[go: up one dir, main page]

JP2009274336A - Manufacturing method of resin composition for encapsulating semiconductor element - Google Patents

Manufacturing method of resin composition for encapsulating semiconductor element Download PDF

Info

Publication number
JP2009274336A
JP2009274336A JP2008128035A JP2008128035A JP2009274336A JP 2009274336 A JP2009274336 A JP 2009274336A JP 2008128035 A JP2008128035 A JP 2008128035A JP 2008128035 A JP2008128035 A JP 2008128035A JP 2009274336 A JP2009274336 A JP 2009274336A
Authority
JP
Japan
Prior art keywords
component
mixture
resin composition
semiconductor element
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008128035A
Other languages
Japanese (ja)
Other versions
JP5272195B2 (en
Inventor
Hirobumi Ono
博文 大野
Shoichi Kimura
祥一 木村
Minoru Yamane
実 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2008128035A priority Critical patent/JP5272195B2/en
Priority to MYPI20091940 priority patent/MY151454A/en
Priority to KR1020090042436A priority patent/KR101537822B1/en
Priority to CN200910139077.6A priority patent/CN101580629B/en
Publication of JP2009274336A publication Critical patent/JP2009274336A/en
Application granted granted Critical
Publication of JP5272195B2 publication Critical patent/JP5272195B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/007Methods for continuous mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a resin composition for encapsulating a semiconductor element having a process of feeding a mixture from a feeding vessel such as a hopper, a ribbon mixer or the like to a melting and kneading machine to melt and knead the same, the method capable of preventing stagnation of a component in the feeding vessel without being affected by a shape or a volume of the feeding vessel thereby to manufacture the resin composition for encapsulating the semiconductor element having a stable physical property. <P>SOLUTION: The manufacturing method of the resin composition for encapsulating the semiconductor element containing components of an epoxy resin (A), a curing agent (B) and an inorganic filler (C) comprises a process of preparing a mixture of the component (A), the component (B) and the component (C), the average particle diameter of each component being adjusted to be 5 to 50 μm, a process of storing the mixture in the vessel for feeding the mixture to the melting and kneading machine, a process of feeding the stored mixture from the vessel to the melting and kneading machine to make the molten kneaded mixture, and a process of cooling and solidifying the molten kneaded mixture, and then pulverizing the solidified mixture. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体素子を封止するために用いられる半導体素子封止用樹脂組成物の製造方法に関する。   The present invention relates to a method for producing a resin composition for encapsulating a semiconductor element used for encapsulating a semiconductor element.

従来、トランジスタ、IC、LSI等の半導体素子は、エポキシ樹脂、硬化剤および無機質充填剤等を含有する樹脂組成物を用いて封止されている。一般的に固体状の半導体素子封止用樹脂組成物の製造では、配合成分を混合して溶融混練した後に、圧延して冷却固化したものを粉砕するという工程が取られている(特許文献1〜3)。
特開2007−77333号公報 特開2006−297701号公報 特開2001−64398号公報
Conventionally, semiconductor elements such as transistors, ICs, and LSIs are sealed with a resin composition containing an epoxy resin, a curing agent, an inorganic filler, and the like. In general, in the production of a solid resin composition for encapsulating a semiconductor element, a process of mixing and melting and kneading compounding components, and then pulverizing a product that has been rolled and cooled and solidified (Patent Document 1). ~ 3).
JP 2007-77333 A JP 2006-297701 A JP 2001-64398 A

これら樹脂組成物の製造工程においては、製造効率を上げるために、配合成分の混合物を予め大量に作製しておき、溶融混練機に供給しながら連続的に溶融混練することが行われている。例えば、図1に示すヒーター3、ロータ羽根4およびミキシングチャンバー5を有する溶融混練機1と、混合物を溶融混練機1へ供給するための容器(以下、供給用容器という)であるホッパー2からなる溶融混練装置を用いた場合には、大量の混合物をホッパー2に一時的に貯蔵し、ホッパー2から溶融混練機1に供給して連続的に溶融混練が行われる。   In the production process of these resin compositions, in order to increase production efficiency, a large amount of a mixture of compounding ingredients is prepared in advance and continuously melt-kneaded while being supplied to a melt-kneader. For example, it comprises a melt kneader 1 having the heater 3, rotor blades 4 and mixing chamber 5 shown in FIG. 1, and a hopper 2 which is a container (hereinafter referred to as a supply container) for supplying the mixture to the melt kneader 1. When a melt-kneading apparatus is used, a large amount of the mixture is temporarily stored in the hopper 2 and supplied from the hopper 2 to the melt-kneader 1 for continuous melt-kneading.

しかし、混合物を、ホッパー2から溶融混練機1へ供給している間に、成分の一部がホッパー2内で偏析し、その結果、溶融混練の初期と後期では、得られる樹脂組成物の組成比率が若干変動して樹脂組成物の物性が変化するという問題があった。この原因は、成分の一部がホッパー2の壁面に滞留するためと推定される。このため、ホッパー2の形状を変えることにより改善できる可能性もあるが、従来用いられているホッパー2の形状は多岐にわたるため、形状毎に製造条件を変更することは製造効率の点で問題がある。   However, while the mixture is being supplied from the hopper 2 to the melt kneader 1, a part of the components segregates in the hopper 2, and as a result, the composition of the resin composition obtained in the early and late stages of the melt kneading. There was a problem that the physical properties of the resin composition changed due to a slight change in the ratio. It is estimated that this is because part of the components stays on the wall surface of the hopper 2. For this reason, there is a possibility that it can be improved by changing the shape of the hopper 2. However, since the shape of the hopper 2 that has been conventionally used is wide-ranging, changing the manufacturing conditions for each shape has a problem in terms of manufacturing efficiency. is there.

また成分の一部の偏析は、供給用容器としてホッパーを有する溶融混練装置を用いた場合に限らず、リボンミキサー等を供給用容器として用いて溶融混練した場合でも起こりうる。   The segregation of a part of the components can occur not only when a melt kneader having a hopper is used as a supply container, but also when melt kneaded using a ribbon mixer or the like as a supply container.

本発明はこのような事情に鑑みなされたもので、混合物を、ホッパーやリボンミキサー等の供給用容器から溶融混練機に供給して溶融混練する工程を備えた半導体素子封止用樹脂組成物の製造において、供給用容器内における成分の滞留を、供給用容器の形状や容量に影響されることなく防ぐことができ、その結果、成分の一部の偏析による組成比率の変動を抑制し、物性が安定した半導体素子封止用樹脂組成物の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances. A resin composition for encapsulating a semiconductor element comprising a step of supplying a mixture from a supply container such as a hopper or a ribbon mixer to a melt kneader and melt-kneading the mixture. In production, the retention of components in the supply container can be prevented without being affected by the shape and capacity of the supply container, and as a result, fluctuations in the composition ratio due to segregation of some of the components are suppressed, and physical properties An object of the present invention is to provide a method for producing a resin composition for encapsulating a semiconductor element that is stable.

上記の問題を解決するために、本発明は、下記(A)〜(C)成分を含む半導体素子封止用樹脂組成物の製造方法であって、
平均粒径が5μm以上50μm以下となるように調整した(A)成分および(B)成分と、(C)成分の混合物を得る工程、
前記混合物を、溶融混練機へ供給するための容器に貯蔵する工程、
貯蔵した前記混合物を、前記容器から溶融混練機に供給して溶融混練物を得る工程、
前記溶融混練物を冷却固化して粉砕する工程、
を含むことを特徴としている。
(A)エポキシ樹脂
(B)硬化剤
(C)無機質充填剤
さらに、本発明では、前記(A)成分および(B)成分の下記の式(1)で表される平均粒径における球形換算の重量が、(C)成分の下記の式(1)で表される平均粒径における球状換算の重量に対して0.4〜20倍であることが好ましい。
In order to solve the above problem, the present invention is a method for producing a resin composition for encapsulating a semiconductor element comprising the following components (A) to (C):
A step of obtaining a mixture of the component (A) and the component (B) adjusted so that the average particle diameter is 5 μm or more and 50 μm or less, and the component (C);
Storing the mixture in a container for feeding to a melt kneader;
Supplying the stored mixture from the container to a melt-kneader to obtain a melt-kneaded product,
A step of cooling and solidifying the melt-kneaded product,
It is characterized by including.
(A) Epoxy resin (B) Curing agent (C) Inorganic filler Furthermore, in the present invention, spherical conversion in the average particle diameter represented by the following formula (1) of the component (A) and the component (B). It is preferable that the weight is 0.4 to 20 times the spherical equivalent weight of the average particle diameter represented by the following formula (1) of the component (C).

本発明によれば、平均粒径が5μm以上50μm以下となるように調整したエポキシ樹脂(A成分)および硬化剤(B成分)を用いると、エポキシ樹脂(A成分)、硬化剤(B成分)および無機質充填剤(C成分)の混合物を、ホッパーやリボンミキサー等の供給用容器から溶融混練機へ供給する際に、供給用容器内における成分の滞留を、供給用容器の形状や容量に影響されることなく防ぐことができる。その結果、成分の偏析を抑制して物性が安定した半導体素子封止用樹脂組成物を得ることができる。   According to the present invention, when an epoxy resin (component A) and a curing agent (component B) adjusted to have an average particle size of 5 μm or more and 50 μm or less are used, an epoxy resin (component A), a curing agent (component B) When the mixture of inorganic filler (component C) is supplied from a supply container such as a hopper or ribbon mixer to a melt kneader, the retention of the components in the supply container affects the shape and capacity of the supply container. Can be prevented without being. As a result, it is possible to obtain a resin composition for encapsulating a semiconductor element that suppresses segregation of components and has stable physical properties.

つぎに、本発明の実施の形態について詳しく説明する。   Next, embodiments of the present invention will be described in detail.

本発明の半導体素子封止用樹脂組成物の製造方法は、下記(A)〜(C)成分を含む。
(A)エポキシ樹脂
(B)硬化剤
(C)無機質充填剤
本発明の半導体素子封止用樹脂組成物の製造方法においては、平均粒径が5μm以上50μm以下に調整されたエポキシ樹脂(A成分)および硬化剤(B成分)を用いる。これら所定の平均粒径に調製されたエポキシ樹脂(A成分)および硬化剤(B成分)は、後述するように、所定の平均粒径となるように粉砕して得てもよいし、予め所定の平均粒径となるように調整された市販品を用いてもよい。
The manufacturing method of the resin composition for semiconductor element sealing of this invention contains the following (A)-(C) component.
(A) Epoxy resin (B) Curing agent (C) Inorganic filler In the method for producing a resin composition for sealing a semiconductor element of the present invention, an epoxy resin (component A) having an average particle size adjusted to 5 μm or more and 50 μm or less ) And a curing agent (component B). The epoxy resin (component A) and the curing agent (component B) prepared to have a predetermined average particle diameter may be obtained by pulverizing to a predetermined average particle diameter, as described later, You may use the commercial item adjusted so that it might become the average particle diameter of this.

エポキシ樹脂(A成分)および硬化剤(B成分)の平均粒径が50μmを超えると、エポキシ樹脂(A成分)、硬化剤(B成分)および無機質充填剤(C成分)の混合物を供給用容器から溶融混練機へ供給する際に、成分の一部が供給用容器内で滞留することにより偏析が起こりやすくなり、特に、混練後期における樹脂組成物中の無機質充填剤(C成分)の含有量が高くなる傾向がみられる。また、平均粒子径が5μm未満のエポキシ樹脂(A成分)および硬化剤(B成分)は、一般的に入手が難しく、実用的でない。   When the average particle diameter of the epoxy resin (A component) and the curing agent (B component) exceeds 50 μm, a mixture of the epoxy resin (A component), the curing agent (B component) and the inorganic filler (C component) is supplied. Segregation is likely to occur due to a part of the components staying in the supply container when being fed to the melt-kneader, and in particular, the content of the inorganic filler (component C) in the resin composition in the latter stage of kneading. Tend to be higher. In addition, epoxy resins (component A) and curing agents (component B) having an average particle size of less than 5 μm are generally difficult to obtain and are not practical.

成分の偏析をより効果的に抑制するためには、平均粒径が15μm以上25μm以下となるように調整されたエポキシ樹脂(A成分)および硬化剤(B成分)を用いることが好ましい。   In order to more effectively suppress the segregation of components, it is preferable to use an epoxy resin (component A) and a curing agent (component B) adjusted so that the average particle size is 15 μm or more and 25 μm or less.

エポキシ樹脂(A成分)、硬化剤(B成分)および無機質充填剤(C成分)の平均粒径は、母集団から任意に抽出される試料を、レーザー回折/散乱式粒度分布測定装置を用いて測定される。   The average particle size of the epoxy resin (component A), curing agent (component B), and inorganic filler (component C) was determined by using a laser diffraction / scattering particle size distribution measuring device for a sample arbitrarily extracted from the population. Measured.

また、本発明においては、所定の平均粒径に調製されたエポキシ樹脂(A成分)および硬化剤(B成分)の下記の式(1)で表される平均粒径における球形換算の重量が、無機質充填剤(C成分)の下記の式(1)で表される平均粒径における球状換算の重量に対して0.4〜20倍であることが好ましい。20倍を超えると、エポキシ樹脂(A成分)、硬化剤(B成分)および無機質充填剤(C成分)の混合物を、供給用容器から溶融混練機へ連続的に供給する際に、供給用容器内において、混合物の滞留による成分の偏析が起こりやすくなるためであり、特に混練後期における樹脂組成物中の無機質充填剤(C成分)含有量が高くなる傾向が見られる。また、0.4倍未満でも、成分の偏析が起こる傾向がみられる。   In the present invention, the weight in terms of sphere in the average particle size represented by the following formula (1) of the epoxy resin (A component) and the curing agent (B component) prepared to a predetermined average particle size is: The inorganic filler (component C) is preferably 0.4 to 20 times the spherical equivalent weight of the average particle diameter represented by the following formula (1). When it exceeds 20 times, a supply container is used when a mixture of an epoxy resin (component A), a curing agent (component B) and an inorganic filler (component C) is continuously supplied from the supply container to the melt kneader. This is because segregation of components due to retention of the mixture is likely to occur, and in particular, there is a tendency that the content of the inorganic filler (C component) in the resin composition in the latter stage of kneading is increased. Moreover, even if less than 0.4 times, the tendency for the segregation of a component to be seen is seen.

また、エポキシ樹脂(A成分)および硬化剤(B成分)を、所定の平均粒径となるように粉砕する場合は、所望の粒径を効率的に得やすいとの観点から、粉砕機として、例えばターボミル等を用いることができる。その際、エポキシ樹脂(A成分)および硬化剤(B成分)を、個別に平均粒径が5μm以上50μm以下となるように粉砕してもよいし、予めエポキシ樹脂(A成分)および硬化剤(B成分)を所定の割合で混合した後に、平均粒径が5μm以上50μm以下となるように粉砕してもよい。さらには、予めエポキシ樹脂(A成分)および硬化剤(B成分)に無機質充填剤(C成分)を所定の割合で混合した後に、平均粒径が5μm以上50μm以下となるように粉砕してもよいが、エポキシ樹脂(A成分)および硬化剤(B成分)の平均粒径や比重を確認しやすいという観点から、無機質充填剤(C成分)と混合する前に粉砕することが好ましい。 In addition, when the epoxy resin (component A) and the curing agent (component B) are pulverized so as to have a predetermined average particle diameter, from the viewpoint of easily obtaining a desired particle diameter, as a pulverizer, For example, a turbo mill or the like can be used. In that case, you may grind | pulverize an epoxy resin (A component) and a hardening | curing agent (B component) separately so that an average particle diameter may be 5 micrometers or more and 50 micrometers or less, or an epoxy resin (A component) and hardening | curing agent ( B component) may be pulverized so as to have an average particle size of 5 μm or more and 50 μm or less after mixing at a predetermined ratio. Furthermore, after mixing the inorganic filler (C component) in a predetermined ratio with the epoxy resin (A component) and the curing agent (B component) in advance, the average particle size may be pulverized to 5 μm or more and 50 μm or less. However, from the viewpoint of easily confirming the average particle diameter and specific gravity of the epoxy resin (component A) and the curing agent (component B), it is preferable to grind before mixing with the inorganic filler (component C).

なお、本発明の半導体素子封止用樹脂組成物の製造方法においては、エポキシ樹脂(A成分)、硬化剤(B成分)および無機質充填剤(C成分)の他に、後述する硬化促進剤、難燃剤、カーボンブラックをはじめとする顔料等、必要に応じて添加する各種添加剤を用いることができる。   In addition, in the manufacturing method of the resin composition for sealing a semiconductor element of the present invention, in addition to the epoxy resin (component A), the curing agent (component B), and the inorganic filler (component C), a curing accelerator described later, Various additives added as necessary, such as flame retardants, pigments including carbon black, and the like can be used.

これら各種添加剤は、エポキシ樹脂(A成分)および硬化剤(B成分)を粉砕する際に添加してもよいし、エポキシ樹脂(A成分)、硬化剤(B成分)および無機質充填剤(C成分)の混合時に添加してもよい。混合は、混合機として、例えばレディゲミキサー、ヘンシェルミキサー等を用いて行うことができる。   These various additives may be added when the epoxy resin (component A) and the curing agent (component B) are pulverized, or the epoxy resin (component A), the curing agent (component B) and the inorganic filler (C You may add at the time of mixing of a component. Mixing can be performed using, for example, a Redige mixer or a Henschel mixer as a mixer.

ついで、所定の平均粒径となるように調整したエポキシ樹脂(A成分)および硬化剤(B成分)と、無機質充填剤(C成分)の混合物を、供給用容器に投入して溶融混練するまで貯蔵する。   Subsequently, the mixture of the epoxy resin (component A) and the curing agent (component B) adjusted to have a predetermined average particle diameter and the inorganic filler (component C) is put into a supply container and melt-kneaded. Store.

本発明の半導体素子封止用樹脂組成物の製造方法で用いる供給用容器は、特に制限されるものではなく、例えば、ホッパーやリボンミキサー等の貯蔵機能と供給機能を有する容器を用いることができるし、その容量にも依存しない。また、供給用容器を複数個連結して用いてもよい。例えば、リボンミキサーの排出口をホッパーの投入口に連結したような容器も用いることができる。   The supply container used in the method for producing a resin composition for encapsulating a semiconductor element of the present invention is not particularly limited. For example, a container having a storage function and a supply function such as a hopper and a ribbon mixer can be used. It does not depend on its capacity. Further, a plurality of supply containers may be connected and used. For example, a container in which the discharge port of the ribbon mixer is connected to the input port of the hopper can also be used.

そして、混合物を、溶融混練機の容量に合わせて供給用容器から溶融混練機に供給し、60〜160℃で連続的に溶融混練する。図1には、用いられる溶融混練装置の構成概要図が示されている。すなわち、この溶融混練装置においては、溶融混練機1に供給用容器としてホッパー2が設けられるとともに、溶融混練機1には、ヒーター3およびロータ羽根4を供えたミキシングチャンバー5が設けられている。そして、ホッパー2に投入された混合物が、ホッパー2から溶融混練機1の片端部に供給され、他端部から混練物が排出されるように設計されている。   Then, the mixture is supplied from the supply container to the melt-kneader according to the capacity of the melt-kneader, and continuously melt-kneaded at 60 to 160 ° C. FIG. 1 shows a schematic configuration diagram of the melt-kneading apparatus used. That is, in this melt-kneading apparatus, the melt-kneader 1 is provided with a hopper 2 as a supply container, and the melt-kneader 1 is provided with a mixing chamber 5 provided with a heater 3 and rotor blades 4. And the mixture thrown into the hopper 2 is supplied to the one end part of the melt kneader 1 from the hopper 2, and the kneaded material is discharged | emitted from the other end part.

最後に、得られた混練物を冷却固化し、固化した混練物を10〜2000μmに粉砕することにより、半導体素子封止用樹脂組成物が得られる。   Finally, the obtained kneaded product is cooled and solidified, and the solidified kneaded product is pulverized to 10 to 2000 μm to obtain a semiconductor element sealing resin composition.

本発明の半導体素子封止用樹脂組成物の製造方法において使用されるエポキシ樹脂成分(A成分)としては、特に限定されるものではない。例えば、ジシクロペンタジエン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂等の各種のエポキシ樹脂を用いることができる。これらエポキシ樹脂は単独で用いてもよいし2種以上併用してもよい。このようなエポキシ樹脂としては、エポキシ樹脂の硬化後の靭性及びエポキシ樹脂の反応性を確保する観点から、エポキシ当量150〜250、軟化点もしくは融点が50〜130℃の常温で固形のものが好ましく、中でも、信頼性の観点から、クレゾールノボラック型エポキシ樹脂やビフェニル型エポキシ樹脂や低級アルキル基をフェニル環に付加したような吸低湿型のエポキシ樹脂を好適に用いることができる。   It does not specifically limit as an epoxy resin component (A component) used in the manufacturing method of the resin composition for semiconductor element sealing of this invention. For example, various epoxy resins such as a dicyclopentadiene type epoxy resin, a cresol novolak type epoxy resin, a phenol novolak type epoxy resin, a bisphenol type epoxy resin, a biphenyl type epoxy resin, and a trishydroxyphenylmethane type epoxy resin can be used. These epoxy resins may be used alone or in combination of two or more. As such an epoxy resin, from the viewpoint of ensuring toughness after curing of the epoxy resin and reactivity of the epoxy resin, an epoxy equivalent of 150 to 250, a softening point or a solid at a normal temperature of 50 to 130 ° C. is preferable. Among them, from the viewpoint of reliability, a cresol novolac type epoxy resin, a biphenyl type epoxy resin, and a low moisture absorption type epoxy resin in which a lower alkyl group is added to the phenyl ring can be suitably used.

硬化剤(B成分)としては、エポキシ樹脂(A成分)との間で硬化反応を生起するものであれば特に限定するものではなく、例えば、酸無水物、フェノール樹脂、アミン類、チオール類等が挙げられるが、中でも、保存安定性、硬化性、硬化体の物性に優れる点において、フェノール樹脂を用いることが好ましい。フェノール樹脂は、例えば、ジシクロペンタジエン型フェノール樹脂、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂等が用いられる。これらフェノール樹脂は単独で用いてもよいし、2種以上併用してもよい。そして、フェノール樹脂としては、エポキシ樹脂(A成分)との反応性の観点から、水酸基当量が70〜250、軟化点が50〜110℃のものを用いることが好ましく、中でも硬化反応性が高いという観点から、フェノールノボラック樹脂を好適に用いることができる。また、信頼性の観点から、フェノールアラルキル樹脂やビフェニルアラルキル樹脂のような低吸湿性のものも好適に用いることができる。   The curing agent (component B) is not particularly limited as long as it causes a curing reaction with the epoxy resin (component A). For example, acid anhydrides, phenol resins, amines, thiols, etc. Among them, it is preferable to use a phenol resin in terms of excellent storage stability, curability, and physical properties of the cured product. As the phenol resin, for example, dicyclopentadiene type phenol resin, phenol novolac resin, cresol novolac resin, phenol aralkyl resin, or the like is used. These phenolic resins may be used alone or in combination of two or more. And as a phenol resin, it is preferable to use a hydroxyl equivalent of 70-250 and a softening point of 50-110 degreeC from a reactive viewpoint with an epoxy resin (A component). From the viewpoint, a phenol novolac resin can be preferably used. From the viewpoint of reliability, low hygroscopic materials such as phenol aralkyl resins and biphenyl aralkyl resins can also be suitably used.

そして、エポキシ樹脂(A成分)とフェノール樹脂(B成分)の配合割合は、硬化反応性という観点から、エポキシ樹脂(A成分)中のエポキシ基1当量に対して、フェノール樹脂(B成分)中の水酸基の合計が0.5〜2.0当量となるように配合することが好ましく、より好ましくは0.7〜1.5当量である。   And the compounding ratio of an epoxy resin (A component) and a phenol resin (B component) is a phenol resin (B component) with respect to 1 equivalent of epoxy groups in an epoxy resin (A component) from a viewpoint of hardening reactivity. It is preferable to mix | blend so that the sum total of the hydroxyl group may be 0.5-2.0 equivalent, More preferably, it is 0.7-1.5 equivalent.

無機質充填剤(C成分)としては、特に限定されるものではなく従来公知の各種充填剤を用いることができる。例えば、石英ガラス、タルク、シリカ(溶融シリカや結晶性シリカ等)、アルミナ、窒化アルミニウム、窒化珪素等の粉末が挙げられる。これらは単独で用いてもよいし、2種以上併用してもよい。中でも、得られる硬化体の熱線膨張係数が低減し、内部応力を低減できる結果、樹脂封止後の基板と素子の反りを抑制できるという点から、シリカ粉末を用いることが好ましく、シリカ粉末の中でも溶融シリカ粉末を用いることが、高充填性および高流動性という点からより好ましい。   The inorganic filler (component C) is not particularly limited, and various conventionally known fillers can be used. Examples thereof include powders of quartz glass, talc, silica (such as fused silica and crystalline silica), alumina, aluminum nitride, and silicon nitride. These may be used alone or in combination of two or more. Among them, it is preferable to use silica powder from the viewpoint that the thermal expansion coefficient of the obtained cured body can be reduced and internal stress can be reduced, so that warpage between the substrate and the element after resin sealing can be suppressed. It is more preferable to use fused silica powder from the viewpoints of high filling properties and high fluidity.

無機質充填剤(C成分)としては、成分の偏析をより効果的に防止するという点から平均粒径が0.5〜45μmの範囲のものを用いることが好ましく、5〜35μmの範囲のものを用いることがより好ましい。   The inorganic filler (component C) is preferably one having an average particle size in the range of 0.5 to 45 μm, more preferably in the range of 5 to 35 μm from the viewpoint of more effectively preventing segregation of the components. More preferably, it is used.

無機質充填剤(C成分)の含有量は、半導体素子封止用樹脂組成物全体の50〜90重量%の範囲に設定することが好ましい。特に好ましくは60〜90重量%である。すなわち、50重量%未満では、硬化物の線膨張係数が大きくなり、封止される半導体素子に対する応力が大きくなって、機能低下や、温度変化によるクラックが生じやすくなる。また、90重量%を超えると、エポキシ樹脂組成物の粘度が高くなって成形性が低下する傾向がみられるからである。   The content of the inorganic filler (component C) is preferably set in the range of 50 to 90% by weight of the entire semiconductor element sealing resin composition. Particularly preferred is 60 to 90% by weight. That is, if it is less than 50% by weight, the linear expansion coefficient of the cured product is increased, the stress on the semiconductor element to be sealed is increased, and the function is liable to be deteriorated or cracked due to temperature change. Moreover, it is because the viscosity of an epoxy resin composition will become high and the tendency for a moldability to fall will be seen when it exceeds 90 weight%.

なお、本発明の半導体素子封止用樹脂組成物の製造方法においては、エポキシ樹脂(A成分)、硬化剤(B成分)および無機質充填剤(C成分)以外に、前述したように、必要に応じて硬化促進剤、難燃剤、離型剤、カーボンブラックをはじめとする顔料等の他の添加剤を適宜配合することができる。   In addition, in the manufacturing method of the resin composition for semiconductor element sealing of this invention, as mentioned above other than an epoxy resin (A component), a hardening | curing agent (B component), and an inorganic filler (C component), it is required. Accordingly, other additives such as a curing accelerator, a flame retardant, a release agent, and a pigment such as carbon black can be appropriately blended.

硬化促進剤としては、エポキシ樹脂(A成分)と硬化剤(B成分)との硬化反応を促進させるものであれば、特に限定するものではなく、従来公知の各種硬化促進剤を用いることができる。例えば、リン系硬化促進剤、アミン系硬化促進剤、ジアザビシクロアルケン系硬化促進剤等があげられる。   The curing accelerator is not particularly limited as long as it accelerates the curing reaction between the epoxy resin (component A) and the curing agent (component B), and various conventionally known curing accelerators can be used. . For example, a phosphorus hardening accelerator, an amine hardening accelerator, a diazabicycloalkene hardening accelerator, etc. are mention | raise | lifted.

難燃剤としては、例えば、有機リン化合物、酸化アンチモン、水酸化アルミニウムや水酸化マグネシウム等の金属水酸化物等が挙げられる。これらは単独で用いてもよいし、2種以上併せて用いてもよい。   Examples of the flame retardant include organic phosphorus compounds, antimony oxide, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, and the like. These may be used alone or in combination of two or more.

本発明の半導体素子封止用樹脂組成物の製造方法により得られた半導体素子封止用樹脂組成物を用いた半導体素子の封止方法は、特に限定されるものではなく、トランスファー成形法等の公知の成形方法によって行うことができる。また、半導体素子封止用樹脂組成物は、このまま粉末状で用いてもよいし、タブレット状に成型して用いてもよい。   The method for sealing a semiconductor element using the resin composition for sealing a semiconductor element obtained by the method for manufacturing a resin composition for sealing a semiconductor element of the present invention is not particularly limited. It can be performed by a known molding method. Moreover, the resin composition for encapsulating a semiconductor element may be used in a powder form as it is, or may be used after being molded into a tablet.

つぎに、実施例について比較例と併せて説明する。ただし、本発明は、これら実施例に限定されるものではない。   Next, examples will be described together with comparative examples. However, the present invention is not limited to these examples.

まず、下記に示す各成分を準備した。
〔エポキシ樹脂a〕
ビフェニル型エポキシ樹脂(エポキシ当量190、融点105℃)
〔エポキシ樹脂b〕
クレゾールノボラック型エポキシ樹脂(エポキシ当量195、融点75℃)
〔硬化剤〕
フェノールノボラック樹脂(水酸基当量110、軟化点100℃)
〔無機質充填剤a〕
平均粒径8μmの破砕溶融シリカ粉末
〔無機質充填剤b〕
平均粒径10μmの破砕溶融シリカ粉末
〔無機質充填剤c〕
平均粒径15μmの球状溶融シリカ粉末
〔無機質充填剤d〕
平均粒径30μmの球状溶融シリカ粉末
〔無機質充填剤e〕
平均粒径15μmの破砕溶融シリカ粉末
〔硬化促進剤〕
トリフェニルホスフィン
〔離型剤〕
カルナバワックス
〔シランカップリング剤〕
γ−グリシドキシプロピルトリメトキシシラン
〔顔料〕
カーボンブラック
〔難燃剤〕
三酸化アンチモン
〔実施例1〜5、比較例1〜5〕
表1に、実施例1〜5及び比較例1〜5で作製した半導体素子封止用樹脂組成物IおよびIIの組成を示した。表1に示す組成のうちエポキシ樹脂(A成分)および硬化剤(B成分)を混合した後、粉砕機として実施例1〜5はターボミル、比較例1〜5はハンマーミルを用いて適宜条件を変えて粉砕することにより、表2および表3に示す平均粒径を有するエポキシ樹脂(A成分)および硬化剤(B成分)の調整物を得た。
First, each component shown below was prepared.
[Epoxy resin a]
Biphenyl type epoxy resin (epoxy equivalent 190, melting point 105 ° C)
[Epoxy resin b]
Cresol novolac type epoxy resin (epoxy equivalent 195, melting point 75 ° C.)
[Curing agent]
Phenol novolac resin (hydroxyl equivalent 110, softening point 100 ° C)
[Inorganic filler a]
Crushed fused silica powder with an average particle size of 8 μm [inorganic filler b]
Crushed fused silica powder with an average particle size of 10 μm [inorganic filler c]
Spherical fused silica powder with an average particle size of 15 μm [inorganic filler d]
Spherical fused silica powder with an average particle size of 30 μm [inorganic filler e]
Crushed fused silica powder with an average particle size of 15 μm [curing accelerator]
Triphenylphosphine (release agent)
Carnauba wax (silane coupling agent)
γ-Glycidoxypropyltrimethoxysilane (pigment)
Carbon black (flame retardant)
Antimony trioxide [Examples 1-5, Comparative Examples 1-5]
In Table 1, the composition of the resin composition I and II for semiconductor element sealing produced in Examples 1-5 and Comparative Examples 1-5 was shown. After mixing an epoxy resin (component A) and a curing agent (component B) in the composition shown in Table 1, Examples 1-5 are turbo mills and Comparative Examples 1-5 are appropriately used as a pulverizer using a hammer mill. By changing and pulverizing, an adjusted product of an epoxy resin (component A) and a curing agent (component B) having the average particle sizes shown in Tables 2 and 3 was obtained.

そして、調整物と無機質充填剤(C成分)と表1に示す他の添加剤を、表1に示す割合で全成分合計量が100kgとなるように、混合機としてヘンシェルミキサー(容量:200L)を用いて2分間分散混合することにより混合物を得た。   And the Henschel mixer (capacity: 200L) as a mixer so that the total amount of the adjusted components, the inorganic filler (component C) and the other additives shown in Table 1 are 100 kg in the proportions shown in Table 1. Was mixed by dispersion for 2 minutes to obtain a mixture.

なお、調整物および無機質充填剤(C成分)の平均粒径は、HORIBA社製レーザー回折/散乱式粒度分布測定装置LA−910を用いて湿式法にて各成分の粒度分布を測定することにより算出した。   In addition, the average particle diameter of a preparation and an inorganic filler (C component) is by measuring the particle size distribution of each component with a wet method using the laser diffraction / scattering type particle size distribution measuring apparatus LA-910 made by HORIBA. Calculated.

ついで、混合物を、溶融混練装置に備え付けられた供給用容器であるホッパー(容量:400L)に投入した。この工程を2回繰り返して、ホッパー内の混合物が合計200kgとなるようにした。   Subsequently, the mixture was put into a hopper (capacity: 400 L) which is a supply container provided in the melt-kneading apparatus. This process was repeated twice so that the mixture in the hopper totaled 200 kg.

そして、ホッパー内の混合物を、200kg/時間の流量でホッパーからスクリュー式溶融混練機に連続的に供給しながら溶融混練(温度:80℃)した。スクリュー式溶融混練機から排出される混練物を、排出開始から3分間隔で6回採取し、ついで20分後に1回採取し、さらに3分間隔で7回採取した。各時間で採取した各混練物をカレンダーロールで圧延して空冷固化し、空冷固化した各混練物をハンマー式粉砕機を用いて粉砕して、実施例1〜5および比較例1〜5の各樹脂組成物を得た。
〔樹脂組成物評価方法1〕
前記方法で得られた実施例1〜5および比較例1〜5の各樹脂組成物30gで直径30mmのタブレットを加圧成型して80℃に予備加熱したものを、トランスファー成形(加熱条件:175℃×2分)で熱硬化した後に、175℃×5時間のポストキュアをすることにより比重測定用の試験片を得て、比重を測定した。そして、比重の変動幅を算出した。なお、比重測定方法はJIS−K6911に準じた。
〔樹脂組成物評価方法2〕
また、前記方法で得られた各樹脂組成物を用いて、ASTM D3123−98(2004)に準じて175℃におけるスパライラルフロー測定を行った。そしてスパイラルフロー長さの変動幅を算出した。
The mixture in the hopper was melt-kneaded (temperature: 80 ° C.) while being continuously supplied from the hopper to the screw-type melt kneader at a flow rate of 200 kg / hour. The kneaded material discharged from the screw melt kneader was sampled 6 times at intervals of 3 minutes from the start of discharge, then once after 20 minutes, and further 7 times at intervals of 3 minutes. Each kneaded material collected at each time is rolled with a calender roll to be air-cooled and solidified, and each air-cooled and solidified kneaded material is pulverized using a hammer type pulverizer, and each of Examples 1 to 5 and Comparative Examples 1 to 5 is crushed. A resin composition was obtained.
[Resin Composition Evaluation Method 1]
Transfer molding (heating condition: 175) was performed by press-molding a tablet having a diameter of 30 mm with 30 g of each of the resin compositions of Examples 1 to 5 and Comparative Examples 1 to 5 obtained by the above method and preheating to 80 ° C. After heat curing at [° C. × 2 minutes], a test piece for specific gravity measurement was obtained by post-curing at 175 ° C. × 5 hours, and the specific gravity was measured. And the fluctuation range of specific gravity was computed. The specific gravity measurement method conformed to JIS-K6911.
[Resin Composition Evaluation Method 2]
Further, using each resin composition obtained by the above method, a spiral flow measurement at 175 ° C. was performed according to ASTM D3123-98 (2004). Then, the fluctuation range of the spiral flow length was calculated.

その結果、表2および表3に示したように、調整物の平均粒径が5μm以上50μm以下である実施例品は、調整物の平均粒径が50μmを超えた比較例品と比べて、樹脂組成物の比重の変動とスパイラルフロー長さの変動が抑えられていた。すなわち、本発明の半導体素子封止用樹脂組成物の製造方法では、混合物を連続的に溶融混練した場合に、溶融混練初期と後期で樹脂組成物の物性の変化が小さく、安定した製造をすることができる。 As a result, as shown in Table 2 and Table 3, the example product in which the average particle diameter of the adjusted product is 5 μm or more and 50 μm or less is compared with the comparative product in which the average particle size of the adjusted product exceeds 50 μm. Variations in the specific gravity and spiral flow length of the resin composition were suppressed. That is, in the method for producing a resin composition for encapsulating a semiconductor element of the present invention, when the mixture is continuously melt-kneaded, the change in physical properties of the resin composition is small and stable in the initial and later stages of melt-kneading. be able to.

本発明の半導体素子封止用樹脂組成物の製造方法に好適に用いられる溶融混練装置の構成図である。It is a block diagram of the melt-kneading apparatus used suitably for the manufacturing method of the resin composition for semiconductor element sealing of this invention.

符号の説明Explanation of symbols

1 溶融混練機
2 ホッパー
3 ヒーター
4 ロータ羽根
5 ミキシングチャンバー
1 Melting and kneading machine 2 Hopper 3 Heater 4 Rotor blade 5 Mixing chamber

Claims (2)

下記(A)〜(C)成分を含む半導体素子封止用樹脂組成物の製造方法であって、
平均粒径が5μm以上50μm以下となるように調整した(A)成分および(B)成分と、(C)成分の混合物を得る工程、
前記混合物を、溶融混練機へ供給するための容器に貯蔵する工程、
貯蔵した前記混合物を、前記容器から溶融混練機に供給して溶融混練物を得る工程、
前記溶融混練物を冷却固化して粉砕する工程、
を含むことを特徴とする、半導体素子封止用樹脂組成物の製造方法。
(A)エポキシ樹脂
(B)硬化剤
(C)無機質充填剤
It is a manufacturing method of the resin composition for semiconductor element sealing containing the following (A)-(C) component,
A step of obtaining a mixture of the component (A) and the component (B) adjusted so that the average particle diameter is 5 μm or more and 50 μm or less, and the component (C);
Storing the mixture in a container for feeding to a melt kneader;
Supplying the stored mixture from the container to a melt-kneader to obtain a melt-kneaded product,
A step of cooling and solidifying the melt-kneaded product,
The manufacturing method of the resin composition for semiconductor element sealing characterized by including this.
(A) Epoxy resin (B) Curing agent (C) Inorganic filler
前記(A)成分および(B)成分の下記の式(1)で表される平均粒径における球形換算の重量が、(C)成分の下記の式(1)で表される平均粒径における球状換算の重量に対して0.4〜20倍であることを特徴とする、請求項1に記載の半導体素子封止用樹脂組成物の製造方法。
The weight in terms of sphere in the average particle size represented by the following formula (1) of the component (A) and the component (B) is the average particle size represented by the following formula (1) of the component (C). It is 0.4-20 times with respect to the weight of spherical conversion, The manufacturing method of the resin composition for semiconductor element sealing of Claim 1 characterized by the above-mentioned.
JP2008128035A 2008-05-15 2008-05-15 Manufacturing method of resin composition for sealing semiconductor element Expired - Fee Related JP5272195B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008128035A JP5272195B2 (en) 2008-05-15 2008-05-15 Manufacturing method of resin composition for sealing semiconductor element
MYPI20091940 MY151454A (en) 2008-05-15 2009-05-13 Method for producing resin composition for semiconductor element encapsulation
KR1020090042436A KR101537822B1 (en) 2008-05-15 2009-05-15 Method for producing resin composition for sealing semiconductor device
CN200910139077.6A CN101580629B (en) 2008-05-15 2009-05-15 Method for fabricating resin composition for semiconductor packaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008128035A JP5272195B2 (en) 2008-05-15 2008-05-15 Manufacturing method of resin composition for sealing semiconductor element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012172819A Division JP2012251157A (en) 2012-08-03 2012-08-03 Semiconductor element sealing resin composition and semiconductor sealing body using the same

Publications (2)

Publication Number Publication Date
JP2009274336A true JP2009274336A (en) 2009-11-26
JP5272195B2 JP5272195B2 (en) 2013-08-28

Family

ID=41362953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008128035A Expired - Fee Related JP5272195B2 (en) 2008-05-15 2008-05-15 Manufacturing method of resin composition for sealing semiconductor element

Country Status (4)

Country Link
JP (1) JP5272195B2 (en)
KR (1) KR101537822B1 (en)
CN (1) CN101580629B (en)
MY (1) MY151454A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7434025B2 (en) 2019-10-02 2024-02-20 日東電工株式会社 Resin molded product for optical semiconductor encapsulation and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12202174B2 (en) 2019-02-26 2025-01-21 Sumitomo Chemical Company, Limited Powder storage apparatus, melt kneader, powder storage method, and production method for thermoplastic resin composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01293144A (en) * 1988-05-21 1989-11-27 Ain Kk Method for crushing cellulosic material and manufacture of, resin film, resin coating film, and paint
JP2000273278A (en) * 1999-03-23 2000-10-03 Sumitomo Bakelite Co Ltd Production of epoxy resin holding material for semiconductor sealing use
JP2001201892A (en) * 2000-01-21 2001-07-27 Ricoh Co Ltd Manufacturing method of electrostatic charge image developing toner
JP2004167491A (en) * 2004-02-13 2004-06-17 Mitsubishi Chemicals Corp Method for producing toner for developing electrostatic image and pulverizing and classifying apparatus for toner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0859791A (en) * 1994-08-25 1996-03-05 Matsushita Electric Works Ltd Method for producing epoxy resin composition for sealing
CN100335541C (en) * 2005-04-15 2007-09-05 江苏中电华威电子股份有限公司 Method for preparing composition of epoxy resin for packaging semiconductor
JP2007077333A (en) * 2005-09-15 2007-03-29 Hitachi Chem Co Ltd Manufacturing method of epoxy resin molding material for sealing, epoxy resin molding material for sealing and electronic part unit
US20070207322A1 (en) * 2006-03-01 2007-09-06 Shin-Etsu Chemical Co., Ltd. Semiconductor encapsulating epoxy resin composition and semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01293144A (en) * 1988-05-21 1989-11-27 Ain Kk Method for crushing cellulosic material and manufacture of, resin film, resin coating film, and paint
JP2000273278A (en) * 1999-03-23 2000-10-03 Sumitomo Bakelite Co Ltd Production of epoxy resin holding material for semiconductor sealing use
JP2001201892A (en) * 2000-01-21 2001-07-27 Ricoh Co Ltd Manufacturing method of electrostatic charge image developing toner
JP2004167491A (en) * 2004-02-13 2004-06-17 Mitsubishi Chemicals Corp Method for producing toner for developing electrostatic image and pulverizing and classifying apparatus for toner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7434025B2 (en) 2019-10-02 2024-02-20 日東電工株式会社 Resin molded product for optical semiconductor encapsulation and its manufacturing method

Also Published As

Publication number Publication date
CN101580629A (en) 2009-11-18
KR20090119734A (en) 2009-11-19
KR101537822B1 (en) 2015-07-17
MY151454A (en) 2014-05-30
CN101580629B (en) 2014-05-14
JP5272195B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
KR930008739B1 (en) Epoxy Resin Compositions and Molded Articles Made from the Compositions
JPH0375570B2 (en)
TWI600703B (en) Semiconductor package resin composition and semiconductor device
JPH11302506A (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
CN101743198A (en) Silica powder, its production method and composition using the same
JP5576700B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
WO2000077851A1 (en) Method of producing epoxy for molding semiconductor device, molding material, and semiconductor device
JP5272195B2 (en) Manufacturing method of resin composition for sealing semiconductor element
JPH0747682B2 (en) Epoxy resin composition and cured product thereof
JP2008143950A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JPS6296568A (en) Semiconductor sealing resin composition
JP2014031460A (en) Epoxy resin composition for encapsulation and semiconductor device using the same
JP5601034B2 (en) RESIN MOLDED BODY, ITS MANUFACTURING METHOD, AND ELECTRONIC PART DEVICE
JP2000319633A (en) Silica-based filler for epoxy resin-based sealing materials
JP2012251157A (en) Semiconductor element sealing resin composition and semiconductor sealing body using the same
JPH1095607A (en) Siliceous filler and its production
JP2007067164A (en) Semiconductor sealing epoxy resin composite and its manufacturing method
JP5547680B2 (en) Epoxy resin composition for sealing and semiconductor device
JP5275697B2 (en) Epoxy resin composition for sealing and method for producing the same
JP2008106193A (en) Phenol resin salt of triarylalkyl phosphonium
JP3582771B2 (en) Epoxy resin composition and semiconductor device
JP2005281619A (en) Semiconductor device using epoxy resin composition
JPH09290418A (en) Manufacture of epoxy resin composition for semi conductor sealing
JP4850599B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device obtained using the same
JPS6310616A (en) Sealing resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120803

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120821

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5272195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees