2次シースアース電流i2Sが出力される。
The second ground current transformer 11 2 is provided in the vicinity of the ground point of the first sheath ground wire E 1 .
Further, the second earth current transformer 11 2 has a current transformation ratio of 1: 1 as shown in FIGS. 2 and 3, and from the secondary side of the second earth current transformer 11 2. A second secondary sheath ground current i 2S having the same magnitude as the sheath ground current flowing near the ground point of the first sheath ground wire E 1 (the primary side of the second ground current transformer 11 2 ) is output. Is done.
なお、第1および第2のアース変流器111,112は差接続されているため、第1および第2の2次シースアース電流i1S,i2Sの差電流である2次シースアース差電流i3Sが監視装置12に入力される。 Since the first and second earth current transformers 11 1 and 11 2 are differentially connected, the secondary sheath earth, which is the difference current between the first and second secondary sheath earth currents i 1S and i 2S. The difference current i 3S is input to the monitoring device 12.
監視装置12は、2次シースアース差電流i3Sに基づいて動作し、2次シースアース差電流i3Sの大きさが所定の値以上になると「シースアース回路に不具合が生じた」と判定して、シースアース回路の不具合を知らせるための警報を表示するとともに、電力ケーブル保護継電器1をロックするためのロック信号SLOCKを電力ケーブル保護継電器1に出力する。 Monitoring device 12 operates based on the secondary sheath grounding difference current i 3S, determines the magnitude of the secondary sheath grounding difference current i 3S becomes a predetermined value or more as "failure occurs in the sheath grounding circuit" Then, an alarm for notifying the malfunction of the sheath ground circuit is displayed and a lock signal S LOCK for locking the power cable protection relay 1 is output to the power cable protection relay 1.
なお、所定の値は、以下のようにして設定されている。
たとえば、隣接変電所を事故点とした場合の外部地絡事故時の事故電流Ig(1線電流)が500Aであるとすると、遠方外部地絡事故を考慮して、事故電流Igがその半分の電流値である250Aでも監視装置12が動作するようにする。
そこで、シース電流ISが事故電流Ig(1線電流)の15%であるとすると、後述するようにシースアース回路に不具合が生じたときの2次シースアース差電流i3Sがシース電流ISの1/2(=IS/2)となったときに監視装置12が動作するように、所定の値は(250A×0.15)/2=18.5Aよりも小さい値(たとえば、15A)に設定する。
The predetermined value is set as follows.
For example, if the fault current I g (1-wire current) at the time of an external ground fault when the adjacent substation is the fault point is 500 A, the fault current Ig is The monitoring device 12 is made to operate even at a half current value of 250A.
Therefore, assuming that the sheath current I S is 15% of the accident current I g (one-line current), the secondary sheath ground differential current i 3S when a failure occurs in the sheath ground circuit as described later is the sheath current I The predetermined value is smaller than (250A × 0.15) /2=18.5A (for example, for example) so that the monitoring device 12 operates when ½ of S (= I S / 2). 15A).
次に、シースアース回路監視装置の動作について、シースアース回路に不具合がない場合とシースアース回路に不具合がある場合とに分けて、図2および図3を参照して説明する。 Next, the operation of the sheath ground circuit monitoring device will be described with reference to FIGS. 2 and 3 for a case where there is no defect in the sheath ground circuit and a case where there is a defect in the sheath ground circuit.
(1)シースアース回路に不具合がない場合
シースアース回路に不具合がない場合には、図2に示すように、第1および第2の2次シースアース電流i1S,i2Sは共にシース電流ISとなるため、2次シースアース差電流i3S(=i1S−i2S)は“0”となる。その結果、監視装置12は動作しないので、シースアース回路の不具合を知らせるための警報は表示されず、また、ロック信号SLOCKも電力ケーブル保護継電器1に出力されない。
(1) When there is no defect in the sheath ground circuit When there is no defect in the sheath ground circuit, the first and second secondary sheath ground currents i 1S and i 2S are both the sheath current I as shown in FIG. Since S , the secondary sheath grounding difference current i 3S (= i 1S −i 2S ) is “0”. As a result, since the monitoring device 12 does not operate, an alarm for notifying the malfunction of the sheath earth circuit is not displayed, and the lock signal S LOCK is not output to the power cable protection relay 1.
(2)シースアース回路に不具合がある場合
たとえば図3に示すように第1のシースアース線E1の第1のアース変流器111とケーブル変流器3との間で地絡が生じると、ケーブル変流器3の1次側を流れるシースアース電流はシース電流ISの1/2となるため、ケーブル変流器3の2次側に電磁誘導されるケーブル変流器2次電流iC=ig−k(IS/2)となる((1)式参照)。
(2) ground fault occurs between the first ground current transformer 11 1 and a cable current transformer 3 of the sheath grounding circuit as shown in FIG. 3, for example if there is a problem the first sheath grounding wire E 1 Since the sheath ground current flowing on the primary side of the cable current transformer 3 is ½ of the sheath current I S , the cable current transformer secondary current electromagnetically induced on the secondary side of the cable current transformer 3 i C = i g −k (I S / 2) (see equation (1)).
また、第1のアース変流器111の1次側を流れるシースアース電流はシース電流ISとなるため、第1の2次シースアース電流i1S=ISとなるが、第2のアース変流器112の1次側を流れるシースアース電流はシース電流ISの1/2となるため、第2の2次シースアース電流i2S=IS/2となる。
したがって、所定の値(=15A)以上の大きさの2次シースアース差電流i3S=IS/2(=i1S−i2S=IS−IS/2)が監視装置12に入力されるため、監視装置12が動作して、シースアース回路の不具合を知らせるための警報が表示されるとともに、ロック信号SLOCKが電力ケーブル保護継電器1に出力される。
これにより、シースアース回路の不具合を容易に監視することができる(特に、目視による監視が困難であるケーブル変流器3内における第1のシースアース線E1の接地も容易に監視することができる)とともに、シースアース回路不具合時の電力ケーブル保護継電器1の外部事故による誤動作による遮断器4の遮断を防止することができる。
Further, since the sheath earth current flowing through the primary side of the first earth current transformer 11 1 becomes the sheath current I S , the first secondary sheath earth current i 1S = I S becomes, but the second earth Since the sheath earth current flowing through the primary side of the current transformer 11 2 is ½ of the sheath current I S , the second secondary sheath earth current i 2S = I S / 2.
Accordingly, the secondary sheath grounding difference current i 3S = I S / 2 (= i 1S −i 2S = I S −I S / 2) having a magnitude greater than or equal to a predetermined value (= 15 A) is input to the monitoring device 12. Therefore, the monitoring device 12 operates to display an alarm for notifying the malfunction of the sheath earth circuit, and the lock signal S LOCK is output to the power cable protection relay 1.
Thereby, it is possible to easily monitor the failure of the sheath ground circuit (in particular, it is possible to easily monitor the grounding of the first sheath ground wire E 1 in the cable current transformer 3 that is difficult to monitor visually). In addition, it is possible to prevent the circuit breaker 4 from being interrupted due to a malfunction due to an external accident of the power cable protection relay 1 when the sheath ground circuit malfunctions.
以上の説明では、貫通形の第1および第2のアース変流器111,112を用いて第1のシースアース線E1の引出点近傍および接地点近傍を流れるシースアース電流をそれぞれ検出したが、既設の設備に本発明のシースアース回路監視装置を設置する場合には図4に示すように第1および第2のクランプ形変流器211,212(変流比1:1)を用いて第1のシースアース線E1の引出点近傍および接地点近傍を流れるシースアース電流をそれぞれ検出してもよい。
このときには、監視装置12は、第1および第2のクランプ形変流器211,212からそれぞれ入力される電流の差電流を求め、求めた差電流の大きさが所定の値以上になると「シースアース回路に不具合が生じた」と判定すればよい。
In the above description, the sheath ground currents flowing near the lead point and the ground point of the first sheath ground wire E 1 are detected using the first and second ground current transformers 11 1 and 11 2 , respectively. However, when the sheath earth circuit monitoring device of the present invention is installed in the existing equipment, the first and second clamp-type current transformers 21 1 and 21 2 (current transformation ratio 1: 1) as shown in FIG. ) May be used to detect the sheath ground current flowing near the lead point and the ground point of the first sheath ground line E 1 .
At this time, the monitoring device 12 obtains a difference current between the currents input from the first and second clamp-type current transformers 21 1 and 21 2, and the magnitude of the obtained difference current exceeds a predetermined value. It may be determined that “a failure has occurred in the sheath earth circuit”.
1 電力ケーブル保護継電器
2 送電線変流器
3 ケーブル変流器
4 遮断器
111,112 第1および第2のアース変流器
12 監視装置
211,212 第1および第2のクランプ形変流器
C 電力ケーブル
L 架空送電線
E1,E2 第1および第2のシースアース線
Ig 事故電流
IS シース電流
iL 送電線変流器2次電流
iC ケーブル変流器2次電流
iin 入力電流
ig 2次事故電流
i1S,i2S 第1および第2の2次シースアース電流
i3S 2次シースアース差電流
ΔiS 2次シース差電流
k 係数
n 変流比
SLOCK ロック信号
1 power cable protection relay 2 transmission line current transformer 3 cable current transformer 4 breaker 11 1, 11 2 first and second ground current transformer 12 monitoring device 21 1, 21 2 first and second clamp-type current transformer C power cable L overhead lines E 1, E 2 the first and second sheath grounding wire I g fault current I S sheath current i L transmission line current transformer secondary current i C cable current transformer secondary Current i in input current i g secondary fault current i 1S , i 2S first and second secondary sheath ground current i 3S secondary sheath ground differential current Δi S secondary sheath differential current k coefficient n current transformation ratio S LOCK Lock signal
Claims (4)
シースアース線(E1)の前記電力ケーブルからの引出点近傍を流れる電流と該シースアース線の接地点近傍を流れる電流との差電流を検出する差電流検出手段と、
該差電流検出手段によって検出された前記差電流に基づいて、前記シースアース回路に不具合が生じたか否かを監視する監視手段と、
を具備することを特徴とする、シースアース回路監視装置。 A sheath earth circuit monitoring device for monitoring whether or not a failure has occurred in a sheath earth circuit provided in a power cable (C) whose sheath is grounded at both ends,
Differential current detection means for detecting a differential current between a current flowing near the drawing point of the sheath ground wire (E 1 ) from the power cable and a current flowing near the ground point of the sheath ground wire;
Monitoring means for monitoring whether or not a failure has occurred in the sheath ground circuit based on the difference current detected by the difference current detection means;
A sheath earth circuit monitoring device comprising:
前記監視手段が、前記第1のアース変流器の2次出力電流(i1S)と前記第2のアース変流器の2次出力電流(i2S)との差電流(i3S)が所定の値以上になると「前記シースアース回路に不具合が生じた」と判定する、
ことを特徴とする、請求項1記載のシースアース回路監視装置。 The differential current detection means is provided near the grounding point of the first ground current transformer (11 1 ) provided near the drawing point of the sheath ground wire from the power cable, and A second ground current transformer (11 2 ) differentially connected to the first ground current transformer;
The monitoring means determines a difference current (i 3S ) between a secondary output current (i 1S ) of the first earth current transformer and a secondary output current (i 2S ) of the second earth current transformer. When the value is equal to or greater than that, it is determined that "the sheath earth circuit has failed"
The sheath earth circuit monitoring apparatus according to claim 1, wherein:
前記監視手段が、前記第1および第2のクランプ形変流器からそれぞれ入力される電流の差電流を求め、該求めた差電流が所定の値以上になると「前記シースアース回路に不具合が生じた」と判定する、
ことを特徴とする、請求項1記載のシースアース回路監視装置。 The differential current detecting means is provided in the vicinity of the first clamp-type current transformer (21 1 ) provided in the vicinity of the drawing point of the sheath ground wire from the power cable, and in the vicinity of the grounding point of the sheath ground wire. A second clamp-type current transformer (21 2 ),
The monitoring means obtains a difference current between the currents input from the first and second clamp-type current transformers, and when the obtained difference current exceeds a predetermined value, “the sheath earth circuit has a problem. "
The sheath earth circuit monitoring apparatus according to claim 1, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008145944A JP5121585B2 (en) | 2008-06-03 | 2008-06-03 | Sheath earth circuit monitoring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008145944A JP5121585B2 (en) | 2008-06-03 | 2008-06-03 | Sheath earth circuit monitoring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009293991A true JP2009293991A (en) | 2009-12-17 |
JP5121585B2 JP5121585B2 (en) | 2013-01-16 |
Family
ID=41542304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008145944A Expired - Fee Related JP5121585B2 (en) | 2008-06-03 | 2008-06-03 | Sheath earth circuit monitoring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5121585B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100983473B1 (en) | 2010-04-16 | 2010-09-24 | 이진희 | Apparatus for providing power to electric device used in distribution system using cable sheath and installation method thereof |
CN105988061A (en) * | 2015-02-05 | 2016-10-05 | 云南酷联科技有限公司 | High voltage single core cable protective layer fault locating method |
CN108445341A (en) * | 2018-03-01 | 2018-08-24 | 华南理工大学 | The computational methods of each section of Leakage Current under a kind of cable cover(ing) multipoint earthing |
CN110045238A (en) * | 2019-04-09 | 2019-07-23 | 山东鲁源电气股份有限公司 | Cable shield fault determination method, device, equipment and storage medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6345568A (en) * | 1986-08-13 | 1988-02-26 | Showa Electric Wire & Cable Co Ltd | Abnormality detection system for electric power cable sheath |
JPH0474971A (en) * | 1990-07-16 | 1992-03-10 | Tokyo Electric Power Co Inc:The | Ground fault detection system for power distribution system |
JPH06289094A (en) * | 1993-03-30 | 1994-10-18 | Hitachi Cable Ltd | Cable shield layer, sheath abnormality monitoring method |
JPH0720171A (en) * | 1993-06-30 | 1995-01-24 | Mitsubishi Denki Bill Techno Service Kk | Insulation diagnosis/monitor system for power cable |
-
2008
- 2008-06-03 JP JP2008145944A patent/JP5121585B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6345568A (en) * | 1986-08-13 | 1988-02-26 | Showa Electric Wire & Cable Co Ltd | Abnormality detection system for electric power cable sheath |
JPH0474971A (en) * | 1990-07-16 | 1992-03-10 | Tokyo Electric Power Co Inc:The | Ground fault detection system for power distribution system |
JPH06289094A (en) * | 1993-03-30 | 1994-10-18 | Hitachi Cable Ltd | Cable shield layer, sheath abnormality monitoring method |
JPH0720171A (en) * | 1993-06-30 | 1995-01-24 | Mitsubishi Denki Bill Techno Service Kk | Insulation diagnosis/monitor system for power cable |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100983473B1 (en) | 2010-04-16 | 2010-09-24 | 이진희 | Apparatus for providing power to electric device used in distribution system using cable sheath and installation method thereof |
CN105988061A (en) * | 2015-02-05 | 2016-10-05 | 云南酷联科技有限公司 | High voltage single core cable protective layer fault locating method |
CN108445341A (en) * | 2018-03-01 | 2018-08-24 | 华南理工大学 | The computational methods of each section of Leakage Current under a kind of cable cover(ing) multipoint earthing |
CN110045238A (en) * | 2019-04-09 | 2019-07-23 | 山东鲁源电气股份有限公司 | Cable shield fault determination method, device, equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP5121585B2 (en) | 2013-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10522998B2 (en) | Method for detecting an open-phase condition of a transformer | |
EP2344898B1 (en) | Partial discharge coupler for application on high voltage generator bus works | |
JP5256757B2 (en) | Micro ground fault detector | |
WO2008034400A1 (en) | Method for producing a fault signal, which indicates a fault present in a secondary current transformer circuit, and differential protective device | |
JP6543587B2 (en) | High voltage earthing relay for DC railway substation | |
JP5121585B2 (en) | Sheath earth circuit monitoring device | |
JP5561831B2 (en) | Transformer internal failure detection device | |
JP2004239863A (en) | Grounding method for transformer | |
Solak et al. | Negative-sequence current integral method for detection of turn-to-turn faults between two parallel conductors in power transformers | |
CN109375028A (en) | A method and device for identifying disconnection of high-voltage power cable sheath current sensor | |
JP5171399B2 (en) | Power cable protection relay malfunction prevention device | |
Almeida et al. | An investigation of distance protection function applied for shunt reactors | |
JP4871511B2 (en) | Interrupt insulation measuring device | |
Selkirk et al. | Why neutral-grounding resistors need continuous monitoring | |
US20210318393A1 (en) | Differential protection scheme | |
JP2006200898A5 (en) | ||
JP4432081B2 (en) | DC power cable abnormality detection device | |
JP4121979B2 (en) | Non-grounded circuit insulation monitoring method and apparatus | |
JP2006156304A (en) | Earth leakage protection device | |
JP2010217019A (en) | Insulation grounding monitoring device | |
GB2469706A (en) | System and method for locating insulation faults | |
KR101481496B1 (en) | Device for detecting an defect of anti corrosion covering in high tension cable | |
JPS5848872A (en) | Detecting device for cable deterioration | |
JPH1183931A (en) | Interlocking device | |
CN108957202A (en) | A kind of grounding box on-line amending method using transition junction box |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110405 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121010 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121017 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121023 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151102 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5121585 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151102 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |