[go: up one dir, main page]

JP5256757B2 - Micro ground fault detector - Google Patents

Micro ground fault detector Download PDF

Info

Publication number
JP5256757B2
JP5256757B2 JP2008025143A JP2008025143A JP5256757B2 JP 5256757 B2 JP5256757 B2 JP 5256757B2 JP 2008025143 A JP2008025143 A JP 2008025143A JP 2008025143 A JP2008025143 A JP 2008025143A JP 5256757 B2 JP5256757 B2 JP 5256757B2
Authority
JP
Japan
Prior art keywords
ground fault
current
waveform
micro
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008025143A
Other languages
Japanese (ja)
Other versions
JP2009186266A (en
Inventor
雅直 廣崎
幸治 本間
武 藤井
寿文 城野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008025143A priority Critical patent/JP5256757B2/en
Publication of JP2009186266A publication Critical patent/JP2009186266A/en
Application granted granted Critical
Publication of JP5256757B2 publication Critical patent/JP5256757B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Locating Faults (AREA)

Description

本発明は微地絡検出装置に関し、特に、地絡事故が起こる前の予兆となる微地絡を検出する方法に適用して好適なものである。   The present invention relates to a fine ground fault detection device, and is particularly suitable for application to a method for detecting a fine ground fault that is a sign before a ground fault occurs.

高圧配電系統は、電源に接続された複数の母線に、フィーダと呼ばれる分岐配線が複数接続され、フィーダ単位に遮断器が設けられて管理されている。このような高圧配電系統において、高圧ケーブルの絶縁劣化等の原因で地絡事故が発生することがある。この地絡事故対策として、従来の電力系統では、地絡保護継電器を高圧配電系統に設け、地絡事故発生時に事故設備を系統から切離することが行われている。この地絡保護継電器では、保護対象設備の零相電圧と零相電流を検出し、その大きさが双方共に基準レベルを上回り、かつ零相電圧と零相電流の位相差が所定範囲内にあって、地絡が自設備側で発生していることを示している状態が一定期間続いた場合に地絡事故と判定され、トリップ動作が行われる。   The high-voltage distribution system is managed by connecting a plurality of branch wirings called feeders to a plurality of buses connected to a power source, and providing a breaker for each feeder. In such a high voltage distribution system, a ground fault may occur due to insulation degradation of the high voltage cable or the like. As a countermeasure against this ground fault, in a conventional power system, a ground fault protection relay is provided in the high-voltage distribution system, and the fault equipment is disconnected from the system when a ground fault occurs. This ground fault protection relay detects the zero-phase voltage and zero-phase current of the equipment to be protected, both of which exceed the reference level, and the phase difference between the zero-phase voltage and zero-phase current is within a predetermined range. When a state indicating that a ground fault has occurred on the own equipment side continues for a certain period of time, it is determined as a ground fault and a trip operation is performed.

図8は、従来の地絡事故対策が適用された電力系統の概略構成を示すブロック図である。
図8において、電力系統には、高圧を低圧に変圧する変圧器111が設けられている。そして、変圧器111は、遮断器112を介して高圧配線に接続されるとともに、遮断器113を介して低圧配線に接続され、変圧器111の中性点は接地抵抗器115を介して接地されている。また、地絡時に変圧器111の中性点に発生する零相電流を検出する変流器123が設けられ、変流器123は地絡過電流継電器119に接続されている。なお、変圧器111は、例えば、154kVの高圧を22kVの低圧に変圧することができる。
FIG. 8 is a block diagram showing a schematic configuration of a power system to which a conventional ground fault countermeasure is applied.
In FIG. 8, the power system is provided with a transformer 111 that transforms a high voltage into a low voltage. The transformer 111 is connected to the high voltage wiring through the circuit breaker 112 and is connected to the low voltage wiring through the circuit breaker 113, and the neutral point of the transformer 111 is grounded through the ground resistor 115. ing. Further, a current transformer 123 for detecting a zero-phase current generated at the neutral point of the transformer 111 at the time of a ground fault is provided, and the current transformer 123 is connected to the ground fault overcurrent relay 119. For example, the transformer 111 can transform a high voltage of 154 kV to a low voltage of 22 kV.

また、変圧器111の低圧配線側には、フィーダ122a〜122nが接続されるとともに、計器用変圧器114が接続されている。そして、各フィーダ122a〜122nに流れる零相電流を検出する零相変流器117a〜117nが設けられ、零相変流器117a〜117nは地絡方向継電器118a〜118nにそれぞれ接続されている。また、計器用変圧器114のオープンデルタ回路には地絡過電圧継電器120が接続されている。   In addition, feeders 122 a to 122 n are connected to the low-voltage wiring side of the transformer 111, and an instrument transformer 114 is connected. And the zero phase current transformers 117a-117n which detect the zero phase current which flows into each feeder 122a-122n are provided, and the zero phase current transformers 117a-117n are connected to the ground fault direction relays 118a-118n, respectively. A ground fault overvoltage relay 120 is connected to the open delta circuit of the instrument transformer 114.

そして、電力系統に地絡事故が発生すると、変圧器111の中性点には零相電流が流れるとともに、計器用変圧器114のオープンデルタ回路には零相電圧が発生する。そして、変圧器111の中性点に流れた零相電流は変流器123にて検出され、その検出結果が地絡過電流継電器119に入力されるとともに、計器用変圧器114のオープンデルタ回路に発生した零相電圧は地絡過電圧継電器120に入力される。
そして、地絡過電流継電器119および地絡過電圧継電器120は、零相電流および零相電圧が異常値を示した場合、遮断器112、113などを動作させることで、事故設備を電力系統から切離することができる。
When a ground fault occurs in the power system, a zero-phase current flows at the neutral point of the transformer 111 and a zero-phase voltage is generated in the open delta circuit of the instrument transformer 114. The zero-phase current flowing to the neutral point of the transformer 111 is detected by the current transformer 123, and the detection result is input to the ground fault overcurrent relay 119 and also to the open delta circuit of the instrument transformer 114. The generated zero-phase voltage is input to the ground fault overvoltage relay 120.
The ground fault overcurrent relay 119 and ground fault overvoltage relay 120 operate the circuit breakers 112, 113, etc. when the zero phase current and zero phase voltage show abnormal values, thereby disconnecting the accident facility from the power system. can do.

なお、微地絡や微短絡などの微弱な電圧/電流変動の検出によって遮断動作を行う必要はなく、誤動作しないように地絡過電流継電器119および地絡過電圧継電器120が反応しないように、地絡過電流継電器119および地絡過電圧継電器120を動作させる時の零相電流および零相電圧を設定することができる。すなわち、地絡過電流継電器119および地絡過電圧継電器120を動作させる時の零相電流および零相電圧は、完全地絡時の零相電流および零相電圧の30%感度に設定することができる。   In addition, it is not necessary to perform a shut-off operation by detecting a weak voltage / current fluctuation such as a micro ground fault or a micro short circuit, and the ground fault overcurrent relay 119 and the ground fault overvoltage relay 120 do not react to prevent malfunction. The zero-phase current and zero-phase voltage when operating the current relay 119 and the ground fault overvoltage relay 120 can be set. That is, the zero-phase current and zero-phase voltage when operating the ground fault overcurrent relay 119 and the ground fault overvoltage relay 120 can be set to 30% sensitivity of the zero phase current and zero phase voltage at the time of complete ground fault.

例えば、地絡過電流感度は、22kVで完全地絡時の値が100Aであるとすると、30%整定値=30Aに設定することができる。また、地絡過電流感度は、6.6kVまたは3.3kVで完全地絡時の値が30Aであるとすると、30%整定値=9Aに設定することができる。また、地絡過電圧感度は、完全地絡時の値が110Vであるとすると、30%整定値=30Vに設定することができる。   For example, when the ground fault overcurrent sensitivity is 22 kV and the value at the time of complete ground fault is 100 A, 30% set value = 30 A can be set. Further, if the ground fault overcurrent sensitivity is 6.6 kV or 3.3 kV and the value at the time of complete ground fault is 30 A, it can be set to 30% set value = 9 A. Also, the ground fault overvoltage sensitivity can be set to 30% set value = 30V, assuming that the value at the time of complete ground fault is 110V.

また、地絡事故の発生時に各フィーダ122a〜122nに流れた零相電流は零相変流器117a〜117nにてそれぞれ検出され、その検出結果が地絡方向継電器118a〜118nにそれぞれ入力される。そして、地絡方向継電器118a〜118nは、零相電流が異常値を示した場合、そのフィーダ122a〜122nを電力系統からそれぞれ切離することができる。   Also, the zero-phase currents flowing through the feeders 122a to 122n at the time of occurrence of the ground fault are respectively detected by the zero-phase current transformers 117a to 117n, and the detection results are input to the ground fault direction relays 118a to 118n, respectively. . And ground fault direction relay 118a-118n can each isolate | separate the feeder 122a-122n from an electric power grid | system, when a zero phase current shows an abnormal value.

ここで、零相電流および零相電圧が異常値を示した場合においても、地絡事故の発生箇所は上位のトランスから下位のトランスの間としか判別することができない。このため、地絡過電流継電器119および地絡過電圧継電器120とは別に、地絡方向継電器118a〜118nを設けることで、事故が発生したフィーダ122a〜122nを特定することができる。   Here, even when the zero-phase current and the zero-phase voltage show abnormal values, the location where the ground fault occurs can only be determined between the upper transformer and the lower transformer. For this reason, by providing the ground fault direction relays 118a to 118n separately from the ground fault overcurrent relay 119 and the ground fault overvoltage relay 120, the feeders 122a to 122n where the accident has occurred can be specified.

また、例えば、特許文献1には、フーリエ変換によって得られた零相電圧と零相電流の所定周波数成分の大きさと位相にて地絡の予兆検出を行うことで、地絡の予兆を誤検出なく高速に検出して警報を発生するとともに、不良の原因の解析に必要な波形データのみを記録として残し、この解析によって知った不良原因と不良箇所から補修作業を迅速に行わせ、地絡事故を未然に防止する方法が開示されている。
特開平6−300806号公報
Further, for example, in Patent Document 1, a ground fault sign is detected by detecting the magnitude and phase of a predetermined frequency component of a zero phase voltage and a zero phase current obtained by Fourier transform, thereby erroneously detecting a ground fault sign. In addition to generating alarms at high speeds and leaving only the waveform data necessary for analysis of the cause of failure as a record, repair work can be quickly performed from the cause and location of the failure found by this analysis, and a ground fault A method for preventing the above is disclosed.
JP-A-6-300806

しかしながら、従来の電力系統の地絡事故対策では、地絡事故が起こった後に、事故設備を電力系統から切離するので、地絡事故が発生した箇所の機器の損傷に止まることなく、地絡時の過電圧/過電流によって被害が拡大する恐れがあるという問題があった。
また、特許文献1に開示された方法では、絡過電流継電器119および地絡過電圧継電器120が微地絡や微短絡などの微弱な電圧/電流変動に反応しないようにするため、商用交流電圧に重畳される地絡時の放電波形が直接観測される。このため、数nsec〜数msecの急峻なパルス波形を検出する必要があり、検出漏れが発生する恐れがあるだけでなく、そのパルス波形を解析しただけでは、微地絡の発生箇所を特定することができないという問題があった。
そこで、本発明の目的は、地絡事故が起こる前の予兆となる微地絡を検出し易くするとともに、微地絡の発生箇所を絞り込むことが可能な微地絡検出装置を提供することである。
However, in the conventional power system ground fault accident countermeasures, after the ground fault accident occurs, the accident equipment is disconnected from the power system, so the ground fault does not stop without damaging the equipment where the ground fault occurred. There was a problem that the damage could be expanded by overvoltage / overcurrent.
Further, in the method disclosed in Patent Document 1, the overcurrent relay 119 and the ground fault overvoltage relay 120 are superimposed on the commercial AC voltage so that they do not react to weak voltage / current fluctuations such as a micro ground fault or a micro short circuit. The discharge waveform at the time of ground fault is directly observed. For this reason, it is necessary to detect a steep pulse waveform of several nsec to several msec, and not only there is a possibility of detection omission, but only by analyzing the pulse waveform, the occurrence location of a fine ground fault is specified. There was a problem that I could not.
Accordingly, an object of the present invention is to provide a fine ground fault detection device that makes it easy to detect a fine ground fault that is a sign before the occurrence of a ground fault accident, and that can narrow down the occurrence location of the fine ground fault. is there.

上述した課題を解決するために、請求項1記載の微地絡検出装置によれば、電力系統の変圧器中性点に発生する零相電流を検出する変流器と、前記変流器に接続された微地絡電流センサと、前記微地絡電流センサにて検出された電流波形を観測して微地絡の発生箇所または様相を推定する波形診断装置と、前記微地絡の発生時に警報を発する微地絡警報装置とを備え、前記波形診断装置は、微地絡発生点から電力ケーブルを介して変圧器中性点に至る等価回路上で求めた電流波形と、前記微地絡電流センサにて検出された微地絡時の電流波形との比較結果に基づいて、前記微地絡時の発生箇所または様相を推定し、前記等価回路では、前記電力ケーブルの抵抗と前記電力ケーブルのインダクタンスと前記変圧器のリアクトルと中性点接地抵抗器とが直列接続された直列回路と、前記電力ケーブルのコンデンサとが地絡事故点の放電箇所に並列に接続されるものであり、前記微地絡警報装置は、前記微地絡電流センサにて検出された電流の電流値が数mAで数msec以上継続したときに警報を発生することを特徴とする。
また、請求項2記載の微地絡検出装置によれば、前記電力系統のフィーダに発生する微地絡時の電流波形を検出するフィーダ用微地絡電流センサを備え、前記波形診断装置は、微地絡発生点から電力ケーブルを介して変圧器中性点に至る等価回路上で求めた電流波形と、前記微地絡電流センサにて検出された微地絡時の電流波形との比較結果および前記フィーダ用微地絡電流センサにて検出された微地絡時の電流波形の観測結果に基づいて、前記微地絡の発生箇所または様相を推定することを特徴とする。
In order to solve the above-described problem, according to the fine ground fault detection device according to claim 1, a current transformer for detecting a zero-phase current generated at a transformer neutral point of a power system, and the current transformer A connected ground fault current sensor, a waveform diagnostic device for observing the current waveform detected by the ground fault current sensor to estimate the occurrence location or aspect of the ground fault, and when the ground fault occurs A fine ground fault alarm device for issuing an alarm, wherein the waveform diagnostic device includes a current waveform obtained on an equivalent circuit from a fine ground fault occurrence point to a transformer neutral point via a power cable, and the fine ground fault. Based on the comparison result with the current waveform at the time of the micro ground fault detected by the current sensor, the occurrence location or aspect at the time of the micro ground fault is estimated, and in the equivalent circuit, the resistance of the power cable and the power cable Inductance, transformer reactor and neutral grounding resistance A series circuit bets are connected in series, a capacitor of the power cable is intended to be connected in parallel to the discharge portion of the ground fault point, the fine ground絡警paper device, in the fine ground fault current sensor An alarm is generated when the detected current value continues for several milliseconds at several mA.
Further, according to the fine ground fault detection device according to claim 2, the micro ground fault current sensor for the feeder that detects a current waveform at the time of the micro ground fault generated in the feeder of the power system is provided, and the waveform diagnosis device includes: Comparison result between the current waveform obtained on the equivalent circuit from the micro ground fault occurrence point to the transformer neutral point via the power cable and the current waveform at the time of the micro ground fault detected by the micro ground fault current sensor Further, the occurrence location or aspect of the micro ground fault is estimated based on the observation result of the current waveform at the time of the micro ground fault detected by the micro ground fault current sensor for the feeder.

また、請求項3記載の微地絡検出装置によれば、前記電力系統の計器用変圧器に発生する零相電圧を検出する微地絡電圧センサを備え、前記波形診断装置は、微地絡発生点から電力ケーブルを介して変圧器中性点に至る等価回路上で求めた電流波形と、前記微地絡電流センサにて検出された微地絡時の電流波形との比較結果、前記フィーダ用微地絡電流センサにて検出された微地絡時の電流波形の観測結果および前記微地絡電圧センサにて検出された微地絡時の電圧波形の観測結果に基づいて、前記微地絡の発生箇所または様相を推定することを特徴とする。
また、請求項4記載の微地絡検出装置によれば、前記電力系統の母線に発生する各相の電圧変動を検出するカプラを備え、前記波形診断装置は、微地絡発生点から電力ケーブルを介して変圧器中性点に至る等価回路上で求めた電流波形と、前記微地絡電流センサにて検出された微地絡時の電流波形との比較結果、前記フィーダ用微地絡電流センサにて検出された微地絡時の電流波形の観測結果、前記微地絡電圧センサにて検出された微地絡時の電圧波形の観測結果および前記カプラにて検出された微地絡時の電圧変動の観測結果に基づいて、前記微地絡の発生箇所または様相を推定することを特徴とする
Further, according to the fine ground detector according to claim 3, further comprising a fine ground voltage sensor for detecting a zero-phase voltage generated in instrument transformer of the power system, the waveform diagnostic apparatus, Bichi絡A comparison result between the current waveform obtained on the equivalent circuit from the generation point to the neutral point of the transformer via the power cable and the current waveform at the time of the micro ground fault detected by the micro ground fault current sensor, the feeder Based on the observation result of the current waveform at the time of the micro ground fault detected by the micro ground fault current sensor and the observation result of the voltage waveform at the time of the micro ground fault detected by the micro ground fault voltage sensor , It is characterized by estimating the occurrence location or aspect of the tangle.
According to the fine ground fault detection device of claim 4, the micro ground fault detection device includes a coupler that detects a voltage fluctuation of each phase generated in the bus of the power system, and the waveform diagnosis device includes a power cable from the micro ground fault generation point. The comparison result of the current waveform obtained on the equivalent circuit leading to the neutral point of the transformer via the current waveform at the time of the micro ground fault detected by the micro ground fault current sensor, the micro ground fault current for the feeder Observation result of current waveform at the time of micro ground fault detected by the sensor, observation result of voltage waveform at the time of micro ground fault detected by the micro ground voltage sensor, and time of micro ground fault detected by the coupler The occurrence location or aspect of the fine ground fault is estimated based on the observation result of the voltage fluctuation .

また、請求項6記載の微地絡検出装置によれば、フィーダに発生する微地絡時の電流波形を検出するフィーダ用微地絡電流センサと、前記フィーダ用微地絡電流センサにて検出された微地絡時の電流波形の観測結果に基づいて、前記微地絡の発生箇所または様相を推定する波形診断装置とを備えることを特徴とする。
また、請求項7記載の微地絡検出装置によれば、微地絡時に電力系統の母線に発生する各相の電圧変動を検出するカプラと、前記カプラにて検出された微地絡時の電圧変動の観測結果に基づいて、前記微地絡の発生箇所または様相を推定する波形診断装置とを備えることを特徴とする。
また、請求項8記載の微地絡検出装置によれば、前記波形診断装置は、完全地絡時の零相電流または零相電圧の30%感度より小さな範囲で電流波形または電圧波形を観測することにより、前記微地絡の発生箇所または様相を推定することを特徴とする。
According to the fine ground fault detection device of claim 6, the fine ground fault current sensor for the feeder that detects the current waveform at the time of the fine ground fault occurring in the feeder and the fine ground fault current sensor for the feeder are detected. And a waveform diagnosis device that estimates the occurrence location or aspect of the micro ground fault based on the observation result of the current waveform at the time of the micro ground fault.
According to the fine ground fault detection device of claim 7, a coupler that detects a voltage fluctuation of each phase that occurs on the bus of the power system at the time of the micro ground fault, and a micro ground fault that is detected by the coupler are detected. And a waveform diagnosis device that estimates the occurrence location or aspect of the micro ground fault based on the observation result of the voltage fluctuation.
According to the fine ground fault detection device of claim 8, the waveform diagnostic device observes the current waveform or voltage waveform in a range smaller than 30% sensitivity of the zero phase current or zero phase voltage at the time of complete ground fault. Thus, the occurrence location or aspect of the fine ground fault is estimated.

以上説明したように、本発明によれば、変圧器の中性点に発生する微地絡時の電流波形を検出することにより、微地絡発生点で発生した地絡電流が変圧器の中性点に戻る時の電流波形を観測することができ、観測される電流波形を鈍らせることができる。このため、数nsec〜数msecの急峻なパルス波形を観測することなく、地絡事故が起こる前の予兆を検出することができ、地絡事故が起こる前の予兆となる微地絡を検出し易くすることが可能となるとともに、電流波形の形状を観測することが可能となり、微地絡の発生箇所を絞り込むことが可能となる。   As described above, according to the present invention, by detecting the current waveform at the time of a micro ground fault occurring at the neutral point of the transformer, the ground fault current generated at the micro ground fault generating point is detected in the transformer. The current waveform when returning to the sex point can be observed, and the observed current waveform can be blunted. For this reason, it is possible to detect a sign before the occurrence of a ground fault accident without observing a steep pulse waveform of several nsec to several milliseconds, and to detect a fine ground fault that is a sign before the ground fault occurs. It becomes possible to make it easy, and it becomes possible to observe the shape of a current waveform, and it becomes possible to narrow down the occurrence location of a fine ground fault.

以下、本発明の実施形態に係る微地絡検出装置について図面を参照しながら説明する。
図1は、本発明の第1実施形態に係る微地絡検出装置が適用された電力系統の概略構成を示すブロック図である。
図1において、電力系統には、高圧を低圧に変圧する変圧器11が設けられている。そして、変圧器11は、遮断器12を介して高圧配線に接続されるとともに、遮断器13を介して低圧配線に接続され、変圧器11の中性点は中性点接地抵抗器15を介して接地されている。また、地絡時に変圧器11の中性点に発生する零相電流を検出する変流器23が設けられ、変流器23は微地絡電流センサ16に接続されている。なお、変圧器11は、例えば、154kVの高圧を22kVの低圧に変圧することができる。ここで、微地絡電流センサ16は、変圧器11の中性点に発生する微地絡時の電流波形を検出することができる。
A fine ground fault detection apparatus according to an embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram showing a schematic configuration of a power system to which the fine ground fault detection apparatus according to the first embodiment of the present invention is applied.
In FIG. 1, the electric power system is provided with a transformer 11 that transforms a high voltage into a low voltage. The transformer 11 is connected to the high voltage wiring through the circuit breaker 12 and is connected to the low voltage wiring through the circuit breaker 13. The neutral point of the transformer 11 is connected to the neutral point grounding resistor 15. Is grounded. Further, a current transformer 23 for detecting a zero-phase current generated at the neutral point of the transformer 11 at the time of ground fault is provided, and the current transformer 23 is connected to the fine ground fault current sensor 16. For example, the transformer 11 can transform a high voltage of 154 kV to a low voltage of 22 kV. Here, the fine ground fault current sensor 16 can detect a current waveform at the time of the fine ground fault generated at the neutral point of the transformer 11.

また、変圧器11の低圧配線側には、フィーダ22a〜22nが接続されるとともに、計器用変圧器14が接続されている。そして、各フィーダ22a〜22nに流れる零相電流を検出する零相変流器17a〜17nが設けられ、零相変流器17a〜17nはフィーダ用微地絡電流センサ18a〜18nにそれぞれ接続されている。ここで、フィーダ用微地絡電流センサ18a〜18nは、各フィーダ22a〜22nに発生する微地絡時の電流波形をそれぞれ検出することができる。   In addition, feeders 22 a to 22 n are connected to the low voltage wiring side of the transformer 11, and an instrument transformer 14 is connected. And the zero phase current transformers 17a-17n which detect the zero phase current which flows into each feeder 22a-22n are provided, and the zero phase current transformers 17a-17n are respectively connected to the micro ground fault current sensors 18a-18n for feeders. ing. Here, the fine ground fault current sensors 18a to 18n for the feeder can respectively detect the current waveforms at the time of the micro ground fault generated in each of the feeders 22a to 22n.

また、計器用変圧器14のオープンデルタ回路には微地絡電圧センサ19が接続されている。ここで、微地絡電圧センサ19は、微地絡時に電力系統の母線に発生する電圧波形を検出することができる。
また、電力系統の母線にはカプラ20が接続されている。ここで、カプラ20は、微地絡時に電力系統の母線に発生する各相の電圧変動を検出することができる。なお、カプラ20としては、コンデンサを用いることができる。
A fine ground fault voltage sensor 19 is connected to the open delta circuit of the instrument transformer 14. Here, the fine ground fault voltage sensor 19 can detect a voltage waveform generated on the bus of the power system at the time of the fine ground fault.
A coupler 20 is connected to the bus of the power system. Here, the coupler 20 can detect the voltage fluctuation of each phase that occurs on the bus of the power system at the time of a slight ground fault. Note that a capacitor can be used as the coupler 20.

また、微地絡検出装置には波形診断装置21が設けられ、波形診断装置21には、微地絡電流センサ16、フィーダ用微地絡電流センサ18a〜18n、微地絡電圧センサ19およびカプラ20が接続されている。ここで、波形診断装置21は、微地絡電流センサ16にて検出された微地絡時の電流波形の観測結果に基づいて、微地絡の発生箇所または様相を推定することができる。また、波形診断装置21は、フィーダ用微地絡電流センサ18a〜18nにてそれぞれ検出された微地絡時の電流波形の観測結果に基づいて、各フィーダ22a〜22nに発生した微地絡の発生箇所または様相を推定することができる。また、波形診断装置21は、地絡電圧センサ19にて検出された微地絡時の電圧波形の観測結果に基づいて、微地絡の発生箇所または様相を推定することができる。また、波形診断装置21は、カプラ20にて検出された微地絡時の電圧変動の観測結果に基づいて、微地絡の発生箇所または様相を推定することができる。   The fine ground fault detection device is provided with a waveform diagnostic device 21. The waveform diagnostic device 21 includes a fine ground fault current sensor 16, feeder fine ground fault current sensors 18a to 18n, a fine ground fault voltage sensor 19, and a coupler. 20 is connected. Here, the waveform diagnosis device 21 can estimate the occurrence location or aspect of the micro ground fault based on the observation result of the current waveform at the time of the micro ground fault detected by the micro ground fault current sensor 16. In addition, the waveform diagnosis apparatus 21 detects the micro ground faults generated in the feeders 22a to 22n based on the observation results of the current waveforms at the time of the micro ground faults detected by the micro ground fault current sensors 18a to 18n for the feeders. The occurrence location or aspect can be estimated. Further, the waveform diagnosis device 21 can estimate the occurrence location or aspect of the fine ground fault based on the observation result of the voltage waveform at the time of the fine ground fault detected by the ground fault voltage sensor 19. Further, the waveform diagnostic device 21 can estimate the occurrence location or aspect of the fine ground fault based on the observation result of the voltage fluctuation at the time of the fine ground fault detected by the coupler 20.

そして、電力系統のいずれかの箇所で微地絡が発生すると、その微地絡の発生箇所で発生した微地絡電流は接地点などを介して変圧器11の中性点に戻る。そして、変圧器11の中性点には零相電流が流れるとともに、計器用変圧器14のオープンデルタ回路には零相電圧が発生する。そして、変圧器11の中性点に流れた零相電流は変流器23にて検出され、微地絡電流センサ16に入力される。そして、変圧器11の中性点に発生した電流波形が微地絡電流センサ16にて検出され、その検出結果が波形診断装置21に入力される。   When a fine ground fault occurs at any location in the power system, the fine ground fault current generated at the location where the fine ground fault occurs returns to the neutral point of the transformer 11 via a grounding point or the like. A zero-phase current flows through the neutral point of the transformer 11 and a zero-phase voltage is generated in the open delta circuit of the instrument transformer 14. Then, the zero-phase current that has flowed to the neutral point of the transformer 11 is detected by the current transformer 23 and input to the minute ground fault current sensor 16. The current waveform generated at the neutral point of the transformer 11 is detected by the fine ground fault current sensor 16, and the detection result is input to the waveform diagnostic device 21.

また、微地絡の発生時に計器用変圧器14のオープンデルタ回路に発生した零相電圧は、微地絡電圧センサ19にて検出され、その検出結果が波形診断装置21に入力される。
また、微地絡の発生時に各フィーダ22a〜22nに流れた零相電流は零相変流器17a〜17nにてそれぞれ検出され、フィーダ用微地絡電流センサ18a〜18nにそれぞれ入力される。そして、各フィーダ22a〜22nの電流波形がフィーダ用微地絡電流センサ18a〜18nにてそれぞれ検出され、その検出結果が波形診断装置21に入力される。
Further, the zero-phase voltage generated in the open delta circuit of the instrument transformer 14 at the time of occurrence of the fine ground fault is detected by the fine ground fault voltage sensor 19, and the detection result is input to the waveform diagnostic device 21.
Further, the zero-phase currents flowing through the feeders 22a to 22n when the fine ground fault occurs are respectively detected by the zero-phase current transformers 17a to 17n and input to the feeder fine ground fault current sensors 18a to 18n, respectively. And the current waveform of each feeder 22a-22n is each detected by the fine ground fault current sensors 18a-18n for feeders, and the detection result is input into the waveform diagnostic apparatus 21. FIG.

また、微地絡の発生時に電力系統の母線の各相に発生した電圧変動は、カプラ20にてコンデンサ共振されながら検出され、その検出結果が波形診断装置21に入力される。
そして、波形診断装置21は、微地絡時の電流波形が微地絡電流センサ16から入力されると、その電流波形の観測結果に基づいて、微地絡の発生箇所または様相を推定する。 ここで、微地絡電流センサ16にて検出された電流波形から、微地絡の発生箇所または様相を推定する場合、波形診断装置21は、完全地絡時の零相電流の30%感度より小さな範囲で電流波形を観測することにより、微地絡の発生箇所または様相を推定することができる。また、波形診断装置21は、微地絡発生点から電力ケーブルを介して変圧器11の中性点に至る等価回路上で求めた電流波形と、微地絡電流センサ16にて検出された微地絡時の電流波形との比較結果に基づいて、微地絡の発生箇所または様相を推定することができる。
Further, the voltage fluctuation generated in each phase of the power system bus when the fine ground fault occurs is detected while the capacitor 20 is resonating with the capacitor, and the detection result is input to the waveform diagnosis device 21.
And if the current waveform at the time of a micro ground fault is input from the micro ground fault current sensor 16, the waveform diagnostic apparatus 21 will estimate the occurrence location or aspect of the micro ground fault based on the observation result of the current waveform. Here, when estimating the occurrence location or aspect of a fine ground fault from the current waveform detected by the fine ground fault current sensor 16, the waveform diagnosis device 21 is based on the 30% sensitivity of the zero-phase current during a complete ground fault. By observing the current waveform in a small range, it is possible to estimate the occurrence location or aspect of the micro ground fault. In addition, the waveform diagnosis device 21 detects the current waveform obtained on the equivalent circuit from the minute ground fault occurrence point to the neutral point of the transformer 11 through the power cable, and the minute detected by the minute ground fault current sensor 16. Based on the comparison result with the current waveform at the time of the ground fault, it is possible to estimate the occurrence location or aspect of the fine ground fault.

さらに、波形診断装置21は、微地絡電流センサ16にて検出された電流波形による放電の強さおよび電流波形の継続時間に基づいて、微地絡の発生箇所または様相を推定することができる。
例えば、微地絡電流センサ16にて検出された電流波形による放電の強さが数A程度の場合、遮断器の不揃い(3相の開閉ズレ)が発生していると推定することができる。
また、微地絡電流センサ16にて検出された電流波形による放電の強さが数A程度の場合、硝子類の絶縁劣化(トラッキングなど)が発生していると推定することができる。
Furthermore, the waveform diagnosis device 21 can estimate the occurrence location or aspect of the fine ground fault based on the intensity of discharge by the current waveform detected by the fine ground fault current sensor 16 and the duration of the current waveform. .
For example, when the intensity of the discharge due to the current waveform detected by the fine ground fault current sensor 16 is about several A, it can be estimated that the circuit breaker is uneven (three-phase opening / closing deviation).
Further, when the intensity of the discharge due to the current waveform detected by the fine ground fault current sensor 16 is about several A, it can be estimated that the insulation deterioration (tracking or the like) of the glass has occurred.

また、微地絡電流センサ16にて検出された電流波形による放電の強さが数A程度の場合、変圧器やコンデンサなどの内部異常が発生していると推定することができる。
また、微地絡電流センサ16にて検出された電流波形による放電の強さが数mA程度の場合、負荷側(回転機など)の絶縁異常が発生していると推定することができる。
また、微地絡電流センサ16にて検出された電流波形による放電の強さが数μA程度の場合、22kVケーブルの異常が発生していると推定することができる。
Moreover, when the intensity of the discharge due to the current waveform detected by the fine ground fault current sensor 16 is about several A, it can be estimated that an internal abnormality such as a transformer or a capacitor has occurred.
Further, when the intensity of the discharge due to the current waveform detected by the fine ground fault current sensor 16 is about several mA, it can be estimated that an insulation abnormality on the load side (rotating machine or the like) has occurred.
Further, when the intensity of the discharge due to the current waveform detected by the fine ground fault current sensor 16 is about several μA, it can be estimated that a 22 kV cable abnormality has occurred.

ここで、微地絡電流センサ16にて電流波形を検出することにより、微地絡発生点で発生した地絡電流が変圧器11の中性点に戻る時の電流波形を観測することができ、観測される電流波形を鈍らせることができる。このため、数nsec〜数msecの急峻なパルス波形を観測することなく、地絡事故が起こる前の予兆を検出することができ、地絡事故が起こる前の予兆となる微地絡を検出し易くすることが可能となるとともに、電流波形の形状を観測することが可能となり、微地絡の発生箇所を特定することが可能となる。   Here, by detecting the current waveform with the micro ground fault current sensor 16, the current waveform when the ground fault current generated at the micro ground fault generation point returns to the neutral point of the transformer 11 can be observed. The observed current waveform can be dulled. For this reason, it is possible to detect a sign before the occurrence of a ground fault accident without observing a steep pulse waveform of several nsec to several milliseconds, and to detect a fine ground fault that is a sign before the ground fault occurs. It becomes possible to make it easy, and it becomes possible to observe the shape of a current waveform, and it becomes possible to specify the location where a fine ground fault occurs.

また、波形診断装置21は、微地絡時の電流波形がフィーダ用微地絡電流センサ18a〜18nからそれぞれ入力されると、その電流波形の観測結果に基づいて、各フィーダ22a〜22n上での微地絡の発生箇所または様相を推定する。
ここで、フィーダ用微地絡電流センサ18a〜18nにて電流波形を検出することにより、数nsec〜数msecの急峻なパルス波形を観測することなく、地絡事故が起こる前の予兆を検出することができ、地絡事故が起こる前の予兆となる微地絡を検出し易くすることが可能となるとともに、微地絡の発生箇所を各フィーダ22a〜22n上で特定することが可能となる。
Moreover, when the current waveform at the time of a micro ground fault is each input from the micro ground fault current sensors 18a-18n for feeders, the waveform diagnosis apparatus 21 will perform on each feeder 22a-22n based on the observation result of the current waveform. Estimate the occurrence location or aspect of the ground fault.
Here, by detecting the current waveform with the fine ground fault current sensors 18a to 18n for the feeder, a sign before a ground fault occurs is detected without observing a steep pulse waveform of several nsec to several msec. It is possible to easily detect a fine ground fault that is a sign before a ground fault accident occurs, and it is possible to specify the occurrence location of the fine ground fault on each of the feeders 22a to 22n. .

また、波形診断装置21は、微地絡時の電圧波形が微地絡電圧センサ19から入力されると、その電圧波形の観測結果に基づいて、微地絡の発生箇所または様相を推定する。
ここで、微地絡電圧センサ19にて電圧波形を検出することにより、数nsec〜数msecの急峻なパルス波形を観測することなく、地絡事故が起こる前の予兆を検出することができ、地絡事故が起こる前の予兆となる微地絡を検出し易くすることが可能となる。
Moreover, when the voltage waveform at the time of a micro ground fault is input from the micro ground fault voltage sensor 19, the waveform diagnostic apparatus 21 estimates the occurrence location or aspect of the micro ground fault based on the observation result of the voltage waveform.
Here, by detecting the voltage waveform with the fine ground fault voltage sensor 19, it is possible to detect a sign before a ground fault occurs without observing a steep pulse waveform of several nsec to several msec, It becomes possible to easily detect a fine ground fault that is a sign before a ground fault occurs.

また、波形診断装置21は、微地絡時の電圧変動がカプラ20から入力されると、その電圧変動の観測結果に基づいて、微地絡の発生箇所または様相を推定する。
ここで、母線の各相に発生した電圧変動をカプラ20にて検出することにより、コンデンサ共振を起させながら電圧波形を観測することができ、数nsecオーダーの急峻なパルス波形を捉えることが可能となることから、電力系統に設けられたケーブルや回転機などの異常を監視することが可能となる。
Moreover, when the voltage fluctuation at the time of a micro ground fault is input from the coupler 20, the waveform diagnostic apparatus 21 estimates the occurrence location or aspect of the micro ground fault based on the observation result of the voltage fluctuation.
Here, by detecting the voltage fluctuation generated in each phase of the bus with the coupler 20, the voltage waveform can be observed while causing the capacitor resonance, and a steep pulse waveform on the order of several nsec can be captured. Therefore, it becomes possible to monitor an abnormality such as a cable or a rotating machine provided in the power system.

図2は、図1の電力系統の地絡事故点Pにおける放電波形および変圧器11の中性点波形を示す図である。
図2において、変圧器11は、例えば、154kVの高圧を22kVの低圧に変圧し、100MVAの出力があるものとする。また、例えば、変圧器11のリアクトルの値Lが0.5H、各フィーダ22a〜22nの容量Cが0.9μF、中性点接地抵抗器15の抵抗値Rが127Ωであるとする。
そして、例えば、負荷電流Iが1000Aであるとすると、正常時にはR相電流(a相電流とも言う)、S相電流(b相電流とも言う)、T相電流(c相電流とも言う)がバランスし、変圧器11の中性点に発生する零相電流Iは0Aになる。
FIG. 2 is a diagram showing a discharge waveform at the ground fault point P of the power system of FIG. 1 and a neutral point waveform of the transformer 11.
In FIG. 2, for example, the transformer 11 transforms a high voltage of 154 kV into a low voltage of 22 kV and has an output of 100 MVA. For example, it is assumed that the reactor value L of the transformer 11 is 0.5H, the capacitance C of each of the feeders 22a to 22n is 0.9 μF, and the resistance value R of the neutral point ground resistor 15 is 127Ω.
Then, for example, the load current I 1 is assumed to be 1000A, at the time of normal R-phase current (also referred to as a phase current) (also referred to as b-phase current) S-phase current, (also referred to as c-phase current) T-phase current balanced, zero-phase current I 2 generated at the neutral point of the transformer 11 becomes 0A.

一方、地絡事故点Pにおいて放電があると、地絡事故点Pにて発生した地絡電流は接地点などを介して変圧器11の中性点に戻り、変圧器11の中性点には零相電流Iが流れる。
ここで、地絡事故点Pにて地絡電流を観測すると、50Hzの交流電圧に重畳されたR相放電波形W1が検出され、このR相放電波形W1は数nsec〜数msecの急峻なパルス波形となる。
On the other hand, when there is a discharge at the ground fault point P, the ground fault current generated at the ground fault point P returns to the neutral point of the transformer 11 through the grounding point and the like, and becomes the neutral point of the transformer 11. flows is zero-phase current I 2.
Here, when the ground fault current is observed at the ground fault point P, an R-phase discharge waveform W1 superimposed on an AC voltage of 50 Hz is detected, and this R-phase discharge waveform W1 is a steep pulse of several nsec to several msec. It becomes a waveform.

一方、変圧器11の中性点には、そのR相放電波形W1がそのまま現れることなく、電力系統のLCRの回路定数に起因して鈍らせられた中性点波形W2が現れ、この中性点波形W2の放電の強さは5A、継続時間が数十msec程度となる。このため、波形診断装置21は、急峻なパルス波形となるR相放電波形W1を直接観測することなく、電力系統のLCRからなる等価回路上で求めた電流波形と中性点波形W2を比較することで、地絡事故点Pの位置または地絡事故の様相を推定することができ、地絡事故が起こる前の予兆となる微地絡を容易に検出することが可能となるとともに、微地絡の発生箇所を特定することができる。   On the other hand, at the neutral point of the transformer 11, the R-phase discharge waveform W1 does not appear as it is, but the neutral point waveform W2 blunted due to the circuit constant of the LCR of the power system appears. The intensity of the discharge of the point waveform W2 is 5 A, and the duration is about several tens of msec. For this reason, the waveform diagnosis apparatus 21 compares the current waveform obtained on the equivalent circuit composed of the LCR of the power system with the neutral point waveform W2 without directly observing the R-phase discharge waveform W1 having a steep pulse waveform. Thus, the position of the ground fault point P or the aspect of the ground fault can be estimated, and it is possible to easily detect a fine ground that is a sign before the ground fault occurs. It is possible to identify the location where the tangle occurs.

図3は、図2の電力系統の地絡事故点Pから変圧器11の中性点までの等価回路を示す図である。
図3において、地絡事故点Pで放電が起こると、変圧器11の中性点と電力ケーブル間に形成される経路を通して零相電流Iが流れる。この零相電流Iが流れる経路は、電力系統のLCRの回路定数を用いて等価回路で表すことができる。
すなわち、この等価回路では、電力ケーブルの抵抗R1と電力ケーブルのインダクタンスL2と変圧器11のリアクトルL1と中性点接地抵抗器15とが直列接続される。そして、この直列回路と、電力ケーブルのコンデンサC1とが地絡事故点Pの放電箇所に並列に接続される。
そして、この等価回路上に流れる零相電流Iの波形を計算で求め、図1の微地絡電流センサ16にて検出された零相電流Iの波形と比較することで、地絡事故点Pの位置または地絡事故の様相を推定することができる。
FIG. 3 is a diagram showing an equivalent circuit from the ground fault point P of the power system of FIG. 2 to the neutral point of the transformer 11.
3, when in ground fault point P discharge occurs, flows zero-phase current I 2 through path formed between the neutral point and the power cable of the transformer 11. Route the zero-phase current I 2 flows may be represented by an equivalent circuit using a circuit constant of LCR of the power system.
That is, in this equivalent circuit, the resistor R1 of the power cable, the inductance L2 of the power cable, the reactor L1 of the transformer 11, and the neutral point grounding resistor 15 are connected in series. And this series circuit and the capacitor | condenser C1 of an electric power cable are connected in parallel to the discharge location of the ground fault point P.
Then, the waveform of the zero-phase current I 2 flowing on the equivalent circuit is obtained by calculation, and compared with the waveform of the zero-phase current I 2 detected by the fine ground-fault current sensor 16 of FIG. The position of the point P or the aspect of the ground fault can be estimated.

図4は、図1の微地絡検出装置における微地絡検出範囲を示す図である。
図4において、地絡事故が発生すると、三相の電流・電圧バランスが崩れ、零相電流と零相電圧が発生する。微地絡時にも、数μA〜数Aの零相電流波形および数V〜数kVの零相電圧波形が発生する。
そして、正常時には発生しないような零相電流波形および零相電圧波形を検出し、微地絡の段階でそのような零相電流および零相電圧の変動の大きさと継続時間を解析することにより、大規模な地絡事故を未然に防止することができる。
FIG. 4 is a diagram illustrating a fine ground fault detection range in the fine ground fault detection apparatus of FIG. 1.
In FIG. 4, when a ground fault occurs, the three-phase current / voltage balance is lost, and a zero-phase current and a zero-phase voltage are generated. Even during a slight ground fault, a zero-phase current waveform of several μA to several A and a zero-phase voltage waveform of several V to several kV are generated.
And, by detecting the zero-phase current waveform and the zero-phase voltage waveform that do not occur at normal time, by analyzing the magnitude and duration of such zero-phase current and zero-phase voltage fluctuation at the stage of fine ground fault, A large-scale ground fault can be prevented.

ここで、正常時には発生しないような零相電流波形または零相電圧波形から、微地絡の発生箇所または様相を推定する場合、完全地絡時の零相電流または零相電圧の30%感度より小さな範囲S1で零相電流波形または零相電圧波形を観測することにより、微地絡の発生箇所または様相を推定することができる。
これにより、絶縁が劣化して漏れ電流が対地に数μA〜数Aだけ流れ始め、微弱な電圧変動が発生した時点を早期に検出することができ、重大な地絡事故に至る前に異常個所を保全したり補修したりすることができる。
Here, when the occurrence location or aspect of a fine ground fault is estimated from a zero-phase current waveform or zero-phase voltage waveform that does not occur under normal conditions, the 30% sensitivity of the zero-phase current or zero-phase voltage at the time of complete ground fault By observing the zero-phase current waveform or the zero-phase voltage waveform in the small range S1, it is possible to estimate the occurrence location or aspect of the fine ground fault.
As a result, the insulation is deteriorated and the leakage current starts to flow to the ground by a few μA to a few A, and when the weak voltage fluctuation occurs, it is possible to detect at an early stage. Can be maintained and repaired.

図5は、本発明の一実施形態に係る遮断器において沿面放電が発生した時に検出された零相電圧の波形を示す図である。
図5において、放電が発生した時には、変圧器11の中性点には、その放電波形はそのまま現れることなく、電力系統のLCRの回路定数に起因して鈍らせられた波形が現れる。このため、波形診断装置21は、その鈍らせられた波形を観測することで、遮断器に発生した異常箇所または様相を推定することができる。
FIG. 5 is a diagram illustrating a waveform of a zero-phase voltage detected when creeping discharge occurs in the circuit breaker according to the embodiment of the present invention.
In FIG. 5, when discharge occurs, the discharge waveform does not appear as it is at the neutral point of the transformer 11, but a waveform blunted due to the circuit constant of the LCR of the power system appears. For this reason, the waveform diagnostic apparatus 21 can estimate the abnormal part or aspect which generate | occur | produced in the circuit breaker by observing the blunted waveform.

なお、異常電圧を発生させる要因となる部位としては、以下の1)〜9)を挙げることができる。そして、発生する異常電圧の大きさは、1)〜9)の順に小さくなる。このため、波形診断装置21は、異常電圧の大きさを観測することで、異常箇所または様相を推定することができる。
1)ケーブルの末端の遮断器の不揃い
2)ドライブ装置のコンデンサ成分および点弧などの不揃い
3)高調波
4)硝子などの沿面放電
5)油入変圧器の内部放電
6)PTなどのアクセサリの内部放電
7)回転機や乾式変圧器の放電
8)CVケーブルの部分放電
9)雷・開閉サージ
In addition, as a site | part which becomes a factor which generate | occur | produces an abnormal voltage, the following 1) -9) can be mentioned. And the magnitude | size of the abnormal voltage to generate becomes small in order of 1) -9). For this reason, the waveform diagnostic apparatus 21 can estimate the abnormal location or aspect by observing the magnitude of the abnormal voltage.
1) Non-uniformity of circuit breakers at the end of the cable 2) Non-uniformity of capacitor components and ignition of the drive device 3) Harmonic wave 4) Creeping discharge such as glass 5) Internal discharge of oil-filled transformer 6) Accessories of PT Internal discharge 7) Discharge of rotating machines and dry transformers 8) Partial discharge of CV cables 9) Lightning and switching surge

図6は、本発明の第2実施形態に係る微地絡検出装置が適用された電力系統の概略構成を示すブロック図である。
図6において、この微地絡検出装置には、図1の構成に加え、微地絡時の電流波形の振動を減衰させる補償回路24が設けられ、補償回路24は変圧器11の中性点に接続されている。なお、補償回路24は、小規模な電力系統を大規模な電力系統に見かけ上変換するために用いることができ、例えば、LCR回路から構成することができる。
FIG. 6 is a block diagram showing a schematic configuration of a power system to which the fine ground fault detection apparatus according to the second embodiment of the present invention is applied.
In FIG. 6, this fine ground fault detection device is provided with a compensation circuit 24 that attenuates the vibration of the current waveform at the time of the fine ground fault, in addition to the configuration of FIG. 1, and the compensation circuit 24 is a neutral point of the transformer 11. It is connected to the. Note that the compensation circuit 24 can be used for apparently converting a small-scale power system to a large-scale power system, and can be configured by, for example, an LCR circuit.

そして、電力系統のいずれかの箇所で微地絡が発生すると、その微地絡の発生箇所で発生した微地絡電流は接地点などを介して変圧器11の中性点に戻る。そして、変圧器11の中性点に零相電流が流れると、その零相電流は補償回路24を介して中性点接地抵抗器15に流れ、変流器23にて検出された後、微地絡電流センサ16に入力される。そして、変圧器11の中性点に発生した電流波形が微地絡電流センサ16にて検出され、その検出結果が波形診断装置21に入力される。
ここで、変圧器11の中性点に流れた零相電流を補償回路24を介して微地絡電流センサ16にて検出することにより、振動が減衰された電流波形を観測することができ、電力系統の規模にかかわりなく、電流波形の観測を容易にすることができる。
When a fine ground fault occurs at any location in the power system, the fine ground fault current generated at the location where the fine ground fault occurs returns to the neutral point of the transformer 11 via a grounding point or the like. When a zero-phase current flows to the neutral point of the transformer 11, the zero-phase current flows to the neutral point grounding resistor 15 through the compensation circuit 24, and is detected by the current transformer 23. Input to the ground fault current sensor 16. The current waveform generated at the neutral point of the transformer 11 is detected by the fine ground fault current sensor 16, and the detection result is input to the waveform diagnostic device 21.
Here, by detecting the zero-phase current flowing through the neutral point of the transformer 11 by the micro ground fault current sensor 16 through the compensation circuit 24, the current waveform in which the vibration is attenuated can be observed. The current waveform can be easily observed regardless of the scale of the power system.

図7は、本発明の第3実施形態に係る微地絡検出装置が適用された電力系統の概略構成を示すブロック図である。
図7において、電力系統には、高圧を低圧に変圧する変圧器31が設けられている。そして、変圧器31は、遮断器32を介して高圧配線に接続されるとともに、遮断器33を介して低圧配線に接続され、変圧器31の中性点は中性点接地抵抗器35を介して接地されている。また、地絡時に変圧器31の中性点に発生する零相電流を検出する変流器43が設けられ、変流器43は、微地絡電流センサ36に接続されるとともに、地絡過電流継電器52に接続されている。また、微地絡電流センサ36は、微地絡警報装置51に接続されている。なお、変圧器31は、例えば、154kVの高圧を22kVの低圧に変圧することができる。
FIG. 7 is a block diagram showing a schematic configuration of a power system to which the fine ground fault detection device according to the third embodiment of the present invention is applied.
In FIG. 7, the electric power system is provided with a transformer 31 that transforms a high voltage into a low voltage. The transformer 31 is connected to the high voltage wiring via the circuit breaker 32 and connected to the low voltage wiring via the circuit breaker 33, and the neutral point of the transformer 31 is connected to the neutral point grounding resistor 35. Is grounded. In addition, a current transformer 43 for detecting a zero-phase current generated at the neutral point of the transformer 31 at the time of a ground fault is provided, and the current transformer 43 is connected to the micro ground fault current sensor 36 and a ground fault overcurrent. The relay 52 is connected. The fine ground fault current sensor 36 is connected to the fine ground fault alarm device 51. For example, the transformer 31 can transform a high voltage of 154 kV to a low voltage of 22 kV.

ここで、微地絡電流センサ36は、変圧器31の中性点に発生する微地絡時の電流波形を検出することができる。また、微地絡警報装置51は、例えば、微地絡電流センサ36にて検出された零相電流が数mAで数msec以上継続した場合に警報を出すことができる。また、地絡過電流継電器52は、完全地絡時の零相電流の30%感度でトリップ動作をすることができ、例えば、22kVで完全地絡時の値が100Aであるとすると、変流器43にて検出された零相電流が30Aに達すると、遮断器32、33を動作させることができる。   Here, the fine ground fault current sensor 36 can detect a current waveform at the time of the fine ground fault generated at the neutral point of the transformer 31. The fine ground fault alarm device 51 can issue a warning when, for example, the zero-phase current detected by the fine ground fault current sensor 36 continues for several milliseconds at several mA. Further, the ground fault overcurrent relay 52 can perform a trip operation with a sensitivity of 30% of the zero-phase current at the time of complete ground fault. For example, when the value at 22 kV and the complete ground fault is 100 A, the current transformer When the zero-phase current detected at 43 reaches 30 A, the circuit breakers 32 and 33 can be operated.

また、変圧器31の低圧配線側には、遮断器44a〜44nをそれぞれ介してフィーダ42a〜42nが接続されている。そして、各フィーダ42a〜42nに流れる零相電流を検出する零相変流器37a〜37nが設けられ、零相変流器37a〜37nは、フィーダ用微地絡電流センサ38a〜38nにそれぞれ接続されるとともに、地絡方向継電器54a〜54nにそれぞれ接続されている。また、フィーダ用微地絡電流センサ38a〜38nは、微地絡警報装置53に接続されている。   Moreover, the feeders 42a-42n are connected to the low voltage | pressure wiring side of the transformer 31 via the circuit breakers 44a-44n, respectively. And the zero phase current transformers 37a-37n which detect the zero phase current which flows into each feeder 42a-42n are provided, and the zero phase current transformers 37a-37n are respectively connected to the micro ground fault current sensors 38a-38n for feeders. And connected to ground fault direction relays 54a to 54n, respectively. Further, the feeder ground fault current sensors 38 a to 38 n are connected to the ground fault alarm device 53.

ここで、フィーダ用微地絡電流センサ38a〜38nは、各フィーダ42a〜42nに発生する微地絡時の電流波形をそれぞれ検出することができる。また、微地絡警報装置53は、例えば、フィーダ用微地絡電流センサ38a〜38nのいずれかにて検出された零相電流が100mAで100msec以上継続した場合に警報を出すことができる。また、地絡方向継電器54a〜54nは、完全地絡時の零相電流の30%感度でそれぞれトリップ動作をすることができ、例えば、22kVで完全地絡時の値が100Aであるとすると、零相変流器37a〜37nにてそれぞれ検出された零相電流が30Aに達すると、遮断器44a〜44nをそれぞれ動作させることができる。
また、電力系統の母線にはカプラ40が接続されている。ここで、カプラ40は、微地絡時に電力系統の母線に発生する各相の電圧変動を検出することができる。なお、カプラ40としては、コンデンサを用いることができる。
Here, the fine ground fault current sensors 38a to 38n for the feeder can respectively detect the current waveforms at the time of the micro ground fault generated in each of the feeders 42a to 42n. The fine ground fault alarm device 53 can issue an alarm when, for example, the zero-phase current detected by any one of the fine ground fault current sensors 38a to 38n for the feeder continues at 100 mA for 100 msec or longer. Further, the ground fault direction relays 54a to 54n can each perform a trip operation with a sensitivity of 30% of the zero phase current at the time of complete ground fault. For example, when the value at the time of complete ground fault is 22A and 100A, When the zero-phase currents detected by the zero-phase current transformers 37a to 37n reach 30A, the circuit breakers 44a to 44n can be operated.
A coupler 40 is connected to the bus of the power system. Here, the coupler 40 can detect the voltage fluctuation of each phase that occurs on the bus of the power system at the time of a slight ground fault. As the coupler 40, a capacitor can be used.

また、微地絡検出装置には波形診断装置41が設けられ、波形診断装置41には、微地絡警報装置51、53およびカプラ40が接続されている。ここで、波形診断装置41は、微地絡警報装置51から出力された微地絡時の電流波形の観測結果に基づいて、微地絡の発生箇所または様相を推定することができる。また、波形診断装置41は、微地絡警報装置53から出力された微地絡時の電流波形の観測結果に基づいて、各フィーダ42a〜42nに発生した微地絡の発生箇所または様相を推定することができる。また、波形診断装置41は、カプラ40にて検出された微地絡時の電圧変動の観測結果に基づいて、微地絡の発生箇所または様相を推定することができる。   The fine ground fault detection device is provided with a waveform diagnostic device 41, and the fine ground fault alarm devices 51 and 53 and the coupler 40 are connected to the waveform diagnostic device 41. Here, the waveform diagnosis device 41 can estimate the occurrence location or aspect of the micro ground fault based on the observation result of the current waveform at the time of the micro ground fault output from the micro ground fault alarm device 51. Further, the waveform diagnosis device 41 estimates the occurrence location or aspect of the micro ground fault generated in each of the feeders 42a to 42n based on the observation result of the current waveform at the time of the micro ground fault output from the micro ground fault alarm device 53. can do. In addition, the waveform diagnosis apparatus 41 can estimate the occurrence location or aspect of the micro ground fault based on the observation result of the voltage fluctuation at the time of the micro ground fault detected by the coupler 40.

そして、電力系統のいずれかの箇所で微地絡が発生すると、その微地絡の発生箇所で発生した微地絡電流は接地点などを介して変圧器31の中性点に戻る。そして、変圧器31の中性点に零相電流が流れると、変圧器31の中性点に流れた零相電流は変流器43にて検出され、微地絡電流センサ36に入力される。そして、変圧器31の中性点に発生した電流波形が微地絡電流センサ36にて検出され、その検出結果が微地絡警報装置52に入力されるとともに、微地絡警報装置52を介して波形診断装置41に入力される。   Then, when a fine ground fault occurs at any location in the power system, the fine ground fault current generated at the location where the fine ground fault occurs returns to the neutral point of the transformer 31 via a grounding point or the like. When a zero-phase current flows through the neutral point of the transformer 31, the zero-phase current flowing through the neutral point of the transformer 31 is detected by the current transformer 43 and input to the fine ground fault current sensor 36. . Then, the current waveform generated at the neutral point of the transformer 31 is detected by the fine ground fault current sensor 36, and the detection result is input to the fine ground fault alarm device 52 and via the fine ground fault alarm device 52. Are input to the waveform diagnosis device 41.

そして、微地絡警報装置52は、微地絡時の電流波形が微地絡電流センサ36から入力されると、微地絡電流センサ36にて検出された零相電流が数mAで数msec以上継続したかどうかを判断し、その零相電流が数mAで数msec以上継続した場合に警報を出す。また、波形診断装置41は、微地絡時の電流波形が微地絡警報装置52から入力されると、その電流波形の観測結果に基づいて、微地絡の発生箇所または様相を推定する。   Then, when the current waveform at the time of the micro ground fault is input from the micro ground fault current sensor 36, the micro ground fault alarm device 52 receives the zero phase current detected by the micro ground fault current sensor 36 at several mA and several msec. It is determined whether or not it has been continued, and an alarm is issued when the zero-phase current continues for several milliseconds at several mA. Moreover, when the current waveform at the time of a micro ground fault is input from the micro ground fault alarm device 52, the waveform diagnosis apparatus 41 estimates the occurrence location or aspect of the micro ground fault based on the observation result of the current waveform.

また、微地絡の発生時に各フィーダ42a〜42nに流れた零相電流は零相変流器37a〜37nにてそれぞれ検出され、フィーダ用微地絡電流センサ38a〜38nにそれぞれ入力される。そして、各フィーダ42a〜42nの電流波形がフィーダ用微地絡電流センサ38a〜38nにてそれぞれ検出され、その検出結果が微地絡警報装置53に入力されるとともに、微地絡警報装置53を介して波形診断装置41に入力される。   Also, the zero-phase currents that flow through the feeders 42a to 42n when a fine ground fault occurs are detected by the zero-phase current transformers 37a to 37n, respectively, and input to the feeder fine ground fault current sensors 38a to 38n, respectively. The current waveforms of the feeders 42a to 42n are respectively detected by the feeder ground fault current sensors 38a to 38n, and the detection results are input to the ground fault alarm device 53. Is input to the waveform diagnosis apparatus 41 via

そして、微地絡警報装置53は、微地絡時の電流波形がフィーダ用微地絡電流センサ38a〜38nから入力されると、フィーダ用微地絡電流センサ38a〜38nにて検出された零相電流が100mAで100msec以上継続したかどうかを判断し、その零相電流が100mAで100msec以上継続した場合に警報を出す。また、波形診断装置41は、微地絡時の電流波形が微地絡警報装置53から入力されると、その電流波形の観測結果に基づいて、各フィーダ42a〜42n上での微地絡の発生箇所または様相を推定する。   When the current waveform at the time of the micro ground fault is input from the micro ground fault current sensors 38a to 38n for the feeder, the micro ground fault alarm device 53 detects the zero detected by the micro ground fault current sensors 38a to 38n for the feeder. It is determined whether the phase current has continued for 100 msec or more at 100 mA, and an alarm is issued when the zero-phase current has continued for 100 msec or more at 100 mA. Further, when the current waveform at the time of the micro ground fault is input from the micro ground fault alarm device 53, the waveform diagnosis apparatus 41 detects the micro ground fault on each of the feeders 42a to 42n based on the observation result of the current waveform. Estimate the location or appearance.

また、微地絡の発生時に電力系統の母線の各相に発生した電圧変動は、カプラ40にてコンデンサ共振されながら検出され、その検出結果が波形診断装置41に入力される。そして、波形診断装置41は、微地絡時の電圧変動がカプラ40から入力されると、その電圧変動の観測結果に基づいて、微地絡の発生箇所または様相を推定する。
また、変流器43にて検出された零相電流の検出値は、地絡過電流継電器52に入力される。そして、地絡過電流継電器52は、変流器43にて検出された零相電流が30Aを超えたかどうかを判断し、その零相電流が30Aを超えた場合、遮断器112、113を動作させることで、事故設備を電力系統から切離する。
Further, the voltage fluctuation generated in each phase of the bus of the power system at the time of occurrence of the fine ground fault is detected while the capacitor 40 is resonating with the capacitor, and the detection result is input to the waveform diagnosis device 41. And if the voltage fluctuation at the time of a micro ground fault is input from the coupler 40, the waveform diagnostic apparatus 41 will estimate the occurrence location or aspect of a micro ground fault based on the observation result of the voltage fluctuation.
Further, the detected value of the zero-phase current detected by the current transformer 43 is input to the ground fault overcurrent relay 52. Then, the ground fault overcurrent relay 52 determines whether or not the zero-phase current detected by the current transformer 43 exceeds 30 A, and when the zero-phase current exceeds 30 A, the circuit breakers 112 and 113 are operated. In this way, the accident equipment is disconnected from the power system.

また、各零相変流器37a〜37nにて検出された零相電流の検出値は、地絡方向継電器54a〜54nにそれぞれ入力される。そして、各地絡方向継電器54a〜54nは、零相変流器37a〜37nにてそれぞれ検出された零相電流が30Aを超えたかどうかを判断し、その零相電流が30Aを超えた場合、遮断器44a〜44nをそれぞれ動作させることで、事故設備を電力系統から切離する。
これにより、地絡事故が起こる前の予兆となる微地絡を容易に検出しつつ、微地絡の発生箇所を特定することが可能となるとともに、地絡事故発生時に事故設備を系統から切離することができ、地絡事故発生時の被害の拡大を防止することが可能となるとともに、重大な地絡事故に至る前に異常個所を保全したり補修したりすることができる。
Moreover, the detected value of the zero phase current detected by each of the zero phase current transformers 37a to 37n is input to the ground fault direction relays 54a to 54n, respectively. Then, the tangential direction relays 54a to 54n determine whether the zero phase current detected by the zero phase current transformers 37a to 37n has exceeded 30A. If the zero phase current exceeds 30A, By operating the devices 44a to 44n, the accident facility is disconnected from the power system.
This makes it possible to easily detect a micro ground fault that is a sign of a ground fault before it occurs, identify the location of the micro ground fault, and disconnect the accident equipment from the system when a ground fault occurs. It is possible to prevent the expansion of damage caused by the occurrence of a ground fault, and it is possible to maintain or repair an abnormal part before a serious ground fault occurs.

本発明の第1実施形態に係る微地絡検出装置が適用された電力系統の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the electric power system with which the fine ground fault detection apparatus which concerns on 1st Embodiment of this invention was applied. 図2の電力系統の地絡事故点Pにおける放電波形および変圧器11の中性点波形を示す図である。It is a figure which shows the discharge waveform in the ground fault point P of the electric power system of FIG. 2, and the neutral point waveform of the transformer 11. FIG. 図1の電力系統の地絡事故点Pから変圧器11の中性点までの等価回路を示す図である。It is a figure which shows the equivalent circuit from the ground fault point P of the electric power system of FIG. 1 to the neutral point of the transformer 11. FIG. 図1の微地絡検出装置における微地絡検出範囲を示す図である。It is a figure which shows the fine ground fault detection range in the fine ground fault detection apparatus of FIG. 本発明の一実施形態に係る遮断器において沿面放電が発生した時に検出された零相電圧の波形を示す図である。It is a figure which shows the waveform of the zero phase voltage detected when creeping discharge generate | occur | produced in the circuit breaker which concerns on one Embodiment of this invention. 本発明の第2実施形態に係る微地絡検出装置が適用された電力系統の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the electric power system with which the fine ground fault detection apparatus which concerns on 2nd Embodiment of this invention was applied. 本発明の第3実施形態に係る微地絡検出装置が適用された電力系統の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the electric power system with which the fine ground fault detection apparatus which concerns on 3rd Embodiment of this invention was applied. 従来の地絡事故対策が適用された電力系統の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the electric power grid | system to which the conventional ground fault accident countermeasures were applied.

符号の説明Explanation of symbols

11、31、111 変圧器
12、13、32、33,112,113 遮断器
14、114 計器用変圧器
15、35 、115中性点接地抵抗器
16、36 微地絡電流センサ
18a〜18n、38a〜38n フィーダ用微地絡電流センサ
17a〜17n、37a〜37n、117a〜117n 零相変流器
19 微地絡電圧センサ
20、40 カプラ
21、41 波形診断装置
22a〜22n、122a〜122n フィーダ
24 補償回路
51、53 微地絡警報装置
52、119 地絡過電流継電器
54a〜54n、118a〜118n 地絡方向継電器
L1 リアクトル
R1 抵抗
L2 インダクタンス
C1 コンデンサ
23、43、123 変流器
11, 31, 111 Transformer 12, 13, 32, 33, 112, 113 Breaker 14, 114 Instrument transformer 15, 35, 115 Neutral grounding resistor 16, 36 Micro ground fault current sensor 18a-18n, 38a to 38n Feeder fine ground fault current sensor 17a to 17n, 37a to 37n, 117a to 117n Zero phase current transformer 19 Micro ground fault voltage sensor 20, 40 Coupler 21, 41 Waveform diagnostic device 22a to 22n, 122a to 122n Feeder 24 Compensation circuit 51, 53 Micro ground fault alarm device 52, 119 Ground fault overcurrent relay 54a-54n, 118a-118n Ground fault direction relay L1 Reactor R1 Resistance L2 Inductance C1 Capacitor 23, 43, 123 Current transformer

Claims (4)

電力系統の変圧器中性点に発生する零相電流を検出する変流器と、前記変流器に接続された微地絡電流センサと、前記微地絡電流センサにて検出された電流波形を観測して微地絡の発生箇所または様相を推定する波形診断装置と、前記微地絡の発生時に警報を発する微地絡警報装置とを備え、
前記波形診断装置は、微地絡発生点から電力ケーブルを介して変圧器中性点に至る等価回路上で求めた電流波形と、前記微地絡電流センサにて検出された微地絡時の電流波形との比較結果に基づいて、前記微地絡時の発生箇所または様相を推定し、前記等価回路では、前記電力ケーブルの抵抗と前記電力ケーブルのインダクタンスと前記変圧器のリアクトルと中性点接地抵抗器とが直列接続された直列回路と、前記電力ケーブルのコンデンサとが地絡事故点の放電箇所に並列に接続されるものであり、
前記微地絡警報装置は、前記微地絡電流センサにて検出された電流の電流値が数mAで数msec以上継続したときに警報を発生することを特徴とする微地絡検出装置。
A current transformer for detecting a zero-phase current generated at a transformer neutral point of a power system; a fine ground fault current sensor connected to the current transformer; and a current waveform detected by the fine ground fault current sensor A waveform diagnosis device that estimates the occurrence location or aspect of a micro ground fault and a micro ground fault alarm device that issues an alarm when the micro ground fault occurs,
The waveform diagnosis apparatus is configured to obtain a current waveform obtained on an equivalent circuit from a micro ground fault occurrence point to a transformer neutral point via a power cable, and a micro ground fault detected by the micro ground fault current sensor. Based on the comparison result with the current waveform, the occurrence location or aspect at the time of the micro ground fault is estimated, and in the equivalent circuit, the resistance of the power cable, the inductance of the power cable, the reactor of the transformer, and the neutral point A series circuit in which a grounding resistor is connected in series and a capacitor of the power cable are connected in parallel to the discharge point of the ground fault point,
The fine ground fault alarm device generates an alarm when the current value of the current detected by the micro ground fault current sensor continues for several milliseconds at several mA.
前記電力系統のフィーダに発生する微地絡時の電流波形を検出するフィーダ用微地絡電流センサを備え、前記波形診断装置は、微地絡発生点から電力ケーブルを介して変圧器中性点に至る等価回路上で求めた電流波形と、前記微地絡電流センサにて検出された微地絡時の電流波形との比較結果および前記フィーダ用微地絡電流センサにて検出された微地絡時の電流波形の観測結果に基づいて、前記微地絡の発生箇所または様相を推定することを特徴とする請求項1記載の微地絡検出装置。   Provided with a fine ground fault current sensor for a feeder that detects a current waveform at the time of a micro ground fault occurring in a feeder of the power system, the waveform diagnosis device is a transformer neutral point via a power cable from the micro ground fault occurrence point The comparison result of the current waveform obtained on the equivalent circuit leading to the current waveform and the current waveform at the time of the micro ground fault detected by the micro ground fault current sensor and the micro ground detected by the micro ground fault current sensor for the feeder 2. The fine ground fault detection apparatus according to claim 1, wherein the occurrence location or aspect of the fine ground fault is estimated based on an observation result of a current waveform at the time of the fault. 前記電力系統の計器用変圧器に発生する零相電圧を検出する微地絡電圧センサを備え、前記波形診断装置は、微地絡発生点から電力ケーブルを介して変圧器中性点に至る等価回路上で求めた電流波形と、前記微地絡電流センサにて検出された微地絡時の電流波形との比較結果、前記フィーダ用微地絡電流センサにて検出された微地絡時の電流波形の観測結果および前記微地絡電圧センサにて検出された微地絡時の電圧波形の観測結果に基づいて、前記微地絡の発生箇所または様相を推定することを特徴とする請求項2記載の微地絡検出装置。   A fine ground fault voltage sensor for detecting a zero-phase voltage generated in an instrument transformer of the power system is provided, and the waveform diagnosis device is equivalent to a transformer neutral point via a power cable from a fine ground fault occurrence point. The comparison result of the current waveform obtained on the circuit and the current waveform at the time of the micro ground fault detected by the micro ground fault current sensor, the time of the micro ground fault detected by the micro ground fault current sensor for the feeder The location or aspect of occurrence of the fine ground fault is estimated based on the observation result of the current waveform and the observation result of the voltage waveform at the time of the fine ground fault detected by the fine ground fault voltage sensor. The fine ground fault detection apparatus according to 2. 前記電力系統の母線に発生する各相の電圧変動を検出するカプラを備え、前記波形診断装置は、微地絡発生点から電力ケーブルを介して変圧器中性点に至る等価回路上で求めた電流波形と、前記微地絡電流センサにて検出された微地絡時の電流波形との比較結果、前記フィーダ用微地絡電流センサにて検出された微地絡時の電流波形の観測結果、前記微地絡電圧センサにて検出された微地絡時の電圧波形の観測結果および前記カプラにて検出された微地絡時の電圧変動の観測結果に基づいて、前記微地絡の発生箇所または様相を推定することを特徴とする請求項3記載の微地絡検出装置。   Provided with a coupler that detects voltage fluctuation of each phase generated on the bus of the power system, the waveform diagnosis device was obtained on an equivalent circuit from the point of occurrence of a micro ground fault to the neutral point of the transformer via the power cable Comparison result of current waveform and current waveform at the time of micro ground fault detected by the micro ground fault current sensor, observation result of current waveform at the time of micro ground fault detected by the micro ground fault current sensor for feeder The occurrence of the micro ground fault based on the observation result of the voltage waveform at the time of the micro ground fault detected by the micro ground fault voltage sensor and the observation result of the voltage fluctuation at the time of the micro ground fault detected by the coupler. The fine ground fault detection apparatus according to claim 3, wherein a location or an aspect is estimated.
JP2008025143A 2008-02-05 2008-02-05 Micro ground fault detector Active JP5256757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008025143A JP5256757B2 (en) 2008-02-05 2008-02-05 Micro ground fault detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008025143A JP5256757B2 (en) 2008-02-05 2008-02-05 Micro ground fault detector

Publications (2)

Publication Number Publication Date
JP2009186266A JP2009186266A (en) 2009-08-20
JP5256757B2 true JP5256757B2 (en) 2013-08-07

Family

ID=41069665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008025143A Active JP5256757B2 (en) 2008-02-05 2008-02-05 Micro ground fault detector

Country Status (1)

Country Link
JP (1) JP5256757B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5163452B2 (en) * 2008-11-28 2013-03-13 Jfeスチール株式会社 Fine ground fault detection device and fine ground fault detection method
EP2476002B1 (en) * 2009-09-09 2015-05-27 Siemens Aktiengesellschaft Fault detection in energy supply networks having an unearthed or resonant-earthed star point
JP5535880B2 (en) * 2010-11-19 2014-07-02 長谷川電機工業株式会社 Ungrounded AC circuit ground fault detector
CN105245001B (en) * 2015-09-18 2018-04-13 贵州电力试验研究院 A kind of event driven substation accident intelligent alarm treating method and apparatus
CN106646319B (en) * 2016-10-09 2019-03-19 国网江苏省电力公司电力科学研究院 Electronic type voltage transformer exception discrimination method based on combined measurement in standing
CN108828379B (en) * 2018-09-11 2020-07-14 国网新疆电力有限公司电力科学研究院 High-accuracy transformer neutral monitor for zeroing and calibration
CN109870629B (en) * 2019-01-14 2021-03-26 国网江西省电力有限公司南昌供电分公司 Fault simulation system and method based on neutral point grounding mode
CN111175609B (en) * 2020-02-06 2022-04-12 云南电网有限责任公司电力科学研究院 Distribution network line fault location method and system
CN111175610B (en) * 2020-02-06 2021-11-26 云南电网有限责任公司电力科学研究院 Fault positioning system and method for distribution line
JP7538457B1 (en) 2024-01-17 2024-08-22 日新電機株式会社 Protection System

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119479A (en) * 1983-12-01 1985-06-26 Midori Anzen Kk Insulation supervisory device having printer
JP2506161B2 (en) * 1988-09-09 1996-06-12 北陸電力株式会社 Power system fault location method
JP2719732B2 (en) * 1990-06-06 1998-02-25 関西電力株式会社 Method and apparatus for determining ground fault failure cause in high-voltage distribution line
JP2609793B2 (en) * 1993-03-25 1997-05-14 財団法人 関西電気保安協会 Ground fault monitoring equipment for electrical equipment
JP2774443B2 (en) * 1993-12-28 1998-07-09 財団法人 関西電気保安協会 Ground fault monitoring method and device for electrical equipment
JPH07274384A (en) * 1994-03-30 1995-10-20 Ngk Insulators Ltd Apparatus and method for discrimination of accident in transmission line
JP3614317B2 (en) * 1999-05-06 2005-01-26 財団法人東北電気保安協会 Method and apparatus for detecting ground fault in high-voltage power receiving equipment
JP2001041995A (en) * 1999-07-28 2001-02-16 Kansai Electric Power Co Inc:The Ground fault locator and locating method
JP4550464B2 (en) * 2004-04-07 2010-09-22 株式会社日立製作所 Ground fault location method and apparatus

Also Published As

Publication number Publication date
JP2009186266A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP5256757B2 (en) Micro ground fault detector
CN107966633B (en) Method and system for rapidly judging single-phase earth fault line of power distribution network of power supply system
EP2730023B1 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
RU2542494C2 (en) Device and method for detection of ground short-circuit
EP2686691B1 (en) A method for detecting earth faults
EP3108556B1 (en) Method for detecting an open-phase condition of a transformer
US9276396B2 (en) Power transmission fault analysis system and related method
EP2485354A1 (en) Protection system for an electrical power network based on the inductance of a network section
CN101563824A (en) System and method to determine the impedance of a disconnected electrical facility
JP2007116893A (en) Fault section detecting device and method by comparing phase difference and magnitude of zero phase current in ungrounded distribution system
KR101490770B1 (en) Ground fault detecting apparatus
JP5163452B2 (en) Fine ground fault detection device and fine ground fault detection method
Saleh et al. Detecting arcing current faults in medium-to-low voltage transformers
JP4871511B2 (en) Interrupt insulation measuring device
KR100637619B1 (en) Method and device for voltage differential protection of parallel capacitor banks
JP5247164B2 (en) Protective relay device
RU2400764C1 (en) Method of controlling three-phase feeder isolation
Sattari et al. High-Resistance Grounding Design for Industrial Facilities: Providing Continuity of Service in Complex Distribution Systems
EP4339986A1 (en) Device and method for monitoring overvoltage protection capacitors in generator circuit breakers
TW552756B (en) Insulation diagnosis device
TWI231079B (en) Insulation diagnostic device
JP2018072277A (en) Ground voltage detection device
KR20100034828A (en) Ground fault protection system
Subramaniam et al. Electrical and mechanical Fault identification in a three phase transformer from its VI characteristics
Jafari et al. New methods for monitoring neutral grounding resistors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5256757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250